

LAN Applications (2)

- Backbone LANs
 - I Interconnect lower speed local LANs
 - I High Reliability
 - I High Capacity
 - Low Cost connection to each LAN
 - I Higher cost connection of LAN to backbone
 - Providing large scale computing and communications to a whole site
 - I e.g. University

LAN Architecture

- Protocol architecture
- Topologies
- Media Access Control (MAC)
- Logical Link Control (LLC)

Protocol Architecture

- Lower layers of OSI model
- IEEE 802 reference model
- Physical
- Logical link control (LLC)
- Media access control (MAC)

802 Layers -Physical

- Encoding/decoding
- Preamble generation/removal
- Bit transmission/reception
- Transmission medium and topology

802 Layers -Logical Link Control

- Interface to higher levels
- Flow and error control
 relatively independent of notion
 - I relatively independent of nature of LAN

802 Layers -Media Access Control

- Assembly of data into frame with address and error detection fields
- Disassembly of frame
 - Address recognition
 - Error detection
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control
- For the same LLC, several MAC options may be available
 - Each for a different type of LAN

Ring Topology

- Repeaters joined by point to point links in closed loop
 - Receive data on one link and retransmit on another
 - Links unidirectional
 - Stations attach to repeaters
- Data in frames
 - Circulate past all stations
 - Destination recognizes address and copies frame
 - Frame circulates back to source where it is removed
- Media access control determines when station can insert frame

Star Topology

- Each station connected directly to central node
 Usually via two point to point links
- Central node can broadcast
 - Physical star, logical bus
 - I Only one station can transmit at a time
- Central node can act as frame switch

Media Access Control

■ Where

- Central
 - I Greater control
 - I Simple access logic at station
 - I Avoids problems of co-ordination
 - I Single point of failure
 - I Potential bottleneck
- Distributed

How

- Synchronous
 - I Specific capacity dedicated to connection
- Asynchronous
 - I In response to demand

Asynchronous Systems Round robin Good if many stations have data to transmit over extended period Reservation Good for stream traffic

- Contention
 - Good for bursty traffic
 - All stations contend for time
 - Distributed
 - Simple to implement
 - Efficient under moderate load
 - I Tend to collapse under heavy load

MAC Frame Format

- MAC layer receives data from LLC layer
- MAC control
- Destination MAC address (48 bits)
- Source MAC address (48 bits)
- LLC PDU
- CRC (32 bits)
- MAC layer detects errors and discards frames
- LLC optionally retransmits unsuccessful frames

Logical Link Control

- Transmission of link level PDUs between two stations
- Must support multiaccess, shared medium
- Relieved of some link access details by MAC layer
- Addressing involves specifying source and destination LLC users
 - I Referred to as service access points (SAP)
 - I Typically higher level protocol

LLC Services

- Based on HDLC
- Unacknowledged connectionless service
- Connection mode service
- Acknowledged connectionless service

LLC Protocol

- Modeled after HDLC
- Asynchronous balanced mode to support connection mode LLC service (type 2 operation)
- Unnumbered information PDUs to support Acknowledged connectionless service (type 1)
- Multiplexing using LSAPs

Transmission Media

- Twisted pair
 - I Not practical in shared bus at higher data rates
- Baseband coaxial cable
 - I Used by Ethernet
- Broadband coaxial cable
 - Included in 802.3 specification but no longer made
- Optical fiber
 - Expensive
 - Difficulty with availability
 - Not used

Baseband Coaxial Cable

- Uses digital signaling
- Manchester or Differential Manchester encoding
- Entire frequency spectrum of cable used
- Single channel on cable
- Bi-directional
- Few kilometer range
- Ethernet (basis for 802.3) at 10Mbps
- 50 ohm cable

Ethernet (CSAM/CD)

- Carriers Sense Multiple Access with Collision Detection
- Xerox Ethernet
- IEEE 802.3