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bstract

Spike detection and spike sorting techniques are often difficult to assess because of the lack of ground truth data (i.e., spike timings for each
euron). This is particularly important for in vitro recordings where the signal to noise ratio is poor (as is the case for multi-electrode arrays at
he bottom of a cell culture dish). We present an analysis of the transmission of intracellular signals from neurons to an extracellular electrode,
nd a set of MATLAB functions based on this analysis. These produce realistic signals from neighboring neurons as well as interference from

ore distant neurons, and Gaussian noise. They thus generate realistic but controllable synthetic signals (for which the ground truth is known)

or assessing spike detection and spike sorting techniques. They can also be used to generate realistic (non-Gaussian) background noise. We use
ignals generated in this way to compare two automated spike-sorting techniques. The software is available freely on the web.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The primary aim of this tool is to synthesize signals which
imulate those that electrodes in extracellular multi-electrode
rrays (MEAs) record in culture. The motivation for this tool is
o provide “ground truth” data (that is, data for which the actual
piking situation is known, named “ground truth” because of
he similar problem in remote sensing) for the testing of algo-
ithms for spike detection and spike sorting. For data acquired
sing MEAs, this information could be provided through voltage
ensitive dye-based imaging or concurrent intracellular record-
ng of the neurons of interest. Providing the time resolution
equired using dye based imaging is difficult since it implies
ery high frame rates. Concurrent intracellular recording is dif-
cult for MEAs, although it has been done for a single neuron
nd a tetrode electrode array by Harris et al. (2000). The dif-
culty we are attempting to overcome is that without ground

ruth data, it is not possible to compare different spike detection
nd spike sorting techniques (many techniques are reviewed in

ewicki (1998)). This is a difficult problem: Wood et al. (2004)

eport over 20% errors using semiautomated spike sorting. Many
uthors have generated ground truth data by taking recordings

∗ Corresponding author. Tel.: +44 1786 467435; fax: +44 1786 464551.
E-mail address: lss@cs.stir.ac.uk (L.S. Smith).
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hich contain spikes, and mixing them and adding noise (e.g.,
tiya, 1992; Chandra and Optican, 1997; Quiroga et al., 2004;
hang et al., 2004), or re-generating data with similar statistics

Wood et al., 2004). This presumes that suitable data already
xist, and that the form that noise should take is known. A dif-
erent approach has been taken by Menne et al. (2002); Mamlouk
t al. (2005): they used GENESIS (Bower and Beeman, 1998)
o create a multi compartment simulation of relevant neural
ircuitry (in hippocampus), and then summed the contribution
rom each compartment assuming homogenous resistivity and
o capacitance.

We are interested in generating signals that are useful for test-
ng spike detection and sorting techniques for in vitro recordings,
here the underlying neural structure is unknown. In general,

ll that is known is the approximate density of the neurons. Fur-
her, inspection of extracellularly recorded spike shapes shows
hat these differ from intracellular spike shapes (see, for exam-
le, Harris et al. (2000)). We have therefore taken a different
pproach, and attempted to analyse the signal transfer between
he intracellular spike throughout the spiking part of the neuron
nd the extracellular electrode in order to generate realistic test
ata for which the underlying spike patterns are known. We use

his to synthesize both the signal from those neurons closest to
he electrode, and interference from more distant neurons.

A related approach was taken by Nakatani et al. (2001) in
he context of cuff electrodes. For in vitro multi-electrode array

mailto:lss@cs.stir.ac.uk
dx.doi.org/10.1016/j.jneumeth.2006.06.019
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Fig. 1. Electrode i and patch of membrane.

MEA) based recording, the culture is grown in dishes on which
he electrodes are already present. Generally, the culture contains
mixture of neurons and glial cells, and there may be glial cells
etween the electrode and the neurons. Further, each electrode
s usually near enough to a number of neurons to pick up signals
rom them, and the electrodes may not be moved to improve
ignal strength. Unlike the situation in Menne’s work, the elec-
rodes are generally too far apart to pick up signals from the
ame neurons. Thus, ICA is not a usable option. MEA record-
ng necessitates automated techniques, simply because of the
olume of data.

The signal received at an electrode from a neuron is trans-
ormed by both the neuron’s geometry relative to the electrode
nd the effect of the path from spiking neuron to electrode. The
etails of the transformation are discussed in Section 2. We have

eveloped a set of MATLAB routines which allow the user to
mulate this transformation for a number of neurons. Our tech-
ique allows both precise noise control and precise control of
he spike shapes collected at the electrode.

t

v

ig. 2. Equivalent circuit description for transfer of charge from a point on a neuron t
lectrode is assumed to be near the neuron, but the dish electrode is assumed to h
implifications in this circuit: distributed resistances and capacitances have been lum
ience Methods 159 (2007) 170–180 171

This paper is organised as follows: Section 2 contains a the-
retical discussion of the nature of the signal picked up by an
lectrode. Section 3 discusses how to use this theory for gener-
ting signals which are like those from extracellular electrodes,
nd Section 4 assesses some spike sorting techniques using sig-
als generated using this software. The software, and a user
anual for it, are available (Smith and Mtetwa, 2006).

. An analysis of extracellular cell recording

.1. Effect of transmembrane current

We attempt to characterise the signal received at an extracel-
ular electrode. Consider a current IdA(t) passing through a patch
f membrane (from outside the neuron to inside the neuron), dA
t location �xi = �xi(d, A), where �xi is the vector from electrode
to the patch dA (see Fig. 1).

This will have an effect at electrode i, leading to a voltage
i(dA,t) being generated. Let us assume that the effect is linear
n IdA(t). If we characterise this effect by a response function
(�xi) then the resultant potential at electrode i, will be:

i(dA, t) = −IdA(t)r(�xi(dA)) (1)

here the negative sign arises because the current flows into the
euron. We are assuming that the extracellular fluid is ohmic
see Fig. 2). Using linearity, we can consider the effect of the
urrents from a whole neuron j, with surface Nj,

i(Nj, t) = −
∫

dA ∈ Nj

IdA(t)r(�xi(dA))dA (2)

oting that IdA(t) will vary both in timing and size across Nj. The

otal effect for all contributing neurons (indexed by j) is then:

i(t) =
∑

j

vi(Nj, t) = −
∑

j

∫
dA ∈ Nj

IdA(t)r(�xi(dA))dA (3)

o an electrode for an extracellular and a dish based electrode. The extracellular
ave a layer of glia between it and the neural culture. There are a number of
ped together, for example.
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Note that vi(t) is the voltage arriving at the electrode i from
he neurons: what actually gets recorded may differ. Some of the
urrents IdA(t) come from spikes (primarily those from the axon
illock and axons), and some come from non-spiking parts of
he neuron surface.

Writing Nsj for the spiking and Nnsj for the non-spiking part
f neuron we have:

spike
i (Nj, t) = −

∫
dA ∈ Nsj

IdA(t)r(�xi(dA))dA (4)

nd

non-spike
i (Nj, t) = −

∫
dA ∈ Nnsj

IdA(t)r(�xi(dA))dA (5)

.2. Action potentials

We can now attempt to characterise v
spike
i (Nj, t) due to a

ingle spike starting at time T in neuron Nj. Given that “at time
” means that T is the time of the initiation of the spike at the
xon hillock (i.e., the start of the self-reinforcing Na+ inflow),
he spike will have no effect on v

spike
i (Nj, t) for t < T. The spike

ill be transmitted from the soma down the branching axon: we
ssume that there is an upper bound, Tmax, on the duration of the
ffect of the spike. At each point y on the spiking membrane, the
pswing of the spike is generated by runaway inflow of Na+ ions,
rom the rapidly inactivating INa,t channels, and the downswing
y the outflow of K+ ions from the IK channels (Koch, 1999):
hese are the IdA(t) in Eqs. (1–5). These charge and discharge the
ntracellular (conducting) fluid of the neuron (which is largely
nsulated from the extracellular fluid by the insulating bilipid

embrane). Thus, writing: Vspike(y, t) for the intracellular spike
t location y (with respect to an external ground), and ignoring
hmic conduction within the neuron

spike(y, t) =
∫

dt

∫
dA ∈ nbhd(y)

IdA(t)dA

Cy

=
∫

dt

∫
dA ∈ nbhd(y)

(INa
dA(t) + IK

dA(t))dA

Cy

(6)

here nbhd(y) is the membrane near y and Cy is the membrane
apacitance of nbhd(y), so that:

′
spike(y, t) = (INa(y, t) + IK(y, t))

Cy

(7)

here INa(y,t) and IK(y,t) are the ionic currents integrated over
bhd(y).

These ionic currents alter the extracellular potential, as
escribed in Eq. (4). Thus:

spike
i (Nj, t, ion) = −

∫
dA ∈ Nsj

(INa(dA, t)

K
+ I (dA, t))r(�xi(dA))dA (8)

Eqs. (7) and (8) show that the voltage at the electrode due to
onic currents from spikes in some small neighbourhood on the

a
d
e
f

ience Methods 159 (2007) 170–180

piking surface of a neuron is essentially minus the derivative of
he intracellular spike weighted by the response function r(�xi).
learly, the ionic currents will differ in differing parts of the
ell. Further, for an extracellular electrode near the cell surface,
(�xi(dA)) will tend to be large when �xi(dA) is small, leading to
onsiderable variation depending on electrode location, as dis-
ussed in (Holt and Koch, 1999; Moffitt and McIntyre, 2005),
here the extracellular signal is strongest nearest the spike ini-

iation point.
In addition, there is also the electrical resistance and the

apacitance of the membrane to take into account. The resistance
f the membrane and the resistance between the extracellular
uid and the ground form a potential divider: in addition, the
apacitance of the membrane and the resistance between the
xtracellular fluid and the ground act as a differentiator (see
ig. 2). Writing v

spike
i (y, t, mem) for the extracellular voltage

rom this source from a neighbourhood of y, we have:

spike
i (y, t, mem)

= Rexc

Rexc + Rmedium + Rmen
Vspike(y, t)

+ Rexc

Rexc + Rmedium
CmemV ′

mem(y, t)(Rexc + Rmedium) (9)

here V ′
mem(y, t) is the derivative of the voltage across the mem-

rane at y, Rexc is the resistance from extracellular electrode to
round, Rmedium is the resistance of the medium between the
xtracellular electrode and y, and Rmem is the resistance across
he membrane at y. Since Rmem � Rexc + Rmedium, the contribu-
ion from the original spike will be small. Given that the electrode
s near the membrane, the potential divider described by the
raction at the start of the second term will be near to unity. The
verall effect at the extracellular electrode i from the spike on
euron Nj is therefore:

spike
i (Nj, t) = v

spike
i (Nj, t, ion)

+
∫

nbhd(y) ∈ Nsj
v

spike
i (y, t, mem) dy (10)

nd these two terms will have opposite signs.
For a patch clamp electrode, for a small patch of membrane

nly, Rexc is replaced by a capacitor, so that Eq. (8) no longer
olds, but instead v

spike
i (Nj, t, ion) is proportional to (but of

pposite polarity from) Vspike(y,t) (and the rest of the neuron
as no effect). In addition, Vmem and V ′

mem are normally held
t 0, and the currents involved in Rexc/Rexc + RmemVspike(t) are
elatively small, so that the ionic currents dominate.

For an electrode at the bottom of a culture dish, there is a
urther complication: glial cells are likely to form a (possibly
ncomplete) layer between the electrode and the neural culture.
his layer may have a high resistance (Rglial), and will also act

s a capacitor (Cglial) (see Fig. 2). However, in this case, we
o not have ionic channels contributing to the potential at the
lectrode, so that only Eq. (9) is relevant. Writing v

spike
k (Nj, t)

or the voltage on electrode k at the bottom of the dish, the effect
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f the voltage at electrode i is:

spike
k (Nj, t) = Relectrode

Relectrode + Rfluid + Rglial
v

spike
k (Nj, t)

+ CglialRelectrodev
′spike
k (Nj, t) (11)

Of course, we do not have both electrodes i and k. In reality,
spike
k (Nj, t) results from the integration of v

spike
k (Nj, t) over a

mall volume of the intracellular fluid. The primary effect of this
s a further small amount of low-pass filtering.

What we actually receive at electrode k (whether extracellular
r MEA based) is sk(t) which consists of v

spike
k (Nj, t) from many

ifferent neurons Nj plus an additional noise signal, n(t) from
he receiving apparatus itself. Focussing on the signal from one
euron, Nj we can write this as:

k(t) = vk(t) + n(t) = vk(Nj, t) +
∑
p�=j

vk(Np, t) + n(t)

= v
spike
k (Nj, t) +

∑
p

v
non-spike
i (Np, t)

+
∑
p�=j

v
spike
k (Np, t) + n(t) (12)

The first term is the “signal”, the next two are interference
in the sense that they do not originate from the spike at neuron
), and the last is noise. Both the signal and the interference
erm in Eq. (12) depend on the nature of the connection between
he neurons and the electrode k, as described in Eqs. (6–11).
art will be resistive, mediated by the ionic conduction of the
edium part will be capacitative (and differentiating) due to the

nsulating membrane and the ion channels.

.3. Modelling the effect of the extended spiking neural
urface

What is the effect of the integration over the extent of the
euron? Because the time taken for spike movement from the
pike initiation point on the soma through the axon is comparable
o or larger than the spike duration, this integration will have a

ajor effect on the shape of the voltage recorded at the electrode.
The spiking neural surface is a three-dimensional surface

hose orientation and distance from the electrode varies. The
ignal contribution in Eq. (12), v

spike
k (Nj, t) which comes from

qs. (8) and (9), can be written:

spike
k (Nj, t) = v

spike
k (Nj, t, ion) + v

spike
k (Nj, t, mem) = −

∫
dA ∈

+
∫

dA ∈ N

a2V
′
spike(dA, t)dA =

∫
dA ∈ N

V ′
spike(d
j j

ince V ′
spike(dA, t) = IdA(t), and a1 and a2 (which are functions

f dA) replace the fractions in Eq. (9). Noting that integration
nd differentiation are linear operations, we can reverse their

r
o
Y

ience Methods 159 (2007) 170–180 173

dA(t)r(�xi)(dA) +
∫

dA ∈ Nj

a1Vspike(dA, t)dA

)(a2 − r(�xi))(dA) +
∫

dA ∈ N

a1Vspike(dA, t)dA (13)

rder, and group the terms:

spike
k (Nj, t) = d

dt

∫
dA ∈ Nj

V ′
spike(dA, t)(a2 − r(�xi))(dA)

+
∫

dA ∈ Nj

a1Vspike(dA, t)dA (14)

e can approximate these integrals discretely. Further, we note
hat because of the mechanism of spike generation, Vspike(dA, t)
and also therefore V ′

spike(dA, t)) always has the same shape to
first approximation. We therefore write:

spike(dA, t) = Vspike(dA0, t − �(dA)) (15)

here dA0 is the spike initiation point (axon hillock) and �(dA)
s the time the spike takes to reach dA from the axon hillock. As
result, Eq. (14) becomes:

spike
k (Nj, t) = d

dt

∑
dA

V ′
spike(dA0, t − �(dA))(a2 − r(�xi))

+
∑
dA

Vspike(dA0, t − �(dA))a1 (16)

n order to evaluate this, we can consider summing over time
ather than area: each time interval �t may contain signals from
number of areas of the spiking surface

spike
k (Nj, n�t) =

∑
i=1...k

V ′
spike(t − i�t)b2(i)

+
∑

i=1...k
Vspike(t − i�t)b1(i) (17)

here b1 and b2 are appropriate sums of the a1’s, and a2’s and
(�xi) and k = [Γ max/�t]. We note that the time intervals over
hich we sum need to be quite small, particularly since the

piking signal changes very rapidly. In fact, we should choose
he time intervals to be smaller than half the duration of the

ost rapidly changing component of interest in the signal. This
ime interval is theoretically determined by the highest frequency
omponent of the V ′

spike(t). Real neural signals contain energy
ontent up to relatively high frequencies for example, the sharp
nee in Fig. 1a of Naundorf et al. (2006). However, in general
he fastest component of interest is the spike rise time, which is
sually upwards of 200 �s (Naundorf et al., 2006; Zhang, 2004).

In Eq. (8), r(�xi(dA)) (which contributes negatively to b2)
ecreases exponentially with distance due to diffusion, and in
q. (9), Rmedium (which contributes inversely but positively to
oth b1 and b2) increases linearly with distance. Where the neu-
on is far from the electrode, it is likely that the b2 and b1 change
j

elatively slowly. The effect of the integration over the surface
f the neuron will be to low-pass filter the signal (Struijk and
oshida, 2004), because the distance of all the spiking parts of
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he neuron will be nearly the same so that the transfer charac-
eristics will vary little across the spiking surface of the neuron.
owever, where the neuron is close to the electrode, some of the

piking surface may be much closer to the electrode than other
arts, so that there may be rapid variation in b2 and b1. Further,
he precise nature of the variation depends on the relative geom-
try of the neuron and the electrode, and will depend strongly
n the presence and density of active ion channels near the elec-
rode. Thus, the shape of the signal received will depend on this
eometry, and in particular, if part of the spiking surface is very
lose to the electrode this may have a major effect on the shape
f the spike recorded. This agrees with the theory in (Holt and
och, 1999; Moffitt and McIntyre, 2005), and the measurements

n (Harris et al., 2000). One effect of this is that the detected spike
hape is likely to differ for different neurons, particularly those
losest to the electrode, even if the intracellular spike shapes are
dentical, thus assisting spike sorting.

.4. Dish based MEA electrodes

For MEA type electrodes at the bottom of a culture dish, trans-
ission of signals is likely to be complicated further by insu-

ating glial cells between the neuron and the electrode causing
further mixture of resistive and capacitative (differentiating)

oupling. Further, the potential will also depend on the nature
f the transferrence of ionic current in the medium to electrical
urrent in the electrode (not modelled here: (see Standen et al.,
987)).

The final result is that an MEA electrode detects a mixture
f the intracellular spike, its first and second derivatives, arriv-
ng from the different parts of the spiking surface of the neuron.
We note that if there are other glial cells in the signal path, there
ay be further differentiation occurring as well.) If the neuron

s relatively far away, the neuron spatial extent will smooth the
ignal: if it is nearer, then the precise shape of the signal will
epend on the relative geometry of the neuron and the electrode.
or situations in which the electrode itself may be maneuvered,

he value of �xi (in Eq. (4)) can be reduced, improving the over-
ll conductance between dA and the electrode (thus improving
NR), and causing the signal to come primarily from one section
f the spiking area, thus reducing the degree of smoothing. One
ight also attempt to place the electrode where the capacita-

ive effects of glial cells are minimised (for example by shaping
oints on the electrodes, or by lowering the electrodes on to the
ulture (Sandison et al., 2002)).

The interference terms in Eq. (12) identify two components.
he first (and probably smaller of these) arises from non-spiking
vents from the neurons whose spikes we are attempting to
etect. IdA(t) in these events is generally quite small, so that the
ontribution at the electrode is large only if r(�xi(dA)) is large,
hich is likely to be the case only if dA is very close to the

lectrode (or if a patch is made to a non-spiking part of the elec-
rode). Assuming that we are not using patch clamping, then this

nterference arises from synaptic events and non-axonic spikes
e.g., Ca2+ spikes). The second interference term is likely to
e the dominant term: this arises from spikes in other neurons,
elatively further away. In many situations, neurons are closely

f
l
e

ience Methods 159 (2007) 170–180

acked, so that if it has not been possible to place the elec-
rode very close to the neuron of interest, interference from other
eurons will be dominant. The modes of transmission are as dis-
ussed earlier (and may differ in relative strength for different
eurons). The final noise term arises from extraneous electro-
agnetic interference, and from the amplifiers used, and can be
inimised by shielding and appropriate experimental design.
The distribution of the interference and noise terms is likely

o be quite different for each of the three: for the first inter-
erence source, it is likely that these will be synaptic activity
efore and during spiking. For the second interference source, it
s likely that some neighboring neurons receive similar input to
he neuron of interest, so that they fire at similar times. Thus both
f these interference sources will be correlated to the signal of
nterest. The spike times from other (and further away) neurons
re likely to be relatively independent of the neurons of interest.
nly the noise source is likely to be entirely uncorrelated.

. Generating data for analysis

The primary aim of this work is to enable the comparison of a
umber of different spike detection and sorting techniques. We
ave produced a set of MATLAB functions to generate realistic
ata, using the analysis in Section 2 to guide data generation. The
unctions have a large number of variable parameters, enabling
eneration of a large variety of datasets. Synthetic data with
ealistic signals from the target neurons and which has a large
uantity of realistic interference (that is, realistic data from other
eurons) can be generated. The spiking of some of the interfer-
ng neurons can be correlated with target neurons, while other
nterfering neurons can be spiking independently. The parame-
ers for each neuron can be set independently.

The data generation system has a number of phases: firstly,
he spike times for the neurons of interest (target neurons) are
enerated, within some time interval. Spikes may be generated
sing either a Poisson or a Gaussian distribution. The mean inter-
pike interval, and the degree of randomness of these spikes
re adjustable parameters. Minimum inter-spike intervals can
e enforced. Once these spike times have been determined, we
an generate spike times for other neurons (correlated neurons)
ach of whose spike trains are correlated with one of the tar-
et neurons. The spike times for these correlated neurons are
etermined by allowing a (selectable) degree of jitter on the
pike times of the (selected) target neuron. The jittered spike
imes may be distributed either normally around the original
pike time (with selectable standard deviation), or uniformly,
ith a selectable maximum difference in time. The software

llows generation of other sequences of spike times uncorrelated
ith the target spike times (independent neurons), again permit-

ing Poisson or Gaussian distributions. We thus have one set of
equences of spike times, from the target neurons, plus two other
ets of spike times, one correlated with the originals, and one
ot.
We use realistic intracellular spike shapes, (currently taken
rom (Naundorf et al., 2006) or from the Hodgkin Huxley simu-
ator HHSim (Touretzky et al., 2004), but able to be taken from
lsewhere) to generate the intracellular potential for each of these
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The software was used to generate two target spike shapes
(which are quite different from each other: see Fig. 3), with
varying amounts of additional correlated and uncorrelated inter-
ference. The aim was to determine how well the different spike
L.S. Smith, N. Mtetwa / Journal of Ne

pike trains. The effect of the spatial extent of the neuron is then
ecreated using Eq. (17): weighted delayed spikes are summed,
ith the actual weights set by the user. The delay default is

et to 30 �s (it is user-selectable and should be a multiple of the
ample period), allowing contributions up to about 16 kHz. Log-
cally, we should compute the signal for the whole time interval
t the axon hillock, then perform this delay and sum: however,
omputing the signal spike by spike is much more efficient (par-
icularly for long intervals with relatively few spikes). Where
he inter-spike interval is less than the length of the (delayed-
nd-summed) spike shape, we join them smoothly, and in such
way that both reach their maximum potential.

We then generate first and second differentials for all of these
ignals, and set all these signals and differentials linearly to a
ormalised amplitude. For each neural signal source (target neu-
ons, correlated and uncorrelated neurons), we form a signal by
inearly mixing the weighted, summed intracellular signals and
rst and second differentials: the mixing parameters are set by

he user (and may be different for each neuron). These linearly
ixed signals (characteristic of each spiking neuron) can then

hemselves be linearly mixed. This allows any required target
ignal to correlated or uncorrelated interference ratio. Gaussian
andom noise (of selectable size) can be added at the end. The
nal signal can then be scaled to an appropriate range. In this
ay, we can generate a noisy signal similar to that which would
e picked up by a real electrode, but for which the actual timing
f the spikes is known, and the precise form and extent of the
oise can be adjusted.

The software can also be used to generate “spiky” background
oise. To do this, the number of target neurons and correlated
eurons are set to zero. Such noise could be used to test spike
etection and sorting algorithms on a mixture of real data and
ppropriate noise. For example, using 15 uncorrelated neurons,
ith a mixture of Gaussian and Poisson distributions, where each
euron has a mean inter-spike interval of between 25 and 40 ms,
nd using a completely flat set of weightings, we can generate
piky data which is made up of many overlapping spikes, and
as a kurtosis of 4.08. This can be tailored to the user’s needs,
or example by using fewer or more neurons, or altering the
nter-spike interval, or altering the delay weightings.

Further details of the noisy spike generation system, includ-
ng a detailed discussion of the parameters (and MATLAB code)

ay be found in (Smith and Mtetwa, 2006).

. Assessing two spike sorting techniques

We have generated sets of data both without and with inter-
erence to compare the capabilities of two existing spike sorting
echniques. We used Wave clus (Quiroga et al. (2004)) to com-
ute the spike times: this uses a simple threshold technique,
etting the threshold based on the median value of the signal.
his is then used to extract a 64-element sample vector (with 20
amples before and 44 samples after the threshold event). At the

ampling rate used (24 Ksamples/s) this represents a window
f 2.67 ms. We used Wave clus’s capability to generate both
he first three PCA component coefficients, and a 10-element
avelet based representation of these 64-element vectors.
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v
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The PCA and wavelet based vectors were used as input to
oth KlustaKwik Version 1.7 (Harris, 2003) (which uses the
EM algorithm (Celeux and Govaert, 1992)) and Wave clus’s

pike sorting facility (which uses a supraparamagnetic cluster-
ng technique, described in Quiroga et al. (2004)) to cluster and
hen sort the spike trains. The way we used these reflects our
nterest in automated spike sorting. Supraparamagnetic cluster-
ng (SPC) is a stochastic technique, so that different runs can
roduce different results. We simply used the first result, since
n experimenter may not be able to automate assessment of what
s an appropriate result (that is, they may not know the correct
umber of spike trains). (We do note, however, that, in general,
here is little difference between the first and subsequent SPC
uns.) We did not take advantage of Wave-clus’s capability for
orcing reclassification.

Using this software, we can create waveforms for target neu-
ons which differ in a controlled way, and we can add specific
mounts of correlated and un-correlated interference to produce
ealistic extracellular signals. We used two target neurons. One
T1) has a Poisson distribution, and the other (T2) has a Gaus-
ian distribution. Both have identical intracellular spikes (from
aundorf et al. (2006)). The spike shapes at the recording elec-

rode differ because different transfer characteristics and/or spa-
ial extents have been modeled. Two experiments are described
elow. In the first, the spike shapes received at the electrode from
he two target neurons are quite different (both in terms of trans-
er characteristic and spatial extent), and a number of levels of
nterference are added. In the second, the spike shapes are dif-
erent only in transfer characteristic, and one of the spike shapes
s gradually made more like the other so that the difference in
pike shapes decreases between measurements.

.1. Using dissimilar spike shapes
ig. 3. Shapes of the two dissimilar target neuron spikes (T1 and T2) as received
t the putative electrode. X axis is in samples at 24 Ksamples/s. Y axis is arbitrary
oltage-like units.
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Table 1
Spike sorting using wavelets and PCA (first three components) for both superpara-magnetic clustering (SPC) and KlustaKwik spike sorting techniques for signals
with no interference

Wavelets

Target SPC KlustaKwik

0 1 2 FoM 0 1 2 3 FoM

T1 50 0 432 0.92 482 0 0 0 0.74
T2 35 573 0 51 99 360 98

PCA

Target SPC KlustaKwik

0 1 2 3 4 FoM 0 1 2 3 4 FoM

T1 66 0 253 86 77 0.68 212 0 220 0 50 0.54
T
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2 106 502 0 0 0

he table rows show the number of spikes from each target class (0–4) found in
nserted (due to collisions between spike trains).

orting techniques could cope with different levels of realistic
nterference. The sections of electrode signal generated were 30 s
ong, and contained 482 spikes from T1, and 608 spikes from
2. The results from spike sorting the signal with no added noise
re shown in Table 1. In this experiment and the following ones,
pikes are marked as missing if no spike was detected within
ms of a target spike, and spikes are marked as inserted if no

arget spike was present within 1 ms of the time of spike detec-
ion. We note that missing and inserted spikes are the result of
he spike detection, rather than the spike sorting stage. Class 0
s a catch-all (i.e., not clustered) for both SPC and KlustaKwik

KlustaKwik class numbers have been renumbered: class 0 is
ot used, and class numbers have all been reduced by 1).

In order to make spike-sorting work on noiseless signals in
ave clus, spike detection had to be set to use the signal mean

w

s
t

able 2
pike sorting with uncorrelated interference only

NR C N Wavelet

0 1 2 3 4

4.6 S T1 48 0 336 0 93
T2 41 400 0 167 0

K T1 25 333 101 18 0
T2 217 0 0 0 391

3.2 S T1 83 0 290 97 0
T2 74 533 0 0 0

K T1 27 57 386 0 0
T2 43 0 0 564 0

2.3 S T1 22 0 233 1 0
T2 30 512 0 60 0

K T1 15 188 1 51 1
T2 14 0 68 0 520

1.6 S T1 10 2 31 0 0
T2 13 257 41 0 0

K T1 4 1 1 26 11
T2 4 258 39 0 10

able rows show clusters found for each target class (0–4). Four different SNRs wer
ype of clustering (K, KlustaKwik, S, SPC), and the column labeled N is the target ne
euron not found), and the column labeled I is the number inserted (i.e., spikes detec
161 373 0 74 0

cluster, and the figure of merit (FoM): see text for description. Two spikes were

rather than median) because so much of the signal had the value
xactly 0. This is, of course, not characteristic of real signals.
or the wavelet results for KlustaKwik, only the first five coef-
cients were used as input: using all 10 results in KlustaKwik
lmost always failing to separate out two clusters (everything is
laced in one cluster). We permitted any number of clusters to
e generated internally during processing. However, doing this
or PCA gave poor results (38 clusters detected!). We therefore
et the maximum possible number of clusters to 5 in this case.
n later work, we found that this did not have any effect except
o avoid multiple spurious clusters. The only exception to this

as processing the zero noise wavelet data.
Only the SPC technique applied to the wavelet pre-processed

ignals detects exactly two clusters. The others all produce more
han two.

PCA M I

0 1 2 3 4

44 0 433 0 0 5 7
36 572 0 0 0 0
36 0 441 0 0 5
33 575 0 0 0 0

36 0 434 0 0 12 1
53 551 3 0 0 1
15 438 2 15 0 12
12 2 560 33 0 1

16 0 234 6 0 226 1
43 498 0 61 0 6
12 8 1 235 0 226
14 73 515 0 0 6

3 2 38 0 0 439 9
5 257 49 0 0 297
3 38 2 0 0 439
7 49 255 0 0 297

e used (see text for how the SNR was measured). The column labeled C is the
uron. The column labeled M is the number missing (i.e., spikes form this target
ted which do not correspond to spikes in the original dataset).
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Keeping the same spike times, different types and amounts
f interference were added. Wave clus was set to use the median
n spike detection (which is the default). The results from using
nly uncorrelated interference are shown in Table 2. Again the
aximum number of clusters used by KlustaKwik was limited

o 5. (Class 5 was never assigned, but decreasing the maximum
umber of possible clusters to four results in much poorer classi-
cation: not specifying the maximum number of clusters results

n large numbers of spurious classes). Using all 10 wavelet
oefficients, KlustaKwik again failed to differentiate between
lusters. The results shown use only the first five wavelet coef-
cients.

We have calculated SNR using the ratio of the peak levels of
he signal to the peak level of the interference, rather than the
atio of signal to interference power. We have done this since
either signal nor interference is Gaussian, and because the tar-
et neuron signals are nearly constant (and thus have almost zero
nergy) most of the time, whereas the interfering signal (being
he sum of 50 spike trains) has power much more of the time.
s a result, even when the target neurons spikes are much larger

han the noise, the ratio of signal to interference power would be
ess than 1. Even worse, the ratio of signal to interference power
ould depend on the target neuron-spiking rate. Using peak level

atios for SNR calculation overcomes both these problems. The
nterference level was increased by

√
2, equivalent to an increase

f about 3dB between tests. We used this in preference to tar-
et peak: interference standard deviation (used in Quiroga et
l. (2004)) primarily because the latter will also depend on the
umber of correlated and uncorrelated spike trains, rather than

n their spike magnitude.

As the SNR decreases, the number of spikes missed increases.
he T2 signal has a larger peak, and so withstands more inter-

erence, so that the number of T1 spikes missed increases first.

b
e
b
a

able 3
pike sorting with correlated and both uncorrelated and correlated interference, show

ata SNR P SPC

FoM MC UC

C 4.6 PCA 0.92 0 80
C 4.6 WAV 0.67 0 358
C 3.2 PCA 0.90 5 85
C 3.2 WAV 0.74 0 250
C 2.3 PCA 0.65 1 125
C 2.3 WAV 0.67 1 107
C 1.6 PCA 0.21 51 8
C 1.6 WAV 0.21 46 21
,UC 4.6 PCA 0.91 2 87
,UC 4.6 WAV 0.70 1 294
,UC 3.2 PCA 0.83 41 56
,UC 3.2 WAV 0.86 1 111
,UC 2.3 PCA 0.52 91 20
,UC 2.3 WAV 0.58 5 136
,UC 1.6 PCA 0.19 59 7
,UC 1.6 WAV 0.19 51 16

able rows show the figure of merit, the number misclassified, and the number not c
i.e., target 1 spikes classed as target 2 or vice versa), UC is unclassified spikes (eithe
he figure of merit), M is spikes missed, and I is spikes inserted.
ience Methods 159 (2007) 170–180 177

e note that a relatively modest increase in noise level makes
large difference to the number of spikes missed: this is also

isible in Table 3.
Most of the time more than two clusters are detected, and

pikes from the same target class are often assigned to different
umbered clusters. This, and the default class 0 make it difficult
o use Table 2 directly to compare the techniques. To overcome
his, we introduce a figure of merit for spike sorting where the
round truth is known. The formula we use is

= 1

n

n∑
j=1

((max
i

(Tj(i) −
n∑

k=1k �=j

Tk(i))/Nj) (18)

here Nj is the number of spikes from target neuron j, n is the
umber of target neurons (here, 2), and Tj(i) is the number of
pikes from target neuron j found in cluster i. M is measure of
he degree to which the different clusters detected follow the dif-
erent target neurons: it reaches its maximum value of 1 when
ach target neuron’s spikes are present in exactly one cluster,
ut is insensitive to the ordering of the clusters. It is intended to
e a measure which reflects what a user might wish to do with
he classification: that is, concentrate on those clusters which
re maximally different for different spiking target neurons.
lthough M is sensitive to non-classification (i.e., assignment

o cluster 0) and to misclassifications, we will normally quote
he number of non-classifications and misclassifications as well.
he top half of Table 3 shows the figure of merit for the clusters

n Table 2. The bottom half of Table 2 shows spike sorting with

oth correlated and uncorrelated noise: note that the interfer-
nce level for the two different types of interference was set to
e the same, so that there is actually more noise in this case, even
lthough the peak-level based SNR recorded does not show this.

ing figure of merit

KK M I

FoM MC UC

0.93 0 69 5 7
0.11 477 0 5 7
0.91 4 75 13 1
0.86 0 127 13 1
0.67 1 107 232 1
0.62 1 149 232 1
0.21 51 10 737 9
0.24 1 69 737 9
0.91 3 79 10 46
0.68 0 353 10 46
0.86 8 94 39 38
0.83 0 138 39 38
0.56 5 163 284 27
0.43 3 317 284 27
0.19 59 3 741 35
0.21 12 83 741 35

lassified. P is pre-processing type, FoM is figure of merit, MC is misclassified
r in the catch-all group, or in some other cluster apart from the one selected in
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ages to separate the different spikes even when they are very
similar, and always outperforms SPC in this respect.

Table 4
The 10 datasets have spike type 1 linearly morphed from the original to spike
type 2 shape: in dataset 10 they are identical

Dataset SPC KK M I

FoM MC UC FoM MC UC

1 0.58 1 401 0.79 3 174 61 72
2 0.64 1 354 0.62 0 357 49 53
3 0.55 16 410 0.70 0 275 64 62
4 0.47 14 500 0.72 1 251 57 55
5 0.20 43 822 0.68 0 297 55 47
6 0.05 454 88 0.69 1 282 63 34
7 0.05 444 109 0.71 0 259 58 28
78 L.S. Smith, N. Mtetwa / Journal of Ne

In general, the wavelet based pre-processing followed by
PC seems to result in larger numbers of unclassified spikes.
his tails off at poor SNR, but by then very large numbers of
pikes are simply missed. From the experiment reported here,
nd from others, we find that at better signal to noise ratios (bet-
er than 3:1), wavelet pre-processing tends to leave more spikes
nclassified. At poorer SNRs, the results from SPC with either
CA or wavelet pre-processing are very similar, and PCA based

echniques seem to result in more misclassification, but fewer
nclassified spikes. We also note that PCA followed by Klus-
aKwik sometimes fails, as is the case in Table 3 line two. There,

uch better results were obtained when a maximum number of
ix clusters was allowed (figure of merit = 0.67, with no misclas-
ification and 361 unclassified): in other experiments we find that
uch failures occur about 10% of the time. Using a maximum
f six clusters for the rest of the table results in general in rather
oorer figures of merit, and rather more unclassified spikes. In
eneral, permitting a larger maximal number of clusters does
vercome this problem, but at the cost of a poorer figure of
erit (which arises because a what should be a single cluster is

plit across a number of clusters).
Comparing these results with those of Quiroga et al. (2004),

e find that the difference between the different techniques is
ess marked that their Table 2 suggests. As noted above, we com-
uted noise differently: for the spike rates used, the equivalent
oise levels, using target peak and interference standard devia-
ions are 0.045, 0.64, 0.09 and 0.13 for the uncorrelated noise
nly, and 0.05, 0.07, 0.01 and 0.14 for correlated plus uncorre-
ated interference. In particular, we find that SPC applied to the
CA data performs as well as SPC applied to wavelet data. Part of

he reason for this may be that we are using SPC in an automatic
ay, accepting the initial classification as noted in Section 4.

.2. Varying the difference between the spike shapes

In this test, two spike shapes were generated, differing only in
heir transfer characteristics, and then sets of data in which one
f the spike shapes was made more and more like the other
ere generated. The aim was to assess how well the differ-

nt spike sorting techniques could differentiate between similar
pike shapes. In performing this experiment, care had to be taken
hat the spike shapes remained appropriate: for example, the
pike shapes should not have two positive peaks with a period
f zero value in the middle. In addition, we arranged that the
eak-peak size of all the spike shapes used was the same so that
pike detection would be equally likely for all spike shapes. The
nitial spike shapes chosen (see Fig. 4) were relatively similar.
he other datasets (datasets 2–10, in Table 4) were generated
y making the T1 spike shape more and more like the T2 spike
hape in nine steps using simple linear in-terpolation. In dataset
0 the T1 and T2 spike shapes are identical. Even for dataset 1,
e found that neither supraparamagnetic clustering nor Klus-

aKwik applied to PCA data differentiated between them. We

herefore report only the wavelet-based techniques: see Table 4.
gain, KlustaKwik uses only the first five wavelet coefficients. A
xed level of interference was used: the signal:interference ratio
as 2.5:1:1 (Signal:correlated interference:uncorrelated inter-

1

C

ig. 4. Shapes of the two similar target neuron spikes (T1 and T2) as received
t the putative electrode. X axis is in samples at 24 Ksamples/s.

erence), equivalent to a noise level of 0.1 in Quiroga et al.
2004).

In this case, it is clear that the wavelet based pre-processing is
ritically important. However, the KlustaKwik algorithm outper-
orms supraparamagnetic clustering: it maintains a high figure of
erit with a gradually increasing number of unclassified spikes

s the spike shapes become more and more similar. SPC has more
nclassified spikes from the start, and fails entirely after dataset
. KlustaKwik misclassifies hardly any spikes, right up to dataset
, whereas SPC makes a larger number of misclassifications even
n dataset 3. The performance of the KlustaKwik algorithm is
urprisingly good, since by dataset 9 the spike shapes look virtu-
lly identical. In other similar experiments, similar results were
btained: if the original spikes are a little more different, then
CA does separate them, but the figure of merit is below that
roduced by wavelet based pre-processing. In general SPC mis-
lassifies more, and generally has a larger number of unclassified
pikes as well, although the difference is not always as marked as
n Table 4. However, our experience is that KwikKlusters man-
8 0.036 445 122 0.69 0 272 70 45
9 0.06 445 93 0.69 0 284 64 48
0 0.08 447 63 0.056 414 154 66 34

olumns are the same as for Table 3.
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. Conclusions and further work

We have presented a biophysical model for the transfer of
lectrical signals from neural spikes to an extracellular elec-
rode. In this model, we have considered the electrode to be

voltage sensor: that is a very high input impedance device.
rom the analysis in Section 2, we have produced a piece of
oftware in MATLAB which can generate realistic signals and
nterference taking into account both the transfer characteristics
etween neuron and electrode, and the spatial configuration of
he neuron and the electrode. We have shown that this soft-
are can generate synthetic signals which can be of use in

ssessing the effectiveness of algorithms for spike detection
nd sorting: the many parameters allow for a very considerable
ange of configurations. The software may be used directly to
enerate test signals, or as a mechanism for generating real-
stic non-Gaussian background noise. Further, because both
he signals and the noise are synthesized, precise control can
e maintained over both: this is not possible using techniques
hich generate ground truth data by taking recordings which

ontain spikes, and mixing them and adding noise. This capa-
ility enables the types of comparisons described in Section
.

To illustrate the usefulness of this software, we have tested
wo different spike-sorting techniques with two different forms
f preprocessed synthetic signal data. From these experiments
which were carried out with fixed parameter sets in the spike
orting software, as would be the case for automatic spike
orting), the results seem to depend partly at least on signal:
oise ratio. At high SNR, PCA based pre-processing seems
o work better, and SPC and KwikKlusters both perform at
he same level. At lower SNR, both wavelet and PCA based
re-processing seem to perform at about the same level. SPC
pike sorting tends to fail to assign more spikes to either of the
wo targets, and KwikKlusters tends misclassify more spikes.

here the spike shapes are very similar, the wavelet based pre-
rocessing works much better than PCA based pre-processing.
wikKlusters seems to be more capable of detecting differences
here these differences are very small. There are parameter sen-

itivities as well: KwikKlusters tends not to work well at all when
pplied to all 10 wavelet coefficients. As we noted in Section 4.1,
arying certain parameters in KwikKlusters changes the perfor-
ance. Further, if the user is allowed to interact with the system
hile generating clusters (as is the case with Wave clus), bet-

er results can be obtained, particularly when the user has some
re-knowledge of the likely spike shapes, and of the number of
ifferent neurons being recorded. However, this is beyond the
cope of this paper, since we are interested in automatic classi-
cation of spikes.

The software could be extended to generate more than one
lectrode signal. Where the electrodes are so far apart that
hey are independent (which is normally the case in current

EAs), no extension is necessary (the software can simply be

un more than once). However, if, for example, the electrodes
ere closely spaced tetrodes, we could use their precise posi-

ioning, and determine the precise parameters for the neurons for
ach electrode, and thus produce a set of synthetic spike trains,

S

T

ience Methods 159 (2007) 170–180 179

ne for each electrode. Another possible extension would be to
llow the modelling of bursting neurons: given the intracellular
haracteristics, we can produce the summed weighted delayed
ignal.
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