
Formalising the CHISEL Feature Notation

Ken Turner
University of Stirling

19th May 2000

1

Intr oduction

• CHISEL defined by BellCore (Telcordia)
as a graphical notation for services

• CRESS (CHISEL Representation
Employing Systematic Specification):

• simplifies CHISEL diagrams
• extends CHISEL capabilities
• formalises CHISEL interpretation
• offers open tool support
•may be used with various diagram

editors and formal methods

• CRESS capabilities:

• syntax and static semantics enforced
• use of formal language hidden
• standard interaction detection methods
• automatic translation to SDL, LOTOS

• automated analysis via SDL, LOTOS

• so far, mainly focused on feature
representation and formalisation

2

Motiv ation

• attractions of CHISEL:

• reflects industrial practice
• simple and accessible notation
• self-contained feature descriptions
• deals with a variety of feature types

• aims of CRESS:

• extend CHISEL for greater usability
• retain backwards compatibility
• define diagram rules more precisely
• integrate explanations as formal rules
• formalise interpretation of diagrams
• provide an open toolset
• support adoption of CHISEL

3

Root Diagram – POTS

• a root diagram is the base for features

• the order of input/output events is defined

• events may happen in parallel

• guards can be used to control behaviour

• Plain Old Telephone Service in CRESS:

1 Off-hook A

2 DialTone A

3 Dial A B 17 On-hook A

4 Start AudibleRinging A B |||
Start Ringing B A 15 LineBusyTone A

Idle B

5 Off-hook B 13 On-hook A

6 Stop AudibleRinging A B |||
 Stop Ringing B A |||

LogBegin A B A Time

7 On-hook A

8 Disconnect B A |||
LogEnd A B Time

9 On-hook B 12 On-hook A

10 On-hook B

11 Disconnect A B |||
LogEnd A B Time

Busy B

14 Stop AudibleRinging A B |||
 Stop Ringing B A

16 On-hook A

call re-starts after
user hangs up

Uses A B

Off-hook P / Busy P <- True
On-hook P / Busy P <- False
Start Ringing P Q / Busy P <- True
Stop Ringing P Q / Busy P <- False

Idle P <- ~Busy P

Start Ringing P Q / Ringing P Q <- True
Stop Ringing P Q / Ringing P Q <- False

Start AudibleRinging P Q / AudibleRinging P Q <- True
Stop AudibleRinging P Q / AudibleRinging P Q <- False

4

Root Diagram – CRESS Extensions

• a rule box formalises:

• feature variables:
Uses A B

• interdependency among features:
Uses C / POTS CFBL

• setting status variables:
StartRinging P Q / Busy P <− True

•macro-like functions:
Idle P <− ∼Busy P

• comment attachments may be any file

• a Star t node may be introduced for
diagrams with loops

• redundant diagram details optional:

POTS 4 B<−B A<−A

could be just POTS 4

• expression operators are formalised,
including conditional expressions

• an Else guard may be used

5

Feature Diagram – CND

• a feature diagram modifies the root

• Calling Number Delivery:
POTS 3

POTS 4
2 Start Ringing B A |||

Start AudibleRinging A B |||
Display B A

POTS 5 POTS 13

Idle B

is spliced into POTS:

1 Off-hook A

2 DialTone A

3 Dial A B 17 On-hook A

2 Start Ringing B A |||
Start AudibleRinging A B |||

Display B A
15 LineBusyTone A

Idle B

5 Off-hook B 13 On-hook A

6 Stop AudibleRinging A B |||
 Stop Ringing B A |||

LogBegin A B A Time

7 On-hook A

8 Disconnect B A |||
LogEnd A B Time

9 On-hook B 12 On-hook A

10 On-hook B

11 Disconnect A B |||
LogEnd A B Time

Busy B

14 Stop AudibleRinging A B |||
 Stop Ringing B A

16 On-hook A

call re-starts after
user hangs up

Uses A B

Off-hook P / Busy P <- True
On-hook P / Busy P <- False
Start Ringing P Q / Busy P <- True
Stop Ringing P Q / Busy P <- False

Idle P <- ~Busy P

Start Ringing P Q / Ringing P Q <- True
Stop Ringing P Q / Ringing P Q <- False

Start AudibleRinging P Q / AudibleRinging P Q <- True
Stop AudibleRinging P Q / AudibleRinging P Q <- False

6

Feature Diagram – CRESS Extensions

• feature composition rules formalised:

• addition of behaviour or guard
• replacement of behaviour
• deletion of behaviour

• diagram references simplified:

SELF 3 B<−B A<−C

becomes just 3 A<−C

• top-level root node may be extended

• composition rules clarified:

• source node binding read backwards:
POTS 4 B<−C A<−B

uses B for C, A for B in a feature
• target node binding read forwards:

POTS 4 B<−C A<−B
uses C for B, B for A in the root
• consistency checked statically

7

Feature Diagram – TWC

• Three-Way Calling uses linked diagrams:

POTS 6

0 Flash A /
ThreeWay A<-True /

X<-A Y<-B

22 LineBusyTone X

23 Flash X /
ThreeWay X<-False

24 On-hook Y /
ThreeWay X<-False

POTS 11 POTS 7 POTS 101

2 DialTone X

3 Dial X Z

4 Start AudibleRinging X Z |||
Start Ringing Z X

5 Off-hook Z

20 Off-hook Z

19 Flash X

Busy ZIdle Z

A

6 Stop AudibleRinging X Z |||
 Stop Ringing Z X |||
LogBegin X Z X Time

7 Flash X

B

17 On-hook Z /
ThreeWay X<-False

12 Flash X /
ThreeWay X<-False

13 Disconnect Z X |||
LogEnd X Z Time

8 On-hook X /
ThreeWay X<-False

9 Disconnect Y X |||
Disconnect Z X |||

LogEnd X Z Time |||
LogEnd A B Time

10 On-hook Y

14 On-hook Y /
ThreeWay X<-False

21 Stop AudibleRinging X Z |||
 Stop Ringing Z X |||
LogBegin X Z X Time

POTS 7 POTS 101

18 Disconnect X Z |||
LogEnd X Z Time

16 Disconnect X Y |||
LogEnd A B Time

Y<- Z 1 POTS B<-Z 10POTS B<-Z 7

Uses X Y Z / POTS

D

C 96

~ThreeWay X

11 On-hook Z

1 Flash B /
ThreeWay B<-True /

X<-B Y<-A

0

Y<- Z 00

A

92 On-hook Y /
ThreeWay X<-False

96 On-hook X /
Busy X<-True

91 Flash X /
ThreeWay X<-False

93 Disconnect X Y |||
LogEnd A B Time

94 Off-hook X POTS 3

B

79 On-hook Y /
ThreeWay X<-False

72 On-hook X /
Busy X<-True

80 Disconnect X Y |||
LogEnd A B Time

POTS B<-Z 5 POTS B<-Z 13

73 Stop AudibleRinging X Z |||
 Stop Ringing Z X

74 Start Ringing X Y 2

75 Off-hook X /
ThreeWay X<-False

77 On-hook Y /
Busy X<-False /

ThreeWay X<-False

78 LogEnd A B Time |||
Stop Ringing X Y76 Stop Ringing X Y

X Dialling and Holding Y
(ThreeWay X && Dialling X)

 X Holding Y and Ringing Z
(Ringing Z X && AudibleRinging X Z && ThreeWay X)

POTS 7 POTS 101

POTS 7 POTS 1010

0

X Speaking Y and Ringing Z
(Ringing Z X && AudibleRinging X Z && ThreeWay X)

X Holding Y and Speaking Z
(ThreeWay X)

C

58 On-hook X /
Busy X<-False /

ThreeWay X<-False

59 Disconnect X Y |||
LogEnd A B Time |||
Stop Ringing Z X |||

Stop AudibleRinging X Z

61 On-hook Y

51 On-hook Y /
ThreeWay X<-False

52 Disconnect X Y |||
LogEnd A B Time

62 Flash X /
ThreeWay X<-False

63 Stop AudibleRinging X Z |||
 Stop Ringing Z X

POTS B<-Z 5 POTS B<-Z 13 POTS 7 POTS 101

D

34 On-hook Z

35 Disconnect X Z |||
LogEnd X Z Time

36 On-hook Y 38 Flash X /
ThreeWay X<-False

37 Disconnect X Y |||
LogEnd A B Time

40 Flash X /
ThreeWay X<-False

39 On-hook X /
ThreeWay X<-False

POTS 2 POTS 7 POTS 101

48 On-hook X

43 Start Ringing X Y 2

47 Off-hook X /
ThreeWay X<-False

44 On-hook Y /
Busy X<-False /

ThreeWay X<-False

45 Stop Ringing X Y |||
LogEnd A B Time

31 On-hook Y /
ThreeWay X<-False 41 On-hook X

32 Disconnect X Y |||
LogEnd A B Time

POTS 7 POTS 101

POTS 7 POTS 101

42 Disconnect X Z |||
LogEnd X Z Time

0

0

0

0

8

Feature Diagram Loops

• loops arise from:

• self-loops
• links via other diagram nodes
• NoEvent as a short-hand empty node

• complex (in)direct loops may thus arise:

2 On-hook B Idle A

4 LineBusyTone A

Busy A

5 On-hook A 3 Dial A B

0 StartRinging B A 7 Disconnect A B

8 Off-hook A

Idle B Busy B

5 B<-A A<-B 0POTS A<-B 9

POTS Start

NoEvent

B<-A 3

1 Flash A

• a cyclic graph must hence be handled:

• graph building is harder than for a tree
• a Star t node may be needed
• a revisited node is not followed further
• but must be analysed when revisited

9

Translating CRESS

• diagrams are prepared with any
reasonable editor (e.g. Diagram!)

• diagrams are automatically combined

• a pre-defined specification framework is
chosen (e.g. SDL, LOTOS)

• the composite diagram is translated
automatically to the chosen language

• the translated diagram is inserted into
specification framework

• the result is simulated, prototyped,
analysed, validated, ...

• CRESS tools are portable and extensible

• toolset architecture:

Real-
isation

CRESS
Diagram

Frame-
work

Diagram
Editor

CRESS
Preproc

CRESS
Lexer

CRESS
Parser

CRESS
Code

Back-
End

Front-
End

Results

10

SDL Representation

• specification framework:

StatusManager

SCP BillingSystem

User

StatScp Scp Bill

[(UserStatus)]

[(StatusUser)] [(SwitchStatus)]

[(StatusSwitch
)]

[(SwitchBill)]

[(SCPSwitch)]

[(SwitchSCP)]

[(SCPStatus)]

[(StatusSCP)]

Stat

 Cress(Types)

Switch(0,10)

• translation strategy:

CRESS SDL
input State Diagram.Node;

Input Signal(Parameters);
Diagram.Node:

output Diagram.Node:
Output Signal(Parameters);

guard Decision Guard ;
(True): Behaviour
(Else): ...

EndDecision ;

• SDL input rules cause major problems:

• input must be preceded by a state
• same signal in same state only once
•merging branches must repeat input

11

LOTOS Representation

• specification framework:
Specification Network [User] : NoExit
Cress(Types)
Behaviour Hide Bill,Stat,Scp In

((StatusManager [Stat] |[Stat]|
SCP [Scp,Stat]) ||| BillingSystem [Bill])

||
Cress(CFBL,CND,INCF,TWC)

Process BillingSystem [Bill] : NoExit ...
Process StatusManager [Stat] : NoExit ...
Process SCP [Scp,Stat] : NoExit ...

EndSpec

• translation strategy:

CRESS LOTOS

input User !Signal ?Parameters
User !Signal !Parameters

output User !Signal !Parameters
guard [Guard]−> ...

• the main complications are:

• input must know if parameters defined
• status variables read as required
• common process for merging branches

12

Feature Validation

•most effort to date on formalising CHISEL

• standard techniques can be used:

• simulation
• state exploration
• observers
• watchdogs

• SDL can use automated:

• exhaustive and other state exploration
•MSC-based validation of features in

isolation or in combination

• LOTOS can use automated:

• test expansion
• test generation

13

Conc lusion

• CRESS (CHISEL Representation
Employing Systematic Specification):

• simplifies CHISEL diagrams
• extends CHISEL capabilities
• formalises CHISEL interpretation
• offers open tool support

• CRESS results:

• syntax and static semantics enforced
• automatic translation to SDL, LOTOS

• translation better than manual efforts
• standard interaction detection methods

14

