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Abstract— Structured Peer to Peer (P2P) overlay networks
are becoming increasingly popular. Multi-hop systems achieve
a successful lookup in O(log N) hops, whereas one-hop systems
approach O(1) hops. Both approaches, but especially one-hop
overlays suffer from a high number of identical messages being
sent to a number of nodes on the overlay.

Previous work showed that P2P networks benefit from the
integration of the overlay network with the underlay network
in which multi-destination multicast routing is available. This
allows combining identical messages from the same source into
joint multi-destination multicast messages to significantly reduce
the number of messages. Our experimentation has centered
around the one-hop EpiChord overlay. Here the problem is
described using a Markov Model for more advanced analysis.
The Markov Model is believed to be novel in two aspects: it
is the first to investigate one-hop overlays and it is the first to
study the performance of multi-destination multicast including
the consideration of retransmissions of requests.

I. INTRODUCTION

A number of multihop structured P2P overlay systems have
been proposed. However, they require O(log N) hops for a
message to reach its destination. This affects performance as
overlay hops are routed in the underlay (native network) as a
number of hops. To remedy this issue one-hop overlay systems
have been proposed which only need O(1) hop for routing a
message to its destination. One-hop systems trade the number
of hops with an increased routing table size and an increased
number of maintenance messages to keep the routing tables
up to date. EpiChord [1] is a leading one-hop overlay which
achieves excellent performance in terms of hop count when
contacting peer nodes by using parallel lookup requests.

The message overhead in EpiChord can be significantly
reduced by using multi-destination routing [2] but also some
multi-hop systems will gain [3].

Multi-destination routing combines identical IP packets to
be sent to P destinations, into a single packet which is sent
to P destinations. Multi-destination routing enabled routers
check the routing decision for each address in a packet. If
all addresses are to be routed along the same path, the packet
stays together. If not, the packet is split and the subset of
destinations for each path are created. If a packet only contains
one address, normal unicast routing is employed.

Recently an experimental IP protocol for multi-destination
multicast called explicit multicast (XCAST) protocol has been
specified [4] and several XCAST testbeds have been deployed.
He and Ammar [5] analyze the performance of XCAST. They

state that the cost of a multi-destination routing decision is
comparable to that of a unicast routing decision, particularly
for small address sets. The quantitative benefits of multicast
have been expressed in the Chuang-Sirbu scaling law [6]
which shows that the efficiency of multicast vs. unicast is
about m0.8 (where m is the multicast group size).

There has been a previous attempt to model a Peer-to-Peer
overlay using a Markov model [7], however that model is
for a multi-hop system (P-Grid) and was used for a different
purpose.

This paper provides the following contributions:

• the paper provides the first formalisation of the EpiChord
retransmission model

• the paper defines a Markov model which captures the
dynamics of this model

• the paper uses the Markov model to evaluate the potential
for multicast parallelism in EpiChord messaging

• the paper correlates our simulation results of multicast
enabled EpiChord with the Chuang-Sirbu [6] law using
the Markov model

A. Multidestination Routing vs. Host group Multicast

Oh-ishi et al. have considered the use of Protocol Indepen-
dent Multicast (PIM) in sparse mode (PIM-SM) [8] and source
specific mode (PIM-SSM) [9] to reduce message traffic in
peer-to-peer systems. Their analysis focuses on using multicast
routes between peers in different ISP networks.

With larger P2P overlays, the use of host-group multicast
in DHT creates too much traffic and router overhead if each
node maintained multicast addresses for all or many subsets
of the overlay network.

To use native host-group multicast to send a message to
some set of nodes in order to issue parallel queries, state in
the routers must be created first and the receivers brought
into the multicast group. This setup adds delay and is only
appropriate if the multicast path is going to be re-used for
some time. However in peer-to-peer networks the set of nodes
is fairly dynamic and the set of requests between nodes is not
predictable, so re-use of such multicast groups is limited.

In summary, IP multicast is designed for small numbers of
large sets of recipients. However, P2P overlays send messages
to a large number of groups each with small numbers of nodes.
So IP multicast is not a good choice for use in parallelizing



DHT operations. By contrast, multi-destination multicast rout-
ing does not require additional state in routers. Further, due
to overlay routing mechanism, destination peer addresses are
already known so there is no group join overhead.

B. Using Explicit Multicast with EpiChord

In EpiChord, each peer maintains a full-routing table. As-
suming a fully up-to-date routing table, messages can be sent
to any other node in one hop. However, achieving a 100%
accuracy is notoriously difficult. Even with lower routing
table accuracy EpiChord’s performance approaches O(1) per-
formance, compared with the O(log N) performance of multi-
hop overlays. However, this is at the cost of increased number
of routing table update messages and storage requirements.

An EpiChord peer’s routing table is initialized when the
peer joins the overlay by getting copies of the successor and
predecessor peers’ routing tables. Thereafter, the peer adds
new entries when a request arrives from a peer not in the
routing table, and removes entries which are considered dead.
If the churn rate is sufficiently high compared to the rate at
which lookups add new entries to the routing table, the peer
sends additional probe messages to selected nodes.

To improve the success of lookups, EpiChord uses p-way
parallel requests directed to peers nearest to the target node.
All parallel lookups in EpiChord are carried in separate unicast
messages. In our approach, these parallel unicast messages are
replaced by a single XCAST message [2].

The performance of XCAST enabled EpiChord has been
evaluated through simulation using an extended version of the
original EpiChord simulator from MIT on SSFNet [10].

In the following an analytical model of XCAST enabled
EpiChord using a Markov Chain is discussed. While the
Chuang-Sirbu scaling law predicts a saving of about m0.8, this
does not take into account EpiChord specific retransmissions
of messages and timeouts of nodes. The work on the model
has been motivated by two reasons:

• It allows for a more flexible and scalable analysis than
what is possible with simulation.

• Comparing the model with our simulation results, our
simulation results can be verified.

In the next Section the general approach to calculate the
saving achieved using multicast rather than unicast is dis-
cussed. This is followed by a discussion of node timeouts and
message retransmissions in EpiChord and how this is modeled
in a Markov Chain. Finally our results and conclusions are
presented.

II. ESTIMATING THE XCAST GAIN

To quantify the multicast efficiency against the unicast case
the hop count is used as a metric. The saving can thus be
defined like in [11], as:

δ = 1 − average multicast hops
average unicast hops

(1)

The value of δ is in the range [0,1]. When the value equals
0, the use of XCAST has no advantages over unicast. However,

as the value increases towards 1, so does the benefit of using
multicast.

[12] reformulates Equation (1) as:

δ = 1 − gN (m)
fN (m)

(2)

m represents the multicast group size, N is the number of
nodes in the overlay network, gN (m) is the average number
of hops in the multicast distribution tree and fN (m) is the av-
erage number of hops in the unicast case. fN (m) = m.E[H],
where E[H] is the average number of hops in the physical
topology from one overlay source node to a destination overlay
node. This notation is used in this paper.

A. Multicast Gain without considering re-transmissions

The Chuang-Sirbu Law [6] states that the number of hops
in the multicast tree is a function of the multicast group size
and a scaling factor k with a value between 0 and 1. Indeed,
they approximate gN (m) by:

gN (m) = E[H] ∗ mk where k = 0.8. (3)

Hence the multicast metric can be defined as:

δ = 1 − E[H] ∗ m0.8

E[H] ∗ m
= 1 − m−0.2 (4)

δ returns the value of the savings that multicast offers when
compared to unicast transmissions of m lookups. For example,
if m = 5, the saving obtained by employing multicast rather
than unicast is 1 − (5)−0.2 ≈ 27.5%

B. Retransmissions in the EpiChord simulation

For simulating EpiChord with XCAST the SSFNet simu-
lator together with the MIT EpiChord model was used and
extended to include XCAST. When a node is sending a request
message, two queues are employed, the pending queue and
the tried queue. The pending queue is the queue of all nodes
whom we await a response from. The tried queue is the queue
of nodes that we have sent a request to for this lookup. For a
p-way request, p nodes are sent a lookup message and those
p nodes are put into pending and tried queues. Hence initially,
both queues hold the same entries.

The following discussion concentrates on the pending
queue. The tried queue simply keeps track of nodes which
a message has been sent to avoid contacting nodes repeatedly
for a single request.

The setup of the pending queue may change during a
request, depending on node timeouts and negative responses
received. Figure 1 shows the possible behaviour of the pending
queue during a request. P is the level of parallelism. As stated
above, initially a P-way request is sent to the nodes in the
queue. If a node times out, the node is tried a further two
times using single UDP messages. After the third timeout, the
node is removed from the pending queue, and if the queue
length equals P, two new nodes are added to the queue and
a two-way XCAST request is sent to them. Hence the queue
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length is now P+1. If the queue length is already P+1, no new
message is sent. An example of these cases is shown in Fig 2.
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Fig. 2. Timeout scenario for a 5-way XCAST EpiChord request.

If a node responds with a negative message (does not
have the data), it is also removed from the queue, and again
depending on the current length of the queue a new two-way
request is sent to new nodes. This process continues until a
node responds with the data looked for (positive response). As
above, XCAST is used for this request. An example scenario
is shown in Figure 3. Thus the behaviour after a negative
response and a third node timeout is identical.

Retransmissions stop, as soon as a success message from
any tried node is received. In the next section is is shown how
(4) must be modified to take retransmissions into account.

C. Multicast Gain when considering re-transmissions

To take retransmissions into account, the cost of unicast and
the cost of multicast, Cu and Cm, respectively, can be defined
with the Equations (5) and (6). The cost of multicast can
be derived as the sum of the cost of sending m-way lookups,
(m-1)-way lookups, ..., 1-way lookups because the multicast
group size varies according to the size of the pending queue.

A

B

C

D

E

Pending queue

for 5-way XCast

Epichord lookup

Entry E

Reports failure

A

B

C

D

F

New Pending

queue

E is removed from

pending queue.

Alternative addresses

from responses are

added to routing table.

If pending queue < p,

send message to

((p-pending queue)+1)

new destinations.

G

A

B

C

D

E

Pending queue

for 5-way XCast

Epichord lookup

Entry E

Reports failure

A

B

C

D

F

New Pending

queue

E is removed from

pending queue.

Alternative addresses

from responses are

added to routing table.

If pending queue < p,

send message to

((p-pending queue)+1)

new destinations.

G

Fig. 3. Failure scenario for a 5-way XCAST EpiChord request.

Cu = fN (m) + fN (re − transmissions)
= E(H) ∗ m + E(H) ∗ E(X) (5)

where X is the number of retransmissions and E(X) is the
average number of retransmissions for a request.

Cm = gN (m) + E(m − 1) ∗ gN (m − 1) +
. . . + E(1) ∗ gN (1)

= E(H) ∗ mk + E(m − 1) ∗ E(H) ∗ (m − 1)k +
. . . + E(1) ∗ E(H) (6)

where E(m − 1) is the average number of (m-1)-way
retransmissions.

In the simulation of EpiChord, only certain types of mes-
sages can be sent: a single p-way request initially, 2-way
XCAST messages after a negative response from a tried node
or the third timeout of a node, and single UDP message after
a node times out once or twice. Thus (5) and (6) can be
simplified as shown in (7) and (8). The Chuang-Sirbu law
would suggest a value of 0.8 for k.

Cu = E(H) ∗ m + E(2) ∗ 2 ∗ E(H) + E(1) ∗ E(H) (7)

Cm = E(H) ∗ mk + E(2) ∗ E(H) ∗ 2k + E(1) ∗ E(H) (8)

Here E(2) is the expected number of 2-way retransmissions
per lookup and E(1) is the expected number of unicast retrans-
missions per lookup. Thus only the cost of the initial request
plus two-way retransmissions plus UDP retransmissions, until
the requesting node has obtained a positive acknowledgment,
are considered.

The pending queue size changes depending on the type of
response the sender receives. The probabilities of receiving
each type of response is known from our simulations, hence
the pending queue size can be calculated and thus the average
number of 2-way and 1-way retransmissions the sender issues
for each lookup. To do so, the behaviour of the pending queue
has been modeled as a Markov chain.



State Number of timeouts Probability type Event Next State Transition probability
{k, i, j} 0 (k − i − j)/k neg. response {k̂, i, j} (k − i − j)/k × p−

0 ≤ i + j < k
1 ≤ i, 1 ≤ j

0 (k − i − j)/k timeout {k, i + 1, j} (k − i − j)/k × pt

1 i/k neg. response {k̂, i − 1, j} (i/k) × p−
1 i/k timeout {k, i − 1, j + 1} (i/k) × pt

2 j/k neg. response/timeout {k̂, i, j − 1} (j/k) × (p− + pt)

{k, i, j} 1 i/k neg. response {k̂, i − 1, j} (i/k) × p−
0 ≤ i + j = k 1 i/k timeout {k, i − 1, j + 1} (i/k) × pt

1 ≤ i, 1 ≤ j 2 j/k neg. response/timeout {k̂, i, j − 1} (j/k) × (p− + pt)

{k, i, j} 1 1 neg. response {k̂, i − 1, j} p−
i = k 1 1 timeout {k, i − 1, j + 1} pt

{k, i, j} 2 1 neg. response/timeout {k̂, i, j − 1} (p− + pt)
j = k

{k, i, j} 0 (k − i)/k neg. response {k̂, i, j} (k − i)/k × p−
0 ≤ i + j < k
1 ≤ i, j = 0 0 (k − i)/k timeout {k, i + 1, j} (k − i)/k × pt

1 i/k neg. response {k̂, i − 1, j} (i/k) × p−
1 i/k timeout {k, i − 1, j + 1} (i/k) × pt

{k, i, j} 0 (k − j)/k neg. response {k̂, i, j} (k − j)/k × p−
0 ≤ i + j < k
i = 0, 1 ≤ j 0 (k − j)/k timeout {k, i + 1, j} (k − j)/k × pt

2 j/k neg. response/timeout {k̂, i, j − 1} (j/k) × (p− + pt)

{k, i, j} 0 1 neg. response {k̂, i, j} p−
0 ≤ i + j < k
i = 0, j = 0 0 1 timeout {k, i + 1, j} pt

TABLE I

TRANSITION PROBABILITIES WITH k̂ = P + 1 if k = P and P if k = P + 1

III. A MARKOV MODEL FOR RETRANSMISSIONS IN

EPICHORD

For the model we assume that a node which sent out
requests to other nodes in its pending queue, can receive three
different types of responses: positive response, negative, and
timeout. This is shown in Fig. 4.
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Fig. 4. Responses received by a node

The probabilities for a positive response (p+), negative
response (p-), and timeout (pt) can be calculated as shown
in (9). Initially the number of messages as observed in our
simulations can be used, however, other values can be inserted
allowing for what-if analysis.

p+ =
number of positive responses

total number of responses

p− =
number of negative responses

total number of responses

pt =
number of timeouts

total number of responses
(9)

Figure 5 shows the resulting Markov chain for a request with
P=3. In the diagram all transient states are shown, however, the

absorbing final state representing the reception of a positive
response {0,0,0} has been omitted for clarity. The absorbing
state can be reached from any state when a positive response
is received.
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Fig. 5. Markov Chain Model - State Diagram for the Pending Queue

The name of each state contains three numbers {k, i, j}: k
is the current length of the queue, i is the number nodes in
the queue which have timed out once, and j is the number of
nodes in the queue which have timed out twice. The initial
state of the queue is {P,0,0}, where the pending queue has a
size P and 0 timeouts have occur. The retransmission process
ends when the sender receives a positive response, thus the
pending queue state becomes {0,0,0} (not shown).



When designing the model, three assumptions have been
made to achieve a good balance between accuracy and com-
plexity of the model.

Assumption 1: In this paper, an embedded discrete (homo-
geneous) time Markov Chain model was used to describe the
pending queue operation. This means the transitions probabil-
ities do not change over time (homogeneous) and the model
is expressed in terms of transitions probabilities rather than
rates. The time the queue is in each state is ignored and the
probabilities of making transitions from each state to all other
states when a transition occurs are the only concern.

Assumption 2: A transition occurs after one and only one
response was received by the queue. Hence transitions consider
only the change of state of any one node in the pending queue.

Assumption 3: It is equally likely for a node to timeout
once, twice, or three times. The probabilities of timing out
and to receive a negative response is independent of the state.

The transitions between states indicate the reception of a
negative response or a node timeout. Taking a closer look at
the model, it can be seen that it is split into two halfs. The
bottom half models the states for the queue length = P (3
in this example), whereas the top half includes the states for
queue length = P+1 (4 in this example). Moving from the start
state to the right, increasing numbers of first node timeouts are
modeled (up to P). Moving up line by line until the middle of
the diagram, the second timeouts of nodes are modeled (up to
P). The same is repeated in the top half of the model, however
for up to P+1 nodes. The two halfs are joined by transitions
indicating third node timeouts and negative responses. Neg-
ative responses and the third timeout of a node trigger the
same transition in the diagram, hence arrows indicating these
are combined for brevity. The transition probabilities of the
Markov model are shown separately in Table I.

The number of transient states n in the Markov Chain can
be calculated using Equation (10). The first half calculates the
number of states for queue length equal P, whereas the second
half calculates the number of states when the pending queue
size equals P+1.

n = (P + 1) ∗ (P + 2) ∗ 0.5 + (P + 2) ∗ (P + 3) ∗ 0.5 (10)

The probabilities for timeouts and negative responses have
been obtained using our SSFNet XCAST-EpiChord simula-
tor [2].

The Markov state diagram above is then used to calculate
the expected number of retransmissions per lookup. For this,
the transition matrix needs to be derived. Let T be the
transition matrix. T is composed of the transient states and
the one absorbing state.

T =
(

Q R
0 I

)
(11)

Here the transition matrix for the transient states, Q, is of
size (n× n). n as calculated above is the number of transient
states in the model. The absorption matrix R is of size (n×1),
the matrix of zeros O is of size (1×n), and finally the Identity
matrix I is of size (1×1). So in total, T is of size (n+1×n+1).

Q can now be used to calculate the fundamental matrix
N. The entry N(i,j) shows the expected number of visits to
transient state j before absorption, starting in state i.

N depends only on the square sub-transition matrix Q.
Hence the total number of visits is the sum of the expected
number of visits on the different steps and that the expected
number of visits to j on the n-th step, starting i is Q(i,j). Or
written differently: N = I + Q + Q2 + Q3 + Q4 + . . .. Here
I is the Identity matrix.

Now N can be calculated using the relatively simple Equa-
tion (12). If both the left and the right side are multiplied by
(I − Q), this results in N ∗ (I − Q) = I . Hence N can be
calculated as (inv is the matrix inverse function):

N = inv(I − Q) (12)

Using N, the expected number of 2-way retransmissions
can be derived. It represents the sum of N(i,j) when the queue
state goes from P to P+1. The expected number of unicast
retransmission can be calculated in a similar fashion. It is the
sum of N(i,j) when a first or second timeout occurs in queue
state P and P+1. Matlab was used to calculate the fundamental
matrix and the values of expected number of retransmissions.
These can then be used in (7) and (8). For the following
experimentation k=0.8 according to the Chuang Sirbu law has
been assumed. With these two values the saving of using
XCAST can be calculated using (13).

saving = 1 − Cm

Cu
(13)

IV. EXPERIMENTATION

XCAST reduces the number of messages sent per lookup
and hence the number of messages per link. Thus achieving a
bandwidth saving on each link used by the messages.
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The following figures illustrate the saving that can be
achieved for varying probabilities of receiving a negative
acknowledgment (p-) or timeout responses (pt). The values



chosen were guided by the values from our EpiChord sim-
ulations. Two sets of graphs are presented, one with p- and
pt modeled on a lookup intensive behaviour in the overlay
(nodes join the network at a rate of 2 per second and issue
on average 2 lookups per second), and the other on a churn
intensive behaviour (15 nodes join the overlay network per
second and issue on one lookup every 10 seconds). This setup
follows the original EpiChord simulations by MIT.

Figure 6 shows the XCAST savings which can be achieved
for varying levels of node timeouts at different degrees of
parallelism. The probability of negative responses was taken
from our simulations under a lookup intensive workload. As
can be seen the same saving of about 18% can be achieved by
a 3-way lookup with p-=0.05 and no timeouts, and a 6-way
request with the same value for p- and pt=0.07, or a 8-way
request with the same p- and pt=0.08.
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Figure 7 shows the XCAST savings which can be achieved
for varying levels of negative responses at different degrees of
parallelism. The probability of timeouts was taken from our
simulations under a lookup intensive workload.
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Fig. 8. Saving achieved using XCAST for increasing levels of node timeouts
for different degrees of parallelism (churn workload).

Figure 8 shows the XCAST savings which can be achieved
for varying levels of node timeouts at different degrees of
parallelism. Here the probability of negative responses was
taken from our simulations under a high churn workload.

Figure 9 shows the XCAST savings which can be achieved
for varying levels of negative responses at different degrees of
parallelism. The probability of timeouts was taken from our
simulations under a high churn workload.
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Fig. 9. Saving achieved using XCAST for increasing levels of negative
responses for different degrees of parallelism (churn workload).

The figures show that for increasing numbers of node
timeouts and negative responses and hence retransmissions
the XCAST saving decreases. However, the saving decreases
faster for increasing node timeouts than for increasing negative
responses. This is because node timeouts result in UDP
messages, whereas negative responses result in 2-way XCAST
messages. In fact for 2-way EpiChord, the saving goes up
slighty when considering negative responses. This is because
the initial request is also only sent 2-way.

V. COMPARISON: ANALYTICAL AND SIMULATION RESULTS

A. Discussion of the number of retransmissions

As stated above, the probability of having a transition due to
negative response or timeout in the Markov chain model have
been calculated using results from the SSFNet simulations.
The simulations returned the average number of negative and
timeout responses before absorption per lookup. By dividing
these values by the number of states in the Markov chain,
the probability of having a negative response or a timeout can
be calculated. Indeed, starting from any state in the pending
queue, the probability that any node replies with a negative
response is equally likely to occur. Similarly, the probability
that any node times out, when the pending queue is in any
state, is equally likely to occur.

In the simulations, values of 2.54 for the expected number
of negative responses and 1.77 for the expected number of
timeouts per request were obtained for P = 5 (degree of
parallelism). Using (10) the number of transient states in the
Markov chain model for P=5 can be calculated as 49. Thus, the



probability of receiving a negative response starting from any
state is 2.54

49 = 0.052 and the probability of timeout starting
from any state is 1.77

49 = 0.036.
The results from the Markov chain model for P=5 return

values of 1.35 for the expected number of 2-way messages
and 1.18 for the expected number of unicast retransmissions.
The results obtained by simulation were 1.22 for the expected
number of 2-way messages and 1.20 for the expected number
of unicast retransmissions. Thus the model yields results quite
close to the simulation values. Table II shows the values for
P = 3, 4, and 5 for a simulated network of 1200 nodes under
a lookup intensive workload (join rate of 2 nodes per second
and two lookups per second).

P Neg Resp. Timeouts Xcast Xcast unicast unicast
per lookup per lookup (model) (simul) (model) (simul)

3 1.44 1.3 0.77 0.75 0.87 0.9
4 1.98 1.54 1.06 1 1.02 1.05
5 2.54 1.77 1.35 1.22 1.18 1.2

TABLE II

LOOKUP INTENSIVE RESULTS FOR PARALLELISM 3, 4 AND 5

Table III show the comparison of the results obtained from
the Markov model vs. simulation results for a network of 9000
nodes under high churn (join rate of 15 nodes per second and
one lookup every ten seconds).

P Neg Resp. Timeouts Xcast Xcast unicast unicast
per lookup per lookup (model) (simul) (model) (simul)

3 6.1 3.16 3.19 3.05 2.2 2.22
4 7.27 3.67 3.81 3.45 2.52 2.6
5 8.49 4.23 4.49 3.92 2.88 3.03

TABLE III

CHURN INTENSIVE RESULTS FOR PARALLELISM 3, 4 AND 5

The slight deviation between the model results and sim-
ulation results can be explained by the three assumptions
discussed earlier.

The model could be made more accurate by using a transi-
tion rate matrix, rather than a transition matrix. By doing so,
transitions probabilities are replaced by transitional intensities
that would capture the time dependency between the reception
of responses and the network state (e.g. a timeout occurs
because a node has disappeared or because of congestion). In
the current model, the probabilities are modeled on the average
length of a request, i.e. the average time until absorption.
However, taking into account transitional intensities to model
probabilities will make the model more accurate. The three
probabilities for the transitions pt, p-, and p+ would change
with an increasing numbers of timeouts or negative responses.
For instance, if many timeouts are encountered, the probability
for p- will decrease. Such a model would not only capture
single requests, but many requests. For this a new transition,
indicating a new request, from the state {0, 0, 0} (absorbing
state) to {P, 0, 0} (initial state for a request) needs to be
included. This would change the Markov Chain to be ergodic.

Further, for this model we have assumed that only one
response triggers a transaction to another state. Hence it could
happen that more than one response is received during the
interval [t; t + ∆k] (discrete interval) and thus the number of
transitions in the proposed model should be higher, enabling
transitions between more states (e.g. a transition from (P,0,0)
to state (P,2,0) would indicate that two nodes timed out).

The simulation using SSFNet does not fully simulate busy
links and routers as a source of lost messages. This makes
the disappearance of nodes from the overlay the most likely
event to cause timeouts. This results in the behaviour that it
is very likely for a node which has timed out already once, to
timeout further two times. In the model we have not assumed
this behaviour, but a more realistic view that the probability
of a node timing out once, twice, or three times is identical,
and hence it is equally probable to receive p+, p-, and pt in
any state. However, this approach could be fine-tuned. For
instance, the probability of a timeout could be increased by
a factor α with the number of timeouts occurring. As the
probability of timeouts occurring increases, the probability
of receiving a response decreases. Hence p+ and p− would
decrease by the same factor. These changed probabilities can
be implemented in the current discrete Markov model using
the same transitions. This change addresses the same issue
as the use of transitional intensities. However, it is easier to
implement.

B. Comparison of the achieved Multicast Saving

While the Chuang Sirbu law is widely accepted as a good
estimation of the multicast saving for random networks, some
work reports slightly different results where the factor is closer
to 0.7. Mieghem et al [12] discuss the C-S law and state that
the factor 0.8 is not constant but is dependent on the size of the
network especially for small multicast group sizes. Chalmers
and Almeroth [13, 14] found that for their networks modeled
on realistic topologies they achieve a factor between 0.65 and
0.7. Fahmy and Kwon [15] confirm these results.

Our simulation uses a network model of the American
academic network identical to what was used for the original
MIT EpiChord simulations. Clearly, this is not a random
network and our simulation results show a saving of 29% for
a lookup intensive workload and 25% for a churn intensive
workload for m = 5. These results indicate a savings factor
k of just below 0.7. This matches the results cited above. To
verify this we used varying values for k in the Markov model.

Figure 10 shows the saving for EpiChord without any
retransmissions (solid lines), with retransmissions as expected
under a lookup intensive workload (dotted-dashed lines), and
with retransmissions under a churn intensive workload (dashed
lines), for varying values of k. The figure shows that for
m = 5, and pt = 0.036 and p− = 0.052 (lookup intensive),
and k = 0.7 the saving is about 27%. For m = 5 and
pt = 0.086 and p− = 0.17 (churn intensive), and k = 0.7
the saving is about 22%. This matches our simulation results.
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Fig. 10. Saving achieved using XCAST for varying factor k.

VI. CONCLUSIONS

In this paper, a relatively simple finite state discrete time
Markov model was used to describe the dynamic behaviour
of sending requests in EpiChord in an unambiguous way.
Modeling EpiChord in this way is novel. The model can be
parameterised in a number of ways: the probabilities for a
node timeout, the probability of a negative response from a
node, the level of parallelism used for EpiChord requests, the
level of parallelism used for retransmissions, and the multicast
savings factor k.

The presented model allows to study the effects of varying
levels of retransmissions and node timeouts without lengthy
simulations. When using EpiChord together with XCAST, the
message saving taking into account retransmissions which can
be achieved can be calculated. Here the Chuang-Sirbu law
has been assumed for these calculations. For 5-way EpiChord
including retransmissions a saving of about 20% can be
achieved. However, as discussed, the Chuang-Sirbu law does
not provide an accurate prediction for all types of networks.
For networks which exhibit a smaller factor k, the savings will
be higher.

The model allows to investigate the relationship between
the level of parallelism used for lookups and the probabilities
of timeouts and negative responses on the message saving.

More complicated finite state continuous time Markov mod-
els would express transitional rates in real time and hence also
capture the behaviour of the message transmissions.
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