
1

Three Way
Handshake:
State
Diagram

Three Way
Handshake:
Examples

2

Connection Termination
z Entity in CLOSE WAIT state sends last data

segment, followed by FIN
z FIN arrives before last data segment
z Receiver accepts FIN
yCloses connection
yLoses last data segment

z Associate sequence number with FIN
z Receiver waits for all segments before FIN

sequence number
z Loss of segments and obsolete segments
yMust explicitly ACK FIN

Graceful Close
z Send FIN i and receive AN i
z Receive FIN j and send AN j
z Wait twice maximum expected segment lifetime
y (MSL)

3

Crash Recovery
z After restart all state info is lost
z Connection is half open
ySide that did not crash still thinks it is connected

z Close connection using persistence timer
yWait for ACK for (time out) * (number of retries)
yWhen expired, close connection and inform user

z Send RST i (reset) in response to any i segment
arriving
z User must decide whether to reconnect
yProblems with lost or duplicate data

TCP & UDP
z Transmission Control Protocol
yConnection oriented
yRFC 793

z User Datagram Protocol (UDP)
yConnectionless
yRFC 768

4

TCP Services
z Reliable communication between pairs of

processes
z Across variety of reliable and unreliable

networks and internets
z Two labeling facilities
yData stream push
xTCP user can require transmission of all data up to push flag
xReceiver will deliver in same manner
xAvoids waiting for full buffers

yUrgent data signal
xIndicates urgent data is upcoming in stream
xUser decides how to handle it

TCP Header

5

Items Passed to IP
z TCP passes some parameters down to IP
yPrecedence
yNormal delay/low delay
yNormal throughput/high throughput
yNormal reliability/high reliability
ySecurity

TCP Mechanisms (1)
z Connection establishment
yThree way handshake
yBetween pairs of ports
yOne port can connect to multiple destinations

6

TCP Mechanisms (2)
z Data transfer
yLogical stream of octets
yOctets numbered modulo 232

yFlow control by credit allocation of number of octets
yData buffered at transmitter and receiver

TCP Mechanisms (3)
z Connection termination
yGraceful close
yTCP users issues CLOSE primitive
yTransport entity sets FIN flag on last segment sent
yAbrupt termination by ABORT primitive
xEntity abandons all attempts to send or receive data
xRST segment transmitted

7

Implementation Policy Options
z Send
z Deliver
z Accept
z Retransmit
z Acknowledge

Send
z If no push or close TCP entity transmits at its

own convenience
z Data buffered at transmit buffer
z May construct segment per data batch
z May wait for certain amount of data

8

Deliver
z In absence of push, deliver data at own

convenience
z May deliver as each in order segment received
z May buffer data from more than one segment

Accept
z Segments may arrive out of order
z In order
yOnly accept segments in order
yDiscard out of order segments

z In windows
yAccept all segments within receive window

9

Retransmit
z TCP maintains queue of segments transmitted

but not acknowledged
z TCP will retransmit if not ACKed in given time
yFirst only
yBatch
y Individual

Acknowledgement
z Immediate
z Cumulative

10

Congestion Control
z RFC 1122, Requirements for Internet hosts
z Retransmission timer management
yEstimate round trip delay by observing pattern of

delay
ySet time to value somewhat greater than estimate
ySimple average
yExponential average
yRTT Variance Estimation (Jacobson’s algorithm)

UDP
z User datagram protocol
z RFC 768
z Connectionless service for application level

procedures
yUnreliable
yDelivery and duplication control not guaranteed

z Reduced overhead
z e.g. for network management

11

UDP Uses
z Inward data collection
z Outward data dissemination
z Request-Response
z Real time applications
z specifically:
ydirectory services (name server)
ynetwork time protocol (synchronising time across

machines)

UDP Header

12

HTTP introduction
z HTTP overview
z client, server, proxy, user agent, URL, cache,

stateless protocol and how they apply to HTTP
z HTTP overall operation
z How HTTP runs. This is well described in

section 1.4 of RFC 2616

HTTP messages
z HTTP has two types of messages, requests

and responses. Requests can be simple or full,
as can responses.
z Simple requests and responses originate with

HTTP 0.9, but are now discouraged.
z Full requests and responses consist of a header

line, followed by the entity body. The header
line can be a general header or an entity header
or either a request header (full request) or a
response header (full response).

13

Further HTTP info:
z Stallings section 19.4 (pp726-739), Tanenbaum

681-695 (bit thin)
z RFC 2616

http://www.w3.org/Protocols/rfc2616/rfc2616

SMTP
z Basic SMTP operation
z SMTP overview
z MIME

14

Further SMTP information
z Stallings pp 711-726, Tanenbaum 643-661
z on the www:
ySMTP tutorial
yhttp://www.rad.com/networks/1998/smtp/smtp.htm
y Internet draft
yhttp://www.ietf.org/internet-drafts/draft-ietf-drums-

smtpupd-13.txt

