Formalising the CHISEL Feature Notation

Ken Turner
University of Stirling

19th May 2000

Intr oduction

e CHISEL defined by BellCore (Telcordia)
as a graphical notation for services

 CRESS (CHISEL Representation
Employing Systematic Specification):
- simplifies CHISEL diagrams
- extends CHISEL capabilities
- formalises CHISEL interpretation
- offers open tool support

= may be used with various diagram
editors and formal methods

= CRESS capabilities:

= syntax and static semantics enforced

- use of formal language hidden

- standard interaction detection methods
- automatic translation to SDL, LOTOS

- automated analysis via SDL, LOTOS

- so far, mainly focused on feature
representation and formalisation

Motiv ation
e attractions of CHISEL:

- reflects industrial practice

= simple and accessible notation

- self-contained feature descriptions
- deals with a variety of feature types

e aims of CRESS:

- extend CHISEL for greater usability

- retain backwards compatibility

- define diagram rules more precisely

- Integrate explanations as formal rules
- formalise interpretation of diagrams

= provide an open toolset

- support adoption of CHISEL

+Root Diagram — POTS

e a root diagram is the base for features
 the order of input/output events is defined
e events may happen in parallel

e guards can be used to control behaviour
e Plain Old Telephone Service in CRESS:

. =

Busy.B

-

<D’

-
- 3

Root Diagram — CRESS Extensions
e a rule box formalises:

- feature variables:
Uses AB

- Interdependency among features:
Uses C/ POTS CFBL

- setting status variables:

StartRinging P Q / Busy P <— True
= macro-like functions:

ldle P <— [Busy P

= comment attachments may be any file

e a Start node may be introduced for
diagrams with loops

e redundant diagram detalls optional:
POTS 4 B<—B A<-A
could be just POTS 4

= expression operators are formalised,
Including conditional expressions

e an Else guard may be used

¢ Feature Diagram — CND

 a feature diagram modifies the root
e Calling Number Delivery:

POTS3

Idlg B

POTS5 POTS 13

IS spliced into POTS:

Feature Diagram — CRESS Extensions
« feature composition rules formalised:

- addition of behaviour or guard
- replacement of behaviour
- deletion of behaviour

= diagram references simplified:
SELF 3 B<—B A<-C
becomes just 3 A<—C
* top-level root node may be extended
= composition rules clarified:

= source node binding read backwards:
POTS 4 B<—C A<-B
uses B for C, A for B in a feature

- target node binding read forwards:
POTS 4 B<—C A<-B
uses C for B, B for A in the root

= consistency checked statically

¢ Feature Diagram — TWC

e Three-Way Calling uses linked diagrams:

Feature Diagram Loops
* loops arise from:

- self-loops
- links via other diagram nodes
- NoEvent as a short-hand empty node

« complex (in)direct loops may thus arise:

POTS Start

2 On-hook B A

Busy A idle B Busy B

V< Y I 3
4 LineBusyTone A : 0 StartRinging B A : 7DisconnectAB .

8 Off-hook A

5 On-hook A ‘

POTSA<-B9

5 B<-AA<-BO

B<-A3

e a cyclic graph must hence be handled:

= graph building is harder than for a tree
- a Start node may be needed

= a revisited node is not followed further
= but must be analysed when revisited

Translating CRESS

e diagrams are prepared with any
reasonable editor (e.g. Diagram!)

e diagrams are automatically combined

= a pre-defined specification framework Is
chosen (e.g. SDL, LOTOS)

= the composite diagram is translated
automatically to the chosen language

 the translated diagram is inserted into
specification framework

 the result is simulated, prototyped,
analysed, validated, ...

« CRESS tools are portable and extensible
 toolset architecture:

(-

Frame- Real-
work sation

Back 4
ack-

10

SDL Representation

« specification framework:

Cress(Types)

[(StatusSCP)] [(SwitchSCP)]

[(SCPStatus)] [(SCPSwitch)]

[(SwitchStatus)]
StatusManager Switch(0,10)

[(StatusUser)]
< User

>
[(UserStatus)]

[(StatusSwitch

BillingSystem

Scp Bil/ [(SwitchBill)]

 translation strategy:

CRESS | SDL

iInput | State Diagram.Node;

Diagram.Node:

Input Signal(Parameters);

output | Diagram.Node:

Output Signal(Parameters);

guard |Decision Guard,
(True). Behaviour
(Else): ...

EndDecision ;

e SDL input rules cause major problems:

* Input must be preceded by a state
= same signal in same state only once
- merging branches must repeat input

11

LOTOS Representation

= specification framework:

Specification Network [User] : NoEXxit
Cress(Types)
Behaviour Hide Bill,Stat,Scp In
((StatusManager [Stat] |[Stat]|
SCP [Scp,Stat]) ||| BillingSystem [Bill])
|
Cress(CFBL,CND,INCFTWC)
Process BillingSystem [Bill] : NoEXxit ...
Process StatusManager [Stat] : NoEXxit ...
Process SCP [Scp,Stat] : NoExit ...
EndSpec

e translation strategy:

CRESS |LOTOS

iInput |User !Signal ? Parameters
User |Signal | Parameters
output |User !Signal |\ Parameters
guard |[Guard]—= ...

= the main complications are:

= iInput must know if parameters defined
- status variables read as required
= common process for merging branches

12

Feature Validation

 most effort to date on formalising CHISEL
e standard technigues can be used.:

= simulation

- state exploration
= observers

- watchdogs

e SDL can use automated:

- exhaustive and other state exploration

- MSC-based validation of features in
Isolation or iIn combination

 LOTOS can use automated:

- test expansion
- test generation

13

Conclusion

e CRESS (CHISEL Representation
Employing Systematic Specification):
- simplifies CHISEL diagrams
- extends CHISEL capabilities
- formalises CHISEL interpretation
- offers open tool support

» CRESS results:

= syntax and static semantics enforced

= automatic translation to SDL, LOTOS

- translation better than manual efforts

- standard interaction detection methods

14

