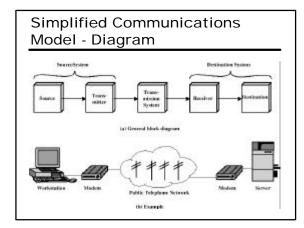
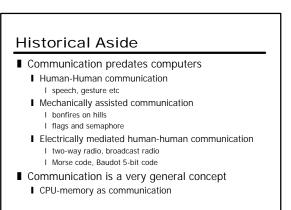
31W6 AI	DMINISTRIV	A
Lectures		
Weeks 1	9:	
I Mon 1	100 B4	
I Tue	1400 B4	
l Fri	1000 A1	
Weeks 10)-12	
I Mon	1400 A3	
I Wed	1200 V1	
I Fri	1100 A3	

Tutorials and Practicals

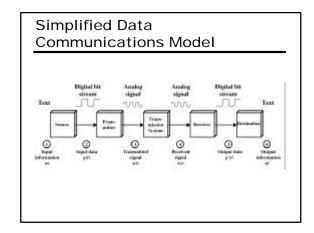
- Tutorials
 - Wed 0900 3B146 ***
 - Wed 1000 3B146
 - Thur 1000 3B146
 - Thur 1100 3B146
- Practicals
 weeks 10-12 only
 - I in 1A11: Wed 1400, Thur 1700, Fri 1500

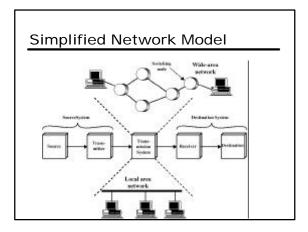

Communications and Networks


- Introduction
- Books:
 - Stallings Chapter 1.
 - Tanenbaum Section 1
 - I Peterson and Davie Chapter 1
- Lecture notes modified from Adrian Pullin, North East Wales Institute.

A Communications Model

Source


- I generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 Carries data
- Receiver
- Converts received signal into data
- Destination
 - Takes incoming data


Key Communications Tasks

- Transmission System Utilization
- Interfacing
- Signal Generation
- Synchronization
- Exchange Management
- Error detection and correction
- Addressing and routing
- Recovery
- Message formatting
- Security
- Network Management

Networking

- Point to point communication not usually practical
 - I Devices are too far apart
 - Large set of devices would need impractical number of connections
 - I N * N-1 / 2 for N points
- Solution is a communications network

Wide Area Networks

- Large geographical area
- Crossing public rights of way
- Rely in part on common carrier circuits
- Alternative technologies
 - Circuit switching
 - Packet switching
 - I Frame relay
 - I Asynchronous Transfer Mode (ATM)

Circuit Switching

- Dedicated communications path...
 - I (or circuit)
- ...is established for the duration of the conversation
- e.g. public telephone network

Packet Switching

- Data sent out of sequence
- Small chunks (packets) of data at a time
- Packets passed from node to node between source and destination
- Used for terminal to computer and computer to computer communications

Frame Relay

- Packet switching systems have large overheads in order to compensate for errors
- Modern systems are more reliable
- Errors can be caught in end system
- Most overhead for error control is stripped out

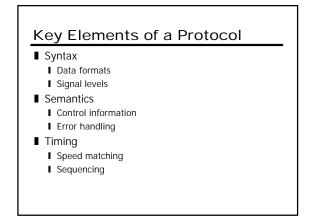
Asynchronous Transfer Mode

∎ ATM

- Evolution of frame relay
- Little overhead for error control
- Fixed packet (called cell) length
- Anything from 10Mbps to Gbps
- Constant data rate using packet switching technique

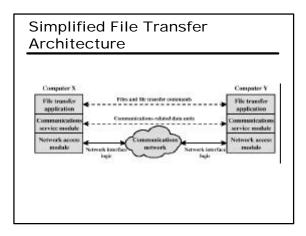
Integrated Services Digital Network

- ISDN
- Designed to replace public telecom system
- Wide variety of services
- Entirely digital domain


Local Area Networks

■ Smaller scope

- I Building or small campus
- I or even just single office
- Usually owned by same organization as attached devices
- Data rates much higher
- Usually broadcast systems
- Now some switched systems and ATM are being introduced


Protocols

- Used for communications between entities in a system
- Must "speak the same language"
- Entities
- User applications
 - e-mail facilities
 - I terminals
- Systems
- Computer
- Terminal
- Remote sensor

Protocol Architecture

- Task of communication broken up into modules
- For example file transfer could use three
 - modules
 - I File transfer application
 - I Communication service module
 - I Network access module

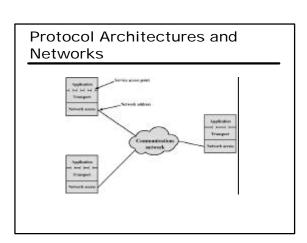
A Three Layer Model

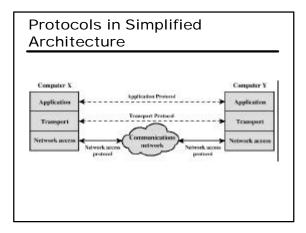
- Network Access Layer (bottom)
- Transport Layer
- Application Layer (top)

Network Access Layer

- Exchange of data between the computer and the network
- Sending computer provides address of destination
- May specify levels of service
- Dependent on type of network used (LAN, packet switched etc.)
 I on the physical implementation

Transport Layer

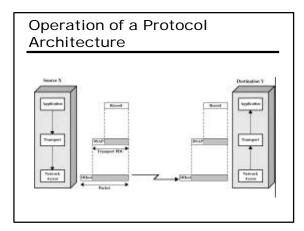

- Reliable data exchange
- Independent of network being used
- Independent of application


Application Layer

- Support for different user applications
- e.g. e-mail, file transfer

Addressing Requirements

- Two levels of addressing required
- Each computer needs unique network address
- Each application on a (multi-tasking) computer needs a unique address within the computer
 The service access point or SAP



Protocol Data Units (PDU)

- At each layer, protocols are used to communicate
- Control information is added to user data at each layer
- Transport layer may fragment user data
- Each fragment has a transport header added
 - Destination SAP
 - Sequence number
 - Error detection code
- This gives a transport protocol data unit (TPDU)

Network PDU

- Adds network header
 - I network address for destination computer
 - Facilities requests

TCP/IP Protocol Architecture

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet
- No official model but a working one.
 - Application layer
 - I Host to host or transport layer
 - Internet layer
 - Network access layer
 - Physical layer

Physical Layer

- Physical interface between data transmission device (e.g. computer) and transmission medium or network
- Characteristics of transmission medium
- Signal levels
- Data rates
- etc.

Network Access Layer

- Exchange of data between end system and network
- Destination address provision
- Invoking services like priority

Internet Layer (IP)

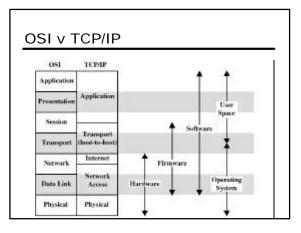
- Systems may be attached to different networks
- Routing functions across multiple networks
- Implemented in end systems and routers

Transport Layer (TCP)

- Host-to host layer
- Reliable delivery of data
- Ordering of delivery

Application Layer

- Support for user applications
- e.g. http, SMTP, FTP


TCP/IP Protocol Architecture Model Seam Doting Application Application 107 TCP UP. IP. Network Acce Setwork Acce Physical Physical Source System Destination System

OSI Model

- Open Systems Interconnection
- Developed by the International Organization for Standardization (ISO)
- Seven layers
- A theoretical system delivered too late!
- TCP/IP is the de facto standard

OSI Layers

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

Standards

- Required to allow for interoperability between equipment
- Advantages
 - I Ensures a large market for equipment and software
 - I Allows products from different vendors to
- communicate Disadvantages
 - Freeze technology
 - May be multiple standards for the same thing

Standards Organizations

- Internet Society
- ISO
- ITU-T (formally CCITT)
- ATM forum

The Internet Society

- Co-ordinating committee for protocols on the Internet
- Internet architecture board I overall architecture
- Internet engineering task force
- I protocol engineering and development
- Internet engineering steering group
 - I technical management of IETF activities, and internet standards

Standards process on the internet

- IETF internet draft
- IESG request for comments (RFC)
- To become a standard, must be stable, well understood
 - I technically competent
 - I have multiple independent interoperable implementations
 - I enjoy significant support
 - I be recognisably useful

ISO

- made up of national bodies ANSI, BSI, DIN
- ISO stages towards standards
 - I Proposal stage
 - I preparatory stage: working draft preparation
 - I committee stage: distribution and balloting:
 - negotiation I enquiry stage: final negotiation

 - approval stage: needs 2/3 majority of minimum 25% vote
 - I publication stage: at last
- slow business

Further Reading

- Stallings, W. Data and Computer Communications (6th edition), Prentice Hall 1999 chapter 1
- Web site for Stallings book www.shore.net/~ws/DCC6e.html
- Web sites for IETF, IEEE, ITU-T, ISO
- Internet Requests for Comment (RFCs)
- Usenet News groups
 - comp.dcom.*
 - I comp.protocols.tcp-ip