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Value-added Optimisation

A philosophy whereby we provide more than
simply optimal solutions

e Information gained during optimisation can
highlight sensitivities and linkage

e This can be useful to the decision maker:
— Confidence in the optimality of results
— Aids decision making

— Insights into the problem
e Help solve similar problems
e Highlight problems / misconceptions in definition



Value-added Optimisation

This information can come from
— the trajectory followed by the algorithm
— models built during the run

If we are constructing a model as part of the
optimisation process, anything we can learn from it
comes "for free"

See also

— M. Hauschild, M. Pelikan, K. Sastry, and C. Lima. Analyzing
probabilistic models in hierarchical BOA. IEEE TEC 13(6):1199-
1217, December 2009

— R. Santana, C. Bielza, J. A. Lozano, and P. Larranaga. Mining
probabilistic models learned by EDAs in the optimization of
multi-objective problems. In Proc. GECCO 2009, pp 445-452



Markov network fitness model (MFM)

e Originally developed as part of DEUM EDA

 An undirected probabilistic graphical model
— Representation of the joint probability

distribution (factorises as a Gibbs dist.)
— Node: variables

— Edges: dependencies between variables

e Gibbs distribution of MN is equated to mass
distribution of fitness in population
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Markov network example

e For a bit-string encoded problem
f(x,..-X3), model can be represented by:
aOXO + alxl + aZXZ + aSXB + aleoxl + aOZXOXZ + aOBXOXB - _ In( f (X))
a13X1X3 + aZBXZXB + a013X0X1X3 + a023X0X2X3 tC

e Build a set of equations using values from @
population and solve to estimate the a
 Variables are -1 and +1 instead of 0 and 1 @

e Can then sample to generate new solutions



Mining the model (1)
I “In(F (X)) =U (X)/T 1

As we minimise energy, we maximise fitness. So to
minimise energy:

a;x
If the value taken by x. is 1 (+1) in high-fitness
solutions, then a, will be negative

If the value taken by x; is O (-1) in the high-fitness
solutions, then a, will be positive

If no particular value is taken by x, optimal solutions,
then a; will be near zero



Mining the model (2)
I “In(F (X)) =U (X)/T 1

As we minimise energy, we maximise fitness. So to
minimise energy:

O’inin

If the values taken by x; and x; are equal (+1) in the
optimal solutions, then a, will be negative

If the values taken by x; and x; are opposite (-1) in the
optimal solutions, then a; will be positive

Higher order interactions follow this pattern



Single stage experiments

e Often the model closely fits the fitness
function in the first generation (see DEUM,)

e Experiments:

1. generate 30 populations of solutions at random

and evaluate
2. estimate MFM parameters for eac
3. calculate means of each a across t

e This section mostly a recap of ear

n population
ne 30 models

ier results



e Fithessist
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BinVal

* Fitness is the weighted sum of x. set to 1 (the
bit string is treated as a binary number)
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Trap 5

e Bit string is broken into blocks of size u

 The blocks are scored separately: fitness is
sum of these scores

e Deceptive for algorithms ignoring the blocks
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Experiments

* This works well for some problems, but for others
there is not enough information in a randomly
generated population

* Need some convergence (c.f. WCCI 2008 paper on
selection?)

* Here running a GA to cause convergence so it is
independent of model

1Brownlee, A. E. I., McCall, J. A. W., Zhang, Q. & Brown, D. (2008). Approaches to Selection and their Effect on Fitness Modelling in
an Estimation of Distribution Algorithm, Proc. of the World Congress on Computational Intelligence 2008, Hong Kong, China, pp.
2621-2628. IEEE Press
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Leading Ones

e Fitness is the count of contiguous 1s starting

with X, in the bit string

 Univariate terms: generation 1, generation 30
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e Bivariates: terms representing neighbours in

he bit string chain
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e Recursively combine blocks to get fitness: fitness

Hierarchical IF-and-only-IF

gained for equal left/right halves of blocks

 Univariates: noise; Bivariates tend to -ve

e Leftis generation 1, right is generation 100
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Discussion

e Signs of global optima can appear very early in
evolutionary process

e Often these become stronger as evolution
proceeds (what we'd expect)

* Provides guidance to most sensitive variables
and linkages
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Adding value

e Mining the model...

— Provides some reasoning for why a particular
solution is optimal

— Highlights errors in the problem definition, such as
poorly defined objectives

— Allows decision maker to choose optimal solutions
wrt abstract objectives, e.g. aesthetic
considerations absent from model

— Helps identify "hitch-hiker" values
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Conclusions

* When using an MBEA, we have explicit models
of the fitness function

e These can be mined to gain greater insights
into the problem, (almost) for free so it
doesn't hurt to at least consider: "adding
value" to optimisation

e How can we generalise? How might this
extend to other model types?
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