Feature Interactions in Electronic Mail

'
. :
' '
I

MAL MAK OUTGONNG - oUTOOMNG! “ A MAR OUTGONG | ‘OUTGOING
l
EncryptMessage SigaMessage AddressBook '
1
]
’ 1
|
AL AL X

: DELIVER

lNC?M]NG INCOMING DELIVER INCOMING DELIVER INCOMDNG DELIVER P INCOMEING DEIVER]
DecryptMessage VerifySignature AutoResponder ForwardMessages |

Robert J. Hall
AT&T Labs Research

Outline

-0 Motivation and Overview

O Ten Email Features

0 Modeling and Combining Email Features
O Scenario Selection Methodology

O Case Stu»dy Results and Highlights

O Discussion

Motivation

.,‘Emanl has been in use for = 20 years
..how well do we understand it?

Distributed service architecture:

— Internet |

— RFCs 821, 822 (ca. 1982)

— MUAs, MTAs, hosts, filters, remailers, ...

Many features, many developers,
bounded knowledge |

As new features are added, it becomes harder
to understand, much less predict behavior

— feature interactions Can occur

— program chair anecdote

o Morimrmol ¥ overy)

Goals and Approach

Goals
— (Start on) practical guide to email feature

interactions for users, administrators,
and feature developers

— Methodology for detecting feature interac-

tions in distributed feature architectures

»Detection method:

0.

B wh e

Select set of primitive features of interest
Model one or more “typical” configurations
Select scenarios

Simulate scenarios |

Inspect results for undesirable interactions

Ten Primitive Email Features

— AddressBook

— SignMessage

— EncryptMessage
— DecryptMessage
— VerifySignature
— AutoResponder
— ForwardMessages
— RemailMessage
— FilterMessages

— MailHost

O MODELIN G+ ComBINNG

Email Feature Components

" An email feature component (EFC) is a reac-
tive system that operates on email messages.
— state machine (not necessarily finite-state)
— input events: init, configure, receive msg
INITQ) |
COMMAND (CMD-NAME : string, ARG-LIST: list)
INCOMING (MSG:message)
OUTGOING (MSG:message)

— output events: send, deliver messages
MAIL (MSG :message)
DELIVER(MSG:message, USER:string)

— events have typed parameters

EFCs are either primitive or compound

0 MoDELING ¥ LmB/V/I#E
Primitive EFCs

Primitive EFCs are modeled using an eéxe-

cutable specification languagé
-— This study: ISAT's P-EBF
— Tools: -
* simulator
* test coverage analyzer

Example: SignMessage

(spec SignMessage

(include-theory Email)
(include-theory Email-Feature-Acts)
(include-theory Email-Own-Key)

(handler (INIT)
(set Own-Key ""))

(handler (COMMAND (Cmd string) (Args list-of-string))
(case Cmd
(("SET_OWN_KEY")
(set Own-Key (first Args)))
(otherwise
:; ; [Unhandled command type --> mo action]
)D))

(handler (OUTGOING (Msg message))
(let ((key (lookup Own-Key)))
(if (equal? key "")
(act MAIL Msg)
(act MAIL (sign-message Msg key)))))

(handler (IRCOMING (Msg message))
:;; [Incoming events are ignored --> no action]
ST) A S :

B MODELING + CoMBRINING
Compound EFCs

Compound EFCs are modeled as interconnec-
tion diagrams of EFCs.

— Each box is an EFC

— Events enter/exit via typed ports

— Ports connected by unidirectional data flow

[
|
|
INIT COMMAND INIT COMMAND i
1
|

MAIL ‘-l— maLL OUTGOING [l MalL OUTGOING [OUTGOING

SignMessage AddressBook

Reactions defined via deterministic simulation
— interleaving semantics

— ambiguous: may miss some event orderings
— EFC simulator picks a particular ordering
— f.i. detection is only heuristic anyway

— orderable EFCs guaranteed unambiguous

O ModsLive ¢ ComBIN G

The Client EFC

MALL MALL OUTGOING MAIL NAL OUTGONG GUTGOING
! = 4 A !
. EncryptMessage . SignMessage AddressBook X
|)
1]
1 (
! | [
1 I
: MAILL MAH :
INC(')MING INCOMING DELIVER INCOMING DELIVER - mooMmG DELIVER - INCOMING DELIVER DIELNER
DecryptMessage VerifySignature AutoResponder ForwardMessages \

0O MoPainG v+ OnB/NIAG

The PostOffice EFC

DELIVER

I-,____..____--________-—__‘._———_.-—__-.——_.r

B ModeLing + Gomanng

The Network EFC

Bob-OUTGQOING Bob-DELIVER 1jh-OUTGOING rjh-DELIVER

I B N

QUTGOING DELIV] OUTGOING DELIVER
Client Client
*Bob" "rjh"

INCOMING MAIL MAIL INCOMING

I 1 A

extemal-OUTGOING .i

OUTGOING

Remail
"remailer"

MAIL

'

OUTGOING

PostOffice
" host "

MAIL DELIVER

external-MAIL

0 Sceymo Sascriod

Scenario Selection

Problem: Too many scenarios!

— infinitely many

— =~ 34560 ignoring cycles

Even if tool can generate, human can’t
inspect

Methodology:
1. Construct and validate scenarios for each

primitive EFC. (ISAT tool suite)
2. For each pair of primitive features f;, fo:
— Human selects subset of f; scenarios as
“of interest” to fo
— For each such seed scenario, construct
set of scenarios such that
* message is sent from f; to fo
* executes same path through f; as seed
* set covers responses of fo
— formal coverage metric and tool

Note asymmetry requires ordered feature pairs
— e.g. remail-then-sign vs sign-then-remail

D ScrArie S2SChow

Simulation Example

((INIT)

(HOST-COMMAND "SET_HOSTNAME" ("Post0ffice"))

(HOST-COMMAND "INIT_USER" ("bob"))

(HOST-COMMAND "INIT_USER" (*rjh"))

(BOB-COMMAND "SET_OWN_KEY" ("bob.key"))

(REMAILER-COMMAND "SET_HOSTNAME" ("remailer"))

(REMAILER-COMMAND "CREATE_USER_PSEUDONYM" ("bobQPost0ffice"))

(BOB-OUTGOING (simple-message "bobQPostOffice”

' ' “remail@remailer"

("rjhQPost0ffice"
"The toxic waste was dumped by..."))))

== Network simulator ==> ...event trace...

(DELIVER (simple-message "pnOCremailer”
"rjh@PostOffice"”
("rjh@PostOffice"
"The toxic waste was dumped by..."
nSignature Block: <bob.key signature>"))

"rjh@Post0ffice")

O Resuirs v Mersicurs

Case Study Results
100 (= 10 x 10) ordered feature pairs
26 distinct feature interactions found
All ten basic features had some interactions

Considered 155 scenarios
~ 1 in 6 scenarios had unexpected behavior

()

Time cost: 27 hours
— 10 minutes per scenario
— 1 hour per interaction

O RESULTR + ¥ QHLIGHTS
Case Study Highlights

) AddressBook vs EncryptMessage
— sent encrypted and clear

SignMessage vs RemailMessage
— Oops. VDon’t sign anonymous message

AutoResponder vs RemailMessage(1)
— autoresponse leaks identity

ForwardMessages vs MaitHost
— accidentally forward to nonexistent user

EncryptMessage VS AutoResponder
— unencrypted autoresponse leaks subject line

I Discuss
cusSioA Related Work

Distributed /Modular Approaches

— EFCs, Jackson/Zave(98), Zibman et al (95)

— Features are modular

— Combined by interconnection

— Asymmetric, coverage-based f.i. detection
methodology applicable

Conjunctive Approaches

- FG/BG Models Hall(98), Bergstra/Bouma
(96), Blom/Bol/Kempe(95)

— Create logical models of base + features

— Shared state (typically non-modular)

— Combined by (form of) logical corijunction

Ccomparison

— Feature Interactions present in both

— Distributed/Modular avoids shared-state
interactions

— Tradeoff: fewer interactions in spec for
difficulty in implementation

— Conjunctive often closer to efficient impl.
_..but not in email domain

0 Discu SSr0A)

Limitations and Future Work

“Somewhat simplistic models

— while these results generalize well...

— models more faithful to implementations
will find more interactions

— both primitive features and compound EFCs

Heuristic f.i. detection

— recall co / 34560 numbers

— tries to combine human intuition
and machine-enforced systematicity

— Other tools could detect other types
assertion checking, cycle detection

— Finer/Coarser grained coverage tool
varies sensitivity and time/tediousness

O Discyssions

Summary

Email getting hard to understand and predict
due to interactions among features

EFCs constitute distributed, modular model-
ing formalism that maps naturally to imple-
mentation

Asymmetric, coverage-based feature interac-
tion detection methodology combines human
intuition and machine systematicity

Results:
— Beginning of practical guide to email f.i.s

— Practical methodology for users, admins,
and developers

