
Variations on the BP algorithm.�

Since BP was introduced in 1985, there have been many
variations attempted, with the aim of�

* making it run faster�
* making it less likely to become stuck in local
minima.�

These variations extend from simple "improvements" to
completely new versions.�

Simple "Improvements".�

1. Modifying the derivative of the output function.�

Since one of the main reasons for the slowness of BP is the
low value of the derivative�

d

dx

�

� � exp��kx�

for large modulus values of x, one modification which has
been tried is simply to add a constant (such as 0.05) to the
derivative. �

This has the effect of increasing the effective amount of error
propagated back through hidden units whose outputs are near
to 0 or 1, and so causing larger weight change steps to be
taken.�

In addition, completely different cost functions have been
used (most notably the relative entropy measure, see Haykin,
section 6.20).�

31X7 Lecture 16 page 1

2. Modifying η to ηij.�

As the basic algorithm stands, the learning rate parameter is
fixed for all the variables. However, the value of the error
derivative for different weights will vary.�

One way of trying to avoid any problems this may produce is
to�

(i) alter wij �

(ii) check whether this alteration really has
decreased the error, and keep the alteration only if the error
has decreased.�

However, this is computationally very expensive. However, if
used, it can allow η to be selected for each weight, so that�
η = ηij. (i.e. η is a function of i and j)�

This leads us to�

31X7 Lecture 16 page 2

New Versions.�

BP is a 1st order gradient descent technique: that is, each
weight change results in a step in weight space so that the
error decreases. It may well be that the effect of changing a
complete set of weights is to increase the error, or, at least, not
to decreases the error in an optimal way.�

Second order methods can change the weight vector (W) all at
once, giving steepest descent instead.�

Such algorithms are described in detail in Hertz, Krogh, and
Palmer, pp 124-129. �

In essence, these second order methods require much more
computation, as they require the 2nd derivative matrix (the
Hessian) of the error. �

This results in the computation becoming non-local, since the
actual weight change to be made at a weight will depend on
the error derivative at all the other weights. Any pretence at a
straightforward parallel implementation is lost. However, as
simply numerical methods for solving problems, these
methods can be attractive.�

31X7 Lecture 16 page 3

Radial Basis Functions.�

A different approach to the use of feedforward neural
networks. Though the architecture looks like a standard 3-
layer BP network, there is a crucial difference.�

Bias

The difference is that the hidden units embody a different type
of neuron altogether. These units have a receptive field: that
is, they have their maximal response (generally 1) for some
particular point in the input space, and this response tails off
as the input value moves away from this point. �

31X7 Lecture 16 page 4

One can show such a response for a 1-dimensional input
space:�

In general, Gaussian units are used: that is the unit has a
Gaussian response function. �

Each hidden unit, h, computes�

 Gauss((I - Ih,rh), where�

I is the input vector�
Ih is the centre of the receptive field of this hidden unit�

rh is the radius of the Gaussian.�

Gauss(0, r) =1, and its value tails away to 0 as the first
argument increases in distance away from 0. The speed at
which it tends to 0 will depend on r.�

31X7 Lecture 16 page 5

The output unit (there may be many: only one is shown here,
for clarity), may be a simple linear unit, or it may be a logistic
unit or a tanh unit. �

Notes:

1: Each RBF in the hidden layer responds to input only in
some subspace of the input space. When the input is far away
from it own centre, Ih, (many radii away), then the output of

that unit will be so small as to be ignorable.�

2: The hidden layer recodes the input space using the RBF
outputs. Each RBF has a receptive field: that is, an area of the
input space to which it responds. Not only is this more
biologically plausible (since many sensory neurons respond
only to some small subspace of the input space, and are silent
in response to all other inputs), but it also allows us to have
large numbers of units in the hidden layer without adding
(much) to the complexity of the total mapping.�

31X7 Lecture 16 page 6

Training the Radial Basis Function system.�

To train the system, we need to select:�

Ih for each hidden unit�

rh for each hidden unit�

W (the weight vector from the RBF layer to the output unit)
for each output unit.�

There are a number of techniques used:�

1: Simplest technique.

Choose the Ih to coincide with the different training inputs.�

Choose rh = r (i.e. fixed for all the units, and the same in all

directions) so that�

r �
d

p
�M

where d is the maximal distance between the Ih, and M is the

number of RBF units.�

31X7 Lecture 16 page 7

1a: Cluster the inputs first:

If there is a great deal of training data, using 1 per RBF unit
may be impossible. Instead, one can choose M points in the
input space, selecting them so that they cover the same region
as the input.�

After this, one simply trains the W using the delta rule.�

This type of training clearly takes place in two distinct steps:
choosing the centres and radii of the RBF layer, then training
up the weights. The way in which the centres are chosen may
involve the use of a clustering technique, of which more later.�

2: Supervised technique.�

In this technique, the RBF centres and radii are initially
selected in a similar way to the above (clustered), and the
output layer of weights trained.�

Then, one attempts to alter the centers and the radii using a
gradient descent technique to "fine-tune" the centres, radii,
and weights.�

This is still an area of development: however, initial results
suggest that RBF’s do offer an effective alternative to BP:
with the more sophisticated training system, their results are
certainly comparable to those of BP. �

31X7 Lecture 16 page 8

Notes:�

RBF’s are usable for both classification and for mapping, in
the same way as BP systems are.�

The RBF technique has a good mathematical background
based in the theory of functional approximation. For more
information, see Haykin, chapter 7.�

Note that if rh is small, then one is really training up the

system just to use each RBF unit for just one input in the
training set. Thus, one can get a lack of generalisation, just as
one can in BP. If rh is large, one can get overgeneralisation.

Using the supervised learning algorithm to choose the centres
and the radii can optimise performance.�

One can see how the RBF has selected the centres for the
RBFs. In this way, it is easier to get an explanation for the
behaviour of an RBF system than it is for a BP system.�

If one knows that a problem is particularly sensitive to some
small area of the input space, one can choose to place an RBF
unit with centre there: thus domain knowledge can be used to
guide network construction. �

RBFs and Fuzzy Logic: RBF based networks are one way of
including fuzzy-set theoretic information into neural
networks.�

31X7 Lecture 16 page 9

