
Notes on the Backpropogated Delta Rule algorithm.�

1. What exactly are we trying to minimise?�

As described, the learning rule implements gradient descent
on �

E �
X

p�patterns

X

k�outputunits

�Dp
k � Y

p
k �

�

but other error measures are also valid.�

For example�

* different output units may have different importances�

* the importance of each pattern may vary: e.g. it may be very
important to get some patterns right.�

* the use of the squared error may be inappropriate: one can
use any even exponent, or the "city block" metric", �

E �

X

p�patterns

X

k�outputunits

j Dp
k � Y

p
k j

In each case, all that alters is the calculation of the error at the
output units: the rest of the algorithm is unaffected.�

There are are other measures, including some based in
information theory: we will return to this topic later. �

31X7 Lecture 12 Page 1

Termination.�

When and how do we decide that either�

* the network has converged�
or�
* the network is not going to converge?�

This question also arises in the plain Delta rule.�

We can choose to stop training the network when either�

* the number of epochs exceeds some prespecified value�
or�
* the error is less than some prespecified value.�

Note that for small enough h, the Delta rule will converge,
and that the same is true for BP, simply because it is a
gradient descent algorithm. However, for both algorithms, we
cannot make guarantees about the size of the remaining error.�

31X7 Lecture 12 Page 2

But which error? �

If we choose the usual mean squared error, we run the danger
of having almost correct output for almost all of the output
units, or almost all of the patterns, but having a relatively
large error for one unit, or for one pattern.�

We can avoid this difficulty by using a different error
measure: however,we can also use the usual error measure for
training purposes, but alter the criterion we use for cessation
of training. We can continue until�

Emaxerror � max

p
max

k
j Dp

k � Y
p
k j

 �
(where p indexes the patterns, and k the output units) is less
than some prespecified amount. Emaxerror gives the largest

error on a single output unit for any pattern.�

...and what value of error do we stop at?�

If we are dealing with a classification network in which the
desired outputs are 0 or 1, then we can use any Emaxerror

such that 0 < Emaxerror<0.5. If however, we are aiming to

produce particular output values, we will need to use a much
smaller value.�

31X7 Lecture 12 Page 3

The error surface.

The error surface E (= E(W)) is a surface of high
dimensionality (it is a function of all the weights), and
(generally) very considerable complexity. Unlike the case
with the simple Delta rule, it is not simply quadratic in each
weight. �

By the nature of the error measure, and of the output
functions, E(W) is "well-behaved" - i.e. continuously
differentiable, but unlike the case for the simple Delta rule,�

E may have�

* local minima�
* ravines�
* saddle points, etc.�

These all present pitfalls. �

Error

1 w dimension

Here, the error has a sharp (global) minimum, and a smoother
(local) minimum. It is very easy to miss the global minimum.�

31X7 Lecture 12 Page 4

Speeding up convergence.

Although the proof of the gradient descent algorithm relies on
the learning rate, η, being infinitesimally small, such η results
in infinitely slow convergence. This is inconvenient.�

But if we use a value for η which is too large, we run the risk
of missing minima because of overshoot. Also we have a risk
of oscillation around a minimum.�

Error contours

 One frequently chosen technique to overcome this is to keep
η quite small, but to introduce a momentum term, α:�

�wji�t� �� � �Ej

dYj

dAj

Yi � ��wji�t�

The effect of this is that wji(t+1) tends to be in the same

direction as wji(t): indeed if a piece of error surface is of fixed

steepness, the effect is to multiply η by �1/(1-α). The overall
effect is to allow larger weight steps without introducing
oscillation.�

31X7 Lecture 12 Page 5

eta
only

eta and
alpha

error contours

steepest
descent

Note that the BP Delta rule does NOT implement steepest
descent. All it does is to ensure that each ∆wji is in the

direction of gradient descent. The overall move in W will be
such as to ensure decrease in E (assuming no overshoot in any
direction), but is unlikely to implement steepest descent.�

Steepest descent algorithms do exist (see Haykin p124, or
Hertz Krogh and Palmer p125). These are non-local, and
usually involve computation of 2nd derivatives.�

31X7 Lecture 12 Page 6

What values should be used for η and α ?�

How many layers should be used?�

How many units should there be in each hidden layer?�

One of the major problems with BP is that the answers to
these questions are problem-dependent. But as a guide:�

* generally, a value for η of between 0.03 and 0.1, and for α
between 0.7 and 0.95 work reasonably well. But not always.�

* use one hidden layer, at least until you are convinced that
you need more than one.�

* it is usually best to use a smaller number of hidden units
than the number of input units, in order to allow a compact
representation to form. But there can be other issues as well -
and there is no good answer yet to this question.�

31X7 Lecture 12 Page 7

