

Sustainable Building Design through Evolutionary Algorithms and Optimisation

Dr Sandy Brownlee, University of Stirling (joint work with Jon Wright et al at Loughborough University)

Outline

Why Optimise Buildings

Exploring the design space

Challenge 1: Long Run Times

Challenge 2: Large Scale

Conclusions

Why Optimise Buildings?

Why optimise? Climate change! Over 50% of UK carbon emissions are related to energy consumed buildings Cost, comfort No mass production Long design lifetime

Buildings are complex!

Many variables Dimensions, materials, layout, systems (heat / light etc), control configuration

Many objectives / constraints Energy use, Construction cost, Comfort - all examples here are heat+light+cool energy vs cost (minimise both) Comfort, Physical limitations, Compliance

Highly suitable for EA

Evolutionary Algorithms

- This time there are two "fitnesses" (objective values) for each solution
- One solution *dominates* another if it is "better" in both objectives
- Can plot the objectives of population in 2D >>>
- Set of non-dominated solutions is the Pareto front

Explanation: analysis of solutions and Pareto fronts

It's about informing the design process; exploration of the space

Explanation: analysis of solutions and Pareto fronts

Points common to all members of Pareto front

Expanation: analysis of solutions and Pareto fronts

Energy	CapCost	Α	B	с	D	E	F	G	H	1
0.00	1.00	0.5	0.564516	0.98	0.65	0.82	0.11	0	1	1
0.01	0.90	0.5	0.564516	0.98	0.65	0.73	0.11	0	1	1
0.03	0.82	0.5	0.580645	0.98	0.57	0.73	0.11	0	1	1
0.04	0.76	0.5	0.580645	0.98	0.49	0.73	0.11	0	1	0
0.07	0.74	0.5	0.564516	0.98	0.49	0.73	0.11	0	1	0
0.07	0.70	0.5	0.564516	0.98	0.49	0.73	0.22	0	1	0
0.10	0.66	0.5	0.580645	0.98	0.41	0.73	0.11	0	1	0
0.10	0.62	0.5	0.564516	0.98	0.65	0.82	1.00	1	1	1
0.10	0.61	0.5	0.564516	0.98	0.65	0.82	0.11	1	1	1
0.10	0.61	0.5	0.564516	0.98	0.65	0.82	1.00	1	1	1
0.12	0.59	0.5	0.612903	0.98	0.65	0.82	0.67	1	1	1
0.14	0.57	0.5	0.548387	0.98	0.49	0.73	0.11	1	1	0
0.15	0.54	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.17	0.53	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.18	0.52	0.5	0.564516	0.98	0.49	0.73	0.11	1	1	0
0.18	0.49	0.4	0.548387	0.98	0.57	0.73	0.67	1	1	0
0.21	0.45	0.4	0.564516	0.98	0.41	0.43	0.11	0.5	1	0
0.21	0.43	0.5	0.564516	0.98	0.57	0.43	0.67	1	1	0
0.21	0.37	0.4	0.548387	0.98	0.49	0.43	0.67	1	1	0
0.24	0.35	0.4	0.548387	0.98	0.49	0.43	0.67	1	1	0
0.27	0.32	0.4	0.548387	0.98	0.41	0.43	0.11	1	1	0
0.32	0.30	0.4	0.548387	0.98	0.33	0.43	0.67	1	1	0
0.33	0.29	0.4	0.548387	0.98	0.33	0.43	0.11	1	1	0
0.35	0.27	0.4	0.580645	0.98	0.35	0.43	0.11	1	1	0
0.35	0.26	0.4	0.596774	0.98	0.24	0.43	0.11	1	1	0
0.36	0.25	0.4	0.548387	0.98	0.29	0.43	0.11	1	1	0
0.38	0.25	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.39	0.25	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.39	0.24	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.41	0.20	0.4	0.596774	0.98	0.33	0.33	0.67	1	1	0
0.46	0.20	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.46	0.20	0.4	0.596774	0.98	0.33	0.33	0.11	1	1	0
0.47	0.19	0.4	0.564516	0.98	0.24	0.33	0.11	1	1	0
0.49	0.18	0.4	0.596774	0.98	0.24	0.33	1.00	1	1	0
0.54	0.16	0.4	0.532258	1.00	0.24	0.33	0.11	1	1	0
0.55	0.14	0.4	0.596774	0.98	0.24	0.33	0.67	1	1	0
0.57	0.12	0.4	0.596774	0.98	0.24	0.33	0.11	1	1	0
0.64	0.11	0.4	0.612903	0.98	0.24	0.43	0.11	1	1	0

Local sensitivity

Local sensitivity

Local sensitivity

Challenge 1: Long Run Times

Evaluations at least 1-2 minutes, up to hours

Challenge 1: Long Run Times

Surrogate models

Approximate the fitness function

Don't always get it right!

Separate models for each objective and constraint

Always keep some "predicted infeasible" solutions in population

Challenge 2: Large Scale

935 houses in NE England (actually representative archetypes representing 1.2 million homes)

4424 binary decisions about whether to apply or not apply a refurbishment

(approx. 4.73 decisions per house)

Data taken from Cambridge Housing Model (in turn built on data from the English Housing Survey)

Refurbishment	Cost		
	(\pounds)		
Cavity wall insulation (CWI)	500		
Loft insulation (Loft)	250		
Double glazing (DG)	5000		
Condensing boiler (Cond)	2500		
Solid wall insulation (SWI)	8000		
Air source heat-pump (ASHP)	7000		
Ground source heat-pump (GSHP)	10000		
Biomass heat (BH)	10000		
Photovoltaic cells (PV)	8000		
Solar hot water (SHW)	2000		

Global optimisation problem

How do we best invest our limited budget across the whole stock? The single-objective version of problem (minimise cost, or minimise energy) is *additively-separable*

Multi-objective version isn't separable

$$F(X) = \sum_{I=1}^{s} G(X_I)$$

Building optimisation is important!

Exploration of the design space is as important as finding (near) optimal solutions

Surrogates used to speed up runs

Reformulation of the problem to solve at large scale

www.cs.stir.ac.uk/~sbr

alexander.brownlee@stir.ac.uk

