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Robust Sound Onset Detection using Leaky

Integrate-and-fire Neurons with Depressing

Synapses
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Abstract— A biologically inspired technique for detecting

onsets in sound is presented. Outputs from a cochlea-like

filter are spike coded, in a way similar to the auditory

nerve (AN). These AN-like spikes are presented to a leaky

integrate-and-fire neuron through a depressing synapse.

Onsets are detected with essentially zero latency relative to

these AN spikes. Onset detection results for a tone burst,

musical sounds and the TIMIT corpus are presented.

Index Terms— onset detection, depressing synapse,

integrate-and-fire neuron

I. I NTRODUCTION

This work describes a biologically inspired technique

for onset detection. Onsets occur at the start of certain

perceptible changes in a sound. In [1] the termonset de-

tectionrefers to the detection of discrete events in acous-

tic signals. Every sound source has an initial onset, and

many have internal onsets (for example, animal vocali-

sations, such as human speech, or sequences of musical

notes). Initial onsets are correlated with sudden increases

in energy. Internal onsets also occur due to changes

in spectral energy distribution, frequently including an

increase in energy somewhere in the spectrum. Different

sound sources have different onset characteristics. Onsets
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can exhibit differing magnitudes, spectral spreads and

rates of energy increase. Magnitudes range from the just

perceptible to the very large, with the pre-onset sound

level having any possible level. Some onsets are wide-

band, with sudden co-occurring increases in intensity in

many parts of the audible spectrum: percussive sounds

are a prime example. Others are narrowband, with the

increase in energy being associated with some small

area(s) of the audible spectrum, such as a note played on

a flute. The flute note onset is a slow onset compared to

say, the rapid onset in sound energy exhibited by a glass

falling onto a stone floor. We approximate the perceptual

onset by seeking certain characteristic types of increase

in energy: see section III for details.

Mammalian auditory systems are strongly attuned to

onsets from the earliest stage, with the auditory nerve

responding more strongly to the start of a stimulus, and

certain neurons in the cochlear nucleus spiking strongly

at stimulus start [2], [3]. Therefore modelling aspects of

the early auditory system (the cochlea, auditory nerve

(AN) and cochlear nucleus) might offer engineering in-

sight into early auditory processing. From an ecological

perspective there are good reasons to believe that onsets

provide a useful cue. The onset comes at the start of

the sound (or at the beginning of some change in the
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sound), and is therefore useful for priming a response.

Initial onsets are relatively undamaged by reverberation,

since the first onset in the received signal will normally

be from the direct path, and those onsets caused by

reflections will generally be smaller. Indeed, these are

normally ignored by animals when they estimate the

location of a sound source. (This is known as the

precedence effect, or law of the first wavefront [4].)

Other cues such as offsets are severely smeared out in

time in reverberant environments.

The aim of this work is to provide a signal that

robustly indicates an onset. The signal is generated with

low latency, during (rather than at the end of) the onset.

We use this low latency to help group onsets in different

parts of the spectrum. In earlier work, more critical

use was made of the short latency time, when onsets

were used to determine when to compute interaural time

differences [5], [6]. The system detects onsets which

may be either wide or narrow band, fast or (relatively)

slow, large or (relatively) small, and starting from silence

or some initial sound level. In this paper, we use the

technique to detect musical note starts, and to detect

certain phonemes in the TIMIT database [7].

The technique is described in section III. We present

results in section IV.

II. BACKGROUND

Onset detection systems have been used in music

transcription [1], [8], where they are used for start-of-

note identification. They have also been used for sound

segmentation [9], lip synchronisation [10], monaural

sound source separation [11], [12], and determining

when to measure interaural time differences for sound

direction finding [6] to avoid reflections. For off-line

applications, the onset detection system can consider the

sound after the onset as well as before, and the time

taken for onset detection is unimportant. However, for

on-line applications (e.g. real-time speech segmentation,

real-time sound direction finding, or real-time music

transcription), only the sound up to the time of onset

is available, so that the latency of the detector becomes

important.

In this, as in most onset detection work, we first

bandpass the sound signal into many bands. This has two

advantages: firstly, it allows onsets in some small part

of the spectrum not to be overwhelmed by the overall

signal strength, so long as they are not overwhelmed by

the signal strength in the passbands that include their

own frequencies. Secondly, it allows onsets found to

be annotated with the bands in which they have been

detected. This is important for music transcription and

direction finding applications. The onset latency should

be constant both for different signal strengths (unlike

[9]) and independent of band. The bandpass filters them-

selves introduce a known fixed delay, and this needs

to be taken into account when combining onsets from

different bands. Given this, onsets in different bands

may be grouped together, permitting onset detection in

background noise.

Many different onset detection techniques have been

used, in the context of segmenting either musical, or

speech sounds. The simplest of these are based on

signal energy, and are used in the context of segment-

ing hummed or sung notes [13], and are intended to

improve the note differentiation capability of the early

music transcription systems (such as [14]). Some more

sophisticated techniques use simple first order difference

based estimates, [8], [15], which take the maximum of

the rising slope of the amplitude envelope as an index

of onset. A more sophisticated variant of this is [1]

which uses the relative difference, essentially calculating

∆intensity/intensity. Another variant is [16] which uses
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troughs in loudness to segment sung notes. A different

approach uses filter based techniques: [10] uses a wavelet

based filter and [9], [17], [18] use the difference between

a long-term and a short-term average. Both Pont and

Damper [19] and Smith [9], [17] use the coincidence

detecting capabilities of leaky integrate-and-fire neurons.

A related approach uses expectation based techniques

[20] to detect sudden increases in intensity. Work by

Hu and Wang [21] employs the peak of a firing rate

derivative in tandem with coincidence across frequencies

to indicate onset. The simplest techniques tend to find

only the most prominent onsets, while techniques which

rely on finding troughs can have a longer latency. Filter

techniques can be optimised for particular source types

and for particular reverberation characteristics, and can

perform better, but require a convolution, and can have a

long latency. The technique we describe uses depressing

synapses in conjunction with leaky integrate-and-fire

neurons, with the parameters set to detect increases in

energy which correspond to onsets.

Signal coding is important in permitting the system

to work with a wide dynamic range. Most sound sys-

tems use a coding system which is either linear (which

provides more resolution at high signal levels than is

required) or logarithmic. We have used a spike based

coding similar to that of [22] which in turn has much

in common with the coding used on the auditory nerve.

It requires multiple spike trains per bandpassed channel,

but preserves the precise signal timing (critical in inter-

aural time difference calculation [5]), and provides the

advantages of log compression while permitting analysis

of low-level signals. Unlike the auditory nerve coding,

the onset and steady-state responses are identical.

The physiological mechanism of the auditory system’s

onset response is not entirely clear. It starts at the

auditory nerve, and this aspect appears to be related

to the depletion of the neurotransmitter reserves at the

synapse between the inner hair cell (in the Organ of

Corti) and the spiral ganglion neuron (see [23]). The

onset response is much stronger in the auditory brain-

stem cochlear nucleus, where there are a number of cell

types (octopus, and some bushy and stellate cells) which

respond specifically to onsets [2], [24]. How this onset

response is mediated is not known: it may be due to

their synaptic innervation (many AN fibres converge on

these cells), or to the nature of the synapses themselves,

or to the form of the leakiness of these cells (i.e. to the

particular ion channels expressed in their membrane),

or to their morphology, or to some combination of

these. Nor is it known precisely how the outputs of

these onset cells are used: they appear to innervate the

medial superior olive and lateral superior olive [24], both

implicated in sound direction finding, as well as other

auditory brainstem areas.

A number of different models for depressing synapses

have been put forward [25]–[27]. The primary effect

of all of them is that the first few spikes to arrive at

a depressing synapse have a much larger effect than

those that follow soon after. This is a form of onset

enhancement. Hewitt and Meddis [23] suggested a form

of depressing synapse at the inner hair cell to spiral

ganglion dendrite synapse. We are not aware of work

suggesting depressing synapses in the cochlear nucleus,

but depressing synapses are very common in mammalian

neural systems.

III. T HE ONSET DETECTION TECHNIQUE

The overall technique is illustrated in figure 1. Sound

from a microphone (or a sound file) is bandpass filtered.

Multiple trains of spikes are generated from each band,

and these are applied to depressing synapses on leaky

integrate-and-fire neurons. The spiking outputs of these
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Bandpass
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Spike
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Depressing
synapses

Onset
neurons

Microphone

Fig. 1. Onset spike generation system. Note that spike generation is

shown for only three bands, and that depressing synapses and onset

generation is shown for a single level for three bands.

neurons signal onsets.

A. Bandpass filtering

Sounds (from a number of different sources and

formats, but all sampled at a rate of at least 16Ksam-

ples/second, 16 bits linear) were bandpass filtered using

a Gammatone filterbank [28]. The Gammatone filterbank

has a response similar to that of the basilar membrane

in the cochlea: that is, the 6dB down point bandwidth

is approximately 20% of the centre frequency. The

filter density was chosen to ensure considerable overlap

between adjacent filters. For differing signals, different

bands were used, 15 in the case of a simple tone

pulse, but normally 32 or greater, with center frequencies

ranging from less than 250Hz to greater than 6kHz. An

important issue in the design of the filters is delay: since

the output of each filter is employed in conjunction with

adjacent filters, ideally the insertion delay should be

similar for all the filters. The Gammatone filter delay

is proportional to the reciprocal of the bandwidth [29],

and this delay has been corrected when combining onsets

from different bands. Other filters, such as Butterworth

have a more constant delay.

B. Spike generation

The representation used has some similarity with that

of the mammalian auditory nerve. One advantage of the

spike based representation we use is that it enables the

system to work over a wide dynamic range through the

use of multiple spike trains coding the output of each

channel. Each spike codes a positive-going zero crossing.

Each spike trainSi, for i = 1 . . . N , (whereN is the

number of spike trains generated from a single bandpass

channel) has a minimum mean voltage levelEi that the

signal must have reached prior to crossing zero during

the previous quarter cycle (where the cycle is assumed

to be at the filter centre frequency). If there areN spike

trains, theseEi are set by

Ei = DiE0 (1)

for i = 1 . . . N , for someE0 fixed for all frequency

bands.D was set either to 1.414 or 2, providing a 3dB

or 6 dB difference between the energies required in each

band. Note that if a spike is generated in bandk, then

a spike will also be generated in all the bandsk′ for

0 ≤ k′ ≤ k. This technique is similar to that used in

[22], where Ghitza noted that it led to an improvement

in automatic speech recognition in a noisy environment.

C. Onset generation

The auditory nerve-like representation described

above does not enhance onsets, unlike the real mam-

malian auditory nerve. However, the manner in which it

codes the signal can be used to build a neurally inspired

onset detection system.

The spikes generated are passed through a depress-

ing synapse, to a leaky integrate-and-fire neuron (onset

neuron). The synapse model employed is a 3 reser-

voir model used in [23], [26] in the context of inner

hair cell to auditory nerve fibres, and later in [25]
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to model rat neocortex synapses. The model has three

interconnected populations of neurotransmitter:M , the

presynaptic neurotransmitter reservoir (available),C, the

amount of neurotransmitter in the synaptic cleft (in use),

andR, the amount of neurotransmitter in the process of

reuptake (i.e. used, but not yet available again). These

neurotransmitter reservoir levels are interconnected by

first order differential equations as follows:

dM

dt
= βR− gM (2)

dC

dt
= gM − αC (3)

dR

dt
= αC − βR (4)

where α and β are rate constants, andg is positive

during a spike, and zero otherwise. These are calculated

each sample time (andα, β, and γ adjusted for the

sample rate). We do not model loss or manufacture of

neurotransmitter. We take the amount of post-synaptic

depolarisation to be directly proportional toC.

For a strong enough signal, AN-like spikes will arrive

at approximatelyFc spikes per second, whereFc is

the centre frequency of the bandpass channel. However,

an evoked post-synaptic potential (EPSP) will only be

generated for the first few spikes. The recovery time is

set by the rate of transfer from the cleft to the reuptake

reservoir, and from the reuptake reservoir to the pre-

synaptic reservoir. If these are set low, then there will

need to be a considerable gap in AN signals before a

new onset is marked. Yet if they are set too high, the

post onset EPSP (i.e. the EPSP produced by an indefinite

train of AN spikes) will be relatively high, resulting

in unwanted onset neuron firing. The model parameters

(which are the rates of transfer between each reservoir)

are set so that the first few spikes arriving result in

near total depletion of the presynaptic reservoir. For

simplicity, we set the maximal weight on each depressing

synapse to the same level. We have setg = 1100: each

spike lasts one timestep, so this high value reflects the

total transfer of transmitter fromM to C; α = 100,

resulting in rapid depletion of the cleft transmitter level,

and β = 9, resulting in relatively slow reuptake of the

used transmitter.

As can be seen from figure 1, each onset cell is

innervated by a number of auditory nerve-like spike

trains. These arrive from a number of adjacent bandpass

channels, but all have the same sensitivity (i.e. value of

i as described in section III-B). Thus the input to the

onset neuron for sensitivityi in bandpass channelb is

Ib,i(t) =
j=b+m∑
j=b−m

wCj,i(t) (5)

wherew is the weight associated with each synapse (here

these are all the same), andCj,i(t) is the neurotransmit-

ter in the cleft associated with the synapse from AN-

like fiber from bandpass channelj at sensitivity level

i. The value ofm defines the size of the neighborhood

innervating the onset neuron, and has to be adjusted if the

bandpass channel spacing is altered. Each single post-

synaptic potential is insufficient to make the onset neuron

fire, ensuring that spikes on more than one auditory

nerve-like input are required. The neurons used are leaky,

so that these spikes need to be nearly co-incident in time.

We model the onset neurons using leaky integrate-and-

fire neurons. Leaky integrate-and-fire neurons are the

simplest model neurons which maintain any semblance

of the temporal behaviour of real neurons. They are a

single compartment model whose below threshold be-

haviour is described by a first order differential equation

dV

dt
= −V/τ + I(t) (6)

whereV is the voltage-like state variable of the neurons,

τ is the membrane time constant, andI(t) is the external

driving input. WhenV reaches the thresholdθ (set to
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1 here) from below, the neuron fires andV is reset

(to 0 here). There is a refractory period following this

during which the neuron is unable to fire. Many different

versions of the leaky integrate-and-fire neurons have

been described: see [30], chapter 14 for a useful review.

This approach tends to reduce the effects of noise

(which might result in occasional but uncorrelated firing

in auditory nerve-like inputs in adjacent channels). Onset

neuron firing is always the result of the most recent

post-synaptic potential: post synaptic potentials are much

larger before the synapse depresses, so that onset spikes

generally occur as a result of (and at the same time

as) AN-like spikes coding increases in energy in the

bandpassed signal. In this sense, there is zero latency

between the bandpassed signal onset and the onset spike.

The degree of leakiness of the onset neurons deter-

mines the degree of coincidence of incoming excitatory

spikes required to cause firing. Some experimentation

has been done with this leakiness: because the spike rate

on the AN fibres is proportional toFc, the neurons with

lower Fc receive fewer incoming spikes, and hence have

lower leakage than those with higherFc’s. However, we

have found that making the leakage directly proportional

to Fc does not work well: at low frequencies, the

leakiness is too low, causing firing to occur too often,

and at high frequencies, the leakage is too high, resulting

in onsets being missed. As a result, we set the leakage

proportional to frequency (leakage= 1/τ = 0.15 ∗ fc)

for only a part of the frequency range, usually between

500Hz and 1000Hz, making the leakage constant below

500Hz, and above 1000Hz.

IV. RESULTS

We first consider a 440 Hz tone burst in a noisy

background. Figure 2 shows the stimulus waveform, the

coding produced from this, and the onsets generated. The

bandpass filter had 15 bands, from 250 to 750 Hz, and

15 different levels of sensitivity were used in the AN-

like spike coding. The onset cells were innervated by a

maximum of 11 bands (so that those near the middle

were more strongly stimulated). It is clear that the AN-

like representation captures both the white noise and the

tone burst, and that the onset cells spike over all the

bands at the start of the white noise, and in a small

number of localised low sensitivity bands at the start of

the tone burst. The high sensitivity onset detectors do

not fire again because the noise has kept the synapses

to these onset cells depressed. Although the envelope of

the white noise varies widely, there are no stray onsets

detected. This reflects the sensitivity of the onset detector

to envelope modulations that are perceived as onsets.

Testing the system with a regular pulse train, each pulse

is detected as a single onset when the pulses are spaced

apart by about 60ms or more: below this separation, the

system treats the pulse train as a single entity, with an

onset only at the start. Around 60ms, the first few pulses

are detected as onsets, but not subsequent ones.

Next we show that onsets are generated with low

latency (excluding the filter delay), and that the latency

is largely independent of the signal strength. Figure 3

shows the onset of a 6kHz signal of maximal intensity,

and the onset times found for varying signal strengths.

The actual onset time is 0.0148 seconds. At high signal

level, the onset is found at 0.0158 seconds, a delay

of 1ms. The filterbank delay isD = (n − 1)/2πb

[29] where n is the filter-bank order (here 4), andb

is the bandwidth. At 6kHz, the equivalent rectangular

bandwidth is0.108 × 6000 + 24.7 = 672.7Hz [31], so

that D = 0.71ms. The additional delay may be due to

the fact that AN-like spikes are emitted at positive-going

zero crossings where the pre-crossing level exceeds some

value. From figure 3 the first of these occurs 1 cycle after
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Fig. 2. Tone burst at 440Hz in white noise (Tone is 12dB louder). Top

shows the sound waveform, middle shows the AN-like spike output,

and bottom shows the onset cell firings. In the middle image, each

subgraph shows the firings for one frequency band of the AN-like

cells. The subgraph for the lowest frequency band is at the bottom.

Within each subgraph, the dark area is made up from a number of

horizontal spike trains. Spikes from the highest sensitivity channel are

at the bottom, and spikes from the lowest sensitivity channel are at the

top. In the bottom image, each subgraph shows the onsets found at a

single sensitivity level, for all frequency bands. The subgraph for the

highest sensitivity is at the bottom. The top subgraph shows the least

sensitive level at which onsets were found. Inside each subgraph, the

lowest frequency channel is at the bottom, and the highest at the top.

the stimulus onset, at 0.015 seconds. This suggests that

the 1ms delay is made up of the 0.71ms filter-bank delay,

the 0.17ms cycle time of the signal, plus another 0.12ms

due to the actual latency of the onset detecting system.

We note that it is not until the signal is 24dB attenuated

that the onset time changes. This delay, and the delay

in the onset up to an attenuation of 36dB are due to

the AN-like spike not being generated until the signal

is stronger: that is, these delays are due to the onset

not being detected until the initial signal has become

stronger. At lower signal levels, the off-centre frequency

response of adjacent filters is small, so that it takes

a number of AN-like spikes before the post-synaptic

activity at the onset cell exceeds threshold. Below 54dB

attenuation, no AN-like spikes are generated.
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Fig. 3. Onsets caused by a 6kHz stimulus with 3 cycle (0.5ms) rise

time. Top shows the stimulus. Bottom shows the onset time found for

attenuation varying in 6dB steps.

Next we consider some musical sounds. We have

experimented with two single note instruments: a saxo-

phone sound and a flute sound: the results are similar. We

report the saxophone sound here. Two styles of playing

were considered: tongued and slurred. In the tongued

style, each note has a distinct start: the musician uses

their tongue to interrupt the flow of air before the start of

each note. In the slurred style, there is no break between

notes. For the tongued saxophone sound (figure 4), one

can see the brief breaks between the notes in the spectral

view (top part). In the AN-like representation (middle

part), one can see the individual notes, and the (brief)

breaks between them. Note that the energy between notes

does not go down to zero, and, indeed, does not fall
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much in the lower frequency bands at all. As a result,

apart from the very first onset which is detected in all the

bands, further onsets are detected in the higher frequency

bands. All the onsets are detected (including the last one

which is relatively quiet).
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Fig. 4. Tongued saxophone sound. Top shows the spectral view

between 0 and 3kHz (dark areas are low energy, light areas high

energy). Middle shows the AN-like representation, for every third band

of 48 bands with centre frequencies between 300 and 3000Hz. Bottom

shows the onsets found with 15 bands 3dB apart. Middle and bottom

organization are as in figure 2.

With the slurred style, the notes run into each other,

and this is visible in the AN-like representation (see

figure 5, top). As a result not all note onsets are found:

the first one is found easily, but the 2nd, 5th and 8th are

missed. Considering the extent to which the harmonics

overlap, and considering that the bandpass channels we

are using are wideband, this is not surprising. The starts

of the notes missed result from relatively small changes

in the energy distribution, without any preceding dip in

overall local energy. The technique used requires that

detectable onsets have a distinct increase in energy in a

number of adjacent bands. The change in energy between

adjacent slurred notes is not always sufficient to trigger

onset detection. If we use narrower bands, for example,

using a bandwidth one half of the original bandwidth,

and use 18 bands per octave, all the note onsets are

found. Alternatively, a pitch movement detector can be

used. Such detectors were initially used in music tran-

scription without onset detection [14], and are generally

mixed with onset detection in more modern systems [13],

[16].
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Fig. 5. Slurred saxophone sound. Top shows the AN-like representa-

tion, for every third band of 48 bands with centre frequencies between

300 and 3000Hz. Bottom shows the onsets found with 15 bands 3dB

apart. Middle and bottom organization are as in figure 2.
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The same analysis was employed with a multi-note

instrument, namely a Spanish guitar. Unlike the saxo-

phone, a guitar can play up to six notes simultaneously.

In the fragment of music analysed, only one note is

started at a time, but new notes overlap existing notes (as

is generally the case with guitar music). In this case, it

is difficult to see from the AN-like representation where

notes start or end. The note information is shown in table

I.

Sound number 1 2 3 4 5

Sound onset time 0.53 0.6 0.71 0.83 0.92

Sound type m f s f m

Found (full band) Y N N Y Y

Found (low freq.) Y N Y N Y

Sound number 6 7 8 9 10

Sound onset time 1.08 1.26 1.32 1.43 1.53

Sound type s m f s s

Found (full band) Y N Y Y Y

Found (low freq.) Y Y Y N Y

Sound number 11 12 13 14 15

Sound onset time 1.6 1.76 1.86 1.93 2.07

Sound type m s f m s

Found (full band) N Y Y Y N

Found (low freq.) Y N Y Y Y

Sound number 16 17

Sound onset time 2.18 2.27

Sound type g m

Found (full band) Y Y

Found (low freq.) N Y

TABLE I

TABLE OF NOTE TIMES AND NUMBERS FOR GUITAR SOUND. KEY:

m IS MAIN NOTE, s SUBSIDIARY NOTE, g GRACE NOTE, AND f

FINGER NOISE

The guitar sound is complex. The sounds themselves

have been grouped into main notes (the strongest notes in

the sample), subsidiary notes (less strong notes), grace

notes (one very short note), and finger noises (noises

TABLE II

ANALYSIS OF GUITAR NOTE ONSETS. THERE ARE17 SOUND

ONSETS, 4 OF WHICH ARE FINGER NOISE. LF IS LOW FREQUENCY.

All sounds All except finger noise

Filter Full LF only Both Full LF only Both

Hits 12 12 16 9 10 13

Deletions 5 5 1 4 3 0

Insertions 1 2 3 4 4 6

made by the guitarist but not resulting in musical notes).

The AN-like spike trains show quite rapid onsets and

slow offsets, in the lower frequency bands, characteristic

of the vibration of an undamped plucked guitar string.

From the AN-like spike trains, (figure 6, top), it is clear

that the higher harmonics do not last as long. Note 1 is

visible in all channels. However, subsequent notes are

not. Note 15, for example is only visible in some lower

frequency channels, and note 16 is most visible in the

higher frequency channels. In listening, the most salient

notes are 1, 5, 7, 11, 14, and 17. Two different analyses

have been applied. In the first of these, 60 bands between

75 and 3kHz were used, and the onsets are shown in

figure 6. In this analysis, onsets are found for most of

the notes: notes 3, 7, 11, and 15 are missed. Most of

the finger noises are also found. In the second analyses,

24 bands between 75 and 300 Hz were used, with the

bandwidth set to one quarter of the original width. In

this analysis, nearly all the notes were found, the only

exception being notes 9 and 12, and a very brief grace

note, note 16. Fewer finger noises are found. Because of

the delay of the gammatone filter, the onsets are found

rather later with the second technique than with the first

one, and this delay has been taken into account. Table II

shows the results in terms of hits etc. It is important to

note that although the main notes do have clear onsets,
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the subsidiary notes start from a high background sound

level, hence finding these onsets is non-trivial.
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Fig. 6. Spanish guitar sound. Top shows the spectral view. Next

shows the AN-like representation, for every third band of 60 bands

with centre frequencies between 75 and 3000Hz. The onsets of notes

are marked by the triangles below this. Second bottom shows the onsets

found with 16 levels 3dB apart. Bottom shows onsets found for the

frequency range from 75Hz to 300Hz (24 bands). AN-like spikes and

onset spikes organization are as in figure 2. See text for details.

Turning to speech, we present results for speech from

the TIMIT dataset [7]. We have applied our technique

to the entire training segment of the TIMIT corpus.

AN-like output and onsets are shown for example male

and female utterances in figures 7 and 8. The wideband

nature of the speech is very visible in the AN-like output,

as are the areas of near silence inside the continuous

speech. The onsets are also spread across the bands.

In addition, onsets tend to start in the bands of highest

sensitivity, and then to occur slightly later in the lower

sensitivity bands. This is because some onsets have a

slow attack time.
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Fig. 7. Female TIMIT utterance. Top shows the AN-like representa-

tion, for every band of 48 bands with centre frequencies between 100

and 7500Hz. Bottom shows the onsets found with 9 levels 3dB apart.

Organization is as in middle and bottom part of figure 2.

We have correlated the onsets found with the pho-

netic transcription supplied with the TIMIT dataset. To

achieve this, we first had to find the actual times of

onsets from the onset spikes. We took the onsets at

each sensitivity level, and clustered them by demanding

a gap of at least 0.01 seconds between groups. Using a

gap overcomes possible problems caused by the different

delays in the filterbank. As can be seen from the bottom

halves of figures 7 and 8, the onset spikes are already

quite tightly grouped. This is partly a result of the filter
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Fig. 8. Male TIMIT utterance. Top shows the AN-like representation,

for every band of 48 bands with centre frequencies between 100 and

7500Hz. Bottom shows the onsets found with 12 levels 3dB apart.

Organization is as in middle and bottom part of figure 2.

delay changing little from band to band, partly of the low

latency of the onset detection (excluding filter delay),

and partly a result of the latency of the onset detection

being near independent of the actual signal level inside

the filtered band. This tight grouping allows the simple

grouping mechanism above to work. Grouping results

in a sequence of onset intervals for each sensitivity

level. We then integrated the results from the different

sensitivity levels by replacing any overlapping intervals

by a single interval. This resulted in a new overall

sequence of intervals, each representing the existence

of an onset. This onset coincidence across frequencies

is akin to that used in [21]. We do not examine the

structure of the onset pulses for classification: utilising

this structure for onset labelling is part of ongoing

research. The results are shown for males in table III

and females in table IV.

Phoneme type Phoneme events Onsets detected Sensitivity

affricative 1426 1361 0.95

closure 17020 2757 0.16

fricative 15135 11745 0.78

nasal 9978 2678 0.27

semivowel 14265 7839 0.55

stop 17866 13577 0.76

vowel 40468 29536 0.73

TABLE III

PHONEME TYPES IN THE3260MALE TIMIT UTTERANCES(99138

PHONEMES) PROCESSED, AND THOSE DETECTED(WITHIN 28MS OF

ANNOTATED PHONEME START). SENSITIVITY IS DEFINED TO BE

RATIO OF TRUE POSITIVES/POTENTIAL TRUE POSITIVES.

.

There is a clear correlation between the types of

phoneme and the onsets found, and almost no varia-

tion between male and female. Phoneme onsets may

be missed because the onset of this phoneme and the

previous one overlap, or because that phoneme does not

start with, or contain an onset. Many of the vowels,

semivowels and nasals that are missed follow other

voiced sounds, but sharper filtering (as suggested re-

cently [32]) may allow these to be recovered. However

87% of the starts of sequences of voiced sounds (vowel,

nasal and semivowel) are found. The fricatives missed

are either just missed by a few milliseconds, or occur just

beside a stop. Non-existent onsets may be found because

a true onset is broken into multiple onsets. Envelope

variations inside a phoneme are sometimes misidentified
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Phoneme type Phoneme events Onsets detected Sensitivity

affricative 640 611 0.95

closure 7153 1127 0.16

fricative 6334 4919 0.78

nasal 4144 1111 0.27

semivowel 5914 3284 0.56

stop 7511 5735 0.76

vowel 16911 12350 0.73

TABLE IV

PHONEME TYPES IN THE1360FEMALE TIMIT UTTERANCES

(41454PHONEMES) PROCESSED, AND THOSE DETECTED(WITHIN

28MS OF ANNOTATED PHONEME START). SENSITIVITY IS AS

DEFINED IN TABLE III.

as onsets. This happens most frequently for vowels and

results at least partly from the onset detector being

confused by slow envelope modulation inside single

vowels. The bulk of false positives, 83%, occur within

vowels, with 12% inside sibilances. The remaining 5%

occur in stops or at the beginning of the recording (due

to extraneous recorded noise). Turning to stops, two

particular stops, ’dx’ and ’q’ account for 75% of the

missed stops: we believe that these stops are largely not

associated with an increase in energy. If we consider

the stop consonants (’b’, ’d’, ’g’, ’p’, ’t’, and ’k’) as in

[21] the sensitivity of the system is 0.97, compared to

their result of 0.93 at 30dB SNR. The overall selectivity

(the ratio of useful to total detections) is defined as (true

positives)/(true positives + false positives). Here it has

the value 0.75.

V. D ISCUSSION AND FURTHER WORK

A neurally inspired technique for the robust detection

of onsets in sound has been presented and tested with a

simple tone burst, some musical instrument sounds and

the TIMIT corpus. The spiking AN-like representation

provides an effective early representation over a wide

dynamic range, enabling onset detection. Because of the

spiking nature of the system, the latency is essentially

that of the filterbank: further, the onset pulses are es-

sentially phase locked (see [6]). Importantly, the onsets

detected fit with the informal definition of an onset as a

rapid increase in the energy present in some part of the

auditory spectrum.

The system has some similarity to its biological

analogue, and exhibits some of the qualities of that

system. Although neurally inspired in the use of cochlear

filters, AN-like spike representation of the output of

these filters, depressing synapses, and leaky integrate-

and-fire neurons, it is certainly not a model of the

neural system. The gammatone filters are modelled on

the auditory filters, but their precise characteristic is not

believed to be crucial to the system operation (although

sharper filters do help with musical sounds). Indeed,

recent work suggests that the gammatone filterbank is

an oversimplified model, and that frequency selectivity

is level dependent [32]. Although the spike generation

system has some commonality with the auditory nerve,

it is deterministic, and spikes are generated in phase on

every cycle. This is unlike the auditory nerve where the

spikes are stochastic, and have a maximum rate much

lower than the highestFc’s we are working with.

In earlier work we used a different onset detector [9],

[17]. This used a difference of averages technique, re-

sulting in a 15-25ms latency. In addition, this latency was

level dependent. The advantage of the system reported

here is that it has essentially zero non-deterministic

latency, whatever the signal level. That is, onsets are

detected as soon as they occur in the bandpassed signal.

This allows onsets to be used directly (that is, in near

real time). One application of this is determining when

to measure time delays and intensity differences between
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sensors, important for determining the bearing of sound

sources in reverberant environments [5], [20], [33].

The cells in the cochlear nucleus which we are

modelling are sometimes called ”onset cells”. They get

this name from their spiking behaviour when a simple

stimulus (such as a tone pip) is used to stimulate the

animal hearing. However, it is not clear what function

they might have in the context of more complex (and

ecologically realistic) sounds.

In the introduction, we characterised onsets infor-

mally. When we are dealing with musical notes, it is

clear what is meant by the onset of a note. But what

is meant by an onset in the context of continuous

speech is much less clear. Obviously, the start of an

utterance is an onset, as clearly is speech after a pause or

epenthetic silence. But the amount of energy in contin-

uous speech varies rapidly, and is distributed unevenly

over the spectrum. This envelope variation occurs at a

number of time-scales, with a period ranging from 40ms

to 200ms (characteristic of phoneme production) down

to more rapid modulations, with a period of less than

10ms (characteristic of amplitude modulation). We have

implemented an onset detector which is inspired by the

biological system, and whose time constants have been

set to detect what we informally think of as an onset.

By applying more complex sound signals to this system

we have started to try to answer what onset cells might

be useful for in more complex soundscapes. Onsets are

still found in background sound, as can be seen from the

guitar example (figure 6). We have analysed the anno-

tated TIMIT corpus: fricatives, affricatives and selected

stop consonants are almost all detected, as are the starts

of most voiced sequences. Investigation continues into a

more intelligent way of grouping relatively slow onsets.

The next challenge is to correlate the pattern of onset

cell firing with the individual phonemes and phoneme

types that cause them which would lead to a reduction

in false positives. In [21] such a system is detailed for

the separation of stop consonants which shares much in

common with the generation of AN-like spikes presented

here.

The current system is non-adaptive. This has the ad-

vantage of simplicity, but the disadvantage that it implies

human tuning of all the parameters. In fact, the parame-

ters are not critical: however, if the system were adaptive,

the tuning would be simpler. In particular, there is an

interaction between the precise characteristics of the flow

rates between the reservoirs in the depressing synapses,

the degree of interconnection (or spread) between the

spike generation stage and the onset neurons, and the

weight at the depressing synapses. Incorrect parameter

settings show themselves by either the onset neurons

firing insufficiently, or too often. Providing adaptation to

maintain a degree of homeostasis would make the system

easier to use. It is also highly biologically plausible.

The implementation used here has been entirely soft-

ware based. The simplicity of the processing makes hard-

ware implementation a practical possibility. Bandpass

filtering is a straightforward technique in many forms

of implementation. The deterministic spike generation

technique here is simple to implement in VLSI, whether

digital or analogue. Depressing synapses may present

more of a problem. A different type of depressing

synapse (essentially a two reservoir model) has recently

been implemented in sub-threshold analogue VLSI [34]:

the three reservoir model used here does matter because

it allows us to adjust both the degree of depression and

the rate of recovery independently. Several models of

integrate-and-fire neurons have been implemented, both

in analogue VLSI [35], and in FPGA digital technology

[36]. Work is already under way (in conjunction with

Oxford University) on hardware implementation of the
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system.
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