
Variations on the BP algorithm.�

Since BP was introduced in 1985, there have been many 
variations attempted, with the aim of�

* making it run faster�
* making it less likely to become stuck in local 
minima.�

These variations extend from simple "improvements" to 
completely new versions.�

Simple "Improvements".�

1. Modifying the derivative of the output function.�

Since one of the main reasons for the slowness of BP is the 
low value of the derivative�

d

dx

�

� � exp��kx�

for large modulus values of x,  one modification which has 
been tried is simply to add a constant (such as 0.05) to the 
derivative. �

This has the effect of increasing the effective amount of error 
propagated back through hidden units whose outputs are near 
to 0 or 1, and so causing larger weight change steps to be 
taken.�

In addition, completely different cost functions have been 
used (most notably the relative entropy measure, see Haykin, 
section 6.20).�
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2. Modifying η to ηij.�

As the basic algorithm stands, the learning rate parameter is 
fixed for all the variables. However, the value of the error 
derivative for different weights will vary.�

One way of trying to avoid any problems this may produce is 
to�

(i) alter wij �

(ii) check whether this alteration really has 
decreased the error, and keep the alteration only if the error 
has decreased.�

However, this is computationally very expensive. However, if 
used, it can allow η to be selected for each weight, so that�
η = ηij. (i.e. η is a function of i and j)�

This leads us to�
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New Versions.�

BP is a 1st order gradient descent technique: that is, each  
weight change results in a step in weight space so that the 
error decreases. It may well be that the effect of changing a 
complete set of weights is to increase the error, or, at least, not 
to decreases the error in an optimal way.�

Second order methods can change the weight vector (W) all at 
once, giving steepest descent instead.�

Such algorithms are described in detail in Hertz, Krogh, and 
Palmer, pp 124-129. �

In essence, these second order methods require much more 
computation, as they require the 2nd derivative matrix (the 
Hessian) of the error. �

This results in the computation becoming non-local, since the 
actual weight change to be made at a weight will depend on 
the error derivative at all the other weights. Any pretence at a 
straightforward parallel implementation is lost.   However, as 
simply numerical methods for solving problems, these 
methods can be attractive.�
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Radial Basis Functions.�

A different approach to the use of feedforward neural 
networks. Though the architecture looks like a standard 3-
layer BP network, there is a crucial difference.�

Bias

The difference is that the hidden units embody a different type 
of neuron altogether. These units have a  receptive field: that 
is, they have their maximal response (generally 1) for some 
particular point in the input space, and this response tails off 
as the input value moves away from this point. �
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One can show such a response for a 1-dimensional input 
space:�

In general, Gaussian units are used: that is the unit has a 
Gaussian response function. �

Each hidden unit, h,  computes�

 Gauss((I - Ih,rh), where�

I is the input vector�
Ih is the centre of the receptive field of this hidden unit�

rh is the radius of the Gaussian.�

Gauss(0, r) =1, and its value tails away to 0 as the first 
argument increases in distance away from 0. The speed at 
which it tends to 0 will depend on r.�
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The output unit (there may be many: only one is shown here, 
for clarity), may be a simple linear unit, or it may be a logistic 
unit or a tanh unit. �

Notes:

1: Each RBF in the hidden layer responds to input only in 
some subspace of the input space. When the input is far away 
from it own centre,  Ih, (many radii away), then the output of 

that unit will be so small as to be ignorable.�

2: The hidden layer recodes the input space using the RBF 
outputs. Each RBF has a receptive field: that is, an area of the 
input space to which it responds. Not only is this more 
biologically plausible (since many sensory neurons respond 
only to some small subspace of the input space, and are silent 
in response to all other inputs), but it also allows us to have 
large numbers of units in the hidden layer without adding 
(much)  to the complexity of the total mapping.�
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Training the Radial Basis Function system.�

To train the system, we need to select:�

Ih for each hidden unit�

rh for each hidden unit�

W (the weight vector from the RBF layer to the output unit) 
for each output unit.�

There are a number of techniques used:�

1: Simplest technique.

Choose the Ih to coincide with the different training inputs.�

Choose  rh = r (i.e. fixed for all the units, and the same in all 

directions) so that�

r �
d

p
�M

where d is the maximal distance between the  Ih, and M is the 

number of RBF units.�

31X7 Lecture 16 page 7



1a: Cluster the inputs first:

If there is a great deal of training data, using 1 per RBF unit  
may be impossible. Instead, one can choose M points in the 
input space, selecting them so that they cover the same region 
as the input.�

After this, one simply trains the W using the delta rule.�

This type of training clearly takes place in two distinct steps: 
choosing the centres and radii of the RBF layer, then training 
up the weights. The way in which the centres are chosen may 
involve the use of a clustering technique, of which more later.�

2: Supervised technique.�

In this technique, the RBF centres and radii are initially 
selected in a similar way to the above  (clustered), and the 
output layer of weights trained.�

Then, one attempts to alter the centers and the radii using a 
gradient descent technique to "fine-tune" the centres, radii, 
and weights.�

This is still an area of development: however, initial results 
suggest that RBF’s do offer an effective alternative to BP: 
with the more sophisticated  training system, their results are 
certainly comparable to those of BP. �
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Notes:�

RBF’s are usable for both classification and for mapping, in 
the same way as BP systems are.�

The RBF technique has a good mathematical background 
based in the theory of functional approximation. For more 
information, see Haykin, chapter 7.�

Note that if rh is small, then one is really training up the 

system just to use each RBF unit for just one input in the 
training set. Thus, one can get a lack of generalisation, just as 
one can in BP.  If rh is large, one can get overgeneralisation. 

Using the supervised learning algorithm to choose the centres 
and the radii can optimise performance.�

One can see how the RBF has selected the centres for the 
RBFs. In this way, it is easier to get an explanation for the 
behaviour of an RBF system than it is for a BP system.�

If one knows that a problem is particularly sensitive to some 
small area of the input space, one can choose to place an RBF 
unit  with centre there: thus domain knowledge can be used to 
guide network construction. �

RBFs and Fuzzy Logic: RBF based networks are one way of 
including fuzzy-set theoretic information into neural 
networks.�
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