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How might one analyse sound ?

e Modelling brainstem responses,
Follow the biology midbrain, auditory cortex?

— Useful, informative, but begs the
question of why the auditory pathway is
like it is

— Analyse the responses of cells
in the auditory pathway of
different animals

* Need to “instrument” behaving
Follow the ecology animals
— Analyse what sound is useful — Difficult to do
for, and what affordances it
may provide : _
e Time to try this
Follow the signal - _Pa_rticularl_y since many have studied
o this in the visual area for more than a
— Analyse the statistical decade! Lewicki 2002, Klein et al 2003.
irregularities (non-randomness)
in the signal
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An Alternative Introduction

Question: Why is auditory processing like it is?

Answer: because of

— Sound statistics

— Ecological requirements

— What is biologically possible

Sound has shaped auditory processing

— Over evolutionary timescale

— Over lifetime of animal

We therefore become interested in the statistics of sound

We note that for some animals, specific sounds are all that
matters

e Crickets and detecting females
e Cricket parasite

But for other animals, sound has a more general utility
— What and where tasks: auditory scene analysis.
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Sound signal statistics

Information about the world is gleaned from statistical
deviations from pure randomness.

So what can analysis of the sound field tell us?
Where do we look for statistics?

Take the hint from image analysis:

— PCA and ICA on patches of images provide structures which seem to
reflect image structures: edges, corners, etc.
* Patches were small circular (or square) solid angles of (usually static) image

— They also seem to provide ‘receptive fields’ similar to cortical neurons
— Suggests applying PCA and ICA to sound.

e But how? What is a ‘patch of sound’?
Note: we deal here with monaural sound. Binaural sound can
provide further material of interest, particularly in sound source
localisation.
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Patches of sound

Some Candidates:

A sequence of samples
— 1-dimensional: straightforward to work with

—  Output from PCA/.ICA is a 1-dimensional sequence
e l.e. a short piece of sound

Single FFT vectors

— 1-dimensional again

—  Output from PCA/ICA is a 1-dimensional sequence
e l.e. spectral analysis of brief section of sound

Sequence of FFT vectors

— 2-dimensional

— Output is spectrogram of a piece of sound

Coded filterbank output

— 2-dimensional
* Output is filterbank output over a period.

There are other possibilities too

— Random samples: like Bledsoe and Browning’s N-tuple approach to image analysis.
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1-dimensional patches of sound

Make up vectors from sequences of samples

— Loses all frequency information from sound

— Bears no resemblance to biological auditory processing
e But results can be played back (useful!)

— Worth trying.

Make up vectors from single FFTs

Tells us only about overall energy distribution during each FFT
sample

(Could be energy and phase, if complex values were used)
Loses all time information from sound

Not worth trying: provides only information about instantaneous
sound statistics
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Results from simple 1-d sample analysis
e From some speech data: mixed TIMIT signals.
e PCA’s, ICAs (see adjacent page)
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From some music (Equinox, John Coltrane)

PCAs
ICAs (see adjacent page)

Conclusions: PCA’s seem to average sounds together: “chorus”
like effect on speech, whereas ICA’'s seem to pick out specific
features.
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2-dimensional patches of sound (1)

e Overlapping sequence of FFT vectors: 1 element per 25ms

high

frequency
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Sequence of vectors
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FFT-based PCAs, Female speech
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FFT-based PCAs, Female speech ctd
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FFT-based ICAs, Female speech
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Problems with FFT

Sound level and frequency banding is linear

Each vector (of spectral intensities) provides one value per
frequency

— If low frequencies are included , sound duration needs to be long

— Single duration implies low temporal resolution
e Only partly overcome by using overlapping FFTs

Although the linearity issue could be overcome (by
repackaging the values), the temporal resolution is fixed
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Desirable features for sound patches

Logarithmic intensity sensitivity

— Perceptual system is roughly logarithmic
Logarithmic frequency sensitivity

— Perceptual system has a roughly log sensitivity

Duration of patch corresponds to duration of some features
— But which features?

— Syllables?

e About 200ms (see also Klein et al, 2003)
— Envelope amplitude modulation?

e About 20ms
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Filterbank approach(1)

Filtering sound signal into Microphone input
multiple bands (roughly Log-scale
log-scale) provides Gammatone
frequency information. bandpass
filters
But how should the output
from each filter be coded (©1

- hannel sh
so as to provide suitable """ ° OVM\\

“patches of sound”?

Log-intensity Spiking (“AN") outputs

Copyright 2003-4 © Leslie Edinburgh May 2004
Smith

Filterbank approach (2)

e We want to code the power
output of each band
—  Logarithmically Bandpassed signal
— Over some period

e (and preferably in such a way
that using low frequencies does
not compromise temporal

resolution at higher frequencies) \/ \/ \/ \/ \/ \/

We use a representation

based on the auditory

nerve:

Multiple spike trains are Spike train outputs
produced for each band,
Each codes positive-going
Zero-crossings

(1) AuAnisuss
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Example spike train

a-30 Right. AN firing

Centre frequency

06
channel 1
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An aside: the ‘where’ task
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Ims

Filterbank approach (3)

high

frequency

low I

frequency

| |

For each time segment in each band we produce a single number from the
spike coding. We can use different time segment lengths in different bands
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FFT vs Filter based

FFT based

e Linear in intensity
—  But can be modified
Linear in frequency
— But can be repackaged
Each spectrally analysed
segment has to be at least
1/minimum frequency long

OK for 200ms syllable level
EREWS
Not OK for 20 ms analysis
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Filter based
« Intensity sensitivity depends on
how intensity measured

e Frequency linear or log,
depending on filters used

e Can have different segment
lengths for different spectral bands

* OK for both 200 ms and 20ms
analysis
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Applying these techniques to longer stretches of sound:
TIMIT female, 50 samples. 200ms PCAs
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PCAs ct'd
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200ms ICAs
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ICAs ct'd
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...and more
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50 Male samples: 200ms PCAs 1-4
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PCAs 5-8
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200ms ICAs
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More ICAs
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...and more

Copyright 2003-4 © Leslie Edinburgh May 2004
Smith




Comparing FFT and Filterbank results

PCAs provide differentiallike operators
ICAs provide feature detectors

Very similar results form FFT and filterbank systems
— Though order is different

Actual order depends on exactly which bands we use
e and exact dataset

Can experiment with PCAs ICAs and exact form of filterbank
Ganmmatone
Other more biologically plausible

Other more Engineering oriented (e.g. OTA based implementation, Chia
and Collins at Oxford: ISCAS 2004.)
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Shorter timescale components

Using the filterbank technique, we can find PCAs and ICAs for
shorter timescales.

— Which is harder with FFTs

Do these give us insight into the short-term time structure of
sounds?
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‘AN’ output showing short-term structure

5 harmonics noise150Hzrec art Right. AN firing
of 150 hz ‘
(3-7), plus
bandlimited
white noise
(4KHz)
SNR 0dB.

Freauency

L

ﬂp? ﬂpA ﬂpﬁ

L 848 ik
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
channel 3
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20ms PCAs: 1.5KHz to 7Khz, Female TIMIT data, 1-4
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PCAs: 1.5KHz to 7Khz, 5-8
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20ms ICAs: 1.5Khz-7Khz
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: 1.5Khz-7Khz
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Discussion

These PCAs suggest

— The interesting structure is at the high frequencies
— (though later PCAs may contain lower frequency structure)

The ICAs suggest the same
— And that there is some envelope structure there as well

We therefore try the same with a smaller range of frequency
bands.
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Female, PCAs 2.07-3.46 KHz
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Female, PCAs 2.07-3.46 KHz
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Female, ICAs 2.07-3.46Khz
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ICAs 2.07-3.46Khz
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Male, PCAs, 1.4-2.4 Khz
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Male, PCAs,
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Male ICAs,
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Male ICAs,
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Male PCAs, 3-5Khz
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Male PCAs 3-5Khz
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Male ICAs 3-5Khz: showing AM
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Are we trying to create a new
tartan?
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MalelCAs 3-5Khz: ?
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Short timescale statistics

Amplitude modulation is very much in evidence

Appears to be relatively uncorrelated across wide frequency
bands
But well correlated across nearby frequency bands

Presumably from unresolved fundamental harmonics

— About 180 Hz in female speech
— About 100 Hz in male speech

There are many ICAs produced
— Same number as length of vector
— And not ordered by variance explained
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Conclusions/Further work

ICAs look more interesting than PCAs

There’s lots of scope for further investigation of the ICAs
Different sounds
* what sound would be most appropriate?
Different filters
Different frequency banding
Different timescales
Binaural sound
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What do they suggest for sound perception?

1-dimensional results

e PCA: shape by mean signal?

* ICA: respond to specific features
2-dimensional results: 200ms

e PCA: various derivative-like features

* ICA: response to specific characteristic features
2-dimensional results: 20ms

e PCA: derivatives again

e ICA: amplitude modulation?
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Other Applications

Matched filters: providing a signal based feature description
layer for interpretation of sound/speech

For example:

e Find ICAs for one particular class of signals,
« for a specific front end
* i.e. filterbank, etc.
e (could be biologically inspired or not, as required)
Produce filters from this feature set
* and recode the signals using them
Train an NN or HMM to recognise these sounds
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