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Abstract
A model for cortex information processing is described which
depends upon a combination of population, rate and temporal coding
for action potential spikes. In this model, binding of information
derived from one visual attention object occurs because attention
causes a slight (~ 1 millisecond) shift in each spike in the sensory
inputs derived from the object towards the nearest peak to the spike
in a 40 Hz modulation frequency. This frequency modulation results
in preferential processing of the information derived from the
attention object. Simulations of populations of leaky integrator
neurons with both excitatory and inhibitory connectivity
demonstrate that this preferential processing occurs with
physiologically reasonable synaptic integration times, and allows
object categorization on time scales consistent with human cognitive
processing.

Introduction
An early proposal for the role of temporal

synchronization of neuron action potentials or spikes in the
cortex was that such synchronization could be used to tag the
activity of neurons with a signal indicating the perceived
object to which its activity relates. This temporal binding
hypothesis [von der Malsburg 1981] has been seen as
requiring neurons capable of detecting coincidences of spikes
to within a few milliseconds, and has therefore led to
controversy over whether coincidence detection is a viable
model for cortex neurons [Konig et al 1996]. The hypothesis
has been severely criticized by Shadlen and Movshen [1999]
on a number of grounds, including the incompleteness of the
theory in that it describes the indicator of binding without
describing how binding is computed; the presence of the
proposed binding indicator in areas of the visual cortex where
binding is not cognitively present; and the lack of evidence
for the required coincidence detection neurons.

Another aspect of the debate has been discussion of the
information content of action potentials. There have been two
major positions on this issue: rate coding and temporal
coding [Gautrais and Thorpe 1998]. In rate coding,
information is represented by average firing rates, consistent
with the observations that firing rates in sensory neurons
correlate with the intensity of an encoded feature [van
Rossum, Turrigiano, and Nelson 2002]. Synchrony is not a
factor with the model, and may even compromise rate coding
[Reyes 2003]. An issue with the rate coding view is that the
actual generation of action potentials by biological neurons is
very erratic, and it has therefore been argued that 10 – 50
millisecond integration times would be required in each
neuron layer to read out rate coded signals [Gautrais and
Thorpe 1998; Shadlen and Newsome 1998]. Such integration

times would be in conflict with the human ability to
categorize a complex scene in ~150 milliseconds [van
Rossum, Turrigiano, and Nelson, 2002].

In temporal coding, some aspect of the relative spike
times plays a crucial role in the information content of the
spikes. One example is the proposal that information is
contained in the order in which neurons spike [Gautrais and
Thorpe, 1998]. The temporal binding hypothesis is another
example.

Simulations of the responses of cortex neurons using
models with a range of biological realism indicate that in
layered networks of such neurons, propagation of activity
across multiple layers tends either to become synchronized or
to be extinguished [Diesmann, Gewaltig, and Aertsen, 1999;
van Rossum, Turrigiano, and Nelson, 2002; Reyes 2003].

The way in which information is coded in the specific
population of neurons generating action potentials has
received somewhat less attention, partly because the response
fields of neurons do not appear to correlate with cognitively
significant conditions or objects [Tanaka 1993]. A model
which makes use of population coding in a way that
incorporates this lack of correlation with cognitive conditions
is the recommendation architecture [Coward 1990; 2000;
2001]. In this model, cortex neurons detect groups of similar
conditions, but for reasons connected with a combination of
the need to conserve information recording resources and the
need to learn without interference with prior learning, the
group detected by one neuron can expand but not contract
[Coward 2001]. Groups therefore cannot be converged to
correspond exactly with cognitive conditions, and the
presence of conditions within one group can only be
interpreted as a set of recommendations that a range of
cognitive conditions are present. The actual detection of a
specific cognitive condition results from summation of all the
currently present recommendations and selection of the
strongest. However, in the recommendation architecture
model, information of specific other types can also be
encoded in both average spike generation rates and partial
spike synchronizations [Coward 2000], and the combination
of population, rate and temporal coding makes it possible to
avoid the issues created by length of integration times needed
for rate coding, and the apparent absence of the
synchronization detectors needed for temporal coding.

This paper has four objectives. The first objective is to
describe a partial synchronization approach called frequency
modulation in which spikes are shifted towards peaks in a
modulation frequency. It will be demonstrated by simulations
that shifts of the order of one millisecond applied with a
modulation frequency of 40 Hz to the inputs to a layered
network of leaky integrator neurons greatly increases activity
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propagation across the layers, for synaptic integration times
ranging from 2 milliseconds to 25 milliseconds. The second
objective is to describe a proposed model for binding which
uses a combination of population, rate and temporal coding
and addresses all the issues raised by Shadlen and Movshen
[1999].  A third objective is to report the results of
simulations of this binding model. The simulations employ
networks of leaky integrator neurons made up of columns of
devices across sequences of layers. Connectivity is randomly
defined, but with a bias within columns in favour of
excitatory inputs which tend to be active at the same time and
in favour of inhibitory inputs from different columns. These
biases are typical results of recommendation architecture
learning. The simulations demonstrate that the simultaneous
presentation of modulated inputs derived from one object
and unmodulated inputs derived from another object results
in network activity characteristic of just the modulated
object, as required by the binding model. The fourth
objective is to demonstrate that the discrimination in favour
of the modulated object occurs within the observed
timescales for cognitive processing.

Neuron Network Dynamics
There have been a number of studies of the dynamic

behaviour of cortical neurons in vivo [e.g. Shadlen and
Newsome 1998], in electronic simulation [e.g. Diesmann,
Gewaltig, and Aertsen, 1999], and even using one biological
neuron to model many different neurons in a network [Reyes
2003].

A typical cortex neuron receives 3000 – 10,000 synaptic
contacts, of which 85% are believed to be excitatory. The
post synaptic potential generated by one input action
potential depolarizes the membrane by about 3 – 10%, so
neglecting inhibition a neuron would be expected to produce
a spike whenever 10 – 40 input spikes arrive within 10 – 20
milliseconds [Shadlen and Newsome 1998]. Average neuron
firing rates can be up to 100 spikes/second, but within an
average rate actual spike generation timing is very irregular
[Tomko and Crapper 1974].

Simulations have typically employed the leaky integrator
model neuron, in which a spike input generates a post
synaptic potential which then decays with some time
constant. Examples of such simulations include Brody
[1998], Shadlen and Newsome [1998], Diesmann, Gewaltig,
and Aertsen [1999] and van Rossum, Turrigiano, and Nelson
[2002]. The simulated neural networks have generally been
successive feedforward layers of neurons with connectivity
between layers all to all (e.g. Diesmann et al [1999]) or
randomly selected more sparse (e.g. 10% in Reyes [2003]). In
general, only excitatory connectivity has been included.

One general result is that synchrony tends to develop
across layers. This synchrony has been labeled pulse packets
by Diesmann et al [1999], and it appears that a pattern of
input activity either propagates synchronously across a series
of layers or dies away [Reyes 2003]. Another interesting
result is that a relatively slow interaction between neurons
can result in synchronization of their outputs on a much
shorter timescale [Brody 1998].

Information coding in the recommendation
architecture cognitive model

In the connectionist recommendation architecture
[Coward 1990; 2000], the pyramidal neuron is modeled as
shown in figure 1. Such a neuron detects any occurrences of a
set of similar conditions, where a condition is defined as a
combination of inputs of a condition defining type. The
learning algorithm for this device is such that new conditions
can be added to the set, but once a condition has been added
it cannot be removed. Management of the circumstances
under which conditions can be added is therefore of critical
importance [Coward 2001]. These neurons are arranged in

layers, with columns defined across multiple layers. The
condition defining inputs to devices in one layer of a column
are mainly derived from the preceding layer of the same
column. As illustrated in figure 1 and discussed in detail in
Coward [2001], devices also have inputs which excite
recording of additional conditions and inputs which inhibit
such recording. Outputs from other layers and columns
indicating the general level of activity in those layers and
columns are the sources for these change management inputs.
A device has groups of provisional inputs, where groups are
preassigned to be similar to previously recorded conditions.
One such group is illustrated in figure 1. If inputs exciting the
recording of additional conditions are active and inputs
inhibiting such recording are inactive, an additional condition
is defined as the largest currently active subset of available
provisional input groups.

Figure 1.  A condition recording device. These devices have
different groups of inputs defining similar but different
conditions. The presence of one or more recorded conditions
activates the device. Other inputs determine whether or not a
device will record an additional condition at any point in time,
but these inputs do not form parts of conditions. An activated
device generates a series of voltage spikes. The average
spike rate indicates the number of recorded conditions
currently present, and the phase of a frequency modulation
imposed on the average rate indicates the input space within
which the conditions have been detected.

The outputs of a column are the outputs of devices in a
specific layer of the column. These outputs indicate the
presence of the conditions detected by these devices. The
learning algorithms result in a column detecting a set of fairly
similar conditions, and an array of columns detecting
different sets of conditions within the same input space.
Because the sets can expand but not contract, a column set
will not correspond exactly with a cognitive feature.
However, the learning algorithms result in column outputs
which have better discrimination between such features than
column inputs. In other words, if an input can typically occur
in instances of N cognitive features and an output in n such
features, then n << N [Coward 2001]. A feature will therefore
be indicated by the presence of any large subset of a limited
group of columns. There will be some overlap between the
groups for different features. The output from one column
can be regarded as a recommendation in favour of the
presence of a small number of features, and the largest total
recommendation weight found by summation of the
recommendation weights for all active columns across all
recommended features indicates the feature currently present.
This summation and comparison takes place in subcortical
structures [Coward 2001]

As illustrated in figure 1, device outputs are sequences of
spikes. Any output indicates the current presence of
conditions within the neuron set, and the average spike
generation rate indicates the number of such conditions. A
frequency modulation of the rate indicates the input
population within which the conditions were detected.
Frequency modulation means that although the average rate
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over some period of time is constant, spikes are more likely
to occur bunched near peaks in some modulation signal as
illustrated in figure 2. Strong bunching is equivalent to
packetization as defined by Deisman et al [1999]. If such a
modulation were imposed on the inputs to a layer of neurons,
then for higher thresholds the activity in the layer will be
much higher than in the absence of modulation as illustrated
in figure 2. Furthermore, as demonstrated by the simulations
discussed below, the difference in activity level between
modulated and unmodulated inputs would be maintained or
even amplified in subsequent layers, because of the tendency
for neurons to produce outputs in phase with the modulation.

Figure 2 Frequency modulation slightly shifts each individual
action potential spike towards the nearest peak in a
modulation signal. If three inputs to a neuron are
unmodulated, the number of spikes within one integration
window varies from two to four, but from one to five with
modulation. If the neuron threshold was equivalent to five
spikes, only the modulated inputs would generate any output.

The functional effect of modulation can be understood as
follows. Suppose that inputs were derived from a visual field,
and within that field was an object defined by a continuous
closed boundary. Suppose further that detection of the
presence of such a boundary could trigger imposition of a
frequency modulation only on inputs from within the
boundary. The result would be preferential detection of
conditions within the visual object relative to the rest of the
visual field. Independent detection of simple conditions of
different types (colour, shape etc.) could be associated by a
common frequency modulation phase and therefore used to
detect combination conditions limited to information derived
from the one object.

The recommendation architecture approach thus employs
a combination of population, rate and temporal coding to
perform information processing. The frequency modulation
coding has some resemblances with von der Malsburg's
original proposal that temporal coherence in neuron spike
generation could contribute to identifying populations of
activity related to individual objects, but there are some
important differences. Von der Malsburg and later workers
[see Shadlen and Movshon 1999 for extensive references]
have argued that synchronicity between spikes within a few
milliseconds is the determining factor indicating neuron
activity relating to a particular visual object, and the 40 Hz
signal found in the EEG gamma band is a manifestation of
such synchronization processes [Llinas et al 1994]. In the
model proposed here, spike synchronization can be much less
precise.

The Von der Malsburg temporal binding model has been
strongly criticized by Shadlen and Movshon [1999] on a
number of grounds. Firstly, they point out that in the theory
as proposed, temporal correlation is not a theory about how
binding is computed, only a theory of how binding is

signaled. In other words, it does not indicate how the visual
system decides which elements belong to different objects.
They suggest that the binding problem could more readily be
solved by successive elaboration of progressively more
complex representations of visual scenes as explored by
Tsotsos [1995]. Secondly, they point out that the study of
visual deficits indicates that binding only exists in the higher
levels of the visual cortex hierarchy, in which case the
observations of synchrony in the primary visual cortex is
unexpected. Thirdly they argue that the implied coincidence
detector model for cortex neurons is implausible, and that
given a more plausible integration window of 5 - 10
milliseconds, all spikes are in synchrony with other spikes.
There has been extensive debate over whether cortical
neurons are integrators or coincidence detectors. Konig et al
[1996] point out that the essential difference between these
views is the period of time over which synaptic inputs are
integrated. This period of time is of the order of the synaptic
potential decay time, or comparable with the membrane
constant which is estimated to be in the range 8 - 16
milliseconds [Konig et al, 1996], much longer than the few
milliseconds suggested for temporal coincidence detectors.

Simulation of the effect of synaptic integration
time on frequency modulation mechanism

In order to investigate the requirements placed on neuron
parameters such as synaptic integration times by the
frequency modulation model, the mechanism has been tested
using a simulated population of neurons. Six hundred
neurons in three layers of two hundred were simulated by a
software implementation. Two hundred externally generated
signals were inputs to the first neuron layer, outputs from the
first layer were inputs to the second layer and so on. The
externally generated signals were structurally identical with
neuron outputs, being made up of sequences of spikes
modulated and delayed in various ways. For each run the
performance of the model was simulated over a period of 500
milliseconds broken down into 0.33 millisecond time slots.
The status of each neuron was determined from its past
condition, its current inputs, and some noise related
uncertainties once every time slot.

Each neuron had a set of randomly selected inputs from
the appropriate input population, and the size of that input set
was randomly selected in the range 40 - 60 for each neuron.
Duplicate inputs to one neuron were not permitted. Each
input from the appropriate population had the same chance of
being selected for any neuron. The externally generated
inputs to this model had spike rates for which the average
interval between spikes was randomly selected for each input
within the range 20 - 100 milliseconds, corresponding with
rates in the range 10 - 50 spikes/second. Each of the 241
possible intervals at 0.33 millisecond resolution has the same
selection probability. The overall average of spike rates
across a set of 200 inputs was 20 spikes/second.

A spike occupied one time slot of 0.33 milliseconds.
Once the interval had been selected for an input, the initial
spike was delayed from the start of the 500 millisecond
simulation period by a randomly selected phase of up to one
interval. Generation rates were noisy in the sense that the
time slot for each spike varied by a randomly selected
interval of zero to two time slots from the slot defined by the
average rate. The noisy average spike generation rates were
then modulated at 40 Hz. This modulation was implemented
by defining a phase for the 40 Hz signal relative to simulation
start. Each spike was then shifted towards the nearest
modulation peak. This shift was randomly selected for each
spike, with a 50% probability of selecting a primary
modulation shift, a 40% probability of selecting one time slot
less that that shift, and a 10% chance of two slots less. The
primary value could be varied in the range 3 to 5 time slots or
1 - 1.67 milliseconds, and the average shift (or the strength of
modulation) therefore varied in the range 0.8 - 1.5
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milliseconds. In addition, it was possible to introduce delays
which could be randomly selected for each input in the range
0 - 2 milliseconds. The purpose of the delays was to test the
tolerance of the process for  inconsistent transmission delays.
The various random noise factors test the robustness of the
observed phenomena.

A neuron had a set of inputs, and detected any significant
total activity in those inputs. In information terms the set of
the condition sets indicated by its inputs. A single spike
generated a post synaptic potential which varied as Ate-at

where t is the time after arrival of the spike and A and a are
constants which were selected so that the peak in the post
synaptic potential curve was 100 arbitrary units and the time
from arrival of the spike until the potential declined to 33%
of its peak value was a controllable parameter called the
integration time.

Figure 3 Synaptic Potential Decay Curves. Examples of
synaptic potential decay curves used for neuron models, for a
range of integration time parameters

The values of this integration time were selected in the
range 2 - 25 milliseconds, to cover the periods postulated for
synchronization detection (a few milliseconds) through the
observed membrane constants in cortical neurons (8 - 16
milliseconds, see Konig et al [1996]), up to the period
defined by the modulation frequency (i.e. 25 milliseconds for
40 Hz). Examples of the synaptic potential decay curves used
are shown in figure 3. The neuron model employed was thus
a conventional leaky integrate and fire mechanism [Dayan
and Abbott 2001].

A neuron generated an action potential or spike if at any
point in time the total potential generated by past input spikes
exceeded a threshold T, provided that no output spike had
been generated within an immediately preceding absolute
refractory period set at 3 milliseconds to correspond with
such periods observed in cortex neurons [Dayan and Abbott
2001]. The output spike was delayed by a randomly selected
interval of 0.33 - 1 millisecond after threshold was exceeded
to model the observed reliability of spike timing in
neocortical neurons [Mainen and Sejnowski 1995]. When a
spike was generated, the post synaptic potential was reduced
to zero. The value of the threshold T was the same for all
neurons in one layer, but set at different values for each
synaptic integration time. The values were set so that a
modulated set of inputs with an average spike rate of 20
spikes/second generated a similar level of output activity in
each layer.

A number of different system models were generated and
a number of different randomly constructed input states were
applied to these models. Each model construction resulted in
a different pattern of connectivity, each input state
construction resulted in different spike rates, phases, noise,
delays and modulation shifts, and each presentation of the
same input state to the same model would generate slightly
different results because of random delays in spike
generation. The results described in this section are from over
100 different runs with different parametric settings.

The spikes in each timeslot in the input and in each layer
in the first 40 milliseconds of a typical simulation with
modulated inputs is shown in figure 4, with an unmodulated

input for comparison. As can be seen from the diagram,
response is packetized in phase with the modulation signal,
and packets are shorter and slightly delayed (by an interval of
the order of the time between arrival of spike and peak in
synaptic potential) as they progress through the layers.
Response to an unmodulated signal also packetized, but was
smaller and unrelated to a modulation signal.

Figure 4 Total spikes per timeslot in a typical unmodulated
and corresponding modulated input, and activity in the three
layers in response to the modulated input. Response to an
unmodulated input was also packetized but with lower total
packet sizes.

The ratio of the sums of the average spike rates of all the
neurons in each layer between when the same external inputs
are unmodulated and modulated is illustrated in figure 5, with
a modulation strength of 0.8 milliseconds and as the
integration time varied over the range 2 - 25 milliseconds.
The variability between runs for layer 2 is also illustrated.
Random delays of up to 2 milliseconds in external inputs, had
very little effect on the activity ratios. The variation in
activity ratio with modulation strength in the range 0.8 - 1.5
milliseconds is shown for an integration time of 8
milliseconds in figure 6.

Figure 5 Effects of modulation on neuron activity levels as a
function of synaptic integration time. The average ratios of
activity in three successive layers of neurons between when
the input layer 1 is presented an unmodulated set of inputs
and when the same input rates are modulated at 40Hz with an
average modulation shift of 0.8 milliseconds. The bars
indicate the variation in the ratio found for layer 2 between
different runs.

A number of implications follow from these results.
Firstly, consistent modulation at 40 Hz across a set of inputs
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considerably enhances the activity of the neurons targeted by
those inputs. Although the enhancement is greater for
integration times in the range 2 - 3 milliseconds (i.e. the
"coincidence detector" realm), it remains strong at much
longer integration times, even times comparable with the
modulation period. Secondly, the enhancement is transmitted
between layers, even though the modulation is only applied
directly to the inputs and the neurons have no special tuning
for 40 Hz. Thirdly, small, inconsistent delays of less than 2
milliseconds in the arrival times of the external inputs reduce
but do not eliminate the enhancement. Fourthly, the
enhancement is present despite random delays of the order of
1 millisecond in the generation of a spike following
achievement of threshold. Fifthly, because for all spike
generation rates there is a tendency for spikes to occur shifted
towards the nearest modulation peak, the generation of spike
trains will appear irregular, as observed for in vitro cortex
neurons [Stevens and Zador, 1998].

Figure 6 Effect of degree of modulation on neuron population
activity for an 8 millisecond integration time.

The simulations thus demonstrate that if the inputs to a
population of leaky integrator neurons are given a consistent
frequency modulation of 40 Hz with a modulation amplitude
which shifts spikes towards the peaks in a modulation
frequency by a time ~ 1 millisecond, the activity of the
population increases substantially, and the modulation is
propagated across the population. The effect exists for a wide
range of synaptic integration times and is robust against a
range of noise parameters.

Proposed binding model
As indicated earlier, the model for binding of visual

objects is as follows. A visual domain corresponding with an
object defined as the area within a continuous enclosing
boundary is selected within the total visual field. The
definition of this attention domain would be the result of
recommendations for domain changes generated by
conditions including those corresponding with the existence
of boundary elements. The outputs from the domain will in
general be at many different average spike generation rates
and phases. The selection of the attention domain results in
all the rates from within that domain being modulated at a
common frequency and phase.

Outputs from the entire visual field are then processed,
but there is a bias in favor of detecting conditions derived
only from information within the attention domain,  and these
conditions would be tagged by the same spike rate frequency
modulation because the synaptic potentials of the devices
tend to exceed threshold in phase with the modulation. The
set of domain outputs could be processed separately, for
example to detect conditions correlating with color and
shape, and when the conditions came together they would be
tagged by a common frequency modulation phase which
would favor detection of higher level conditions derived from
the original attention domain. Because the higher level

activity populations indicate conditions predominantly
derived for the object within the attention domain, the
corresponding behavioral recommendations will be
predominantly appropriate to that object.

 This binding model has additional operational
advantages. There are cognitive processes which require
behavior to be generated with respect to groups of objects.
These processes require information derived from the
presence of all members of the group required for high
integrity behavior, even though attention must be directed to
different members of the group in sequence. An example
could be reading, where sequences of words make up phrases
and sequences of phrases make up sentences. Information
from all the words in the phrase should be present before
higher level conditions corresponding with the meaning of
the phrase are detected. A similar example is mental
arithmetic processing as discussed in Coward [2001]. The
generation of appropriate recommendations could be
managed as follows. The attention domain is directed in
sequence at the several objects in the group, and for each
object a population of higher level conditions is maintained
active, but each population  with  a different phase of
frequency modulation so that few conditions at even higher
level are detected. Once conditions derived from all the
members of the group are present the modulation phases are
synchronized and combination conditions corresponding with
behavioral recommendations with respect to the group are
generated.

This binding model addresses the issues raised by
Shadlen and Movshon [1999]. It is a model for how binding
is computed, it explains why a binding related
synchronization should be present at levels where binding is
not detected cognitively, and it does not require
unrealistically narrow integration windows.

Simulation of the binding model
The system model was three layers of leaky integrator

neurons, organized into four columns. Each column
contained 100 neurons in each layer and detected different
types of conditions within external input states. There were
external excitatory inputs to the first layer from 200 separate
sequences of action potential spikes. The excitatory inputs to
the second layer were outputs from the first layer and so on.

Four types of input state were defined by the most
probable range of values for the average spike generation rate
of each of the 200 external inputs. For one input state type,
each input was randomly assigned an integer bias parameter
in the range 1 to 10, with equal selection probability for each
value. A bias parameter value had an associated relative
probability for each possible average spike generation rate. A
bias parameter of 1 corresponded with a high probability of a
high average spike rate, 5 with a high probability of an
intermediate spike rate, and 10 with a high probability of a
low or zero spike rate. Different instances of an input state
type were constructed by random selection of average spike
rates for each input, with the selection biased by the
corresponding bias parameter. Instances were then
normalized to an overall average of 20 spikes/second. The
presence of a type is therefore only indicated by a trend
across all inputs.

Neurons were the leaky integrators described earlier,
except that each neuron also had inhibitory inputs derived
from the other neurons in the same layer. The synaptic
potential decay curve in response to both excitatory and
inhibitory spikes was for an 8 millisecond synaptic decay
time as illustrated in figure 3. However, for inhibitive inputs,
the curve could be scaled so that the maximum synaptic
potential was adjusted by a factor from 0 (i.e. no inhibition)
to 8. The time at which a spike was generated was a
randomly selected interval in the range 1 - 5 milliseconds
after post synaptic potential exceeded threshold. The
threshold for all devices in all layers was the same, but could
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be varied in the range 20 - 40 times the peak magnitude of
the excitatory synaptic potential in response to one spike.

Recommendation architecture learning results in inputs
to first layer neurons in a column tending to be inputs which
have had high activity at similar times in the past, with a
corresponding bias placed on second and third layer devices
in the column. Detailed algorithms have been described and
simulated in Coward [2001]. Learning was not modeled
directly for the current simulations, but the results of such
learning were modeled by biasing the selection of external
inputs to the first layer of each column in favour of inputs
with a low bias parameter (i.e. a high probability of high
activity) in a different input state type. Excitatory inputs to
the second layer were biased in favour of first layer devices
often active at the same time  and so on. One effect of the
bias was that 90% of excitatory connectivity was within
columns. The number of excitatory inputs to a device was
randomly selected in the range 40 - 60.

The inhibitory connectivity to a device from other
devices in the same layer was randomly selected with a 3:1
bias in favour of inputs from outside the column of the
device, and set at 15% of the number of excitatory inputs.
The intended effect of the inhibitive connectivity was that if
spike packets of comparable size were initiated in more than
one column, the earliest packet would suppress the packets in
other columns.

Instances of one input state type would typically generate
the strongest activity in the column corresponding with the
type. In a practical learning situation there would be many
columns corresponding with different condition types, each
defined by different groups of system inputs which tended to
have high activity at the same times. A cognitive feature
would be indicated by significant activity in many columns in
a particular subset, different features being indicated by
different (but overlapping) subsets. However, to simplify the
description of the simulations and results it will be assumed
that the input state types correspond with different cognitive
objects.

The scenario was that two cognitive objects were within
the visual field, and attention was focused on one of the
objects. The attention focus was assumed to result in outputs
from one object being frequency modulated at 40 Hz. The
modulation of inputs was imposed by shifting each spike
towards the nearest modulation peak. The average shift was a
controllable parameter varying between 1 and 3.7
milliseconds. The actual shift for a spike was varied
randomly from the selected average by ±0.7 millisecond.
Eight sets of instances were generated, each made up of one
instance of each input state type. Mixed inputs for each of the
twelve possible combinations of modulated instance of one
type and unmodulated of the other type were constructed as a
200 input mixed set by adding the modulated spikes for one
(attention) input state to the unmodulated spikes for a
different type of input state. A supplementary modulation, in
phase with the input modulation, could be applied to the first
level neurons. This modulation was intended to test if such a
modulation could be used to adjust to different overall levels
of input activity.

Simulations were performed for 200 millisecond input
period with a timeslot of 0.3 milliseconds. The total activity
in each layer of each column was determined over the period,
and also the timing of the spikes in each column.

Simulation Results
Spike counts were measured in each layer of each

column. Spikes generated by layers were again packetized.
The first packet in layer 1 of the column corresponding with
the modulated input was usually generated ~ 8 milliseconds
after the start of inputs, in response to the first modulation
peak in the inputs. Packets were initiated in layer 1 of other
columns, particularly in the column corresponding with the

unmodulated input, with a tendency to be initiated later than
in the column corresponding with the modulated input.

In the absence of inhibition, a packet with less than a
minimum number of spikes in layer 1 decayed through the
other layers. The minimum depended on threshold. At the
highest thresholds, packets in all columns tended to be
extinguished by the third layer. For low thresholds there
tended to be activity in the third layer of the columns
corresponding with both the modulated and the unmodulated
input or even other columns at the lowest threshold levels.

For intermediate threshold levels, there was a strong
tendency for the packet in the column corresponding with the
modulated input to be earlier and larger than packets in any
other column in layer 1. Often the smaller packets decayed in
later levels. When inhibition was introduced, the decay of
packets in other than the column corresponding with the
modulated inputs was more frequent and faster. However, at
certain threshold levels the introduction of inhibition would
result in decay of all packets by layer 3.

Figure 7 Typical spike generation by layer 3 neurons in two
columns in response to a mixed input with modulated spikes
for the condition corresponding with one column and
unmodulated spikes for the condition corresponding with the
other column. Activity in the rest of the columns was
negligible.

If the packet in layer 3 of the column corresponding with
the modulated condition was earlier than and had at least
twice the number of spikes as any packets in any other
columns, system response was regarded as correct. A typical
example of correct spike activity in layer 3 in the two
columns corresponding with the modulated and unmodulated
condition is illustrated in figure 7. Under these conditions
activity in layer 3 of other columns was minimal.

Table 1 gives the number out of the 12 possible
modulated/unmodulated instance combinations of a set of
four instances, one of each input state type in which spike
activity was in the correct column. The variables in table 1
are the degree of input modulation, device threshold,
inhibition level and first level modulation. The variation for
different sets of instances and different system connectivity
selections was of the order of ± 1. For low thresholds, errors
were activity in the wrong column, for high thresholds, errors
were lack of activity in any column.

A number of conclusions can be drawn from figure 7 and
table 1. Firstly, column activity discriminates between
modulated and unmodulated inputs with a high degree of
accuracy, reaching over 90% for the highest modulation level
and optimized threshold range. Secondly, first level
modulation changes the threshold range within which the
highest accuracy is achieved, but does not affect the level
achieved. This means that for a fixed threshold level, first
level modulation could be increased until there was column
activity, and at this point the accuracy would be high.
Thirdly, accuracy is improved by inhibition in the threshold
ranges in which peak accuracy is achieved, but the
improvement in accuracy is not sensitive to the degree of
inhibition in the range studied. At higher threshold levels
inhibition sometimes made a lower accuracy worse, because
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the effect of inhibition was to eliminate activity in all
columns by layer 3. Fourthly, figure 7 indicates that
discrimination is achieved within ~ 10 milliseconds for 3
layers and requires an extra 2 milliseconds per layer,
consistent with observed human categorization times  ~ 150
milliseconds.

Table 1 Typical number correct out of 12 possible
modulated/unmodulated combinations of one instance of each
condition. Grey indicates bands in which maximum accuracy
occurs.

Conclusions
Simulations have demonstrated that if the inputs to a

population of leaky integrator neurons are given a consistent
frequency modulation at 40 Hz which shifts individual action
potential spikes by ~ 1 millisecond from the position defined
by an average generation rate, the activity of neurons in the
population is considerably increased, and the modulation is
transmitted across the population. The enhancement has been
demonstrated to be significant for synaptic potential
integration times over a range from 2 milliseconds to 25
milliseconds. The enhancement is therefore not dependent on
the existence of coincidence detection type mechanisms with
integration times of the order of a few milliseconds.

The enhancement provided by frequency modulation has
been used as the basis for a proposed computational model
for object binding which results in a high proportion of the
activity at higher levels being derived from one object that is
the subject of an attention focus, even though other objects
are present in the overall visual field. The model uses
population, rate and temporal coding of action potential
spikes to communicate different types of information. The
model indicates how binding is computed, it explains why a
binding related synchronization should be present at levels
where binding is not detected cognitively, and the required
neuron model has physiologically plausible parameters.

The binding mechanism has been tested by simulations
of populations of model leaky integrator neurons organized
into columns in which each column learns a different,
cognitively ambiguous condition in accordance with the
algorithms of a proposed recommendation architecture
cognitive model. Results of these simulations demonstrate
that discrimination of cognitive objects can occur with high
integrity on timescales consistent with human cognitive
processing times.
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            First level First level First level 
            modulation = 0 modulation = 4 modulation = 8

Inhibition 0 2 4 6 2 4 6 2 4 6

Average modulation = 3.7 msec
Threshold
   3000 0 2 8 8 0 4 3 0 0 2
   3250 1      10     11     11 2 8 9 0 4 7
   3500 6      12     11     10 9     12      11 3 8 9
   3750 9 7 6 6     12      11     11     10     11     12
   4000 0 0 1 1 8 6 6      11     10     10

Average modulation = 2.3 msec
Threshold
   3000 1 8 9 8 2 6 6 0 3 3
   3250        10      10 9 8 8 9 9 2 6 6
   3500 7 5 4 4     10 9 7 5     10     10
   3750 0 0 0 0 5 5 3     10 9 9
   4000 0 0 0 0 0 0 0 4 4 3

Average modulation = 1.0 msec
Threshold
   3000 7 8 5 3 4 7 7 2 4 6
   3250 0 0 0 0 6 6 4 4 7 7
   3500 0 0 0 0 0 0 0 9 5 5
   3750 0 0 0 0 0 0 0 0 0 0
   4000 0 0 0 0 0 0 0 0 0 0
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