
The Backpropogated Delta Rule.�

Although the Perceptron Learning Rule and the Delta Rule 
work, and can learn associations (PLR) or minimise mean 
squared error (DR), both are limited in what they can achieve 
by the single layer architecture they work in.�

The PLR can learn linearly seperable classifications.�

The DR can produce a mapping which minimises the error:�
but the error is almost certain to remain non-zero 
because of the limited range of functions possible�

It has long been known that general networks of units 
provided a much richer computation capacity: but the absence 
of applicable learning rules had made these networks little 
more than an intellectual curiosity. This changed with the 
discovery of some learning rules applicable to more complex 
networks. We will discuss the Backpropogated Delta rule 
(BP) here: we will discuss others later (specifically the 
Boltzmann machine, and some extensions to BP).�
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The Backpropagated Delta rule (BP)�

BP is an extension to the Delta rule.�

The use of differentiable output functions is crucial to its 
application. �

(This was perhaps one reason that Minsky and Papert failed to 
find an extension to the PLR: no-one has yet managed to 
extend the (very general) PLR to multiple layers). �

Though the term backpropagation was coined about 1986, the 
algorithm was disovered  by Werbos in 1974. �
But its importance was not realised, and it was rediscovered in 
1985:�
by Parker, Le Cun, and Rumelhart, Hinton, and Williams.�
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Architecture:�

BP is not applicable to a general network: it requires a 
feedforward network.�

General Feedforward Network.

In fact it is nearly always applied to a layered feedforward 
network.�

Simple layered feedforward network.
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Usually, the architecture is that of a totally connected layered 
feedforward network: �

That is, each node in layer X (where X=0 means inputs, X=1 
is first hidden layer of units, etc.) is connected to all the units 
in layer X+1.�

In fact, the proof simply requires the network to be loop free.�

The units used cannot simply be linear because the 
combination of a set of feedforward linear units is equivalent  
to a different linear unit.�

As discussed in the Delta rule, they need to be differentiable 
and strictly monotonic. Usually either tanh or logistic 
functions are used.�
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The Algorithm.�

Consider the network:�

k: indexes output
units

j: indexes hidden
units

i: indexes inputs

bias
units

wkj

wji

output

input

1

1

This layered feedforward network has 1 layer of hidden units. 
We have added a bias unit to the inputs, and to the hidden 
layer.�

The question is how should the weights be adjusted to achieve 
gradient descent.�
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As before, we take the error measure to be �

E �
X

p

X

k
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p
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�

where p indexes the patterns, and k the output units.�

For weights on each output unit, we can simply apply the 
Delta rule: �

�wkj � ��
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to find the weight change on one weight on an output unit (k).�

But  how should we alter weights to the hidden units? �

If we had a value for the error at a hidden unit, Ej, say, then 

we could apply the Delta rule there too:�

�wji � ��Ej �
dYj

dAj

�Yi

and we could continue this to any number of layers of hidden 
units.�
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Another way of asking this question is "How should we 
allocate the error that occurs at the output units amongst the 
hidden units?". This is a credit (perhaps blame in this case!) 
assignment problem.�

The solution taken is to "funnel" the errors at the output units 
back through the weights which connect the hidden units to 
the output units. That is, the error at a single hidden unit is the 
sum of the errors at all the output units to which it is 
connected, multiplied by the weight from the hidden unit to 
each output unit. �

Perhaps it is clearer as an equation. The error at hidden unit j, 
Ej, is�

Ej �

sX

k��

Ek

dYk

dAk

wkj

where k indexes the s output units.�
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If we use the logistic function for the output unit, then �

Yk �
�

�� � e����Ak��

where β is the slope of the logistic, and Ak is the activation of 

unit k (including weighted bias input). Then�

dYk

dAk

� �Yk��� Yk�

So that we can find an expression for the error at hidden unit j, 
Ej, �

Ej �

sX

k��

Ek�Yk��� Yk�wkj

where s is the number of output units. From this we can 
produce an expression for the weight change at a hidden unit, 
by applying the Delta rule:�

�wji �
sX

k��

Ek�kYk��� Yk�wkj�jYj��� Yj�Yi

and this can be applied directly to update the weights.�

It is clear that this argument can be applied to any number of 
hidden layers.�
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