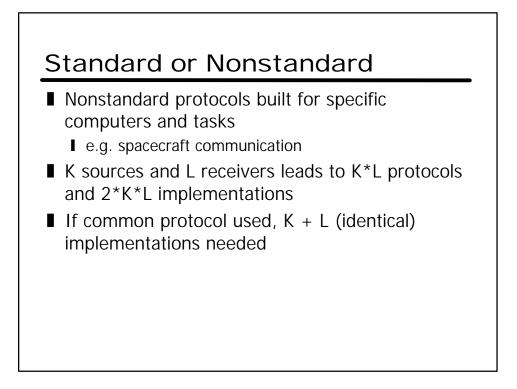
Characteristics

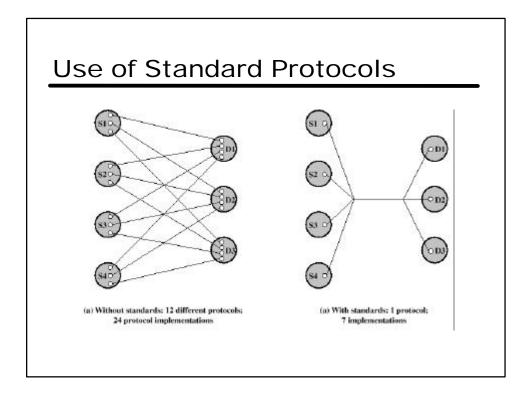
- Direct or indirect
- Monolithic or structured (layered)
- Symmetric or asymmetric
- Standard or nonstandard

Direct or Indirect

- Direct
 - Systems share a point to point link or
 - Systems share a multi-point link
 - I Data can pass without intervening active agent

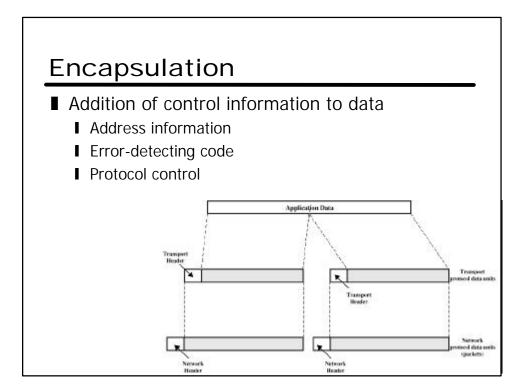
Indirect


- Switched networks or
- Internetworks or internets
- Data transfer depends on other entities


Monolithic or Structured

- Communications is a complex task
- Too complex for single monolithic protocol
- Structured design breaks down problem into smaller units
- Layered structure
 - I modular
 - I can abstract over different hardware
 - I can permit multiple applications to use same lower layers

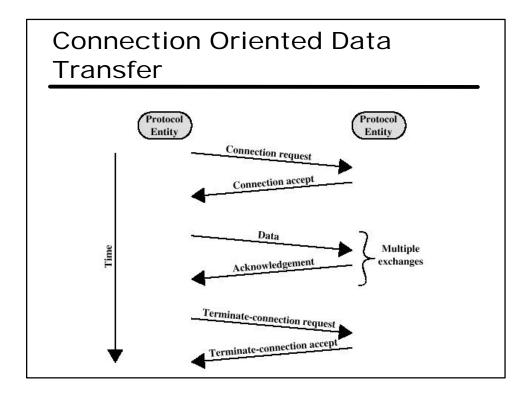
Symmetric or Asymmetric


- Symmetric
 - Communication between peer entities
 - I peer to peer communication
- Asymmetric
 - I for example Client/server

Functions

- Encapsulation
- Segmentation and reassembly
- Connection control
- Ordered delivery
- Flow control
- Error control
- Addressing
- Multiplexing
- Transmission services

Segmentation (Fragmentation)


- Data blocks are less than some maximal size
- Application layer messages may be large (e.g. whole files, web pages, MP3's)
- Network packets may require to be smaller
- Splitting larger blocks into smaller ones is segmentation (or fragmentation in TCP/IP)
 - ATM blocks (cells) are 53 octets long
 - I Ethernet blocks (frames) are up to 1526 octets long
- Checkpoints and restart/recovery

Why Fragment?

- Advantages
 - More efficient error control
 - I consider $\mathrm{P}_{\mathrm{error}}$ fixed, with correction by retransmission
 - I More equitable access to network facilities
 - Shorter delays
 - Smaller buffers needed
- Disadvantages
 - I Higher Overheads
 - Increased interrupts at receiver
 - More processing time

Connection Control

- Connection Establishment
- Data transfer
- Connection termination
- May be connection interruption and recovery as well
- Sequence numbers used for
 - I Ordered delivery
 - Flow control
 - Error control

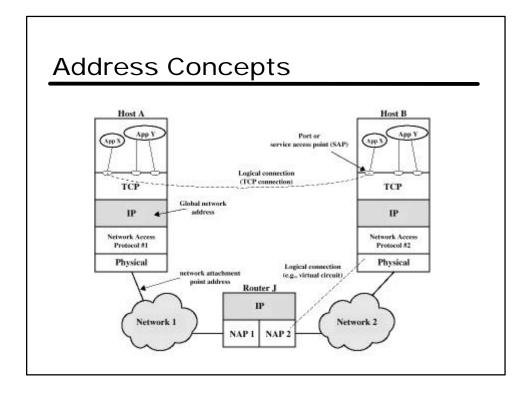
Ordered Delivery

- PDUs may traverse different paths through network
- PDUs may arrive out of order
- Sequentially number PDUs to allow for ordering
 - but note that PDU numbering is always modulo 2^N, for N-bit serial number

Flow Control

- Done by receiving entity delaying acknowledgements
- Limit amount or rate of data
- Stop and wait
 - I don't send next PDU till last one acknowledged
- Credit systems
 - I allow send ahead up to some limit
 - Sliding window
- Needed at application as well as network layers

Error Control


- Guard against loss or damage
- Error detection
 - Sender inserts error detecting checksum
 - Receiver checks this checksum
 - I If OK, acknowledge
 - I If error, discard packet
- Retransmission
 - I If no acknowledge in given time, re-transmit
- Performed at various levels

Addressing

- Addressing level
- Addressing scope
- Connection identifiers
- Addressing mode

Addressing level

- Level in architecture at which entity is named
- Unique address for each end system (host computer) and router
- Network level address
 - IP or internet address (TCP/IP)
 - I Network service access point or NSAP (OSI)
- Process within the system
 - Port number (TCP/IP)
 - Service access point or SAP (OSI)

Addressing Scope

- Global nonambiguity
 - I Global address identifies unique system
 - I There is only one system with address X
- Global applicability
 - It is possible at any system (any address) to identify any other system (address) by the global address of the other system
 - Address X identifies that system from anywhere on the network
- e.g. MAC address on IEEE 802 networks

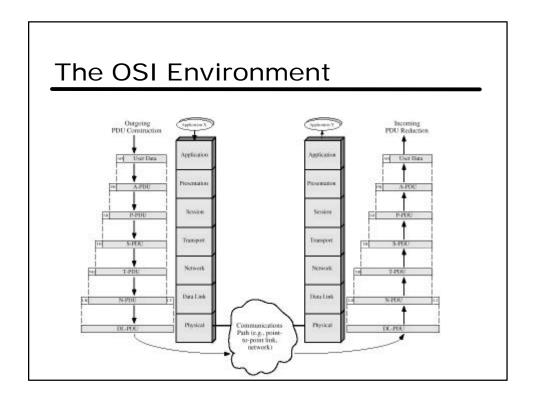
Connection Identifiers

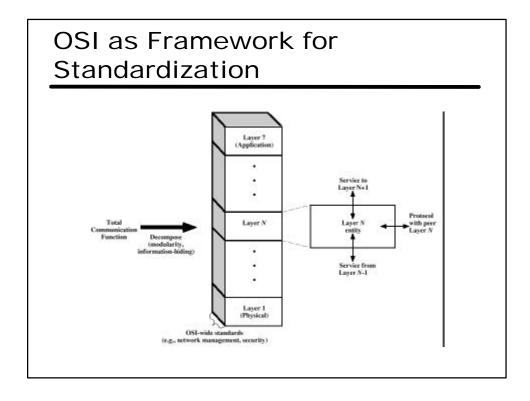
- Connection oriented data transfer (virtual circuits)
- Allocate a connection name during the transfer phase
 - Reduced overhead as connection identifiers are shorter than global addresses
 - Routing may be fixed and identified by connection name
 - Entities may want multiple connections multiplexing
 - State information

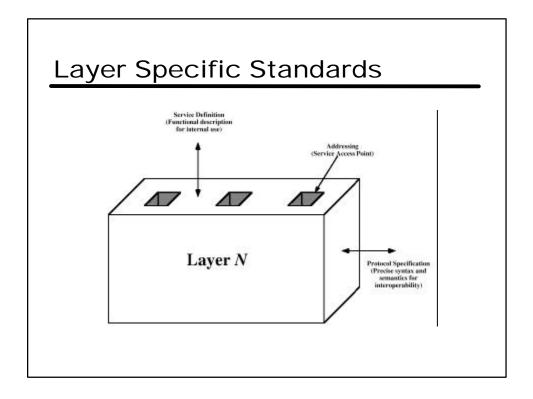
Addressing Mode

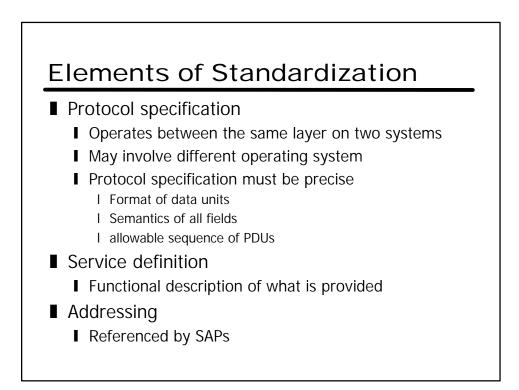
- Usually an address refers to a single system
 - Unicast address
 - Sent to one machine or person
- May address all entities within a domain
 - Broadcast
 - Sent to all machines or users
- May address a subset of the entities in a domain
 - Multicast
 - I Sent to some machines or a group of users

Multiplexing

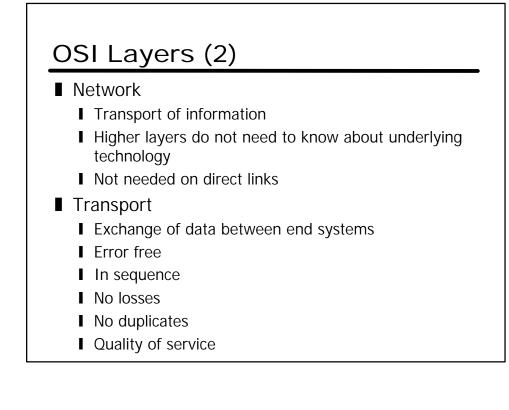

- Supporting multiple connections on one machine
- Mapping of multiple connections at one level to a single connection at another
 - Carrying a number of connections on one fiber optic cable
 - I upward multiplexing
 - Aggregating or bonding ISDN lines to gain bandwidth I downward multiplexing

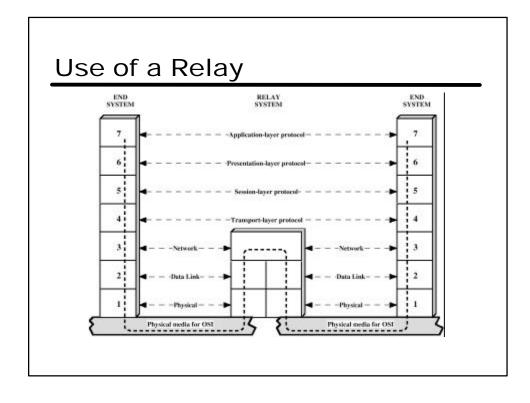

Transmission Services


- Priority
 - I e.g. for control messages
- Quality of service
 - I Minimum acceptable throughput
 - I Maximum acceptable delay
- Security
 - Access restrictions


OSI - The Model

- A layer model
- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers




OSI Layers (1)

- Physical
 - I Physical interface between devices
 - I Mechanical
 - I Electrical
 - I Functional
 - I Procedural
- Data Link
 - Means of activating, maintaining and deactivating a reliable link
 - Error detection and control
 - I Higher layers may assume error free transmission

OSI Layers (3)

- Session
 - Control of dialogues between applications
 - I Dialogue discipline
 - Grouping
 - Recovery
- Presentation
 - Data formats and coding
 - I Data compression
 - Encryption
- Application
 - I Means for applications to access OSI environment

