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Abstract—A spike (event) based sound coding technique has
been presented in this study where the spikes are similar to
the spikes exhibited by type 1 fibers of the auditory nerve.
This lossy coding technique has already been shown useful for
inter-aural time difference based sound source direction finding.
Here, we show that decoding and resynthesising this code can
produce intelligible speech even using a small number of spike
trains. We have used few composite techniques including speaker
verification to assess the effectiveness of the coding technique on
a large number of TIMIT sentences. This biologically inspired
coding technique can provide suitable input for a spiking neural
network, as well as maintaining the accurate time structure of
sound.

Index Terms—spike coding, spike decoding, speech coding, bio-
logical inspiration, x-vector, i-vector, speaker diarisation, speaker
recognition

I. INTRODUCTION

This study describes an event-based coding, based on animal
hearing systems. Most of these translate sound into a set of
spike trains (events) transferred to the animal’s brain along the
type 1 fibers of the auditory nerve (AN). There are many type 1
fibers, and these are tonotopically arranged. Some fibers (“high
spontaneous rate”) respond to low intensity sounds, saturating
(i.e. firing at their maximal rate) with louder sounds, and others
(“low spontaneous rate”) respond only to louder sounds. There
are about 30,000 type 1 AN fibers in humans, and 50,000 in
cats. At low frequencies, (up to about 3 kHz) the spikes from
these fibers are approximately phase-locked to the incoming
signal [1].

Although this type of coding technique is not unique in
nature [2], it is particularly suited to processing using spiking
neural networks, as it is an event-based spectro-temporal
coding. Most neuromorphic silicon cochleas follow a sim-
ilar method of encoding their output (reviewed in [3]): for
each frequency band a number of spike trains are generated,
emulating the sensitivity of different type 1 auditory nerve
fibers. This study examines the effect of varying the number
of frequency bands (bandpass channels) and the number of
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threshold levels on the quality of the spike coded and then
decoded (resynthesised) speech, with a view to understanding
the required number of bandpass channels and threshold levels:
this becomes important for the design of neuromorphic silicon
cochleae.

Similar work has been carried out by [4], where a hier-
archical spike code is capable to capture complex structure
in music, animal vocalizations and ambient natural sounds.
A biologically inspired low-bit-rate spike encoder is also
developed in [5] and then improved in [6] and this coding
shows that high quality audio can be delivered at between 10
and 21 bits per spike. However, in the work presented here
we are interested in minimising the number of spike while
maintaining intelligibility.

In earlier work, we used an engineering approximation to
the animal code (based on the Gammatone filterbank [7], fol-
lowed by a simple neural network) to detect onsets in sounds,
and to find the location of sound sources by considering inter-
aural (inter-microphone) time differences at the onset of the
sound [8], [9] and for identifying the type of musical instru-
ment that produced single notes [10]. Considering everything
that the brain does with sound must originally be based on
these type 1 AN spikes, we became interested in re-creating
the original sound from these spike trains.

Clearly, the brain does not decode sound from these spikes,
but interprets them. But, by decoding the sound from its spike
based code, we can discuss the effectiveness of the spike
coding technique by comparing the quality of the decoded
sounds with the original sounds and investigating into the in-
telligibility preserved in the decoded sounds from the original
sounds.

Models such as Gammatone filter bank [7] with centre
frequencies [11] are built on early auditory processing and
they can be used as a basis for speech and sound coding [12].

This type of filter bank [13] has also been used in optimising
quantizer for the spike amplitudes while coding audio. It has
also helped in minimising computational costs.

The idea of using such biologically inspired codes or
representations for resynthesis is considered in [14], [15] and
[16] with the latter two using the Gammatone filterbank as
front end. Neuromorphic cochleae also use approximately978-1-7281-2547-3/20/$31.00 ©2020 IEEE



logarithmically distributed centre frequencies [3]. This study
uses a relatively small number of frequency bands, and a small
number of threshold levels while coding the audio and after
running few tests on the large TIMIT dataset by comparing the
original and decoded audio, we confirm that it still manages
to provide good quality of decoded audio. This suggests that
our biologically inspired spike based coding technique, even
when used with small numbers of bands and threshold levels,
is capable to code and decode audio which maintains the
information required for intelligibility, and is therefore a good
candidate as input to an interpreting neural network.

II. SPIKE CODING AND DECODING

Sounds are coded and decoded using software so that
particular parameters (number of bands (Nf ), and number of
threshold levels (NJ )) can be easily adjusted, and the sound
quality assessed.

A. The spike coding technique

The coding technique is described in detail in [8], [9], and
shown in figure 1.

Briefly, the incoming sound s(t) is passed through a Gam-
matone filter bank, to create Nf bandpassed signals, si(t),
for i = 1 . . . Nf , where Nf is the number of bandpassed
channels. For each signal si(t), NJ spike trains Pi,j (with
i ∈ (1 . . . Nf ), and j ∈ (1 . . . NJ)) are generated. Each
spike marks a positive-going zero-crossing event in si(t). The
difference between the spike trains indexed by j (for fixed i) is
in the level of the signal prior to the zero-crossing. For j = 1,
a spike is generated when the signal exceeds a minimum
(voltage) threshold (here set to 0.0002) in the previous quarter
cycle (using the centre frequency of the i’th band to calculate
the period). For j = NJ , the threshold is 0.0362, which
makes the NJ ’th band 10 log10((0.0362/0.0002)

2) = 45.2
dB less sensitive. When NJ > 2, intermediate thresholds are
calculated geometrically. There are thus Nf ∗NJ spike trains,
although when a spike is generated in spike train Pi,j , it is
also generated in spike train Pi,j� for j� < j. In practice, we
generate only Nf trains of pulses, with each pulse coded by
the maximal value of j for which a spike is generated. We thus
store the event trains Qi for i = 1 . . . Nf , with each element
of each train being (tki , j

k
i ), that is, the time and the maximal

j-value of each zero-crossing event, with k indexing the event
number.

B. The spike decoding technique

Here, our aim is to generate a signal that could have resulted
in the set of pulse trains Qi. Clearly, this signal is not unique.
Each Qi is processed individually, and then the signals from
each channel are summed. Figure 2 explains the decoding
technique.

First, the spike trains are delay compensated to take account
of the delays introduced by the Gammatone filterbank [17].
Next we consider pairs of consecutive spikes in the i’th
channel, at times tk−1

i and tki , where (tki − tk−1
i ) < 2

fi
, where

fi is the centre frequency of the i’th bandpassed channel. For

each of these, we generate a single cycle of a sine wave with
period (tki −tk−1

i ), that is, frequency 1

(tki −tk−1
i )

. The amplitude

of the sine wave depends on jk−1
i and jki . This amplitude value

is associated with each j value, linearly based on the threshold
levels used in the spike event generation. When jk−1

i �= jki , a
linear ramp is used to modulate the sine wave cycle.

Where there is a sequence of consecutive spikes in bandpass
channel i, each less than 2

fi
apart, we add an extra ramped sine

wave at the start and the end, with one end of the ramp set to
0, so that the concatenated set of sine waves starts and ends
smoothly at 0. When there is a single isolated spike event, we
treat it the same way, so that we generate a pair of sine waves,
modulated to start and end at 0, with frequency fi. These
techniques can result in non-linear distortion of the signal:
however, we note that the aim of this work is to show that
intelligibility is maintained even for small numbers of spike
trains, rather than to find the optimal decoding technique.

To create the final decoded signal, we concatenate all the
sine waves (putting 0’s in between them) for each frequency
band with centre frequency fi, then add up all the signals
across the Nf bands. Lastly, we normalise the signal so that
the maximal amplitude is in the appropriate range. A more
detailed description may be found in chapter 3 of [18].

Clearly this is quite complex: however, we note that since
the coding is not necessarily intended for decoding, but for
interpretation, and in that case, it does not matter how complex
decoding is. That said, we believe the coding to be quite
efficient for situations in which there are many lines carrying
data, and where the energy required to transfer each event is
small (as is the case in animal nervous systems).

III. RESULTS FROM TIMIT DATASET

The system was initially tested on a variety of sounds
including ‘string’, ‘percussion’, ‘male and female speech’ and
the results were assessed both by human listeners (subjective
testing) and by using the composite techniques (objective
testing) described in [19]. The subjective testing results men-
tioned at the table 5.41 in [18] shows that our lossy coding
technique is able to generate audio with differences which
cannot be perceived by the human ear using 16 bandpass
channels and 12 threshold levels. This shows that our lossy
coding technique is able to generate audio with differences
which cannot be perceived by human ear for 16 bandpass
channels and 12 threshold levels. The subjective test only
contained 20 questions which took about 5 to 8 minutes for
each of 21 participants to complete.

Here, we also describe results on short duration speech
utterances from the TIMIT dataset [20]. This consists of 1360
female utterances, and 3260 male utterances. The composite
computer based assessment technique is again from [19]. In
the work reported here, we used their composite objective
measure, Covl, calculated as

Covl = 1.594+ 0.805 ∗PESQ− 0.512 ∗LLR− 0.007 ∗WSS
(1)
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Fig. 1. Incoming sound s(t) is passed through the gammatone filterbank with Nf number of centre frequencies. Each positive zero crossing is a spike at a
threshold level, explained in the text. These are the spike trains Qi which are ready to be stored or transmitted.
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Fig. 2. The spike trains Qi are processed using their threshold levels and
bandpass channels centre frequencies, and sine waves are generated for each
spike. These are summed to generate the resynthesized audio SR(t).

where PESQ is the narrowband PESQ measure (ITU-T Rec-
ommendation P.862), LLR is log likelihood ratio [21], and
WSS is the weighted slope spectral distance [22].

We varied the number of Gammatone filter bands, Nf , from
5 to 15 with steps of 2, with the lowest fi set to 100 Hz, and the
highest to 3950 Hz. The equivalent rectangular bandwidth was
set to 1. In addition we varied the number of spike thresholds
NJ from 3 to 12, with steps of 2. This gave the results shown
in figures 3 and 4.

An instrumental intelligibility metric called SIIBGauss has
been developed in [23]. This is an evaluation method of
comparing the intelligibility of two sounds. We have used
SIIBGauss over SIIB as it takes less time to compute
although both of them have state-of-the-art performance in
evaluating the quality of a speech sample [24]. SIIBGauss

values have been calculated for the original audio with the
resynthesised audio from the TIMIT dataset with the same
Gammatone Filterbanks configuration. The TIMIT dataset is
sampled at 8K samples/second, and thus cannot contain energy

Fig. 3. Mean value of composite score (Covl) for 1360 resynthesised TIMIT
female utterances, varying number of channels from 5 to 15, and number of
threshold levels from 3 to 12.

above 4Khz. Each is about 1 second long. The MATLAB
codes developed and published in [24] requires the audio
files to be over 20 seconds long. We therefore concatenated
recordings from the same speaker to make the length of the
audio files greater than 20 seconds.

A recording name in the TIMIT dataset can be as
‘FAEM0SA1.AU’. Here, ‘FAEM’ is the code for the speaker
(‘F’ for female and ‘M’ for male) and the ‘SA1’ is the code for
the sentence. They are seperated by the digit ‘0’. We have used
MATLAB script to concatenate all audio files for a speaker
and then resynthesised them by using number of bandpass
channels varying from 5 to 15 (in steps of 2), and number of
threshold levels varying from 2 to 12 (in steps of 2). Then the
mean SIIBGauss values are generated comparing the original
and resynthesised audio and shown in figure 6 and figure 5



Fig. 4. Mean value of composite score (Covl) for 3260 resynthesised TIMIT
male utterances, varying number of channels from 5 to 15 (in steps of 2), and
number of threshold levels from 2 to 12 (in steps of 2).

for 269 males and 124 females.

Fig. 5. Mean value of SIIBGauss for original and resynthesised audio from
124 TIMIT female speakers, varying number of channels from 5 to 15 (in
steps of 2), and number of threshold levels from 2 to 12 (in steps of 2).

Listening to the resynthesised utterances, male speech is
always intelligible at 6 bandpass filters and 7 threshold levels:
female speech seems to sound more distorted, though the
intelligibility threshold remains about the same. The required
number depends on both the speaker and what is being
spoken (some of the original TIMIT utterances are difficult
to understand for these non-US native English speakers). It
is critical that the listener does not know what is being
spoken, so that listeners need to hear the speech starting at
the smallest number of bandpass channels and threshold levels.
Initial experiments suggest that male voices can be intelligible
with as few as 4 bandpass filters and 5 threshold levels, but

Fig. 6. Mean value of SIIBGauss for original and resynthesised audio from
269 TIMIT male speakers, varying number of channels from 5 to 15 (in steps
of 2), and number of threshold levels from 2 to 12 (in steps of 2).

this depends both on the speaker and the listener. Only an
initial subjective assessment of few sounds has been carried
out as explained in chapter 5 of [18]; a full-scale subjective
intelligibility assessment is yet to be carried out.

Automatic speaker recognition and diarisation is possible
by means of x-vectors [25] and we have developed a system
shown in figure 7, to compare the effectiveness of a coding
technique by recognising if the same speaker is diarised in
both original and decoded audio.

As explained in figure 7, the number of channels has been
varied from 5 to 15 (in steps of 2) and the number of threshold
levels from 2 to 12 (in steps of 2) while decoding audio. Thus
we have used 6 different numbers of bandpass channels and 6
sets of threshold levels which produces 36 decoded audio for
every combination of bandpass channels and threshold levels.
We concatenate the original audio file with the decoded audio
files and this gives the total number of audio clip as 37. We
have tested 20 male speakers and 20 female speakers and if
we denote Φ as the symbol for concatenation, then the audio
clip which is fed into the x-vector extractor after extracting
mel-frequency cepstral coefficients (MFCC) features in figure
7 is S(t), as shown in equation 2.

S(t) = Φ20
n=1(s

n(t) + Φ36
d=1s

n
d (t)) (2)

The final audio S(t) is approximately 6 hours long for both
male and female. We have used a x-vector which is pre-trained
on the multi-channel Wall Street Journal Audio-Visual data
corpus [26] and on VoxCeleb data collection [27]. We have
used Kaldi speech recognition toolkit [27] for extracting the x-
vectors and then cluster the same speaker diarisation scores by
means of a probabilistic linear discriminant analysis (PLDA).
This produces a RTTM file [28] which is read in Python ( [29]
and [30]) and a ‘speaker identifier strength’ (η) is calculated by
counting the number of times (γ) the same speaker is diarised



for an audio clip and the dividing it by the total number of
audio clips (37) for a speaker, as shown in equation 3.

η =
γ

37
(3)

where, 1 ≤ γ ≤ 37
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Fig. 7. Speaker diarisation for the original and decoded audio: the number
of channels has been varied from 5 to 15 (in steps of 2) and the number of
threshold levels from 2 to 12 (in steps of 2) for decoded audio and this gives
us 36 decoded audio for one original audio clip. These 37 audio clips are
concatenated together, as shown in equation 2, for one speaker and there are
20 (male/female) speakers in total and this produces a speech audio of length
6 hours combining 740 short audio clips. X-vectors are extracted from the
MFCC features and then they are clustered by means of PLDA. Finally we
have a speaker diarisation score (N1, N2 . . . N20) for every single audio clip
in a RTTM file.

Fig. 8. Speaker Identifier Strength: For male speakers, higher number of
threshold levels and bandpass channels decode the original audio in such a
way that it can still be diarised as the same speaker.

Both figure 8 and 9 shows that using higher number of
threshold levels and bandpass channels in our spike coding
can produce decoded audio which can still be identified as
coming from the same speaker. Some original and resynthe-
sised sounds may be found at https://bit.ly/2l2XBZV.

IV. DISCUSSION

The coding used here is a computationally tractable (and
easily engineered) approximation to that used in the audi-
tory nerve and similar codings are used in so-called silicon

Fig. 9. Speaker Identifier Strength: For female speakers, higher number
of threshold levels and bandpass channels decode the original audio in such
a way that it can still be diarised as the same speaker, although it has more
variation than male speakers.

cochleae [3]. The major differences between the coding used
here and the type 1 AN fibers are that (i) we are using a
far smaller number of bandpass filters than the approximately
3,500 transducing inner hair cells in the human cochlea (each
drives about 10 type 1 AN fibers), (ii) we do not limit the
number of events per second on each fiber (in real AN type
1 fibers, the maximal spiking rate is about 300 spikes per
second), and (iii) we have a larger number of threshold levels
(the literature suggests that there are low spontaneous rate
and high spontaneous rate type 1 fibers) [1]. To some extent,
these differences compensate for each other, at least at higher
frequencies, since multiple fibers can have a high total spiking
rate, but there is also stochasticity in real AN fiber firing, so
that phase locking is lost after about 3 kHz.

We are interested in the possibility of decoding these events
to produce intelligible speech: for this purpose, the complexity
of the decoding process is not important. Clearly if one were
interested in using this coding as a method of recording or
transmitting sound, the size and complexity (duration) of the
coding and decoding would be important. The amount of time
taken for both coding and decoding depends primarily on the
number of bandpass channels and the number of threshold
levels. Using 7 bandpass channels, and 7 threshold levels on
a Mac Mini (3.2 GHz Intel core i7, 32 Gbyte 2667 MHz
memory, running Matlab R2019a under OSX10.14.5), coding
and decoding 100 TIMIT utterances (total duration 294.47
seconds) takes 42.64 seconds; the coding itself takes 31.81
seconds. This suggests that decoding takes about 3.7% of the
signal duration.

This work differs from [14] firstly in using the Gammatone
filterbank, but more importantly in using the actual spike times
from each filter output, rather than choosing the dominant
frequency present every 20 ms. We note that (i) because filters
are wideband, dominant frequencies will also be detected by



filters whose center frequency is distant, and (ii) the coding
of the amplitude to use is much more impoverished when the
number of thresholds is low. In [15], the Gammatone filterbank
is used with a fixed number, 20, of filter bands. A power law
based compression technique is used, followed by an ensemble
of neurons for each bandpass channel. The firing rate is used
to code the amplitude. In essence this is similar to what we do,
by using geometrically related thresholds for the spike trains
indexed by j. It does, however, require more spike trains. In
[16], the same techniques as in [15] are used, but with more
(50) bandpass channels. Using so many channels allows for
omitting some in the reconstruction to enable better signal to
noise ratios when there are interfering sounds. However, using
more channels increases the amount of data required for code
transmission.

A. Number of bandpass channels and threshold levels to use

The minimal amount of subjective testing used suggests that
6 or 7 bandpass channels and threshold levels are required to
ensure intelligibility. The scores shown in figures 3, 4, 5 and
6 suggest that for a given number of bandpass channels and
threshold levels, the intelligibility of male speech is higher
than that of female speech. This is supported by the small
amount of subjective testing done. This may well be due to
the larger amount of the energy of female speech being at
higher frequencies than is the case for male speech. Figure
8 and 9 shows that by using higher number of bandpass
channels and threshold levels, our biologically inspired spike
coding technique is able to preserve enough intelligence which
enables a speaker recognition system, shown in figure 7, to
diarise that both original and decoded audio is coming from
the same speaker.

As can be seen from figures 3 and 4, and as is also clear
from subjective testing, quality and intelligibility increases
as the number of bandpass channels increases to about 11,
but then plateaus. Something similar happens above about 8
threshold levels. Subjectively, there is a gradual increase in
quality as the number of bandpass channels increases, but little
audible difference above 9 threshold levels. The speakers can
also be recognised successfully while using higher number of
bandpass channels and threshold levels. This is the case for
both male and female speech utterances.

B. Code size

One important question is the amount of data required to
transmit the code. If one is storing the code, each event needs
to store i, j and the event time tki (or sufficient information
to recreate these). For i, one needs �log2(Nf )� bits, and for
j, one needs �log2(NJ)� bits. It is less clear how many bits
are required to store the time, as this depends on the accuracy
with which one needs to recreate the time. Timings within
a few 10’s of µs are required if one wants to be able to use
time difference of arrival techniques for sound source direction
finding, but for intelligibility alone, less precision is needed.
One possibility is to use the sample number, or, to reduce the
maximum value required, the number of samples since the

last event (probably in this bandpass channel). At a sample
rate of 16 Ksamples/second, 14 bits would allow times up to
one second to be coded with ±30µs accuracy. Reducing the
precision to ±120µs would allow times of up to 1 second to
be coded in 12 bits. Thus, for Nf = 16 and Nj = 8, and
accuracy of event times of ±120µs, 19 bits are required per
spiking event.

If one was willing to store the events sorted by threshold
level within bandpass channel number, the number of bits
per event could be reduced where there are many events per
threshold level within bandpass channel. This is usually the
case. In this case, the channel number and threshold level
would not need to be stored for every spiking event. Further,
where many events occur closely spaced in the same bandpass
channel, it would be possible to reduce the number of bits per
event by coding the time between events rather than the event
time. In addition, LZW coding [31] could be applied. However,
these forms of coding would require the whole file to be read
and decoded prior to generating any sound from the file, and
cause a delay in playing the sound back.

In animals, the auditory nerve coding uses a separate nerve
fiber for each spiral ganglion axon output (i.e. auditory nerve
type 1 fiber). Signal times are not coded as such: the axonic
spike marks its own time. Using Nf lines (one per bandpass
channel), one would need to send a set of �log2(NJ)� bits per
event to code the threshold level, as the time would be the time
of the signal, and the bandpass channel implicit in the choice
of the line down which the pulse was sent. Going further,
one could use a single higher speed line, and send a packet
of length �log2(NJ)� + �log2(NJ)� bits to code the channel
number and threshold level. The time of the packet itself would
code the event time. If we had Nf = 16, and a highest fi of
4 KHz, the maximum number of events per second would be
21570, assuming that all bandpass channels spike at fi events
per second. Taking NJ = 16, this would require 8 bits per
event, giving a maximal data rate of 172620 b/s. The data
transfer rate required would be higher than this, to allow for
protocols, say 300000 b/s. In addition, many events might be
almost coincident, but we can only transfer one event at a
time so that we need to ensure that the time between almost
coincident events is small enough: a few 10’s of µs. But serial
lines of data rate greater than 10 Mb/s are commonplace so
that this would be straightforward. We note however, that the
event rate is normally much lower than this highest possible
value: the highest value would only be reached if there was a
positive-going zero-crossing in every bandpass channel at all
times, which is unlikely to be the case.

C. Connection to neural networks

There are many ways in which sound (speech) can be
coded for input to neural networks. One can, for example,
calculate cepstral coefficients (e.g. MFCCs), as are used by the
speech community. Why then are we suggesting something so
different?

We are proposing an event-based scheme: in such a scheme,
events arrive immediately after their occurrence. With an



MFCC (or other Fourier transform based technique), new val-
ues arrive regularly, perhaps every 25 or 40 milliseconds. Here,
events arrive as they occur (or rather, with a delay that depends
primarily on the speed of calculating bandpass transforms).
Further, the coding maintains the fine time-structure of the
sound signal, something that is lost with regular computation
of a set of parameter values. While it is not clear that this
is important for interpretation of clean speech, it is important
for identifying foreground from background sound. Wideband
sounds are the norm: they lead to the co-occurrence in time
of events (spikes) across different parts of the spectrum. This
co-occurrence can be used to group signals emanating from
the same sound source [32]. This is simply not possible with
regularly computed spectral coefficients.

We note that because this coding maintains precise timing,
implementing it using signals from more than one microphone
would enable time difference of arrival (TDOA) measurements
to be made, assisting the identification of the direction of the
sound source, though would need accurate time recording.
Earlier work [9] used a similar coding to compute the TDOA
at sound onsets (which are assumed to come from the direct
path from the sound source). Onsets were detected using a
neurally plausible technique based on depressing synapses and
leaky integrate-and-fire neurons. If a similar coding technique,
explained in this study, was used in a hearing aid or cochlear
implant, this might enable the user to identify sound source
direction.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated a biologically inspired coding sys-
tem, shown that it can be transmitted using a reasonable num-
ber of bits, and that it can be decoded quite quickly to produce
intelligible speech. The intelligence has been measured by
comparing the original and decoded signal by means of PESQ
scores and SIIBGauss values. Our findings also show that
the same speaker can be verified in both original and decoded
audio by using a pre-trained x-vector extractor.

Some parameter ranges have not yet been thoroughly in-
vestigated, for example the equivalent rectangular bandwidth,
as well as the dynamic range. In addition, other measures
of intelligibility could be calculated by running a thorough
subjective test with more than 100 participants from different
cultures and accent and more than 100 comparisons between
original and resynthesised sounds. Another state-of-the-art
algorithm used for speech and speaker verification is ‘i-vector’
[33] which can be extracted by using deep neural network [34]
for short utterances like the recordings used in TIMIT dataset
[35]. It will be interesting to see if the resynthesised audio can
still be verified as coming from the same speaker by using a
pre-trained ‘i-vector extractor’.

We suggest that this type of coding is particularly applicable
for providing input to spiking neural networks: the mainte-
nance of precise timing, as well as of spectral and intensity
information is important for foreground/background streaming
for sounds, and not just for speech as well as for the interpre-
tation of sound. Because coded sounds can be reconstructed

while maintaining quality, we suggest that this biologically
inspired coding technique maintains the information important
for interpretation and speaker recognition.

ACKNOWLEDGEMENTS

Funding for Pahar during his Ph.D. was partially provided
by the McGlashan Trust, the Sidney Perry Foundation, the
CAM Syms Charitable Trust, and the University of Stirling.

REFERENCES

[1] J. O. Pickles, An Introduction to the Physiology of Hearing, 4th ed.
Brill, May 2013.

[2] J. Maciokas, P. Goodman, and F. Harris, “Large-scale spike-
timingdependent-plasticity model of bimodal (audio/visual) processing,”
Technical Paper. Brain Computation Lab, University of Nevada, Reno,
NV, 2002.

[3] S.-C. Liu, T. Delbruck, G. Indiveri, and R. J. Douglas, “Silicon
Cochleas,” in Event-based neuromorphic systems, S.-C. Liu, T. Del-
bruck, G. Indiveri, A. Whatley, and R. J. Douglas, Eds. Chichester,
UK: John Wiley and Sons, Dec. 2014, pp. 1–20.

[4] Y. Karklin, C. Ekanadham, and E. P. Simoncelli, “Hierarchical spike
coding of sound,” in Advances in neural information processing systems,
2012, pp. 3032–3040.

[5] R. Pichevar, H. Najaf-Zadeh, and L. Thibault, “A biologically-inspired
low-bit-rate universal audio coder,” Audio Eng. Society Conv., Austria,
2007.

[6] R. Pichevar, H. Najaf-Zadeh, L. Thibault, and H. Lahdili, “Differential
graph-based coding of spikes in a biologically-inspired universal audio
coder,” Audio Eng. Society Conv., Netherlands, 2008.

[7] R. D. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice, “An
efficient auditory filterbank based on the gammatone function,” Tech.
Rep. Annex B of SVOS Final Report, 1987.

[8] L. S. Smith and D. Fraser, “Robust sound onset detection using leaky
integrate-and-fire neurons with depressing synapses,” Neural Networks,
IEEE Transactions on, vol. 15, no. 5, pp. 1125–1134, 2004.

[9] L. S. Smith and S. Collins, “Determining ITDs Using Two Microphones
on a Flat Panel During Onset Intervals With a Biologically Inspired
Spike-Based Technique,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 15, no. 8, pp. 2278–2286, 2007.

[10] M. J. Newton and L. S. Smith, “A neurally inspired musical instrument
classification system based upon the sound onset,” The Journal of the
Acoustical Society of America, vol. 131, no. 6, p. 4785, 2012.

[11] B. R. Glasberg and B. C. Moore, “Derivation of auditory filter shapes
from notched-noise data ,” Hearing Research, vol. 47, pp. 103–138, Nov.
1990.

[12] R. F. Lyon, A. G. Katsiamis, and E. M. Drakakis, “History and future
of auditory filter models,” in ISCAS 2010 - 2010 IEEE International
Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and
Systems. IEEE, Aug. 2010, pp. 3809–3812.

[13] R. Pichevar, H. Najaf-Zadeh, H. Lahdili, and L. Thibault, “Entropy-
constrained spike modulus quantization in a bio-inspired universal audio
coder,” in 2008 16th European Signal Processing Conference. IEEE,
2008, pp. 1–5.

[14] O. Ghitza, “Auditory Nerve Representation Criteria for Speech Anal-
ysis/Synthesis,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 35, no. 6, pp. 736–740, Jan. 1987.

[15] G. Kubin and W. Bastiaan Kleijn, “On speech coding in a perceptual
domain,” in 1999 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).
IEEE, Oct. 1998, pp. 205–208 vol.1.

[16] C. Feldbauer, G. Kubin, and W. B. Kleijn, “Anthropomorphic Coding of
Speech and Audio: A Model Inversion Approach,” EURASIP Journal
on Advances in Signal Processing, vol. 2005, no. 9, pp. 571 618–18,
Jun. 2005.

[17] M. Cooke, Modelling auditory processing and organisation. Cambridge
University Press, 1993.

[18] M. Pahar, “A Novel Sound Reconstruction Technique based on a Spike
Code (event) Representation,” Ph.D. dissertation, University of Stirling,
University of Stirling, 2016.



[19] Y. Hu and P. C. Loizou, “Evaluation of Objective Quality Measures for
Speech Enhancement,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 16, no. 1, pp. 229–238, Dec. 2007.

[20] J. Garofolo, L. Lamel, W. Fisher, and J. Fiscus, “DARPA TIMIT,” NIST,
1993.

[21] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements, Objective
Measures of Speech Quality. Prentice-Hall, 1988.

[22] D. H. Klatt, “Prediction of perceived phonetic distance from critical-
band spectra: A first step,” in ICASSP ’82. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, Paris, May 1982.

[23] S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An evaluation of
intrusive instrumental intelligibility metrics,” arXiv.org, no. 11, pp.
2153–2166, Aug. 2017.

[24] S. V. Kuyk. (2018) Matlab code. [Online]. Available: https:
//stevenvankuyk.com/matlab code/

[25] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 5329–5333.

[26] L. Drude, J. Heitkaemper, C. Boeddeker, and R. Haeb-Umbach,
“Sms-wsj: Database, performance measures, and baseline recipe for
multi-channel source separation and recognition,” arXiv preprint
arXiv:1910.13934, 2019.

[27] Y. Yang, “Automatic speaker verification and diarization on voxceleb
data collection,” Ph.D. dissertation, Georgia Institute of Technology,
2020.

[28] N. Spring, “Rich transcription meeting recognition evaluation plan,”
2005.

[29] M. Lutz, Programming python. “O’Reilly Media, Inc.”, 2001.
[30] T. E. Oliphant, “Python for scientific computing,” Computing in Science

& Engineering, vol. 9, no. 3, pp. 10–20, 2007.
[31] C. H. Lin, Y. Xie, and W. Wolf, “Lzw-based code compression for

vliw embedded systems,” in Proceedings Design, Automation and Test
in Europe Conference and Exhibition, vol. 3. IEEE, 2004, pp. 76–81.

[32] D. Wang and G. J. Brown, Computational auditory scene analysis. John
Wiley and sons, Oct. 2006.

[33] W. Li, T. Fu, and J. Zhu, “An improved i-vector extraction algorithm for
speaker verification,” EURASIP Journal on Audio, Speech, and Music
Processing, vol. 2015, no. 1, p. 18, 2015.

[34] W. Wang, W. Song, C. Chen, Z. Zhang, and Y. Xin, “I-vector features
and deep neural network modeling for language recognition,” Procedia
computer science, vol. 147, pp. 36–43, 2019.

[35] A. Kanagasundaram, R. Vogt, D. Dean, S. Sridharan, and M. Mason,
“i-vector based speaker recognition on short utterances.” 08 2011.


