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Sound Segmentation Using Onsets and Offsets

Leslie S. Smith

ABSTRACT

Onset and offset filters inspired both by the neurobiology of the cochlear nucleus
and the on-centre off-surround filters used in image processing are presented. These
are used to segment single streams of sound (music or other). The techniques devel-
oped are applied to a plucked guitar, and to tongued and slurred saxophone and flute
sounds, and the results are given. The limitations of these methods are discussed,
and some further development directions for the methods employed are suggested.

1. INTRODUCTION

The aim of this work is the temporal segmentation of single-source sound, that is,
the segmentation of a single stream of sound (in the sense of (Bregman 90)). The
work here represents a small aspect of an overall auditory scene understanding or
synthetic music comprehending system. The techniques used are entirely bottom-
up: that is they are driven by the data itself, without explicit higher-level
knowledge of the sound, or of what is expected in the way of segmentation, and
are based on models of the inner ear and cochlear nucleus. They are applicable to
any sound stream.

This begs the question: why segment at all? Given that the aim is to interpret
or comprehend the sound, the alternatives would be either to process the sound
stream all at once, or else in fixed-length sections. Most sound streams are too
extended to permit the former approach, since one needs some results of the
interpretation before the sound stream finishes. The latter approach would require
the sections to be shorter than the shortest element of sound, and would present
problems when a section contained parts of more than one sound element. It is the
thesis of this paper that interpretation is carried out time-segment by time-segment,
and that the time-segment endpoints are derivable from the gross structure of the
sound stream.

The techniques described in section 2 are very general. Although inspired by
the processing which appears to occur in the cochlea and cochlear nucleus, they
are not neural models, in that their behaviour represents an abstraction of what the
neural system appears to be doing rather than modelling the neurons themselves,
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but nonetheless, they retain the general purpose nature of the neural original.
Although they are very simple bottom-up techniques, they could easily be
incorporated into a more complex system which was partly top-down. Section 3
applies the techniques to a variety of musical sounds. The results are discussed in
section 4, and section 5 discusses how this work might be extended.

2. METHODS

The method used is outlined in Figure 1. The sound signal was acquired using an
AKG D109 microphone, in an ordinary office environment. This was digitised at
22050 samples/second, 16 bits linear, using a Singular Solutions A/D64x. The
resulting file was used as input to the AIM human auditory processing model’s
(Patterson and Holdsworth 1990) basilar membrane movement module. The
parameters were set so as to give 32 bands of output, from 100 Hz to 10 kHz, with
the audiogram switched off. This gives an output of 32 channels of digitally
filtered signal, with the bands being approximately logarithmically spaced between
the start and end frequencies. Each channel has a centre frequency, but is relatively
wideband. The bands, and their widths are based on what is known of the human
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Fig. 1. Outline of the processing of the sound.
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SOUND SEGMENTATION 3

cochlea (see (Moore and Glasberg 1983)).

The output of each band was then full-wave rectified, and the outputs from all
the bands summed. Rectification computes a measure of the energy in each band.
It can be thought of as modelling in outline the effect of a population of inner
cochlear hair cells. Summing all the bands gives a measure of the total signal
energy, modelling, again in outline, the total activity in the auditory nerve. This
sumumary signal was used as input to the onset/offset filters, described in section
2.1, and the output of this filter used to segment the signal, as discussed in section
2.2. It was possible to return to the original sound signal, and to hear what each
segment actually sounded like. The ability to listen to each segment was critical
in the development of the segmentation techniques, and in their assessment.

2.1. The onset/offset filter

The onset/offset filters used are an abstraction of cochlear nucleus cells responsive
to onsets and offsets (Pickles 1988, Blackburn and Sachs 1990, Blackwood et al.
1989, Brown 92). Onset has also been found to be an important psychophysical
grouping criterion (reviewed in (Brown 1992)). Brown suggests that the biological
onset and offset cells are organised into a two-dimensional map, with one
dimension being frequency, and the other excitatory (for onset) or inhibitory (for
offset) delay. For this paper, we shall deal with a much simpler system, one in
which the onset/offset filter is applied to the whole signal. As will be discussed in
Section 5, this is really taking simplification too far.

The filters used are based on the ideas applied to visual processing in (Marr and
Hildreth 1980). Two different filters have been experimented with, namely a
difference of exponentials filter (DoE) and a half difference of Gaussians (HDoG).
Both filters produce their results by taking the difference between an average over
recent time, and an average over a longer sample of recent time. This approach is
more noise-immune than one which uses differences directly.

Each average is computed by convolving the filter with the summary signal s(x)
described above:

A(1R) =L‘fﬂ(z—x,k)s(x)dx
0

where f{x,k) is the convolving function. z is either E or G, depending on whether
a DoE or an HDoG is being used. The k parameter of f defines the particular
moving average being used. For the DoE filter:

Fe(x.k) = kexp(—kx)
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Fig. 2.  Left shows graph of DoE convolving function (f;(t,k) — fz(t,k/r)), with k = 50 and
r= 1.2, Right shows HDoG convolving function (f5(%,k) — f(t,&/r)) with k = 1200
and r = 1.2.

and for the HDoG filter:
fook) = vk exp(-kx?)

These particular functions have been chosen so that fow fxk)dx is a constant
independent of k. Both functions have their maxima at x = 0, and tail away rapidly
towards O as x increases. Thus A,(#,k) is a moving average of s(x), most strongly
influenced by the value of s(x) near z.

We define the onset/offset operator as the difference between a pair of
averages. Such an operator could be defined in terms of three parameters, ¢, k; and
k,: however, noting that the positive average will always be a shorter-term average
than the negative average, and because we want to consider families of such
onset/offset operators, we define the operator as:

D)
O(t.k,r) = A(tk)—A(tkir) =7(fz (t-x,k)~f(t—x.kIr)) s (x)dx
0

where r > 1. Thus, k defines the short-term average, and k/r defines the longer-
term average. This filter has the appropriate property of giving a O output for
constant input. The convolving functions are illustrated in Figure 2. Although they
have the same intercept, the tail of the DoE filter is much longer.

2.2. Segmentation using the onset/offset filter output
The output from the filter rises at the start of a sound, and falls when the sound

is decreasing. However, exactly how this should be used to perform segmentation
of a sound is not immediately clear. One could consider a sound to start when the
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Fig. 3.  The plucked guitar sound: a: the outline of the original signal. b: the signal after
rectification and summation. ¢,d and e: the results of various onset/offset filters:
c uses a DoE filter, with » = 50 and k = 1.2, d and e use an HDoG filter, with
k = 1.2 and r = 600 and r = 1200 respectively.

output crosses 0: however, this makes the system very sensitive to any extraneous
noise, and since, as is clear from Figure 3c to e, the rise in output is very steep for
a sound of reasonable volume, we prefer to identify the start of a sound as being
when the output exceeds some threshold.

Identifying the end of a sound is more difficult. Although some sounds have
a clear finish (such as a note on a flute or a saxophone), many do not, and one
often considers the end of the sound as being the start of a new sound, certainly
when the notes are played quickly. Examples are notes played on a glockenspiel,
or single plucked notes on a guitar. Indeed, the exact placing of the end of a sound
is often rather arbitrary, particularly for short sounds in an echoing environment,
such as a handclap in a bare room.
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Using the output of the onset/offset filter, the immediately obvious choices for
ending a segment are where the filter output recrosses 0, or where it has a negative
minimum. The former marks the point at which the filter declares that the two
averages are the same, which could be because sound is constant, or because the
degree of onset matches the degree of offset (e.g., when a sound which had a
recent onset is now decreasing in intensity), and the latter marks the maximum rate
of offset. The former is clearly too early: the sound is still present, and the latter
may well also be too early, since the maximum rate of offset of a sound may occur
while the sound is still present. This is particularly true for sounds which have a
rapid attack and decay at their start, followed by a slower sustained period, and a
slow final decay. Many plucked and percussive sounds have this form (see Figure
3a and b).

To overcome this problem, a slightly more sophisticated approach was taken.
Since the perceived end of a segment can appear to depend on what follows it, we
considered pairs of adjacent segments produced using the negative minimum of the
onset/offset filter to mark the segment end. These were generally not contiguous.
To make them contiguous, the program must decide whether to extend the end of
first segment forwards, extend the beginning of the second segment backwards, or
to insert another “quiet” segment between the two segments. If there is a large gap
between the two segments, it is reasonable to insert another segment to mark this
gap. We need only decide on how large a gap we should consider to be large
enough: we will write G, for this gap length, in ms. After some experimentation,
the following was found to be a reasonable compromise. Firstly, look forward from
the minimum marking the initial estimate of the end of a segment to the crossing
of a value which marks the start of the next segment, seeking out additional
minima. Choose the last minimum which is within a certain predefined ratio
(Kminmin) Of the largest minimum and extend the first segment to this point. If the
time between this point and the start of the next segment is less than G, then
extend the next segment backwards to this point. Otherwise, insert an additional
“quiet” segment from this new end of the first segment to the start of the second
segment. This technique was used with G, = 50 ms and K, = 0.4

3. EXPERIMENTAL RESULTS

‘We report here the results of applying these techniques to some single-note musical
instruments. The instruments used are a single note at a time plucked guitar, a flute
and a saxophone, played both tongued and slurred.

Figure 3 shows the effect of applying the processing technique to a plucked
guitar. It is clear that the notes are plucked with varying intensities, though this is
less obvious when listening. The transition from note to note is quite clear from
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Table 1. The result of segmenting plucked guitar sound. Leff table shows the sound
segments as found by ear. Righttable shows segmentation produced for one DoE
filter, and for two different HDoG filters, Columns (a) show the segmentation
start and end times using only the simple segmenting technique, and columns (b)
show the use of the more sophisticated technique discussed in section 2.2. (1)
marks those segments which are created by the addition of a “quiet” segment
between two “note” segments. Times are in 0.5 ms units.

Filter Segment Start End Start End

(a) (a) (b) (b)
0 631 870 0Q) 631

DoE 1 1108 1259 631 989

k=50 2 1602 1838 989 (1) 1108

r=12 3 2538 2766 1108 1585

4 3062 3271 1585 2520
5 3617 3876 2520 2971
6 2971 3563
7 3563 4259
0 637 845 01 637

HDoG 1 1116 1270 637 1003

k = 600 2 1610 1817 1003 (1) 1116

r=12 3 2548 2742 1116 1587

4 3070 3270 1587 2525
5 3627 3827 2525 2982
6 2982 3583
7 3583 4185
0 633 792 0 (1) 633

HDoG 1 1103 1226 633 982

k = 1200 2 1602 1778 982 (1) 1103

r=12 3 2093 2169 1103 1585

4 2539 2688 1585 2054
5 3058 3238 2054 2520
6 3614 3763 2520 2961
7 2961 3561
8 3561 4172
Note Start End
0 600 1020
1 1060 1560
2 1580 2020
3 2020 2480
4 2500 3000
5 3040 3580
6 3580 5180
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Fig. 3.  The plucked guitar sound: a: the outline of the original signal. b: the signal after
rectification and summation. ¢,d and e: the results of various onset/offset filters:
c uses a DoE filter, with » = 50 and k = 1.2, d and e use an HDoG filter, with
k=12 and r = 600 and r = 1200 respectively.

the rectified summary signal: all the notes except note 3 result in a strong onset
signal at the note’s start, allowing the segmentation algorithm to pick out the notes.
The onset of note 3 tends to get lost in the offset of note 2, unless a faster filter
is used, as in Figure 3e. Table 1 shows the segmentations that result from the
filters used in Figure 3c, d, and e. The first one uses a DoE filter with an intercept
of 21 ms, and the second uses an HDoG with an intercept of 30 ms. These have
very similar outputs, partly because of the extended tail of the DoE. The third filter
uses an HDoG with an intercept of 21 ms. The short tail of the HDoG makes this
a faster filter than the DoE with the same intercept, and as a result it picks out the
onset of note 3, which otherwise gets lost in the offset of note 2.

Figure 4 shows the waveforms for tongued and sturred saxophone sounds. The
ends of the tongued sounds are clearly visible, and this is reflected in the
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Table 2. Segmentation of the saxophone sound by ear and by HDoG filter, with r = 600
and k = 1.2. (1) excludes a "quiet" segment from 1459 to 1712 and from 3449
to 3628. (2) uses HDoG filter with & = 1200, as this note was not found using the
slower filter, Times are in 0.5 ms units.

Tongued saxophone Slurred saxophone
Note Ear HDoG Note Ear HDoG
Start  Finish Start  Finish Start  Finish Start  Finish
0 1280 1720 1316 1804 0 1120 1420 1146 1459
1 1800 2180 1804 2259 1 1420 1800 1712 (1) 1842
2 2200 2620 2259 2694 2 1800 2080 1842 2130
3 2700 3120 2694 3131 3 2080 2420 2130 2453
4 3120 3460 3131 3543 4 2420 2780 2453 2800
5 3540 3920 3543 3952 5 2780 3010 2840 3126
6 3920 5040 3952 4849 6 3020 3400 3126 3449
7 3400 3720 3628 (1) 3824
8 3760 4880 3810 (2)4739 (2)

segmentation produced in Table 2. The slurred saxophone sound is more difficult
to segment, both visually and by the techniques here: however, as can be seen in
Table 2, the system does perform reasonably well.

Figure 5 shows the waveforms for tongued and slurred flute sounds. As with
the saxophone, the tongued segments are quite visible, unlike those from the
slurred notes. The system performs well on the tongued notes, and quite well on
the slurred notes, except for the last two notes. For these, it is guided by the
variations in the envelope, which do not correspond to the note changes.

4. DISCUSSION

The techniques used here can be applied to any sound. They have also been
applied to speech in (Smith 1993). We do not pretend that this is how sound is
really segmented in the human ear: although there is a basis in the biology for this
approach, there are many more onset and offset cells and many other cells with
different types of responses in the cochlear nucleus (Blackburn and Sachs 1989).
What this work represents is the simplest possible application of an onset/offset
based technique to the sound segmentation problem.

This approach is purely data-driven. It is completely ignorant of any higher-
level information that might help to drive such a segmentation (such as prosody
in speech (Cutler 1990), or information about the particular instrument). Such an
approach may appear to be throwing out far too much that might be helpful:
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Fig. 5.

Flute sound. a: original tongued flute sound. b: summary rectified signal from a.
¢: onset/offset signal output from HDoG filter with & = 600 and r = 1.2. d:
original slurred flute sound signal. e: summary rectified signal from d. f:
onset/offset signal output from HDoG filter with k£ = 600 and r = 1.2.

however, since the approach is entirely data-driven, it could be considered to
provide a first approximation at segmentation, one which could later be modified
using additional information. The nearest approximation to this system is in
{Andre-Obrecht 1988), which uses changes in the statistical structure of the signal,
as modelled by a parametric description of a sliding 8 ms window on the signal,
and is applied to speech segmentation. Their system is again entirely data-driven,
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but makes no attempt at all at biological plausibility. Unlike their system, we do
not attempt to describe the statistical structure of the signal, concentrating purely
on signal onsets and offsets. As such, a frequency glide will be invisible to this
system: however, the initial results we have are, we believe, interesting enough to
merit further research.

The system deals well with simple plucked sounds, and with tongued blown
sounds. It is also successful with simple handclaps and a glockenspiel (Smith
1993). This is at least partly because it identifies the start and end of bursts of
energy, and these percussive sounds are made up from well defined bursts of
energy, with an envelope which is characterised by sudden onset, and more gradual
(though frequently still quite rapid) offset. Given that the filter intercept approxi-
mates to the duration of the energy in the pulse, this technique works well. For
sounds with a different envelope, the system may not work as well. Internal
changes in intensity inside a musical note can divide up the note (as in Table 3
note (1)); however, if onset/offset filters with a range of intercepts were applied,
then a filter whose intercept closely approximated the note length would not suffer
from this problem. Certainly, when listening to a musical note, it is possible to be
aware simultaneously that a note changes in intensity or tone, without considering
it as more than one note, suggesting the existence of multiple concurrent timescales
of interpretation.

The slurred saxophone and flute experiments point out one of the major
problems with the simple system described here: a sequence of notes without any
spaces between them will not be segmented correctly. This is because the system

Table 3. Segmentation of the flute sound by ear and by HDoG filter, with k = 600 and r
= 1.2. (1) sound was actually broken into two segments, at ¢ = 808 (tongued) and
t = 1129 (slurred). (2) the segmentation breaks down completely here: the last
two notes are broken into four pieces in a way which does not correspond to the
actual notes. Times are in 0.5 ms units.

Tongued Flute Slurred Flute
Note Ear HDoG Note Ear HDoG
Start  Finish Start Finish Start  Finish Start  Finish
0 480 960 492 971 (1) 0 800 1360 792 1392 (1)
1 1000 1440 1076 1467 1 1400 1890 1531 1824
2 1520 1920 1569 1964 2 1900 2180 2016 2217
3 2000 2360 1954 2417 3 2180 2640 2217 2687
4 2500 3220 2534 2852 4 2640 3010 2932 3020
5 3010 3580 3020 3296 (2)
6 3580 4460 3296 3928
3928 4232
4232 4457
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considers only the whole spectrum sound. Clearly, replacing the single filter by a
range of filters, each sensitive to some part of the frequency band would alter this,
and it is clear that biological systems have a range of onset and offset detectors,
innervated by different parts of the auditory nerve.

5. CONCLUSIONS AND FURTHER WORK

A prototype system which can segment some musical sounds played by single-note
instruments has been demonstrated. The system is only a prototype in the sense
that it uses only one onset/offset filter applied to the whole summary rectified
signal. Realistically, a range of filters with varying intercepts should be applied.
These would give a number of onset/offset filter outputs, reflecting the segmenta-
tion structure for different sizes of possible segment.

In addition, the filters should not be applied to the whole signal, but only to
some part of the spectrum of the signal. The receptive field of each filter could be
some continguous range of the spectrum, or could consist of a number of
harmonically related small contiguous ranges. A claim for biological plausibility
could be made for both of these receptive fields, since auditory nerve signals for
nearby frequencies are frequently coactive, as are auditory nerve signals for
harmonically related signals. Correlated activity in nerve fibers is believed to be
an important organisational guide in cortical network organisation (von der
Malsburg and Singer 1988), so that an onset or an offset cell is likely to be
innervated by an appropriate subset of the auditory nerve fibers.

From Figures 3, 4, and 5, the summary rectified signal appears (at least
visually) to contain important information about the segments in the original sound.
Other, less biologically justifiable, techniques could be applied to the summary
rectified signal, such as the “weak string” of (Blake and Zisserman 1987) to
perform segmentation. However, from the point of view of understanding how
humans segment sound, techniques based on cochlear nucleus cell behaviour are
more reasonable.
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