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Foreword

The standardised FDTs (Formal Description Techniques) are Estelle, Lotos
and SDL. The roots for their development lie far in the past. CCITT (Inter-
national Consultative Committee on Telegraphy and Telephony) started work
on standardising FDTs around 1972, and ISO (International Organization for
Standardization) around 1978.

The incentive for these developments was the growing awareness that only
formal approaches to system specification, verification, analysis, implementa-
tion, testing, and operation could provide the means to control the ever-growing
complexity of standards for telecommunications and OSI (Open Systems Inter-
connection). And indeed, these standards have become tremendously complex.
To be meaningful, FDTs had to become a common tool for all those involved
in the system development life cycle. This implied that the FDTs had to be
stable, which could be guaranteed only if they were standardised. CCITT and
ISO provided the natural environment for the standardisation process.

Originally CCITT and ISO approached FDTs from quite different angles.
CCITT was more oriented towards telecommunications, signalling and switch-
ing applications, whereas ISO was more oriented towards data processing appli-
cations. As time went by, CCITT and ISO grew more and more towards each
other, and so in fact did the FDTs. Yet the different origins are still recognisable
in the characteristics of the FDTs.

This explains an important aspect of design with FDTs: it is extremely hard
to find an FDT that presents the single and universal solution to all problems
involved. Indeed, if we had to start developing other FDTs today, given the
experience we have gained, we would certainly come up with another set of
FDTs. It is therefore more realistic, and profitable, to offer a set of comple-
mentary FDTs and leave it up to the informed user to make his or her own
choice.

This is the reason why CCITT and ISO decided in 1985 that they should
work closely together to advance the widespread introduction, appreciation and
application of the standard FDTs. The chosen approach was to offer a set of
specification examples, ordered from simple to more complex, with each example
described in Estelle, Lotos and SDL. The aim was to allow the reader
to study and compare, and to choose the most suitable FDT for a specific

xv
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application. One of the fruits of this cooperative work lies now in front of
you — this book!

One of the major problems, reflected in this book and strongly marked in the
development of the FDTs, is the vast complexity of systems in the application
area involved. It meant that the FDTs had to be evaluated continually for their
appropriateness and power of expression. You may easily imagine the number
of meetings involved (for SDL alone there were more than 40 meetings involving
10 to 15 experts), the hot debates, confrontations, and disagreements among the
experts while deciding on language features. It explains why the development
of the FDTs took so long. The last versions were published in 1988/1989.

Yet, in spite of all the efforts to make the FDTs as powerful as possible, the
reader should understand that a complex system is complex by its own virtue.
It cannot be made simpler by using an FDT since the FDT acts only as a means
to describe it.

However, an FDT can strongly assist in elucidating and controlling complex-
ity. In this respect it acts like a mirror, showing the quality of the system design,
its structural grace and functional consistency. But an FDT also shows struc-
tural poverty and functional deficiency. Indeed it is a mirror without mercy,
forcing the designer to consider the system in all its aspects. At first you may
find this cumbersome and tedious, but later on you will appreciate that it en-
ables you to control every facet of the system. It allows you to structure a
system strongly and to fill in all its functional features and details gradually,
including those that are much too easily forgotten in informal approaches and
are the primary source of incompatibility and errors. In this sense it is more
important that you use an FDT than what FDT you use.

While you increase your experience with FDTs you will find that you will
start using general purpose approaches to structuring systems, and general pur-
pose building bricks to specify system functions. You will develop an intimate
understanding of how to bind FDT concepts and constructs to the concepts and
constructs of the application area. This will become part of the FDT heritage
in the field of application — what is usually referred to as the architectural se-
mantics of FDTs. To achieve this understanding has been the objective in the
preparation of the various examples in this book. It will help you to move much
more easily between specifications since they all share these general-purpose ap-
proaches. You are also strongly encouraged to use the idea behind this in your
own field of application. After all, the quality of a formal description is more
dependent on the competence of the user than on the syntax and semantics of
the FDT. Of course the FDT itself has to be well designed, but it remains a
tool in the hands of the user whose experience, creativity and skills determine
the end result of its application.

Finally, in spite of the qualities of FDTs, there is a golden rule to which
you can appeal: if you have to do something, look for someone else to do it for
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you! And, since it is getting more and more difficult to find Mr. Someone Else,
the trick is to have tools. The book provides you with valuable information
on existing tools and gives references to publications, workshops, conferences
and symposia where you can get the latest information on the FDTs, their
applications and their tools.

We congratulate our friend Ken Turner with the publication of this book.
As the editor of the CCITT/ISO project ‘Guidelines for the Application of
Estelle, LOTOS, and SDL’, his efforts were key to the production of a common
CCITT and ISO report that is the basis of this book. We also congratulate
the various authors who made significant efforts in contributing to the example
specifications.

And last, but not least, we extend our best wishes to you — the reader of
this book and hopefully a future user of FDTs. Your interest and involvement
will be key to the success of FDTs!

Roberto Saracco Chris A. Vissers
CSELT, Italy University of Twente, The Netherlands
FDT Rapporteur, CCITT FDT Rapporteur, ISO
(1984–1988 Study Period)





Preface

Readership

This book will be of interest to various groups of people:

• those who wish to learn how to use the standardised FDTs (Formal De-
scription Techniques) Estelle, Lotos and SDL

• those who wish to learn about formal methods and languages in general
by studying the standardised ones

• those already familiar with another formal method or language who wish
to compare the approaches taken by the standardised FDTs

• those already familiar with the standardised FDTs who wish to use them
for specifying data communications systems and distributed systems.

For the complete beginner, the book has substantial introductory material
on formal methods and the three FDTs. This is complemented by guidance
on how to develop specifications and implementations using the FDTs. The
treatment of the FDTs is deliberately non-mathematical to make the book
accessible to a wide readership.

The book is copiously illustrated with examples since it is believed that a
great deal can be learned from the work of experienced specifiers. The examples
can be used to study one FDT or to compare the approaches taken by different
FDTs. Although the examples mainly deal with data communications, they
illustrate important principles that apply in many other application areas. The
examples have been written for readers with little knowledge of data communi-
cations.

The book is suitable for self-study. It would also be appropriate as a text-
book for a practical course on formal methods and languages. The examples
in particular would be a useful source of material for laboratory exercises and
projects. An instructor’s disc has therefore been prepared as a companion to the
book. It contains the ASCII text (less the commentary) of all the complete for-
mal descriptions in the book. Major diagrams that would be useful for teaching
are also included on the disc in LATEX or PostScript form as appropriate.

xix
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Contents

Part I contains introductions to the general context of FDTs and to each FDT
in particular. Chapter 1 explains why FDTs were developed, their origins and
their use. Chapters 2, 3 and 4 give an introduction to Estelle, Lotos and
SDL respectively.

Part II illustrates each of the FDTs on a graded series of examples, starting
with a simple communications service and working up to a large communi-
cations protocol. Chapter 5 specifies the Daemon Game, a simple game of
chance for multiple players. Chapter 6 specifies an Unreliable Medium, a basic
communications service that does not guarantee correct delivery of messages.
Chapter 7 specifies a Sliding Window Protocol that can safely transfer messages
over an unreliable medium in a flow-controlled manner. Chapter 8 specifies the
Abracadabra Service, a connection-oriented service that embodies major fea-
tures of more complex services. Chapter 9 specifies the Abracadabra Protocol
that implements the Abracadabra Service over an unreliable medium.

Part III deals with development methods and tools for each of the FDTs.
Chapters 10, 11 and 12 deal with development using Estelle, Lotos and SDL
respectively.

Part IV contains reference material for the rest of the book. Appendix A
lists references and gives other sources of information on FDTs. Appendix B is
an index to the main components of each example specification. Appendix C is
the main index.

Editor’s Corner

Like many good ideas, this book started from a jest. During an early meeting
of the group that produced the corresponding CCITT and ISO/IEC reports,
I happened to remark that we should perhaps sell the film rights. This had
two happy consequences. It led to the establishment of the successful series of
FORTE (Formal Techniques) conferences, and it led to this book based on the
international standards work. This is something not normally possible since
CCITT and ISO/IEC hold the copyright in such documents. I was delighted
to have the cooperation of these organisations in allowing development of this
book.

I firmly believe that FDTs have major advantages to offer the Information
Technology community. Hundreds of man-years have been spent in develop-
ing the standardised FDTs and their supporting tools. Those involved have
included standards bodies, academic institutions and industrial organisations.
The time is ripe to capitalise on the opportunities offered by FDTs.

Development of the FDTs has involved many people. However, certain indi-
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viduals stand out: E. Brinksma (University of Twente, Enschede, Netherlands)
for Lotos; O. Færgemand (TFL, Horshølm, Denmark) for SDL; R. Saracco
(CSELT, Turin, Italy) for SDL; R. L. Tenney (University of Massachusetts,
Boston, USA) for Estelle; and C. A. Vissers (University of Twente, Enschede,
Netherlands) for Estelle and Lotos. These people played a major part in
directing the work of the corresponding standardisation groups. Their technical
and political acumen deserves due recognition.

As editor, I faced major organisational, technical and editorial challenges in
producing this book. The nature of the book required a high level of integration
of material from contributors who were widely spread. Electronic mail was
indispensable for keeping in contact with everyone and for transferring large
numbers of files. Since the book contains many closely related examples in
different FDTs, I worked hard to harmonise these without losing the essential
character of each contributor’s style. This is not just an edited book, it is an
edited book! I gratefully acknowledge the tolerance of the contributors as I
made wholesale alterations to their prized text.

The book was assembled from material that arrived via four different media,
used three different text formatters, and contained diagrams produced using five
different drawing tools. Everything was reduced to LATEX, TEX and PostScript.
In the hope that it may prove useful to other authors, I have included the
style files and utilities I developed in this task on the instructor’s disc. The
utilities to format formal descriptions for LATEX may be useful in their own
right. Typographical design was undertaken by myself. The book was prepared
using a NeXTstation and printed on a NeXTprinter — an environment for
authors that I can recommend.

K. J. Turner
Stirling

June 1992
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Part I

Introducing the FDTs

This part of the book contains introductions to the general context of FDTs
(Formal Description Techniques) and to each FDT in particular. Individual
chapters in this part are as follows:

Chapter 1 explains why FDTs were developed, their origins and their use.

Chapter 2 gives an introduction to Estelle.

Chapter 3 gives an introduction to Lotos.

Chapter 4 gives an introduction to SDL.



2



1 The Context of FDTs1

1.1 The Origins of FDTs

1.1.1 Reasons for Formal Approaches

FDTs (Formal Description Techniques) derive from work over several decades
on formal specification languages and rigorous methods for computer
system development. The essence of such languages and methods is a math-
ematical underpinning that ensures precision and tractability. Conventional
descriptions are usually given in natural language or in diagrams, but these are
hard to make unambiguous and are hard to analyse. Errors and omissions in
computer systems are often costly to rectify, and may endanger life or property.
Formal approaches to development are particularly justified for systems that
are:

complex. Many systems already fall into this category, and the trend is to
produce even more complex systems.

concurrent. These systems exhibit complex patterns of potentially interfer-
ing behaviours that must be interwoven; concurrency arises in distributed
systems, real-time systems, hardware design, and parallel processing.

quality-critical. These are systems whose failure is not dangerous but whose
reliability and dependability are highly important; examples include finan-
cial applications, telecommunications, and operating systems.

safety-critical. Computers control vital systems in activities such as defence,
medicine, the nuclear industry, railway signalling, telecommunications,
and aircraft flight management.

security-critical. With the widespread use of Information Technology, pre-
venting unauthorised use of information or computing facilities may be

1Chapter 1 is by K. J. Turner and F. Belina.
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essential for reasons of national security, commercial confidence, or per-
sonal privacy.

standardised. Standards, in particular international standards, are widely
used and must be interpreted uniformly if they are to have any value.

It is hardly surprising that the main areas where formal approaches have been
actively pursued are safety-critical systems, (tele)communications, hardware,
and defence. (Tele)communications is of particular interest to ISO (the In-
ternational Organization for Standardization) and CCITT (the International
Consultative Committee on Telegraphy and Telephony).

1.1.2 The Standardisation of FDTs

In the second half of the 1970s, ISO began work on a massive programme to
produce standards for OSI (Open Systems Interconnection). Standards for OSI
and related topics are still being developed. A key issue in OSI is openness —
a framework in which any manufacturer may produce implementations of OSI
that interwork with others. It follows that standards for OSI must be unam-
biguous and free from implementation bias, in other words they must be precise
statements of requirements. It was recognised early in the work on OSI that
the standardisation process would benefit from the use of formal approaches. A
preliminary meeting was held in 1980 to investigate the feasibility of this, and
led to the establishment of a rapporteur group to produce standards for formal
approaches.

The term ‘Formal Description Technique’ was coined to describe the lan-
guages and methods to be standardised. Although ‘FDT’ is now used loosely to
mean any formally-based language or method, it still has the restricted mean-
ing of the standardised techniques discussed in this book. The early studies of
the ISO FDT group showed that there were a great many existing approaches
that could be adopted. A number of these fell into two broad categories: those
based on finite state automata, and those based on algebraic ideas. Both of
these approaches were felt to be useful and to have complementary benefits, so
it was decided to standardise one FDT in each category. After 8 years of work,
the outcome was standards for Estelle (Extended Finite State Machine Lan-
guage, ISO (1989e)) and Lotos (Language Of Temporal Ordering Specification,
ISO (1989l)). Vissers, Tenney and von Bochmann (1983) give a history of early
FDT development in ISO.

CCITT is responsible for producing standards2 in the field of telecommuni-
cations. Computing first began to make an impact on telecommunications with

2The correct CCITT term is ‘recommendation’, but for all practical purposes the recom-
mendations of CCITT can be treated as standards.
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the advent of SPC (Stored Programme Controlled) telephone exchanges. It was
therefore natural for CCITT to take an interest in techniques for specifying com-
puterised telecommunications systems. An early version of SDL (Specification
and Description Language) was produced in 1976. Through successive four-
year ‘study periods’, SDL was evolved from an informal diagrammatic design
notation to a fully-fledged FDT. By coincidence, the most advanced version
of SDL was finalised around the same time as Estelle and Lotos were is-
sued as standards. However, for some years prior to this there had been close
cooperation between CCITT and ISO over the development of FDTs. SDL
in fact shares some features with both Estelle and Lotos: the finite state
automaton concept of Estelle, and the algebraic data typing of Lotos.

1.2 The Purpose of FDTs

FDTs were developed to ensure:

• unambiguous, clear and concise specifications

• completeness of specifications

• consistency of specifications, in isolation and relative to each other

• tractability of specifications

• conformance of implementations to specifications.

Those who are expected to benefit from the use of FDTs on standards in-
clude:

• developers of standards

• implementers who develop products complying with standards

• testers of conformance to standards

• end-users of products designed according to standards.

The use of FDTs is by no means confined to standards. Any computer
system development that requires a high level of dependability and quality
will benefit from the application of FDTs. There are encouraging signs that
Estelle, Lotos and SDL are already being applied outside their original area
of (tele)communications standardisation.

Using an FDT requires care in specifying exactly what is required. A valu-
able byproduct of using an FDT is the discovery of errors, ambiguities and
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inconsistencies in the ideas that are being specified. Writing a formal descrip-
tion also imposes a good structure on the problem domain. In the early stages
of development, an FDT is helpful in expressing requirements and problem
structure. Even if development has already progressed to the stage of informal
description, applying an FDT retrospectively can highlight deficiencies before
they cause difficulties3.

The main initial thrust of FDT standardisation was on language defini-
tion. This was subsequently followed by development of tutorial material, the
preparation of guidelines for using FDTs4, and writing formal descriptions of
standards. The existence of standards for FDTs allows text-books to be writ-
ten, justifies companies in training their staff to use FDTs, and encourages
universities to include FDT teaching in their curricula.

1.3 The FDTs in Brief

All three FDTs share a common basis for specifying behaviour, namely labelled
transition systems. These are systems whose transitions between states are
labelled with associated actions. For data typing, Estelle uses Pascal data
types while Lotos and SDL use algebraically specified ADTs (Abstract Data
Types). Specification with the three FDTs is illustrated with a graded series of
examples in Chapters 5 to 9. These examples allow each FDT to be studied
in depth on examples of increasing complexity. The examples also allow the
characteristics of the three FDTs to be compared by example. Although the
examples mainly emphasise OSI-like communications systems, the principles
illustrated in the examples are generally applicable and should be helpful in
other application domains.

1.3.1 ESTELLE

Estelle is a formally-defined specification language for describing distributed
or concurrent processing systems, in particular those that implement OSI ser-
vices and protocols. The language is based on widely used and accepted con-
cepts of communicating non-deterministic state machines (automata). An Es-

telle specification defines a system of hierarchically-structured state machines.
The state machines communicate by exchanging messages through bi-directional

3This was the case while the FDTs were being developed in CCITT and ISO. Formal
descriptions of standards were developed after the fact, but it was still possible to identify
problems that could be dealt with by the standardisation committees. The trend is now for
formal descriptions to be developed side-by-side with informal ones.

4This book derives in part from ISO (1991g), a cooperative effort by CCITT and ISO to
publish guidance on using FDTs.
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channels between their communication ports. Messages are queued at either end
of a channel. The actions of machines are specified in a derivative of standard
Pascal (ISO (1982)), so Estelle specifications will look familiar to many
programmers.

Estelle allows modelling of synchronous and asynchronous parallelism be-
tween the state machines of a system. It also permits dynamic evolution of the
system configuration. Estelle specifications can be written at different levels
of abstraction, from abstract to implementation-oriented. The latter may be
derived from the former with the aid of supporting tools. Since all Estelle
concepts are rigorously defined, it has been possible to develop Estelle tools
that accurately reflect the language.

The Estelle language is introduced in Chapter 2. Aspects of development
with Estelle are dealt with in Chapter 10.

1.3.2 LOTOS

Lotos was developed from a large, well-established body of theory based on
CCS (Calculus of Communicating Systems, Milner (1989)), CSP (Communi-
cating Sequential Processes, Hoare (1985)), and Act One (Ehrig and Mahr
(1985)). Having a well-defined mathematical foundation, Lotos provides a
solid basis for analysis and also development of reliable tools.

The basic behavioural constructs of Lotos allow modelling of sequential be-
haviour, choice, concurrency and non-determinism in an unambiguous way. In
addition, Lotos permits modelling of both synchronous and asynchronous com-
munication. The data typing part of Lotos allows implementation-independent
specifications to be given as ADTs.

Lotos can be used to specify all the allowed behaviours of a system, i.e. the
set of all behaviours that may be observed of a conforming implementation. Lo-
tos permits this without describing how an implementation might be achieved,
or by describing particular mechanisms that achieve the required behaviour.
Lotos is therefore appropriate for the specification of open standards.

The Lotos language is introduced in Chapter 3. Aspects of development
with Lotos are dealt with in Chapter 11.

1.3.3 SDL

SDL is based on an extended finite state machine model, supplemented by
features for specifying ADTs (based on the same model as used in the Act

One part of Lotos). This combination is supported by a complete formal
semantics.

SDL provides constructs for representing structures, behaviours, interfaces
and communication links. In addition, it provides constructs for abstraction,
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module encapsulation and refinement. All of these constructs were designed to
assist the representation of a variety of telecommunications system specifica-
tions, including aspects of services and protocols. SDL is quite widely used in
the telecommunications community and is well supported by a variety of tools,
some of which are commercially available.

The SDL language is introduced in Chapter 4. Aspects of development with
SDL are dealt with in Chapter 12.

1.4 Development using FDTs

1.4.1 Modelling

It is widely accepted that the key to a successful system is a thorough system
specification and design. The result of the system specification and design
activity is called a specification for brevity.

For a system there may be specifications at different levels of abstraction.
A specification is the basis for deriving implementations. It should abstract
from implementation details in order to give an overview of the system, to
postpone implementation decisions, and to allow all valid implementations.

In contrast to a program, a formal specification is not intended to be run
on a computer. In addition to serving as a basis for deriving implementations,
a formal specification can be used for precise and unambiguous communication
between people, particularly for contracts.

The use of a specification language makes it possible to analyse and simu-
late alternative system solutions, which in practice is impossible when using a
traditional programming language due to the cost and the time delay. A speci-
fication language offers a well-defined set of concepts, improving the capability
to produce a solution to a problem and to reason about the solution.

A complete description of a system contains many kinds of information.
Each information item must be expressed in an appropriate language: natural,
semi-formal or formal. A natural language is very good at expressing aims,
wishes and intentions. It is poor at expressing details precisely and unambigu-
ously. A formal language has the opposite properties. In a complete description
of a system, different categories of languages should be used that complement
each other, so that their advantages are exploited. How to achieve this is an
important methodology issue.

The application domain of a system is understood ultimately in terms of
the concepts of a natural language. The specification of an application in a
natural language is descriptive by nature; phenomena are described as they are
perceived by an observer.
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Figure 1.1: Understanding a Formal Specification

When a system is described using a specification language, the formal speci-
fication makes use of neither application nor implementation concepts; it defines
rather a model that represents the significant properties of the system (mainly
behaviour). In order to understand this model, it must be mapped to the in-
tuitive understanding of the application in terms of natural language concepts;
Figure 1.1 illustrates this point. The mapping can be done in different ways.
One approach is to choose names for the concepts introduced in the formal
specification that are naturally associated with application concepts. Another
way is to include comments in the formal specification. This is much the same
issue as the understanding of a program or algorithm that solves a problem
taken from real life.

A model should have good analytical power to maximise the benefits of
the formal approach. It should also have good expressive power to ease
the mapping to the application. Unfortunately, analytical power and expressive
power are generally in conflict: the more expressive a model is, the more difficult
it is to analyse. When designing a specification language, a trade-off must be
made between these two properties.

1.4.2 Development Method

Development using an FDT is broadly similar to conventional development, but
there are distinctive features in the approach. Most development methods can
be represented by a waterfall model in which earlier stages produce results
for later stages. A typical sequence of stages in development with an FDT is:

• requirements capture and analysis

• formal specification of informal requirements
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• checking the specification for consistency and for completeness with re-
spect to the requirements

• design steps involving:

◦ refinement of a specification to a more implementation-oriented form

◦ verification (proof) that a refined specification has the essential
properties of the one from which it is derived

• implementation of the lowest level specification

• validation (testing) of the implementation against the highest level spec-
ification.

The use of an FDT requires formal rather than informal specifications at
all stages, thus ensuring unique interpretation. The fact that specifications are
formal means that correctness-preserving transformations may be used. Alter-
natively, a designer may use intuition and experience to derive the next level
of specification. Since there is a risk of introducing errors in this process, the
lower level specification should be formally verified. This requires proof that
the essential properties of the earlier specification are preserved in the new one.

The number of design steps depends on the gap between the high-level spec-
ification and the low-level implementation environment. To produce an imple-
mentation in assembler or hardware logic it would be wise to have a relatively
large number of steps. To produce an implementation in a fifth generation
language or a hardware design language could take rather fewer steps. It may
be necessary to backtrack during design, reconsidering earlier steps that have
led to an infeasible solution. Design steps progressively decide implementation
details, and are central to the design process. Figure 1.2 shows the essential
activities in a design step.

The specification that is input to a step can be refined by the addition of
implementation detail and the removal of unwanted implementation freedoms.
The refinement might be suggested by a pre-defined transformation, by general
design principles, or by problem-specific heuristics. The size of the design step
will be no larger than can be handled intellectually and by tools. Use of a formal
method requires that an informal refinement be checked by comparing the input
and output specifications of the step. Checking the validity of a refinement is a
non-trivial exercise since the refinement may introduce details and features not
present in the original specification, and may remove freedoms allowed in the
original. A variety of relations have been developed for FDTs to handle these
possibilities.

It is commonplace to design top-down and bottom-up at the same time. Top-
down design is concerned with analysis and decomposition of the problem into
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Figure 1.2: Activities in a Design Step

manageable pieces. Bottom-up design is concerned with synthesis of existing
components to make new structures. A designer will often carry out some top-
down analysis, and then investigate the feasibility of this by looking at whether
existing components can be combined to build the required modules. FDTs
help in both these aspects of design. FDTs have good features for structuring
and decomposition that aid in analysis. They can also deal with systems at
different levels of abstraction, allowing a high-level specification to be evolved
into a low-level one. Libraries of pre-defined components can be specified and
verified. By combining known components in known ways, a designer can have
confidence in the results of bottom-up design. Finally, verification techniques
can assess whether a proposed design meets the specified requirements.

Although a fully formal approach to development has many benefits, there
may be practical reasons why it is not feasible in its entirety. The effort involved
in formal specification and verification may seem to be high. However, the extra
cost of formal methods is offset by the reduction in defects and the consequent
avoidance of having to correct work already done. The cost of fixing a problem
when a system has been distributed and installed is roughly 1000 times the
cost of fixing the problem if it is identified at the specification stage. This
means that formal approaches are particularly cost-effective in the early stages
of development. Even if development proceeds conventionally after a formal
specification has been written, benefits will still have been gained.
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The possibility of verifying the correctness of a specification or design is ap-
pealing. In critical systems it may be essential to do so, regardless of the cost.
Verification is unfortunately a difficult intellectual activity in which current
software tools can provide only limited support. Verification may even be im-
possible since some properties are undecidable. There is generally a trade-off in
FDT design between expressive power and verifiability. A practical alternative
to verification is simulation, in which testing techniques are used to evaluate a
specification or to compare two specifications. Simulation requires specifications
to be capable of symbolic execution. As a deliberate decision, all three FDTs
were designed to allow executable specifications to be written5. Of course, sim-
ulation can only ever discover the existence of errors, not prove in general that
all errors have been found. However, it is a practical and valuable alternative
when verification is infeasible or impossible.

1.5 Tools for FDTs

The development of tools was not an explicit objective of the FDT work in
CCITT and ISO. It is not necessary to have computer tools to support FDTs
since they can be used as intellectual tools. The complexity of modern computer
systems and techniques is nonetheless such that software tools are extremely
valuable. The existence of standards for FDTs has encouraged tool developers
to develop computer support for these stable and widely accepted techniques.
The rigorous nature of FDTs makes it possible to develop reliable tools to assist
in the creation, analysis, and refinement of formal descriptions.

The tools that have been developed for FDTs depend to some extent on the
individual character of each FDT. Some tools have been developed for research
purposes, while others have been produced for entirely practical goals such as
commercial development. The software tools that support FDTs can be broadly
categorised as:

• book-keeping tools that create and maintain specifications

• front-end tools that operate directly on specifications

• verification tools that analyse properties of specifications

• back-end tools that are used to refine, transform, and implement speci-
fications.

Book-keeping tools deal with the essentially ‘administrative’ tasks of creat-
ing and maintaining specifications. Since all three FDTs have a textual form,

5Non-constructive (and therefore non-executable) specifications can also be written where
a high level of abstraction is required.
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conventional text editors can be used. In addition, syntax-directed editors
(also called structure editors) have been produced for FDTs. These editors
have a knowledge of the language being edited, and can ensure that statically
correct specifications are produced. Graphical editors have also been devel-
oped to handle formal descriptions in diagrammatic form. Other book-keeping
aspects such as version control can be handled by conventional tools.

Front-end tools deal directly with specification text. The front-end tools de-
veloped for FDTs are largely ones that are available for any language. Front-end
tools commonly translate the source specification into some common interme-
diate representation used by other tools. A lexical analyser turns the raw
specification text into ‘tokens’. A syntax checker verifies conformance to syn-
tax rules. A static semantics analyser checks for consistent use of types,
consistency of actual and formal parameters, etc. A parser produces the ab-
stract syntax tree of the source specification, and is often combined with a
syntax checker. An unparser is used to print a specification in standard forms,
either in a stylised layout (pretty-printing) or with conversion to a new form
(e.g. textual to graphical). A cross-referencer produces a list of identifiers,
their type, and where they are defined and used. Some tools are FDT-specific,
such as a flattener that produces a one-level specification with all nested scopes
removed and identifier clashes resolved.

Verification tools are a natural accompaniment to formal languages. Some
tools are independent of the choice of FDT, or could be developed for any FDT.
An algebraic simplifier has the task of reducing expressions to a simpler or
standard form. A theorem prover is used to help prove properties of a spec-
ification stated as theorems. Proof may be automatic, but usually requires
considerable human guidance — interactive or in the form of codified proof
strategies. A proof checker automates the verification of a supposed proof
given to it, usually derived manually by a user. A test derivation tool gen-
erates tests from a specification to validate the corresponding implementation.

Other verification tools are used with particular kinds of FDT. The list of
such tools is large, but here are some examples. A state space analyser is used
to explore the state space of a problem, checking for unwanted deadlocks, infinite
loops, unreachable states, etc. A simulator is used to symbolically execute a
specification in order to explore its consequences. An equivalence checker
is used to verify equivalence of two labelled transition systems according to
some formally defined notion of what differences are acceptable. A completion
tool checks for completeness of algebraically specified abstract data types. A
persistency checker establishes that data types have been enriched without
destroying their essential properties.

Back-end tools deal with refinement or implementation of specifications.
An interactive transformation tool is used to apply correctness-preserving
transformations to a specification. An expansion tool unfolds behaviour def-
initions, and so may transform a specification into a more readily implemented
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form. A compiler translates a low-level specification into code in some lan-
guage. Unless a specification is already written in a very constructive way, it is
necessary to refine a more abstract specification to a more concrete one before
trying to compile it. Compiling a formal description does not usually produce
machine code directly. Back-ends have been developed for programming lan-
guages such as C and Ada. By producing code in such languages it becomes
possible to compile specifications to run on a variety of computers.

1.6 The Future of FDTs

The standardisation of FDTs has made formal approaches much more widely
available to system developers. Although standardisation brings stability to a
language, the language need not remain static. CCITT standards are typically
revised every four years, and this has happened several times with SDL. ISO
standards are reviewed every five years, so new developments in Estelle and
Lotos are possible in future. There has been research on new data typing
formalisms for Estelle and for Lotos, for example. A graphical syntax for
Lotos is currently being standardised. Features for non-determinism are being
added to SDL. There is interest in object-oriented versions of all three FDTs.
There are issues of real time and stochastic behaviour to be investigated. So
although everyone can benefit from the existence of standards for FDTs, future
enhancements can be anticipated.

Most of the tools activity to support FDTs has been to produce research
prototypes, although some of this work has led to commercial products. It is
very likely that more commercially available toolsets will be produced in the
near future, leading to more widespread use of FDTs. These toolsets will be
integrated with current development methods and languages.

Because the FDTs drew on a large body of existing research on formal lan-
guages, the development of the FDTs as languages was more a standardisation
exercise than a research activity. Work on methods for using FDTs is com-
paratively recent. As experience with the FDTs has been gained, a body of
knowledge has been built up on how to use the FDTs effectively throughout
development. Case studies have been investigated and reported. The strengths
and weaknesses of each FDT have been discovered. A future area of work will
therefore be to codify methods for each FDT, and to support these methods
with tools. It is quite possible that FDTs will be combined with existing prac-
tices such as structured analysis and design, object-oriented design, inspection,
structured walk-throughs, etc.

The most interesting change, however, will be the increasing use of the FDTs
outside the (tele)communications standards world. This has started already,
and is bound to grow. There are many areas where FDTs would be of benefit
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such as safety-critical systems, secure systems, real-time systems, embedded
systems, distributed operating systems, VLSI and hardware design. Once FDTs
have permeated computer system development in general, they will have truly
realised their potential.
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2 Introduction to ESTELLE
1

2.1 Introduction

Estelle was developed for use in describing OSI services and protocols. More
generally, however, it is a technique for specifying distributed systems. It is
based on the observation that communications software is often described and
implemented with an underlying finite automaton model. Estelle builds on
this by adding features to a simple finite automaton that facilitate writing
complete descriptions of communication services and protocols.

A major consequence of choosing to base Estelle on finite automata is
that descriptions are ‘natural’: designers may write formal descriptions based
on familiar notions, and implementers are given guidance on how to implement
the protocols.

Estelle is an outgrowth of earlier work that includes Ansart et al. (1982),
Blumer and Tenney (1982), von Bochmann (1978), Danthine (1980), Merlin
(1979) and Tenney (1980). A snapshot of the status of FDTs when the work on
Estelle and Lotos began is given by von Bochmann and Sunshine (1980).
Estelle became an International Standard, ISO (1989e), in mid-1989.

The chapter begins by describing the key ideas of Estelle, using a very
simple specification example (a simplification of the Daemon Game that is dealt
with fully in Chapter 5). The language used to write Estelle specifications is
then described.

2.2 Overview

This section gives a brief, somewhat simplified overview of the main ideas in
Estelle: modules, channels and structuring. Subsequent sections describe
Estelle in more detail. Modules and channels are the fundamental building

1Chapter 2 is by R. L. Tenney. Although he was the editor of the Estelle standard (ISO
(1989e)) and remains its maintenance editor, the views expressed in this chapter are strictly
personal and do not represent an official position of ISO or its members.

17



18 Using Formal Description Techniques

blocks of Estelle. Modules communicate with each other through channels,
and may be structured into submodules.

2.2.1 Modules

The underlying model for an Estelle module is a finite state automaton. Fi-
nite automata are mathematical abstractions of computing devices. They are
thought of as machines having a finite number of states that make transitions
from state to state as they consume inputs. Finite automata come in a number
of variants; the one Estelle uses is based on the notion of a transducer. An
Estelle automaton accepts inputs and produces outputs as it makes transi-
tions from state to state.

In Estelle modules, inputs and outputs (often called interactions) occur
through interaction points. Interactions received by one module from another
are queued by the receiving module.

In a typical protocol specification, the state of the automaton would cor-
respond to the state of the connection (closed, opening, open, closing, etc.).
One set of inputs would correspond to user requests (Connect , Send , etc.) and
would cause the automaton to output PDUs (Protocol Data Units). Another
set of inputs would be accepted from the communication provider (DataIndi-
cation, Reset, etc.), and these would give rise to outputs to be sent to the user
(ReceiveResponse, ErrorIndication, etc.). A transition could occur from the
state named Closed to the state named Opening when a user-initiated Connect
request was received, and a ConnectRequest PDU could be output as part of
the transition. This is a scenario that will be familiar to most readers who have
dealt with communications protocols, and they could easily complete the broad
outlines of the progress of the connection.

Estelle modules act by making transitions from one state to another. The
choice of which transition to take is determined by the current state and current
input. Making a transition consists of consuming an input, changing state, and
producing output. Making a transition is sometimes called firing the transition.
Estelle modules allow transitions that require no input, called spontaneous
transitions, which may have time constraints placed on them to delay their
firing. In addition, Estelle modules may be non-deterministic, which means
that the current state and current input determine a set of allowable actions,
only one of which will be chosen. An implementation based on an Estelle

specification may resolve non-determinism in any fashion desired, including al-
ways making the same choice or always making a random choice. In particular,
there is no guarantee of fairness in the semantics of Estelle.
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2.2.2 Channels

Modules are connected by channels. These form bindings from the output of
one module to an (unbounded) queue associated with another module2. When
one module initiates an interaction, the interaction is placed in a queue of
another module, as determined by the binding corresponding to the channel
through which the interaction is sent.

Channels do not allow arbitrary interactions to occur. Each channel has
two ends, which are attached at interaction points of two modules. Each of
these modules may initiate certain interactions and receive other interactions.
In other words, associated with each channel are two roles that will be assumed
by the modules connected to the ends of the channel. To each of these roles
there corresponds a set of interactions that may be initiated (output) by the
module assuming that role. These will, of course, be received by the module
assuming the other role.

Modules maintain queues for receiving interactions. A module may have an
individual queue for each interaction point, or it may combine the inputs from
several interaction points into a common queue. A module may have at most
one common queue. When a module receives an interaction, it is placed in the
appropriate queue in the usual fashion (i.e. at the tail of the queue).

A module’s queues are unbounded, so there is always room to accept another
interaction in each queue. The module can act only on interactions that are at
the head of one of its queues; it cannot tell if there are other interactions that
follow it or what they are.

2.2.3 Structuring

From outside, an Estelle module is a ‘black box’; nothing can be known about
its inner workings except what can be observed by its outputs. From within,
however, besides having states and transitions between these states, a module
may be structured to contain other modules.

An Estelle module, sometimes called a parent module, may create and
destroy other Estelle modules within itself, called children modules. A child
module can have its own children modules. The parent module may connect the
interaction points of its children modules to each other or to its own internal
interaction points. It may attach its external interaction points to the external
interaction points of its children, causing interactions that arrive through the
attached interaction point to be received by the child. It may also share some

2The modules connected through a channel will be referred to as though they were distinct,
but this is not always the case: a channel may loop back from a module to itself.
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Figure 2.1: A Finite Automaton with External Storage

of its children’s variables. The distinction between connecting and attaching
interaction points will be dealt with in more detail in Section 2.4.

This overview has presented the major ideas of Estelle to give a feel for
the technique. It is by no means a complete view; the next sections revisit the
parts of Estelle that require more explanation.

2.3 Modules

This section elaborates on the simple description of Estellemodules given ear-
lier. For the most part, the description will concentrate on an isolated Estelle

module. Modules in systems are considered later.

2.3.1 Modules as Extended Finite Automata

The finite automaton model on which Estelle is based is very appealing, both
for its simplicity and for its tractability to analysis. However, there is a funda-
mental reason that a pure finite automaton model is inadequate for complete
descriptions of most communications protocols: state-space explosion. Com-
munication protocols usually involve such things as sequence numbers. Even
though the sequence numbers are finite (they are usually integers modulo some
power of two), if these were to be included as part of the state of the automa-
ton, the number of states would quickly become unmanageably large. Thus it
is necessary to introduce variables, sometimes called context variables, and
also a way of manipulating them into the usual finite automaton model.

The total state of an Estelle module includes the values associated with
each of these variables as well as the state of the underlying automaton, which is
sometimes called the control state or major state to distinguish it from the
total state of the module. It is helpful to think of an automaton with external
storage as pictured in Figure 2.1. Technically, the extended automaton can be
thought of as functions defined on the cross product of the finite automaton
and the storage.
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2.3.2 Transitions

In Estelle, firing a transition is more complex than in the simple finite au-
tomaton case. The choice of action is based on the current major state, the
current values of the variables, the inputs at heads of queues, and the priori-
ties associated with transitions. The model includes non-determinism, meaning
that at any given instant there may be more than one action that a module
might perform. The only guarantee is that at most one of these actions will be
performed. Spontaneous transitions are also supported, both with and without
delay. These are discussed at length later.

The conditions that enable a transition are thought of as a guard: each must
be satisfied if the transition is to be considered among those able to be fired.
The conditions may include:

• the interaction at the head of a specified queue

• the current control state

• predicates based on the values of the context variables of the extended
finite automaton and the values of the parameters associated with the
interaction

• the status of timers

• the transition priority.

If no action is possible for any interaction at the head of any queue, and if
no spontaneous transition is enabled, the module merely does nothing until the
situation changes.

The selection of and changes effected by a transition form a single, indivis-
ible, atomic action. This implies, among other things, that values assumed by
variables during a transition cannot be observed from outside the module unless
they remain after the transition has finished. Note, however, that no assump-
tions are made about the length of time required to perform the transition: this
is regarded as an implementation issue.

Each transition has a priority associated with it, if not explicitly then im-
plicitly. For a transition to be chosen, no transition of higher priority may be
enabled in the module. The priority of a transition is a non-negative integer
value, with lower integers corresponding to higher priorities. If no priority is
explicitly given for a transition, then a priority one lower than (i.e. an integer
one greater than) any explicitly given anywhere else in the module is assumed
for it. If no transition has an explicit priority, all transitions may be assumed
to have priority zero. The priority of a transition is fixed.



22 Using Formal Description Techniques

2.3.3 Time and Delay

As explained in Section 2.3.2, there is no time associated with the execution of
a transition. However, it is possible to specify a delay that must occur before a
spontaneous transition may be enabled.

Two time delays, d1 and d2, may be associated with a spontaneous transition,
where d1 ≤ d2. The transition cannot fire until the enabling conditions of
its guard have remained true continuously for time d1. Provided its enabling
conditions remain continuously true, in the interval between d1 and d2 the
transition may be considered to be enabled, but it need not be. Finally, after
time d2 has elapsed, the transition must be considered to be enabled as long as
its enabling conditions continue to remain true. Firing the transition restarts
its timing, so its guard must again remain continuously true for time d1 before
it can again be enabled.

If the time delays associated with a spontaneous transition are zero and
infinity, then the transition may be enabled whenever the guard associated
with it is satisfied, but it need never be enabled. One use of this might be to
specify that when a multiplexed network connection is no longer used, it may be
closed but need not be: the choice belongs to the implementer. This situation
may occur in the OSI Transport Protocol (ISO (1988)).

A spontaneous transition may have a single time delay, d, specified. This
has the meaning of d1 = d2 = d.

The Estelle semantics restrict the interpretation of time in the weakest
way possible, placing only those requirements that derive from assuming that
time moves forward consistently for all modules in the same subsystem (see Sec-
tion 2.5). This corresponds to making no assumptions about speed of execution.
It is up to the specifier or implementer to make whatever additional assumptions
are necessary to guarantee timing constraints are met. The potential execution
sequences of an Estelle specification can be regarded as forming a tree. The
additional assumptions about time have the effect of pruning certain branches
from the tree.

2.4 Channels

Modules communicate through channels. A parent module may connect and
disconnect channels between its children. Modules cannot manage the connec-
tion of their own external interaction points.

The structuring of modules necessitates a mechanism to establish commu-
nication between a parent and its children. One way this is accomplished is
through internal interaction points of the parent, which the parent itself may
connect to external interaction points of a child through a channel. As with
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all connections through channels, either module may initiate and receive those
interactions appropriate to its declared role.

To facilitate making the substructure of a module invisible to other mod-
ules, it is also desirable to be able to attach an external interaction point of
a parent to an external interaction point of a child. The result of this action
is to cause interactions that would have gone to the queue associated with the
parent’s interaction point to go directly to the queue associated with the child’s
interaction point. Of course, the child may itself be substructured (yielding a
grandchild of the original parent), and the interaction point of the child may
itself be attached to the external interaction point of the grandchild. Were this
to be done, it would result in associating the parent’s interaction point with the
grandchild’s queue.

It is important to note that connecting and attaching are quite different
operations. A parent connects the external interaction points of its children
so that they may communicate with each other; a module attaches one of its
external interaction points to an external interaction point of a child to facilitate
structuring.

As the names imply, the operations connect and disconnect are opposites,
and attach and detach are opposites. An interaction point that has been con-
nected may be disconnected, and one that has been attached may be detached.
It makes no sense for a parent to detach an interaction point that it connected
nor to disconnect an interaction point that it attached.

Taken together, connect and attach are said to bind interaction points,
while disconnect and detach are said to unbind them. A module may output
interactions through an interaction point that is not bound, but these are simply
lost. Binding and unbinding may be done explicitly by the parent; unbinding
is also done implicitly in a release operation.

Unbinding has different actions for its two forms. Interactions that reside in
a queue remain there when the corresponding interaction point is disconnected.
In contrast, interactions that reside in a queue of a child are moved to the queue
of the parent when the corresponding interaction point is detached3. If a chain
of attaches is broken in the middle, the result is that the interactions that came
through the interaction point of the parent breaking the attach are returned to
the end of its queue; all other interactions in the queue at the end of the attach
chain are left alone.

The semantics of attach and detach are complex, but they are easily jus-
tified in the context of OSI protocols. Consider, for example, the following
simple case: a protocol specification that creates a child module to manage

3More precisely, for a detach, those interactions that were placed in the queue of the child
while it was attached are moved to the queue of the parent, but those placed in the queue
while it was connected are left in the queue.
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each connection. The sequence of actions begins when a user of the protocol
requests that a connection be opened. This will be an interaction through an
interaction point of the parent. The parent then creates a child module. Once
the child is created, one of its external interaction points should be attached
to the interaction point of the parent through which the original open request
came, so that interactions affecting this connection can be handled by the child
without intervention by the parent.

After some use, the module that initiated the connection may choose to
close the connection and then quickly open another connection by issuing a
second open request. Assuming asynchronous execution of these modules (as is
normal), the close request and the second open request may both end up in the
queue of the child, with the open request behind the close request in the queue.
The close request should result in the parent releasing the child, with the result
that the child’s interaction point is first detached. When this happens, if the
contents of the child’s queue were not returned to the parent, then the open
request in the child’s queue would be lost. This would make the use of children
modules almost impossible.

2.5 Structuring

As already indicated, an important aspect of Estelle is its ability to describe
a module as containing submodules which may themselves contain submodules,
and so forth. This is referred to as structuring, and may be static, dynamic,
or a combination of both. The structuring of a module is invisible from outside
the module. In other words, the substructure of a module cannot be inferred
from the behaviour of the module.

This is very useful for OSI descriptions. If, for example, a system had
to be described with two transport modules communicating through a single
network module, the three modules and their channels might be statically de-
scribed. However, each connection between the two transport modules could be
described as being managed by a separate submodule of each of the transport
modules. These submodules could be created as each connection is established
and then destroyed as the connection is closed. To destroy a module, either
release or terminate may be used. Release implicitly unbinds all interac-
tion points, while terminate simply destroys them, causing any interactions in
their queues to be lost. Such a transport system is shown in Figure 2.2, where
the innermost modules (one for each active connection) are created each time
a connection is begun and released each time a connection is ended.

Structuring leads to hierarchies of modules. There are notions of a parent
and child (a module and one of its immediate submodules), of siblings (chil-
dren of the same parent), and of ancestors and descendants (the transitive
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closures of the parent and child relations, respectively). A parent may share
those variables of a child that the child chooses to export. Estelle semantics
guarantee that ancestors and descendants may never act at the same time, so
there are no synchronisation problems with shared variables.

There is thus a difference between the communication and synchronisation
possibilities between a module and its descendants, between siblings, or between
two modules neither of which is a descendant of the other.

Synchronisation between siblings is determined by the class attribute of
their parent: the children of a module that is declared to be a process run in
parallel, while the children of a module that is an activity run sequentially in
some random order, thus modelling parallelism in the usual interleaving fash-
ion. Besides synchronisation implications, the class of a module has structural
implications: an activity module may be substructured only into activity sub-
modules, while a process module may be substructured into either processes or
activities.

Each module may have an initialisation section, which is quite similar to
a transition except that it does not depend on beginning in any state. The
initialisation is invoked when the module is instantiated. Modules may be
specified that have no transitions outside the initialisation section. In this case,
the module serves simply to provide static structure and is called inactive.

Consider a module all of whose ancestors are inactive. It is not possible
for such a module ever to be released or terminated since none of its ancestors
may have a transition that could cause this. Such a module may be designated
as the root of a subsystem. Note that other modules may also have inactive
parents, but for a module to determine a subsystem, all of its ancestors must
be inactive. Clearly, once they have been established during initialisation, the
number of subsystems and the external connections between them are static.

A module that is the root of a subsystem must have the systemactivity or
systemprocess attribute. No synchronisation is assumed between subsystems.
It is sometimes convenient to think of modules within a single subsystem as
being tightly coupled, while the subsystems themselves are only loosely coupled
with each other.

2.5.1 Systems of Modules

Estelle modules do not generally exist in isolation, so it is necessary to un-
derstand how they interact. The actions of any subsystem are independent
of the actions of any other subsystem, meaning that they run asynchronously.
However, within each subsystem the actions of the modules are coordinated.
It is convenient to think of subsystems as making computations step-by-step.
Within the subsystem these computation steps are atomic acts.
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A (process)

B (process) C (activity)

D (process) E (activity)

F (process) G (activity)

H (process) I (activity)

Figure 2.3: Structured Subsystem

At each computation step, each module within the subsystem selects an
enabled transition to fire, if any. It does not necessarily fire this transition
since its actions will be constrained by the condition of other modules in the
subsystem.

Within any subsystem, ancestors always have priority over descendants.
Thus if an ancestor and a descendant have enabled transitions, the descendant
may not fire its transition. Starting with the root of the subsystem, modules are
recursively given a chance to fire as follows. If the module under consideration
has any enabled transitions, it will select one and fire it. If it does not have any
enabled transitions there are two cases to consider: activities and processes. If
the module is an activity, it will non-deterministically choose one of its children
and give it a chance to fire. If a module is a process, it will give all of its children
a chance to fire (in parallel).

A complex subsystem of modules is shown in Figure 2.3. Consider the
following computation steps in this example:

• Module A has an enabled transition. In this case, only module A will fire
its transition, regardless of whether other modules have enabled transitions
or not. A is the ancestor of all the other modules and thus has priority
over all of them.

• Modules D , F , G , H and I have enabled transitions but other modules do
not. In this case, module D and one of G or I will fire their transitions.
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GameServer
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DaemonServer
channel

Daemon

Game

Player

ip D

ip D

ip P

ip G

Figure 2.4: Simple Game System

D , as parent of processes F and H , has priority over them. As children
of an activity, only one of G or I may fire. Since the nearest common
ancestor of D and G or I is the process A, these will fire in parallel.

• Modules F , G , H and I have enabled transitions but other modules do
not. In this case, both modules F and H and one of G or I will fire their
transitions. This is the same as the immediately previous case, except
that D has no enabled transitions so its children, F and H , fire their own
transitions. As children of a process, F and H run in parallel.

Enabled process siblings are thus synchronised and run in parallel, while
enabled activity siblings are interleaved.

2.6 Example

To make the ideas of Estelle clearer, the following sections use a simple form
of the Daemon Game example elaborated in Chapter 5. Reference will be made
to the Daemon Game as necessary when introducing more advanced concepts
in Estelle.

The simple example is a game, not a communications protocol, because the
aim is to concentrate on the details of Estelle rather than a protocol. The
game is simpler than most protocols, and yet it is sufficiently complex that it
provides a vehicle for explaining most of the features of Estelle.
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Figure 2.5: Simple Game Automaton

Imagine the following game machine: each time the player plays, the ma-
chine reports either that the player wins or loses. The choice depends on the
actions of an internal ‘daemon’ that goes ‘bump’ at random times. If the dae-
mon has made an odd number of bumps, the player wins; if the daemon has
made an even number of bumps, the player loses.

As shown in Figure 2.4, this system may be modelled as three modules: the
Daemon, the Game and the Player . These are connected through two channels,
DaemonServer and GameServer .

The game machine module may be modelled as a two-state finite automaton:
one state corresponds to an even number of bumps, the other to an odd number
of bumps. There are four transitions as indicated in Figure 2.5. The notation
for transitions is ‘input/output ’. A ‘•’ indicates an empty input or output.
Two of the transitions require input from interaction point D associated with
the DaemonServer channel and respond to a Bump by changing from ODD to
EVEN or from EVEN to ODD . The other two transitions require input from
interaction point P associated with the GameServer channel4. They respond
to a Probe with a transition that does not change state but outputs either a
Win or Lose response.

The Daemon and Player modules can be modelled as finite automata, each
with a single state, as shown in Figure 2.6. The automata are trivial and can
be represented easily in Estelle.

2.7 Language

This section concentrates on the language used to express specifications in Es-

telle. The language has three major components, each one oriented toward

4This channel is connected to a Player module, hence the choice of P as the identifier for
the interaction point.
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Figure 2.6: Daemon and Player Automata

expressing a different aspect of the model:

• the channels

• the actions of the finite automaton

• the structure of the system.

These components necessarily interact, but a conscious effort was made in
the language design to limit the interactions between the parts as much as
possible to keep the resultant language simple.

2.7.1 Describing Channels

A channel declaration names the two roles associated with a channel. It also
determines the interactions that a module assuming a role may initiate and the
parameters that accompany the interactions.

The channel descriptions for the Daemon Game system are as follows:

channel DaemonServer (User, Provider);
by Provider:
Bump;

channel GameServer (Player, Machine);
by Player:
Probe; { Player takes a turn }

by Machine:
Win; { Player wins }
Lose; { Player loses }
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Only the Bump interaction may pass through a DaemonServer channel, and it
must be initiated by the module that assumes the role of the Provider . Three
interactions may pass through a GameServer channel: a Probe initiated by a
Player module, and Win and Lose initiated by a Machine module.

Note that the names of the roles are formal parameters, much like the formal
parameters of a procedure in a language like Pascal. There is nothing special
about them. For example, User and Provider could be uniformly changed to
Taker and Giver with no alteration in the meaning of the specification.

No temporal restrictions can be inferred from the channel description itself,
e.g. a Probe must precede a Win or a Lose. For that it is necessary to look at
how the channels are used by the modules. In many ways, a channel description
behaves much like a type declaration.

Many interactions carry additional information in the form of parameters.
This is indicated by including the parameters and their types with the interac-
tions in the channel specification. One example is the Score interaction of the
GameServer channel in the Daemon Game of Chapter 5.

2.7.2 Describing Modules

There are two aspects of an Estelle module that must be described: those
features that can be seen externally and the actual functioning of the module
itself. Thus there are two corresponding parts to the description of an Estelle

module: the module header and the module body.
In a complete Estelle specification there is a (unique) outermost module.

This module may have neither external interaction points nor exported vari-
ables. Furthermore, instead of being designated a module, it is designated a
specification and its end is followed by a period (as is the final end of a Pas-

cal program). In addition to the usual features of a module, a specification
module may declare a time scale to be used with delay clauses. It may also
declare a default queueing discipline to be used in all modules for interaction
points that do not declare an explicit one.

The module header lists the name of the module, its class (e.g. activity or
process), and its exported variables (if any). It also describes the interaction
points (ip) of the module. In effect, the module header establishes a module
type. For the simple example, the following serves as the module header for the
Game module:

module Game activity;
ip
P: GameServer (Machine) common queue;
D: DaemonServer (User) common queue;

end; { Game }



32 Using Formal Description Techniques

The queueing discipline for each interaction point may be given in the
header. Any interaction point for which the queue clause is not specified uses
the default queueing discipline given for the entire specification. Of course
it is an error if an interaction point has no specified queue discipline and no
specification-wide default has been given.

The module body first identifies the module header to which the body applies
and then describes the actions of that body. Note that several bodies may be
defined for the same header; it is during instantiation that the appropriate body
is selected. This can be useful when the actions of a module may change with
circumstances. Consider the case of the OSI Transport Protocol (ISO (1988))
where there are five protocol classes. A single module header might be declared
for a transport connection. Five bodies, one for each protocol class, might also
be declared, to be chosen according to the class of the connection.

The remainder of this section is concerned with the module body. A body
for the Game module of the simple example is as follows, corresponding to the
finite automaton shown in Figure 2.5:

body GameBody for Game;
state EVEN, ODD; { Records parity of bumps }

initialize
to EVEN
begin
end;

trans
{ *** Player makes guess *** }
when P.Probe
from EVEN to EVEN
begin
output P.Lose

end;
when P.Probe
from ODD to ODD
begin
output P.Win

end;

{ *** Daemon bumped *** }
when D.Bump
from EVEN to ODD
begin
end;



Introduction to ESTELLE 33

when D.Bump
from ODD to EVEN
begin
end;

end; { GameBody }

A module body is much like a Pascal procedure. It may declare local
types, variables, functions and procedures. As discussed later, it may even
declare modules within itself. It must declare any states or sets of states used
within the module. It should initialise the state of the module and any variables
that must have known values. The actions of the module body are described as
transitions.

Transitions

Each transition is controlled by a guard that consists of several clauses. Each
clause corresponds to a keyword in Estelle. The transition may fire only if the
guard clauses are satisfied. Beyond the usual scoping effects, the order of the
clauses is immaterial. In other words, there would be no significance to writing
the when clause before the from clause; the clauses could be rearranged with-
out changing the meaning, except for changes that occur in the interpretation
of variables resulting from the rearranged scopes.

The purpose of the various guard clauses is as follows:

• when specifies an interaction point and the interaction that must be at
the head of the queue associated with that interaction point

• from specifies the control state (or states) that the automaton must be in

• to specifies the control state (or states) that the automaton may be in at
the end of the transition

• provided specifies conditions that must hold, usually involving context
variables as well as parameters from an interaction

• priority specifies the priority to be associated with the transition

• any is a macro-like schema, meaning that one copy of the transition ex-
ists for each object in the domain over which the any ranges, with the
appropriate substitutions made

• delay specifies time requirements for spontaneous transitions that must
be met before the transition is enabled.

The when clause specifies an interaction as well as the interaction point
through which the interaction must have come into the module. Any parameters
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associated with the interaction (as specified in the channel description) are
defined; their values are the ones passed with the interaction. This mechanism
is much like associating values with parameters of a function, the main difference
being that the names of the variables are those given in the channel definition;
they may be repeated as part of the when clause, but they need not be.

As an example, consider how to define the Player module of the Daemon
Game in Chapter 5. There the GameServer channel supports an interaction
initiated by theMachine. It is called Score and has an integer parameter, nwon.
The header of the Player module states that the channel is attached at inter-
action point G . Thus a transition guard could say ‘when G.Score’ or ‘when
G.Score(nwon)’. The meaning is the same in either case. The second form
serves to remind the reader of the variables that are defined by the interaction.
The first form is convenient in the case where there are many such variables and
it would be cumbersome to list them each time. In the example, the integer
variable nwon would be defined and would have the value associated with it
during the transition of the Game module that initiated the Score interaction.
This would be achieved with the statement ‘output P.Score(NCorrect)’.

If the interaction point associated with an interaction is one of an array
of interaction points, the when clause is usually within the scope of an any
clause, as in the following example:

any n : 1..3 do when ipt[n].open
begin
variable := n

end

The any clause indicates a macro-like expansion of the remainder of the
transition that follows it, giving in this case three transitions:

when ipt[1].open
begin
variable := 1

end
when ipt[2].open
begin
variable := 2

end
when ipt[3].open
begin
variable := 3

end
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The from clause specifies the state (or set of states) in which the transition
is applicable. The transition may be considered only when the control state of
the automaton is the specified state (or is in the set of specified states).

The to clause specifies the control state which the automaton will be in at
the end of executing the transition. If the to clause specifies same, the control
state will be the same after executing the transition as it was before executing
the transition. This is particularly useful if the from clause contains a set of
states. When considered as part of the guard of a transition, the value of the
to clause is always true.

The provided clause is a Boolean expression that must evaluate to true
for the transition to be enabled. As all Estelle functions are pure and conse-
quently may have no side-effects, evaluation of the provided clause has no effect
beyond returning a value of true or false. The Estelle keyword otherwise
enables the specifier to give a default case, as in:

provided Condition1
. . .

provided ConditionN
provided otherwise

. . .

The meaning of the provided otherwise clause in this case is:

provided not (Condition1 or
. . . or ConditionN)

The priority clause, if present, explicitly gives the priority of a transition.
Otherwise, the transition has an implicit priority lower than any explicitly given.
Priority is indicated by a non-negative integer value, with higher integer values
representing lower priority. A transition with priority value n can be enabled
only if no transition is enabled in the same module with priority value k for
k < n.

The any clause is expanded like a macro, with the variable controlled by the
any being substituted throughout its scope. The example given in discussing
the when clause should help make this clear.

A delay clause may be associated only with a spontaneous transition, i.e.
one that has no when clause. There are two forms of the clause: ‘delay(d1, d2)’
and ‘delay (d)’. The second of these forms is essentially equivalent to writing
‘delay(d, d)’5.

In the first form, d2 may be ‘* ’, which means ‘forever’. A transition may
be eligible to be fired after its guard has remained true for d1 time and must

5The only difference between the two forms is that ‘delay(d, d)’ would evaluate d twice,
while ‘delay(d)’ would evaluate it once. Since Estelle expressions may have no side-effects,
it is difficult to tell these two cases apart.
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be eligible to be fired after d2 time. This means that if it is the only transition
available after d2 time, it must be fired. If d2 is forever, it may happen that
the transition will never be fired.

Delay clauses may be used to establish time-dependent behaviour of proto-
cols. For example, if a retransmission is required when a PDU is not acknowl-
edged within a certain time, a suitable transition would be:

from PDUSent to same
provided (NumRetrans < MaxRetrans)
delay (RetransTimeout)
begin

. . .

end

If an acknowledgement of the PDU is received, the control state would be
changed from PDUSent to another state, thus disabling the from part of the
guard and stopping the delay timer. In a slightly more sophisticated protocol,
a retransmission might be permitted after a short delay but required after a
longer delay. This might be described by changing the delay clause above to:

delay (RetransPermitted, RetransRequired)

Transitions may have names attached to them. These have no formal mean-
ing as far as Estelle semantics are concerned (they are regarded as syntac-
tically restricted comments). They are merely for the convenience of having a
way of talking informally about a specific transition. Some software tools make
provision to deal with these names. The transition is named by placing the
keyword name followed by an identifier followed by a colon before the begin
of the transition block, as in the following example:

when P.Probe
from EVEN to EVEN
name Trans 1:
begin
output P.Lose

end;

Nesting Transitions

To facilitate a structured programming style, transitions may be nested. Recall
the transitions of GameBody in the simple example. Two of them require
D.Bump interactions. With no change in meaning, they could be rewritten as
follows:
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when P.Probe
from EVEN to EVEN
begin

. . .

end
from ODD to ODD
begin

. . .

end

when D.Bump
from EVEN to ODD
begin

. . .

end
from ODD to EVEN
begin

. . .

end

The meaning is the same as if the ‘when D.Bump’ clause were repeated
before the second from clause. The statements between begin and end (here
indicated by dots) determine the action of the transition. The two transitions
that require P.Probe interactions have been treated similarly.

Alternatively, the transitions might be organised as follows to emphasise the
actions available in each of the states6:

from EVEN
when P.Probe
to EVEN
begin

. . .

end
when D.Bump
to ODD
begin

. . .

end

6Rewriting these transitions relies on the fact that the guard clauses of a transition may
be reordered without changing their meaning, so the from clause may be written first.
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from ODD
when P.Probe
to ODD
begin

. . .

end
when D.Bump
to EVEN
begin

. . .

end

There is nothing unique about thewhen or from clause: any of the enabling
clauses may be nested. The first keyword following end indicates how many of
the clauses that controlled the previous transition to ‘throw away’. Repeating
the keyword trans starts a new transition structure; none of the guards of the
previous transition applies after trans. In well-structured protocol descriptions,
multiple levels of nesting are frequently used.

Freedom in nesting encourages the specification writer to organise the spec-
ification in some coherent way. A specifier who regards the specification as
event-driven may choose to order the transitions by when clauses, and then
nest the remaining clauses within the when clauses. Within these, the specifier
may choose to order and nest the from clauses. Alternatively, a specifier who
regards the actions of the automaton in any given state as the key idea may
first choose to order and nest the from clauses, and then to order and nest
the when clauses. Another specifier may choose to order by priority, using
the highest priority transitions as a form of error pre-processor. This would
simplify the rest of the description since transitions of ordinary priority would
not have to deal with errors. In short, the nesting facility of the language helps
the specifier organise ideas and convey meaning.

State Sets

As a convenience, Estelle allows sets of states in a from clause. State sets
may be defined in a separate section, similar to the Pascal var section (and at
the same level of the language as the var section). A state set may be used as
the from designator in a transition. A special designator, same may be used in
the to clause (i.e. the to clause may be ‘to same’). This means that the control
state of the automaton does not change as a result of firing the transition; it is
especially useful for those transitions that apply to several states. For example,
if EITHER = [EVEN, ODD] defines a stateset, a transition might be specified
as follows (similar to those in the Daemon Game of Chapter 5):
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from EITHER to same
begin

. . .

end

This would have the same meaning as two separate transitions:

from EVEN to EVEN
begin

. . .

end
from ODD to ODD
begin

. . .

end

Pascal

To manipulate the variables in the storage portion of the extended finite automa-
ton, Estelle uses a language based on ISO Pascal, level 0 ISO (1982)7. Some
changes to Pascal have been introduced in Estelle, however. For example, as
Estelle is a specification technique, integers and real numbers are considered
to be integers and real numbers in the mathematical sense: implementation-
dependent constraints such as maximum size or precision of real numbers are
irrelevant. Similarly, those features of Pascal that relate to file manipulation
(file, text , get , put , read , write, readln, writeln, eof , eoln) were removed from
Estelle, as was the keyword program. The use of goto was constrained as
indicated below.

In keeping with the choice made for Pascal, Estelle is case and font
insensitive. It makes no difference if an identifier or keyword is written in bold
or italic, in upper case or lower case or a combination of these.

Furthermore, to simplify the language, functions and procedures may not
reference non-Pascal objects (e.g. module variables, interaction points, inter-
actions and states). As a consequence, the Estelle statements all, forone,
and exist within a procedure or a function may use only finite ordinal types
as their domain lists. As a further consequence, the Estelle statements init,
release, terminate, connect, disconnect, attach, detach, and output can-
not be used in a procedure or a function. The intention of this is to increase
the visibility of the automata-based actions of a module by ensuring that they
are not hidden in subroutines. An unfortunate consequence of this is to prevent
simple subroutines that, for example, output error reports or output acknowl-
edgements.

7Level 0 Pascal excludes conformant arrays, which are included in level 1 Pascal.
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Procedures and Functions

Procedures and functions may, of course, be used in Estelle as in Pascal.
Because Estelle is to be used for specifications, functions may be declared as
returning any defined type, not just the simple types allowed in Pascal.

The examination of a guard for a transition will usually entail evaluating
functions when evaluating the provided clause. As a consequence of this,
and also to avoid effects of evaluation order in expressions, it is necessary that
functions have no side-effects. This is ensured by requiring that all Estelle
functions be demonstrably pure. The full definition of this term is given in
the Estelle Standard, but the essential ideas are that it may alter the values of
only its local variables, it may have no var parameters, and it may not be passed
pointers or data structures containing pointers. It is also possible to express the
intention that a procedure have no side-effects in Estelle with the keyword
pure. If a procedure is declared pure, it must satisfy the same requirements
that a demonstrably pure function does, except that a pure procedure may have
var parameters and it may modify these.

Some functions and procedures in an Estelle description may be left en-
tirely to the implementer. These are described by the keyword primitive. Such
functions and procedures are required to be pure. They are often the access
methods for data types that are declared to be ‘. . . ’. For instance, the following
declarations might be given for a stack:

StackType = . . . ;

procedure Push(value: ValueType; var stack: StackType);
primitive;

procedure Pop(var value: ValueType; var stack: StackType);
primitive;

The intent of the specification writer should be made plain with a comment
to the effect that Push stores value into stack, while Pop removes the most
recently pushed value from the stack provided the stack is not empty. The point
is that, presumably, the system being described does not depend on how the
implementer chooses to implement stacks, so details about stacks are omitted.

As Estelle has no abstract data typing mechanism, assumptions about
primitive procedures and functions must be formalised to enable reasoning
about Estelle descriptions that include them. Assumptions about types de-
clared to be ‘. . . ’ must similarly be formalised.

2.7.3 Specifying Structure

Some of the structure of a system is indicated by the organisation of the spec-
ification itself; nesting the description of one module inside the description of
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another module shows the hierarchical relationship of the modules. When in-
stantiated, the inner module will necessarily be the child of the outer module.

Module instances are created and destroyed dynamically by the use of init,
release, and terminate operators during transitions and initialisation. It is
useful to note that an inactive module, one that has no transitions other than
its initialisation, will never alter the module and connection structure it cre-
ates during its initialisation. Thus system modules (with the systemactivity
or systemprocess attribute) will create a structure during initialisation that
thereafter remains static.

Modules may be bound and unbound through interaction points using con-
nect and disconnect as well as attach and detach. The following shows the
initialisation of the simple game system:

modvar
DaemonInstance: Daemon;
GameInstance: Game;
PlayerInstance: Player;

initialize
begin
init DaemonInstance with DaemonBody;
init GameInstance with GameBody;
init PlayerInstance with PlayerBody;
connect PlayerInstance.G to GameInstance.P;
connect DaemonInstance.D to GameInstance.D

end;

First, three module variables are declared, one for each of the modules in the
system. As the system initialisation is performed, these modules are initialised
with their bodies. Recall that this causes an initialize transition of the body to
be invoked. Finally, the modules are connected at their interaction points. It is
not necessary to specify the type of channel that is used to connect interaction
points, because this is specified as part of the module header.

2.7.4 Additional Features

Any

Another feature of Estelle that aids dealing with implementation-dependent
types is the ability to declare that a constant may have any value of a given
type. Thus, for example, the maximum number of retransmissions could be
specified as:

MaxRetrans = any integer
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Of course, it might be necessary to guarantee that MaxRetrans is positive. This
may be done by having the initialisation of the system depend on this, as in:

initialize
to StartState
provided (MaxRetrans > 0)
begin

. . .

end

For systems with more complex tests, the tests could be collected into a
Boolean-valued function that would be included as (part of) the provided
clause of initialisation transitions.

For the example just considered, the formal semantics of Estelle require
that some integer be chosen forMaxRetrans before the specification has a mean-
ing. If the integer chosen did not exceed zero, the provided clause would fail
to be satisfied, so initialisation could not take place and the system could not
function.

Attach and Detach

As explained before, the attach operation associates a parent’s interaction point
with a child’s queue. To illustrate this requires a larger specification such as
that of the Daemon Game in Chapter 5. In this specification, the Manager
module attaches its D interaction point to the Distributor module. As a conse-
quence of this, the Bump interactions initiated by the Daemon are not placed
in the queue of the Manager , but rather they are placed in the queue of the
Distributor . Similarly, each time the Manager creates a Game module, it at-
taches its corresponding P[GameNumber] interaction point to the P interaction
point of the GameInstance. When it releases the GameInstance, an implicit de-
tach of the interaction point occurs, so that any interactions that remain in the
GameInstance queue are returned to the Manager queue.

Output

The output statement is used to initiate interactions. It specifies an interaction
point, an interaction, and any required values that accompany the interaction.
The interaction is queued at the receiving module. The identity of the receiving
module is determined by the chain of connect and attach statements that have
been applied to the modules, beginning with the interaction point specified in
the output statement. An example of an interaction without parameters is
found in the simple example:

output P.Win
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An example of an interaction that requires a parameter is found in the Daemon
Game of Chapter 5:

output P.Score(NCorrect)

This second interaction causes the interaction Score with its parameter nwon
set to NCorrect to be queued by the module linked to the P interaction point.

All, ForOne, and Exist

There are three convenient Estelle constructs — all, forone and exist — for
working with finite ordinal types or with sets of modules.

The all statement causes a statement to be executed for each value of the
ordinal type or each module of the module type specified. For example:

type ErrorIndication = . . . ;

begin
. . .

all error : ErrorIndication do S;
. . .

end

This would cause the statement S to be executed once for each element in
the type ErrorIndication. Note that, as with the Pascal for statement, S may
be a compound statement8. The all statement does not impose any order on
the choice of elements chosen from type ErrorIndication, so it is not possible to
predict which will be chosen first. For iteration over types, it might be imagined
that the Pascal for statement could be used, but as the above example shows
it may not be possible to know the smallest or largest value of some types. It
is thus not possible to iterate over such types without the all statement.

The forone statement is of the form:

forone x : T suchthat E do S1 otherwise S2

where E is a Boolean-valued expression and T is either a finite ordinal type
or a module type. If T is a finite ordinal type, each x is chosen in some non-
deterministic order from T until one is found for which E is satisfied. For this
x , the statement S1 is executed. If there is none, then the statement S2 will
be executed.

Similarly, if T is a module type, instantiations of module bodies of that
type are examined in non-deterministic order until one is found for which E is

8This glosses over the possibility that S is a compound statement containing a goto, which
might cause the statement S to be executed for only some of the elements of the domain of
the all statement.
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satisfied. Exported variables of a child may be used in such situations. For ex-
ample, suppose that children are managing connections and that they maintain
and export a variable named SpareCapacity . A statement similar to that below
could be used to find a child with sufficient unused capacity to multiplex a new
connection onto an existing one, or to create a new connection manager if there
were no existing one with sufficient spare capacity9:

forone Connection : ConnectionManager
suchthat
Connection.SpareCapacity > CapacityRequired do
begin

. . .

end
otherwise
begin

. . .

end

The exist expression is of the form:

exist x : T suchthat E

where again E is a Boolean-valued expression and T is either a finite ordinal
type or a module type. It could be used in a situation such as the above to
guarantee that the otherwise case would never be needed. For example, the
transition could have:

provided exist Connection : ConnectionManager
suchthat
Connection.SpareCapacity > CapacityRequired

as part of its guard. If several Connection modules satisfy the suchthat con-
dition, one Connection might be found while examining the provided clause
and a different one may be used in executing the forone statement. The ex-
ist construct can also be used as a guard before a transition that uses an all
statement (see the transition that cleans up after a game in Chapter 5).

Goto

Estelle allows a limited form of the Pascal goto statement. The limitation
is achieved by permitting labels to be associated only with the final end of a
procedure or function. Consequently, any goto leaves the procedure or function
immediately.

9Note that an exported variable is referenced by identifying the module body and the
variable, separated by a dot.
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2.8 Other Information

Real protocols and services are sufficiently complex that automatic tools are
required to analyse them. There is a need for tools such as compilers, editors,
path generators, verifiers and validators to support any FDT. Complete Es-

telle descriptions become quite large, so good tools are needed to make it
easier to work with these descriptions. Tools for Estelle have been developed
in a number of places around the world; some references are given in Chapter 10.

Although the tutorial in this chapter has been fairly complete, it has not been
possible (nor would it have been desirable) to explain every detail of Estelle.
The interested reader will find additional information in various places. First,
there is the International Standard itself, ISO (1989e). There are tutorials
on Estelle by Budkowski and Dembinski (1987), Dembinski and Budkowski
(1989), Tenney (1992) and Linn (1987). In addition, a tutorial addendum to
the International Standard is being drafted, ISO (1991t).
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3 Introduction to LOTOS
1

Lotos was developed to define implementation-independent formal standards
of OSI services and protocols. ‘Lotos’ stands for Language Of Temporal Or-
dering Specification because it is used to model the order in which the events
of a system occur. Lotos has two very clearly separated parts. The first part
provides a behavioural model derived from process algebras, principally from
CCS (Calculus of Communicating Systems, Milner (1989)) but also from CSP
(Communicating Sequential Processes, Hoare (1985)). The second part of the
language allows specifiers to describe abstract data types and values, and is
based on the abstract data type language Act One (Ehrig and Mahr (1985)).

These two aspects of Lotos guided the organisation of this chapter. Sec-
tion 3.1 introduces basic concepts of the language. Section 3.2 presents the
process algebra aspect of Lotos, called Basic LOTOS. Section 3.4 presents
the Act One basis of data typing. Finally, Section 3.5 indicates how these
aspects are combined as Full LOTOS.

The syntax and semantics of Lotos are defined in the relevant standard
(ISO (1989l)). The definition has four main parts: the syntax, the static se-
mantics, the algebraic semantics of data types, and the dynamic semantics of
behaviour expressions. A description of the detailed semantics of Lotos is
beyond the scope of this introductory chapter.

3.1 Basic Concepts

Specification languages have been developed to allow modelling of systems for
the purpose of analysis and design. Lotos uses the concepts of process, event
and behaviour expression as basic modelling concepts.

3.1.1 Processes

Systems and their components are represented in Lotos by processes. A
process displays an observable behaviour to its environment in terms of

1Chapter 3 is by J. Quemada, L. Ferreira Pires, J. A. Mañas, A. Azcorra and T. Robles.
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proc Qproc P

c

a

b

d

proc S

Figure 3.1: Process Structure Example

permitted sequences of observable actions. A process appears as a black box
to its environment since the environment has no information about its internal
structure and mechanisms. Lotos processes interact with each other through
gates.

Figure 3.1 illustrates a Lotos process structure. In this figure, process
S represents a system that interacts with its environment via gates a, b, c
and d. These gates model the logical or physical attachment points between a
system and its environment. Process S is the composition of processes P and
Q. Process P interacts with its environment through gates a, b and c, while
process Q interacts with its environment through gates b and d. Processes P
and Q interact through their common gate b, and are therefore considered to
belong to the environment of each other.

Figure 3.1 could correspond to the following Lotos process definitions:

process S [a, b, c, d] : noexit :=

P [a, b, c] |[b]| Q [b, d] (* behaviour expression *)

where

process P [t, u, v] : noexit :=
t; (u; stop [] v; stop) (* behaviour expression *)

endproc (* P *)

process Q [x, y] : noexit :=
x; y; stop (* behaviour expression *)

endproc (* Q *)

endproc (* S *)



Introduction to LOTOS 49

The identifiers S, P and Q in the example designate the corresponding processes
in the Lotos text. P [a, b, c] represents an instantiation of process P, while
Q [b, d] represents an instantiation of process Q. Notice that the gate structure
of these processes is explicitly described in the process instantiation through
gate identifier lists ([a, b, c] and [b, d]). The operator |[b]| between P and Q
states that these processes interact through their common gate b.

Process declarations are delimited by the reserved words process and end-
proc. Process definitions have a process identifier, a formal gate list, an optional
parameter list, the process functionality, and a behaviour expression. All these
language elements are discussed later. Note that process P in the example is
declared with formal gate list [t, u, v] which is renamed to [a, b, c] when the
process is instantiated (called).

In Lotos, a specification is a special kind of process, namely the one
that represents the whole system. The difference between a process and a
specification is only syntactic, as will be explained later.

3.1.2 Events

Lotos specifications describe observable behaviour of systems. The observable
behaviour is the set of all possible sequences of interactions in which the system
is allowed to participate. Therefore the concept of interaction is fundamental
in the Lotos model. Interactions are represented in Lotos by events. Events
are atomic, instantaneous and synchronous instances of interaction. Each event
is associated with a gate, namely the gate at which the event takes place.

Events model real-life occurrences in an abstract way. The degree of detail
required in the model determines the events to be considered. For example, data
transmission through an interface could be modelled by a single event repre-
senting the whole transmission. Alternatively, the beginning and the end of the
transmission could be modelled as distinct events, or events could correspond
to the transmission of individual bits. All these models represent the same data
transmission at different degrees of detail.

Events can only occur if all processes that are supposed to participate in it
are ready to interact. When an event takes place, all the processes involved in
the event synchronise and have a common view of the interaction. This com-
mon view is interpreted as synchronisation and communication, and guarantees
that processes participating in interactions have access to the same interaction
parameter values. The concept of structured event introduced in Section 3.5
clarifies these ideas.

3.1.3 Behaviour Expressions

The observable behaviour of a system is described in Lotos by means of a
language construct in which the sequences of allowed events are defined. This
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a b

c d a c

abc

Figure 3.2: Examples of Behaviour Trees

construct is called a behaviour expression that defines sequences precisely in
terms of the Lotos semantic model.

Behaviour expressions can be represented graphically as behaviour trees.
This representation is helpful in visualising the sequence of events and their
dependencies, but its practical use is limited to simple cases of behaviour. Fig-
ure 3.2 depicts two examples of behaviour trees. Time in these diagrams runs
down the page. Nodes represent states of a system. Arcs between nodes repre-
sent transitions between states, and are labelled with the corresponding actions.

3.2 Basic LOTOS

Lotos without Act One is called Basic LOTOS. Experience shows that Basic
Lotos is easier to understand than Full Lotos; furthermore, Basic Lotos can
be generalised to Full Lotos in a quite straightforward way.

3.2.1 Basic Constructs

The basic Lotos operators are the ones which allow the representation of any
finite behaviour. Other operators are introduced in order to cope with struc-
turing, readability, and repetitive behaviour. The basic operators deal with
inaction (stop), action prefix (‘;’), and choice (‘[]’).

Inaction

Inaction (specified with stop) models a situation in which a process is unable
to interact with its environment. Inaction can be used to describe deadlock, i.e.
a situation in which no more interactions are possible. Inaction is a degenerate
case of behaviour. It is a kind of null behaviour expression (like an empty
set) since it models the absence of behaviour. In behaviour trees, inaction
corresponds to a node that does not lead to further branches.
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B

a after a

happens B

Figure 3.3: Action Prefix

B1 B2

Figure 3.4: Choice Construct

Action Prefix

When representing observable behaviour, it is often necessary to indicate that an
event occurs before other events. The action prefix construct is used when an
event must occur before the following behaviour expression. The syntax element
that represents an event in Lotos is called an action denotation. Figure 3.3
depicts the behaviour tree associated with the generic behaviour expression a; B
where a is an action denotation and B is a behaviour expression.

Some behaviour expressions illustrating action prefix are:

Error; (Crash; stop)

TelephoneFriend; Conversation; stop

Choice

The choice construct selects one of two alternative behaviours. Given be-
haviour expressions B1 and B2, B1 [] B2 behaves as B1 or B2 depending on
whether the next event is the initial one of B1 or B2 respectively. Figure 3.4
shows a graphical representation of the choice operator.
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Consider modelling the behaviour of a drink dispenser that accepts 10 and 20
cent coins. Introducing a 10 cent coin results in a cup of tea, while introducing
a 20 cent coin results in a cup of coffee. This could be specified as:

(Coin10c; Tea; stop) [] (Coin20c; Coffee; stop)

In the behaviour expression above, B1 is (Coin10c; Tea; stop) and B2 is
(Coin10c; Tea; stop). If the environment (a user of the drink dispenser) offers
Coin10c, behaviour B1 can be selected; after the interaction, only the Tea event
can occur, meaning that only tea can be delivered. Similarly, the Coin20c event
will select behaviour B2, and only coffee can be delivered.

3.2.2 Internal Event

So far, observable behaviour has been described in terms of events that represent
interactions between a system and its environment. However, a system may
make an internal unobservable decision that affects its future behaviour; the
effect of the decision may be significant.

The internal event, represented by i, is a special Lotos event that models
occurrences or decisions that are internal and therefore invisible to the environ-
ment. Although invisible, the occurrence of an internal event may modify the
subsequent externally observable behaviour. Examples of real-life occurrences
that may be modelled as internal events are timeout, system failures, and lack
of resources. The following represents a timeout situation:

(ExpectedAction; stop) [] (i; TimeOut; stop)

Non-determinism

From the point of view of the environment, non-deterministic behaviour
occurs when there are multiple possibilities for behaviour that cannot be con-
trolled by the environment. In such a case, the system may react in different
ways on different occasions to the same sequence of interactions.

Non-determinism can be modelled in Lotos in three ways, combining choice
and the internal event. Suppose that P and Q are behaviour expressions and
that a is an event:

(a; P) [] (i; Q) (* case 1 *)

(a; P) [] (a; Q) (* case 2 *)

(i; P) [] (i; Q) (* case 3 *)
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Case 1 says that event a can take place initially, unless the internal event
occurs and makes the system behave like Q. In this case the environment has
some chance to influence the system if it acts before the internal event. Note
that the concept of time is immaterial in Lotos, so ‘acting before’ refers to an
interpretation of the internal event as a timer or some internal activity that takes
time. Case 2 says that the system decides at the occurrence of the interaction
which one of the a events will take place. Case 3 says that the system will
decide internally whether it should behave according to P or Q. In both cases 2
and 3, the environment cannot influence the outcome of the decision.

The following example deals with the behaviour of an airline reservation
system:

RequestSeat;
(
i; SeatConfirmed; stop

[]
i; NoSeatsAvailable; stop

[]
i; SystemNotAvailable; stop

)

The result of a request for reservation of seats on a flight is completely
unpredictable from the point of view of a client, since a normal client does
not know how the system is organised and whether there are seats available in
advance. The inability of the client to influence the system is modelled with
internal events.

3.2.3 Recursion

A behaviour is very often repetitive or even infinite. With the language con-
structs introduced so far this is not possible since the specification text must
be finite. However, Lotos allows repetition of behaviour to be modelled with
recursive process instantiations.

Consider again the drink dispenser of Section 3.2.1. After one coin has been
inserted, this machine can deliver tea or coffee and then stop. This is probably
not the way the drink dispenser machine should operate since a dispenser that
delivered only one cup of tea or coffee would be a little impractical! A more
realistic dispenser could be specified as:

process DrinkDispenser [Coin10c, Coin20c, Tea, Coffee] : noexit :=
Coin10c; Tea; DrinkDispenser [Coin10c, Coin20c, Tea, Coffee]

[]
Coin20c; Coffee; DrinkDispenser [Coin10c, Coin20c, Tea, Coffee]
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endproc (* DrinkDispenser *)

This example uses recursion to indicate that the behaviour is repetitive: after
a cup of tea or coffee has been delivered then more can be dispensed.

Another example to illustrate recursion is a communications polling device.
This example deals with only the polling operation, and supposes the existence
of three stations:

process PollingOperation [StationA, StationB, StationC] : noexit :=
StationA;
PollingOperation [StationB, StationC, StationA]

endproc (* PollingOperation *)

Here the actual gate list of the recursive instantiation is cycled one place relative
to the formal gate list in the process definition. This allows a cyclic repetition
of events at gates StationA, StationB and StationC, characterising the polling.

3.2.4 Exit

The model of behaviour termination introduced by inaction (stop) is very rough
since defines only abrupt termination. This kind of termination does not allow
a sequence of processes, for example, which is sometimes a useful concept. Lo-
tos models successfully terminating processes though the exit construct. The
interpretation of exit is that a special termination event2 takes place before
stop; this special event indicates successful termination and is distinct from
any ordinary event.

Consider the following example of a login procedure:

process LoginProcedure [LoginReq, LoginConf, LoginAbort] : exit :=
LoginReq;
(
i; LoginConf; exit

[]
i; LoginAbort; LoginProcedure [LoginReq, LoginConf, LoginAbort]

)
endproc (* LoginProcedure *)

In the example, the occurrence of LoginAbort is followed by a new login attempt,
but the occurrence of LoginConf is followed by the special termination event to
indicate successful termination of the login procedure. Section 3.2.7 indicates
how exit can be used in the context of sequential composition of processes.

2The special event denoting successful termination is called δ.
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3.2.5 Parallel Composition

Very often specifiers have to structure specifications or to represent design struc-
tures. These structures, in the case of distributed systems, are generally parallel
instances of functionality. In Lotos, behaviour expressions can be combined
using the parallel construct.

Consider the general behaviour expression B1 |[g1,. . . ,gn]| B2 in which B1

and B2 are behaviour expressions and g1,. . . ,gn is a gate identifier list. In this
behaviour expression, events at gates that belong to the gate identifier list can
occur only with the participation of both B1 and B2. Events at gates that do
not belong to the gate identifier list can occur with the participation of either
B1 or B2 alone.

Return to the example of Figure 3.1. The behaviour expression:

P [a, b, c] |[b]| Q [b, d]

says that behaviour expressions P [a, b, c] and Q [b, d] synchronise at gate b.
In this case the behaviour expressions are process instantiations, but may not
be in general. As another example, consider the following behaviour expression:

(a; stop [] b; c; stop) |[a, c]| (d; a; stop [] c; stop)

Events at gates a and c in the example above can occur only with the
participation of both behaviour expressions; events take place at the other gates
(by inspection, b and d) with the participation of only one of the behaviour
expressions.

Special Cases

Two special cases of the parallel operator can be identified by considering the
extreme cases of pure interleaving and full synchronisation. These two extreme
cases can be represented by language shorthands.

In the case of pure interleaving, interactions of the two behaviour expres-
sions are completely interleaved, i.e. they always occur with the participation
of only one of the behaviour expressions. This corresponds to the case in which
the gate identifier list is empty; the shorthand notation for pure interleaving is
‘|||’. An example of this is the behaviour expression:

(a; b; exit) ||| (c; exit)

The equivalent3 behaviour expression in terms of the action prefix and choice
operator can be deduced by inspection:

3The behaviour expressions are considered to be observationally equivalent to each
other, and so represent the same semantic model. The formalisation of the equivalence relation
used falls outside the scope of this chapter.
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a; (b; c; exit [] c; b; exit)
[]
c; a; b; exit

In the case of full synchronisation, interactions at any gate of the two
behaviour expressions are fully synchronised, i.e. they occur with the participa-
tion of both behaviour expressions. Syntactically this is the case in which the
gate identifier list contains all the gate identifiers appearing in both behaviour
expressions; the shorthand notation for full synchronisation is ‘||’. An example
of this is the behaviour expression:

(a; stop [] b; c; stop)
||
(a; stop [] i; b; c; stop [] d; stop)

The equivalent behaviour expression in terms of the action prefix and choice
operators is:

a; stop [] i; b; c; stop

Note that behaviour expressions do not synchronise on internal events. This is
due to the fact that internal events are not observable.

Multi-way Synchronisation

The concept of synchronisation occurring between two instances of activity can
be generalised to more than two instances, i.e. multi-way synchronisation.
Lotos supports multi-way synchronisation through the combinational charac-
ter of the parallel construct.

As an example, take process instances P [a, b, c] , Q [a, c] and R [a, b] .
The following expression says that events at gate a can happen only with the
participation of all three processes:

P [a, b, c] |[a]| Q [a, c] |[a]| R [a, b]

This example says that events at gate a in Q and in R can happen only with
the participation of both processes. Q [a, c] |[a]| R [a, b] is a new behaviour
expression, so events at gate a in P and in this new behaviour expression (and
thus in Q and R) can happen only with the participation of both behaviour
expressions. The conclusion is that interactions at gate a in the example above
can happen only with the participation of all processes, P, Q and R.
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3.2.6 Hiding

The parallel composition presented so far has a drawback: behaviour expressions
cannot be ‘protected’ from interactions with their environment. This problem
becomes clear with the example in Figure 3.1. There the environment of process
S interacts with processes P and Q. (Notice the parallel operator |[b]|.) To say
that events at gate b represent some kind of internal (unobservable) interaction,
it is necessary to be able to ‘hide’ this gate from the environment. This can be
done using the hide construct. The example of Figure 3.1 can be rewritten
as follows:

process S [a, c, d] : noexit :=

hide b in
P [a, b, c] |[b]| Q [b, d]

where
...

In this new specification of process S, events at gate b are not accessible to
the environment. The hide operator contains a gate identifier list in which
the specifier indicates which gates are unobservable by the environment of the
behaviour expression. In the example the list has a single element, b. Observe
that the gate list in the declaration of process S does not have b, indicating that
gate b is no longer accessible to the environment of S.

3.2.7 Sequential Composition

Action prefix was introduced to allow the explicit representation of temporal
ordering of events. Nevertheless, it is very often necessary to represent temporal
ordering of behaviours. This occurs when the system presents well-determined
phases. In Lotos, temporal ordering of phases can be represented using se-
quential composition of behaviour expressions with the enabling construct
‘>>’.

Consider the generic behaviour expression B1 >> B2. The behaviour ex-
pression B2 is enabled by the behaviour expression B1 if the special δ event
(exit) occurs in B1. As explained earlier, exit indicates successful termination
and allows the sequential composition of behaviour expressions. Notice that if
B1 does not terminate successfully (e.g. it deadlocks), B2 will never be allowed.

Consider a file transfer procedure that starts with a login procedure like the
one in Section 3.2.4. The behaviour expression for this system could have the
following outline:

LoginProcedure [...] >> FileTransfer [...] >> LogoutProcedure [...]
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3.2.8 Disabling

It is very often possible to identify ‘normal’ behaviour in systems which can
be disrupted at any moment by some exceptional circumstance. Examples of
exceptional circumstances are interrupts and errors. In Lotos, disruption of
behaviour is represented by the disabling construct ‘[>’.

The generic behaviour expression B1 [> B2 behaves like B1 until an event
of B2 occurs. B2 is said to disable B1 in this case. After an event of B2 occurs,
the future behaviour is that of B2. If B1 terminates successfully (a δ occurs),
B2 no longer applies.

The following behaviour expression illustrates disabling:

(a; b; exit) [> (d; stop)

The equivalent behaviour expression in terms of action prefix and choice oper-
ators is:

a; b; exit
[]
d; stop

[]
a; d; stop

[]
a; b; d; stop

3.3 Basic LOTOS Examples

The Basic Lotos operators will be illustrated with a simplified treatment of
the two-key system covered in Chapter 11. This is an access control system
that requires insertion of two keys before allowing access. Both keys must be
inserted before one access is allowed. The keys can be extracted only after the
access has occurred.

The following subsections illustrate the basic operators by providing a Lo-

tos behaviour expression and the corresponding semantics (behaviour tree) on
the right.

The first step is the definition of the observable interface of the system.
There are five abstract events for creating a model of the two-key system: In1,
In2, Access, Out1, Out2. The first two of these represent the insertion of the
keys, the third represents the access, and the last two represent the extraction
of the keys.
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In1, In2, Access, Out1, Out2
In2, In1, Access, Out1, Out2
In2, In1, Access, Out2, Out1

✉

✉
In1

✉
In2

✉
Access

✉
Out1

✉
Out2

✉

✉
In2

✉
In1

✉
Access

✉
Out1

✉
Out2

✉

✉
In2

✉
In1

✉
Access

✉
Out2

✉
Out1

Figure 3.5: Action Prefix Operator for Two-Key System

3.3.1 Action Prefix

The action prefix construct allows the specification of sequences of events. This
is not enough for representing the complete behaviour of the system. Sequences
of events represent just possible execution traces. Some valid sequences are
shown in Figure 3.5.

3.3.2 Choice

The action prefix and choice constructs allow the representation of trees. Now
the complete behaviour of the system can be represented. The representation of
the whole behaviour of the system in a tree-like form is only practicable when
the number of states is small, as in the example of Figure 3.6.

3.3.3 Processes

Processes are used for many purposes. One important use is the creation of
infinite behaviours by the use of recursion. Process TwoKey in Figure 3.7
allows an unlimited number of access cycles. Another important use of processes
is the encapsulation of generic behaviour patterns to avoid duplication, as in
process Acc. Gate relabelling is also used in this example.

3.3.4 Enabling

Enabling and exit allow the behaviour of a specification to be structured in
phases, three in this example. Phase 1 is the introduction of both keys. Phase 2
concerns access. Phase 3 is the extraction of both keys.
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In1;
In2;
Access;
(Out1; Out2; stop [] Out2; Out1; stop)

[]
In2;
In1;
Access;
(Out1; Out2; stop [] Out2; Out1; stop)

✉
✑

✑
✑

✑✑✉
In1

✉
In2

✉
Access

✁
✁
✁✉

Out1

✉
Out2

❆
❆
❆✉
Out2

✉
Out1

◗
◗
◗

◗◗✉
In2

✉
In1

✉
Access

✁
✁
✁✉

Out1

✉
Out2

❆
❆
❆✉
Out2

✉
Out1

Figure 3.6: Choice Operator for Two-Key System

TwoKey [In1, In2, Access, Out1, Out2]

where

process TwoKey [I1, I2, Ac, O1, O2] : noexit :=
K1; K2; Acc [I1, I2, Ac, O1, O2]

[]
K2; K1; Acc [I1, I2, Ac, O1, O2]

endproc (* TwoKey *)

process Acc [I1, I2, Ac, O1, O2] : noexit :=
Ac;
(
O1; O2; TwoKey [I1, I2, Ac, O1, O2]

[]
O2; O1; TwoKey [I1, I2, Ac, O1, O2]

)
endproc (* Acc *)

✉
�

�
�✉

In1

✉
In2

✲

❅
❅
❅✉
In2

✉
In1

✛✉

✉
Access

�
�

�✉
Out1

✉
Out2

❅
❅
❅✉
Out2

✉
Out1

✲

Figure 3.7: Processes for Two-Key System
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(In1; In2; exit [] In2; In1; exit)
>>
Access; exit

>>
(Out2; Out1; stop [] Out1; Out2; stop)

✉
✑

✑
✑

✑✑✉
In1

✉
In2

✉
i

✉
Access

◗
◗
◗

◗◗✉
In2

✉
In1

✉
i

✉
Access

✉

✉
i

✁
✁
✁✉

Out1

✉
Out2

❆
❆
❆✉
Out2

✉
Out1

✉

✉
i

✁
✁
✁✉

Out1

✉
Out2

❆
❆
❆✉
Out2

✉
Out1

Figure 3.8: Enable Operator for Two-Key System

Notice that internal events in the behaviour tree of Figure 3.8 appear as a
consequence of the way the enabling operator works. The appearance of these
internal events does not modify the observable behaviour.

3.3.5 Interleaving

The first phase is now modelled as interleaved behaviour that deals with the
insertion of keys in either order. The upper part of Figure 3.9 shows the trees
of the two interleaved behaviours. The tree of the resulting interleaving com-
position is shown in the lower part of the figure. Both behaviours synchronise
on δ despite being composed by interleaving.

3.3.6 Synchronisation

An alternative specification for the system uses the synchronisation operator
instead of enabling. The system can be specified as a number of independent
constraints on valid sequences of behaviour. The independent constraints are
then composed with the parallel operator to define the system. Such a spec-
ification style is called constraint-oriented. A little study will show that
the behaviour expression in Figure 3.10 describes the intended behaviour. The
behaviour trees of the parenthesised expressions are shown on the right.
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In1; exit
|||
In2; exit

✉

✉
In1

✉
δ

✉

✉
In2

✉
δ

✉
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�
�✉

In1

✉
In2

✉
δ

❅
❅
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✉
In1

✉
δ

Figure 3.9: Interleaving Operator for Two-Key System

(
In1; Access; stop

|[Access]|
In2; Access; stop

)
|[Access]|
(
Access; Out1; stop

|[Access]|
Access; Out2; stop

)

✉
�

�
�✉

In1

✉
In2

✉
Access

❅
❅
❅✉
In2

✉
In1

✉
Access

✉

✉
Access

�
�

�✉
Out1

✉
Out2

❅
❅
❅✉
Out2

✉
Out1

Figure 3.10: Synchronisation Operator for Two-Key System
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hide In2, Out2 in
In1;
In2;
Access;
(Out1; Out2; stop [] Out2; Out1; stop)

[]
In2;
In1;
Access;
(Out1; Out2; stop [] Out2; Out1; stop)

✉
✑

✑
✑

✑✑✉
In1

✉
i

✉
Access

✁
✁
✁✉

Out1

✉
i

❆
❆
❆✉
i

✉
Out1

◗
◗

◗
◗◗✉
i

✉
In1

✉
Access

✁
✁
✁✉

Out1

✉
i

❆
❆
❆✉
i

✉
Out1

Figure 3.11: Hide Operator for Two-Key System

3.3.7 Hiding

Hiding provides a powerful abstraction mechanism. Hiding could be used with
this example to obtain a one-key system out of one of the previous specifications
of the two-key system. It is only necessary to hide gates In2 and Out2 as in
Figure 3.11 to achieve this. Although there are internal events composed with
the choice operator, the behaviour of the system is deterministic.

3.4 Data Types

Lotos models data as abstract data types based on Act One. The un-
derlying theory is that of equational models. These have complex semantics
and require complex reasoning about data terms. Since conventional methods
of equational reasoning have to be applied, there are difficulties in theorem-
proving.

Fortunately, most data types in real specifications may be accurately treated
like conventional data structures in a programming language, with functions and
procedures to manipulate them. This section presents an informal and intuitive
view of data types.

3.4.1 Basic Data Type Concepts

There is no predefined data type. A Lotos specification starts with no built-in
data types. Even Booleans (truth values), explicitly required by language con-
structs like guards and predicates, must be defined in each Lotos specification.
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However, commonly required data types can be included from the standard
library to save time and space. For example:

library
Boolean, Set, NaturalNumber

endlib

but specifiers are completely free to use whichever data types they wish, even
modifying the usual understanding of what Booleans are.

Data specifications are collected into type definitions. Lotos types are not
programming language types, but rather a world of things and properties. In
a programming language, a Boolean type is typically a set of data values with
predefined operations. In Lotos a Boolean type is a set of data values and
operations that require to be defined. Although the Lotos view is compatible
with that of a programming language, a Lotos type also deals with properties
of operations and values.

Lotos sorts are distinct sets of data values. The concept of sort in Lotos

corresponds to the concept of type in many programming languages. Expres-
sions have a definite sort. A variable can hold a value of only a specific sort.

Lotos operations correspond to functions and procedures to manipulate
objects. By means of operations it is possible to combine values of the same or
different sorts into aggregate values, or establish relations between them.

Lotos equations define which expressions are considered equal, possibly
using variables that are universally quantified. For example:

∀x : Nat . x+ 0 = 0

Equations state properties that must be satisfied by (any implementation
of) the objects of the type. Equational reasoning must therefore be applied to
value expressions to find out whether they are equal or not. In theory this may
require a complex proof, or may even be unprovable.

In actual practice, however, specifiers usually write equations that can be
treated as rewrite rules. A rewrite rule handles transformations of expressions.
The equation LHS = RHS (‘Left-Hand Side equals Right-Hand Side’) can be
treated as a rewrite rule LHS ⇒ RHS . The rewrite rule is interpreted ‘an
expression that matches the LHS pattern can be rewritten according to the
RHS scheme’.

The intention of rewriting is to reduce an expression to its canonical form.
If rewriting is successful, then dealing with (in)equality of two terms becomes
trivial: rewrite each term to its canonical form and see whether they are identical
or not.

The canonical form is unique, and is sometimes called the normal form.
The canonical form has the following properties:
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• it cannot be rewritten further

• two expressions that can be proved to be equal must yield the same canon-
ical form after applying as many rewrites as possible.

Canonical forms are, loosely speaking, the forms used in computer program-
ming to hold data. Data values are held in arrays, records, sets, etc. All these
are (usually) directly stored in canonical form. For example, the expression
3 + 2 would normally be reduced to its canonical form of 5 rather than be
preserved as an expression involving ‘+’.

Canonical forms are convenient, and rewriting is a simple procedure to un-
derstand. But, is it possible to avoid rewriting loops? Will the canonical form
result after applying every possible rewriting? If there are several possible left-
hand sides that match, is it irrelevant what order the rewriting is carried out?

For a large range of practical cases the answers to these questions are posi-
tive, so there can be confidence in the informal interpretation of the equations
as rewrite rules. This chapter considers equations only as rewrite rules, and it
is taken on trust that this interpretation is correct. The limitations of treating
equations purely as rewrite rules are not explored here.

3.4.2 Basic Types

Here are some basic types to show the relevant syntax:

type Boolean is
sorts Bool
opns
true, false : −> Bool
not : Bool −> Bool

eqns
ofsort Bool
not (true) = false;
not (false) = true;

endtype (* Boolean *)

type NaturalNumber is
sorts Nat
opns
0 : −> Nat
Succ : Nat −> Nat

endtype (* NaturalNumber *)
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The type Boolean has been specified with terms of sort Bool. There are
the usual constants true and false, and the not operation that complements a
Boolean value. A constant in Lotos is simply an operation with no arguments,
as is the case with true and false. Since an operation always returns the same
result for the same arguments, an operation with no arguments always returns
the same constant value. Hopefully the equations for Booleans do not require
further explanation since they are commonly used in programming.

The NaturalNumber type specifies whole numbers (positive or zero), which
should again be familiar. The specification is based on the usual mathematical
approach rather than the conventional arabic notation for numbers. The idea
is to have a single constant 0, and a Succ (successor) operations that yields the
next value. The terms of this sort are:

0, Succ (0), Succ (Succ (0)), Succ (Succ (Succ (0))), ...

Once the above types have been specified, variables of sort Bool and Natmay
be defined. Boolean expressions involving true, false and not may be written.
There may also be natural number expressions involving 0 and Succ.

3.4.3 Extension

Types may be extended with new sorts, operations and equations. Specifying
new sorts provides more sets of data values. Adding new operations expands
the range of expressions that are allowed. Introducing new equations results in
new properties of operations, and new ways of rewriting. Here is an extension
of the natural numbers:

type NaturalExtended is NaturalNumber
opns

+ : Nat, Nat −> Nat
eqns
forall x, y : Nat
ofsort Nat
x + 0 = x;
x + Succ (y) = Succ (x + y);

endtype (* NaturalExtended *)

This enriches the type NaturalNumber with a ‘+’ operation for addition. The
operation takes two naturals and yields the natural that is their sum. The
underscores before and after the operation name indicate that it is an infix
operation (i.e. is placed between its arguments). The equations allow the new
terms that may be written with ‘+’ to be evaluated.

Consider now how to apply these equations to add 3 to 2, something that
would usually be written as 3 + 2 = 5 in arabic digits. The specification of ‘+’
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works as follows, rewriting with the second equation twice and then the first
equation:

Succ (Succ (Succ (0))) + Succ (Succ (0))
⇒ Succ (Succ (Succ (Succ (0))) + Succ (0))
⇒ Succ (Succ (Succ (Succ (Succ (0))) + 0))
⇒ Succ (Succ (Succ (Succ (Succ (0)))))

3.4.4 Combination

Types may be combined to build more complex types. The sorts, operations
and equations of each component are all included to produce the richer type.
For example, a stack of natural numbers is specified with:

type NaturalStack is NaturalNumber, Boolean
sorts Stack
opns
empty : −> Stack
push : Nat, Stack −> Stack
top : Stack −> Nat
pop : Stack −> Stack
IsEmpty : Stack −> Bool

eqns
forall n : Nat, s : Stack
ofsort Nat
top (push (n, s)) = n;

ofsort Stack
pop (push (n, s)) = s;

ofsort Bool
IsEmpty (empty) = true;
IsEmpty (push (n, s)) = false;

endtype (* NaturalStack *)

This defines the new sort Stack. The empty stack is the base case for stacks.
Note that this is the only operation that yields an object of sort Stack without
using another stack as argument. The other operations (push, top, pop and
IsEmpty) work on an existing value of sort Stack.

The equations state the expected properties: the top of a stack is the last
element pushed onto it; popping a stack yields the stack prior to the last push;
and finding whether a stack is empty or not requires checking whether any
element has been pushed onto it.
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3.4.5 Conditional Equations

The applicability of an equation may be made to depend on a Boolean condi-
tion — a premiss. If the premiss holds for a given set of values, the equation
applies for these values; if the premiss does not hold for the values then the the
equation does not apply for them. As an example, an operation to return the
maximum of two naturals might be specified as4:

type NaturalMaximum is NaturalNumber
opns max : Nat, Nat −> Nat
eqns
forall x, y : Nat
ofsort Nat
x ge y =>
max (x, y) = x;

y ge x =>
max (x, y) = y;

endtype (* NaturalMaximum *)

Note that both equations apply when x and y are equal.
For every sort, there is an equality (denoted by the reserved symbol ‘=’)

that says whether two terms can be proved equal according to the equations.
This equality may be used in conditional expressions. However, for technical
reasons there is no direct way to check for inequality (in other words, there is
no predefined 6=). The equations say which things are equal, but do not say
which things are unequal. Apart from equational equality, specifiers may define
their own Boolean equalities. These are operations that yield a Boolean value
for two arguments of the same sort:

eq : Nat, Nat −> Bool

The specifier will provide enough equations to get a true or false result in all
cases. Lotos permits the use of these user-defined equalities in conditional
expressions. In fact, (x eq y) is short for (x eq y) = true. A common reason for
defining Boolean equality is so that inequality can be tested with expressions
like not (x eq y).

Lotos does not support partial functions — those whose arguments are
restricted. There are many cases where partial functions model reality accu-
rately. For example, a specification of a stack would not expect to deal with
expressions like top (empty) and pop (empty). In the absence of appropriate
equations, these are meaningless values in the sorts of natural numbers and
stacks respectively. Some specifiers deal explicitly with errors like this, but

4The standard data type for natural numbers defines operations such as ge (greater than
or equal) and lt (less than).



Introduction to LOTOS 69

there are as many solutions as there are specifiers. Another approach is to ‘pro-
tect’ the use of the stack type in the behavioural part of the language, refusing
to allow illegal operations.

3.4.6 Renaming

It is often the case that types are very similar. For instance, the example below
specifies bit values and parity values. The only differences between these two
types is that they normally use different names, and it is undesirable to mix
these up.

type Bit is Boolean
sorts Bit
opns
0, 1: −> Bit
+ : Bit, Bit −> Bit
eq : Bit, Bit −> Bool

eqns
forall b : Bit
ofsort Bit
0 + 0 = 0; 0 + 1 = 1;
1 + 0 = 1; 1 + 1 = 0;

ofsort Bool
b eq b = true;
0 eq 1 = false; 1 eq 0 = false;

endtype (* Bit *)

type Parity is Bit renamedby
sortnames
Parity for Bit

opnnames
even for 0
odd for 1

endtype (* Parity *)

The renaming facility of Lotos allows a new, completely independent type
to be specified by changing the names of an existing type. Both sort and
operation names may be changed. If a name is not changed, the same name
will be used in the new type. The Boolean operations in type Parity are the
very same ones of Boolean. Type Bit provides 0, 1, ‘+’ and eq. The 0 and
1 operations are explicitly renamed as even and odd respectively. They are
therefore new operations, although similar to those in type Bit. Operations ‘+’
and eq are not explicitly renamed, but since their arguments are renamed (i.e.
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Bit is replaced by Parity), they become new operations with the same name.
This a typical case of operation overloading, i.e. operations with the same
name but different meanings according to their arguments and results.

Renaming is frequently used before extending a type. Suppose natural num-
bers have been specified, and that natural numbers modulo N are required.
Rather than working on NaturalNumber and mixing everything up, it is better
to create a fresh copy of NaturalNumber and extend it to deal with the new
arithmetic. It is a way of protecting the existing type against unintentional
changes.

3.4.7 Parameterisation

Reusability is a major goal of modern software engineering. In order to achieve
this goal, it is necessary that software be decomposed into components that are
made as reusable as possible; parameterisation is a technique that can greatly
enhance this.

Types may be incompletely specified, leaving a gap for further information.
A similar situation arises with functions or procedures in a programming lan-
guage, where an algorithm may refer to formal arguments that are provided
later. When the actual arguments are provided on a call, the algorithm is
applied with these definite values. This can save repetitious programming, re-
ducing the opportunities for making mistakes and simplifying maintenance.

Gaps in data types may be left for sorts and operations. These act as an
interface to the generic type. Requirements may be imposed on this interface
by specifying equations that must hold if actual parameters are to fill the gaps.
Understanding this would require a detailed treatment of the semantics and so
is omitted here.

The example below specifies a stack parameterised by some element sort:

type GenericStack is Boolean
formalsorts Element
sorts Stack
opns
empty : −> Stack
push : Element, Stack −> Stack
top : Stack −> Element
pop : Stack −> Stack
IsEmpty : Stack −> Bool

eqns
forall e : Element, s : Stack
ofsort Element
top (push (e, s)) = e;
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ofsort Stack
pop (push (e, s)) = s;

ofsort Bool
IsEmpty (empty) = true;
IsEmpty (push (e, s)) = false;

endtype (* GenericStack *)

3.4.8 Actualisation

Parameterised types may be actualised5 — instantiated with actual parameters
to fill the gaps. Two stacks are generated below by instantiating the parame-
terised stack with different actual arguments:

type NatStack is GenericStack actualizedby NaturalNumber using
sortnames
Nat for Element
NatStack for Stack

endtype (* NatStack *)

type BoolStack is GenericStack actualizedby Boolean using
sortnames
Bool for Element
BoolStack for Stack

endtype (* BoolStack *)

Actualisation involves a renaming of the components of the parameterised
data type. Formal sorts and operations of the parameterised type are renamed
as sorts and operations of the actual type. Actualisation differs from renaming
in that new names are not invented; they must correspond to names in the actual
argument. Usually, this association is explicit, but if both the parameterised
type and the instantiating type have sorts or operations with identical names,
the renaming may be implicit.

The definition of actualisation in Lotos allows for additional renaming that
is not strictly required for actualisation. This is not theoretically needed but
is rather convenient. Sorts and operations that are not formal in the parame-
terised type may be renamed in the usual way. For instance, the first example
above renames sort GenericStack as NatStack to avoid two definitions of a sort
called GenericStack. For sorts and operations that are not formal, the rules for
renaming apply.

5Lotos syntax requires the spelling ‘actualized’.
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Beh. Exp. A Beh. Exp. B Condition Interaction Type

g ! E1 g ! E2 value (E1) = value (E2) value matching
g ! E1 g ? x : t sort (E1) = t value passing
g ? x : t g ? y : u t = u value generation

Figure 3.12: Interaction Types

3.5 Full LOTOS

Section 3.2 showed that Basic Lotos allows the representation of synchroni-
sation, but it does not allow transfer of data since the concept of data is not
defined for it. Merging the process algebra defined by Basic Lotos and the
abstract data type language allows both synchronisation and transfer of data,
which is necessary in distributed systems.

3.5.1 Structured Events

In Full Lotos, an event has a gate identifier and a list of interaction parameters
called experiment offers. There are two kinds of experiment offer:

• a value offer has the form ! v , where v is a value expression

• a variable offer has the form ? x : s , where x is a variable of sort s.

An event can take place at a gate only the experiment offers match in sort,
value and order. Interaction possibilities are summarised in Figure 3.12. As an
example, the event offer:

g ! Succ (0) ? x : Bool ! false

matches:

g ? x : Nat ! true ! false

but does not match:

g ! Succ (0) ? x : Bool

nor:

g ? x : Nat ! true ! true
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Value matching represents synchronisation by matching of expected val-
ues. An example of this kind of interaction is password checking, in which an
interaction only occurs if the correct password value is conveyed by a user to a
resource.

Value passing represents conventional input-output interactions. One
partner supplies a value (! E1 in Figure 3.12) and the other receives a value
(g ? x : t in Figure 3.12).

Value generation represents the non-deterministic selection of a value for
the interaction variable from among the valid ones. It models the concept of
negotiation, since both partners in the interaction must agree on a value for
the interaction to take place. After the interaction occurs, the variables of both
partners have the same value (x = y in Figure 3.12).

3.5.2 Conditional Behaviour

The behaviour of a system may depend on certain conditions. The conditions
may depend on past events and/or data stored by the system. These conditions
are represented in Lotos as Boolean operations involving process variables or
interaction parameters. A condition may be applied before an event, or be
imposed on its occurrence. The former is represented in Lotos by guards, the
latter by selection predicates.

A guard contains a Boolean expression, called the premiss, and a guarded
behaviour expression. If the premiss evaluates to true, the guarded behaviour
expression is allowed to occur. An example is a system that calculates the
maximum of two natural numbers as follows:

process MaxCalc [input, max] : exit :=
input ? x : Nat ? y : Nat;
(
[x ge y] −> (* x greater than or equal to y? *)
max ! x; exit (* output x *)

[]
[y ge x] −> (* y greater than or equal to x? *)
max ! y; exit (* output y *)

)
endproc (* MaxCalc *)

In this example, x ge y and x le y are the premisses, while max ! x; exit and
max ! y; exit are their respective guarded behaviour expressions. Notice that
guards need not necessarily be disjoint; they are not in this example, since when
x and y are equal then both guarded behaviour expressions are allowed.

The syntax of an action denotation in Full Lotos contains a gate identifier,
an optional experiment offer list, and an optional selection predicate. The
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selection predicate contains a Boolean expression, again called the premiss.
An interaction is allowed to occur only for interaction parameters that cause
the premiss to evaluate to true.

The following example of a public telephone allows international calls only
if the user inserts more than 50 cents:

process Telephone [phone] : noexit :=
phone ? dialled : TelephoneNumber ? money : Currency
[InternationalCall (dialled) implies (money gt Cents50)];

(Conversation [phone] (money) >> Telephone [phone])
endproc (* Telephone *)

3.5.3 Parameterised Processes

Processes can be parameterised with data parameters. Process parameters are
declared in a process definition as formal parameters. In process instantiations
these parameters must be assigned corresponding values, i.e. value expressions
of matching sort to be evaluated.

Consider a scheduler that deals with telephone calls, supporting a first-in-
first-out queue of calls requiring attention. The data type Queue is assumed
to be specified elsewhere with operations Append (add to end), Head (first
element), Tail (all but first) and IsEmpty (at least one element). The scheduler
can be specified as follows:

process TelephoneQueue
[phone, transfer] (waiting : Queue) : noexit :=
phone ? num : Client; (* accept a call *)
TelephoneQueue [phone, transfer] (Append (num, waiting))

(* insert call in queue *)
[]
[not (IsEmpty (waiting))] −> (* check if queue empty *)
(
transfer ! Head (waiting); (* transfer first call *)
TelephoneQueue[phone, transfer] (Tail (waiting))

(* remove first call *)
)

endproc (* TelephoneQueue *)

The queue of calls is updated on each recursive instantiation of the process.
If a call is received, it is inserted in the queue. If there is at least one call in
the queue, the system is prepared to deal with the first one; it is then removed
from the queue. Process TelephoneQueue will be instantiated beforehand in the
specification with an initial queue value (probably the empty queue).
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Operator Conditions Functionality

stop - noexit
exit - <>
exit (v1. . . vn) sort (v1) = s1,. . . ,sort (vn) = sn <s1,. . . ,sn>
act; B - func (B)
B1 [] B2 func (B1) = func (B2) func (B1)

func (B1) = noexit func (B2)
func (B2) = noexit func (B1)
otherwise invalid

B1 >> B2 - func (B2)
B1 [> B2 same as B1 [] B2 same as B1 [] B2

B1 parop B2 func (B1) = func (B2) func (B1)
func (B1) = noexit noexit
func (B2) = noexit noexit
otherwise invalid

act is an action denotation, parop is a parallel operator.

Figure 3.13: Functionality Rules

3.5.4 Parameterised Exit

In Full Lotos, successful termination of behaviour expressions allows values to
be conveyed with exit. An exit may therefore have a parameter list which can
be filled in by value expressions. A special syntax construct any is introduced
to indicate that any value of a sort is allowed for that parameter. Notice that
the parameterless exit of Basic Lotos is the special case of an empty exit
parameter list. Example behaviour expressions with exit lists are:

a ? x : Nat ? y : Nat; exit (Add (x, y))

a ? x : Nat; exit (x, any Nat)
|||
b ? y : Nat; exit (any Nat, y)

3.5.5 Functionality

Each valid Lotos behaviour expression has assigned a static characteristic
called its functionality. The functionality of a behaviour expression is an
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ordered list of sorts that indicates the exit parameter list associated with this
behaviour expression. The rules for the evaluation of functionality are shown
in Figure 3.13. Here, noexit indicates that the behaviour expression does not
terminate successfully at all, while < . . . > indicates a list of exit parameters.

The functionality of a process is defined as the functionality of its behaviour
expression and must be explicitly declared in the process definition. The func-
tionality of a process must match that of its defining behaviour expression.

3.5.6 Parameterised Sequential Composition

Section 3.2.7 explained how behaviour expressions are sequentially composed in
Basic Lotos. Full Lotos extends this concept by also allowing values to be
passed between sequentially composed behaviour expressions.

The following specification defines a system that accepts a natural number
and a Boolean value as inputs, and delivers the the number or its successor
depending on the Boolean input:

(input ? x : Nat ? s : Bool; exit (x, s))
>>
accept y : Nat, incr : Bool in
(
[incr] −>
output ! Succ (y); exit

[]
[not (incr)] −>
output ! y; exit

)

The parameterised sequential composition differs from the parameterless se-
quential composition in that it contains an accept statement. This statement
explicitly lists the parameters that are passed to the enabled behaviour ex-
pression. The functionality of the behaviour expression preceding the enable
operator must match the list of variables in the accept.

3.5.7 Local Value Definition

A local value definition associate values with free variables in behaviour
expressions. This operator allow more conciseness and better readability in
specifications, since it allows (possibly large) value expressions to be replaced
by a single identifier.

Consider part of the specification of a protocol entity whose behaviour de-
pends on the contents of a protocol data unit. The protocol data unit derives
from the data parameter of a service primitive. The formal specification might
read:
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g ? sp : ServPrim;
(
[DataField (PDU (UserData (sp))) eq <>] −> ...

[]
[DataField (PDU (UserData (sp))) ne <>] −> ...

)

Using a local value definition, the equivalent specification would be:

g ? sp : ServPrim;
(
let data : Data = DataField (PDU (UserData (sp))) in
(
[data eq <>] −> ...

[]
[data ne <>] −> ...

)
)

In this case the let statement associates a value with the variable data. This
makes the specification more readable and compact, particularly if data is used
a number of times.

3.5.8 Generalised Choice

There are two types of generalised choice: choice over gates, and choice over
values. These constructs are basically shorthand notations that allow more
compact specifications, and can in most cases be interpreted in terms of choice
and action prefix.

Choice over gates allows a choice of identical behaviour expressions with
some (formal) gates to be replaced by gates from a gate identifier list. For
example:

choice g1 in [a1, a2, a3] []
B [g1, h1]

The equivalent behaviour in terms of choice is:

B [a1, h1] [] B [a2, h1] [] B [a3, h1]

Choice over values allows a choice of identical behaviour expressions with
variables instantiated with different values. An example is:

choice x1 : s1, x2 : s2 []
B (x1, x2)
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where B (x1, x2) is a behaviour expression. The effect of the choice over values in
terms of choice may depend on the behaviour expression which follows. Consider
the case of a behaviour expression consisting of an action prefix expression
followed by another generic behaviour expression:

choice x1 : s1, x2 : s2 []
g ! x1 ! x2; B (x1, x2)

This is equivalent to:

g ? x1 : s1 ? x2 : s1; B (x1, x2)

Consider now a behaviour expression in which the action prefix contains an
internal event:

choice x1 : s1, x2 : s2 []
i; g ! x1 ! x2; B (x1, x2)

In this case the choice over the values is made independently from the environ-
ment. The representation of this behaviour in terms of the action prefix and
choice operators would be:

i; g ! v1 ! w1; B (v1, w1)
[]
i; g ! v2 ! w1; B (v2, w1)

...
[]
i; g ! vk ! w1; B (vk, w1)

[]
i; g ! v1 ! w2; B (v1, w2)

...
[]
i; g ! vk ! wl; B (vk, wl)

where v1 . . . vk is all possible values in sort s1 and w1 . . . wl is all possible
values in sort s2. If s1 or s2 contains infinite different values, the complete
representation in terms of the choice operator becomes infinite. It is therefore
not possible to say that the generalised choice is always a shorthand, since it
sometimes represents behaviours that cannot be interpreted in terms of choice
and the action prefix operators.
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3.5.9 Generalised Parallel Construct

The generalised parallel construct is another shorthand notation that allows
more compact specifications. It is therefore possible to interpret the generalised
parallel operator in terms of parallel compositions of behaviour expressions. For
example:

par g1 in [a1, a2, a3] parop
B [g1, h1]

where B [g1, h1] is a behaviour expression and parop is a parallel operator such
as ‘||’ or ‘|||’. The corresponding behaviour expression in terms of the parallel
operator looks like:

B [a1, h1] parop B [a2, h1] parop B [a3, h1]

3.5.10 Scope

Processes may have local definitions (after the keyword where), in which both
data types and other processes can be defined. This determines rules for access
to type and process definitions by other types and processes. A scope is a
certain piece of Lotos text that controls the accessibility of an element: a data
type, a sort, an operation, a variable, a value or a process. Lotos has scoping
rules similar to block-structured programming languages.

Global type definitions (see Section 3.5.11) can be accessed from any part
of the specification, but local definitions can be accessed only by the process
in which they are defined. Furthermore, some values are accessed only by
behaviour expressions.

3.5.11 Specification

A specification in Lotos is the process that represents the whole system being
specified. However, there are some syntactic differences between a specification
and a process, as summarised in Figure 3.14.

A global type definition is a type definition that is accessible to the overall
behaviour expression, type definitions and processes in the specification. Global
type definitions appear before the key-word behaviour in a specification and
do not exist in process definitions.

Just for illustration, consider the system of Figure 3.1 rewritten as a speci-
fication. A global type definition might be included as follows:
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Syntax Item Specification Process

start of definition specification process
global type definitions yes no
start of behaviour behaviour :=
end of definition endspec endproc

Figure 3.14: Syntactic Differences between Specification and Process

specification S [a, b, c, d] : noexit

type SomeType is (* a global type definition *)
sorts SomeSort
opns SomeOpn : SomeSort −> SomeSort

endtype (* SomeType *)

behaviour
P [a, b, c] |[b]| Q [b, d]

where

process P[a, b, c] ...

process Q [b, d] ...

endspec (* S *)

3.6 Full LOTOS Examples

The capabilities of Full Lotos will again be illustrated with the two-key system
that is further developed in Chapter 11.

3.6.1 Event Structures

In Full Lotos, the definition of system interfaces has to take into account
the data values exchanged at gates. The combination of gates and their value
parameters is usually called the event structure. The first thing to consider
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when describing a system with Full Lotos is the definition of the event structure
of the interfaces.

For the two-key system, the event structures are KI ? x : KeyOps and Access .
Gate KI multiplexes all the lock-related interactions. The type (i.e. insertion or
extraction) and instance (key 1 or 2) of lock operations are defined by the values
of sort KeyOps. The elements of this sort are four constants — In1, In2, Out1
and Out2. Gate Access is used for access to the system. It does not exchange
data values.

The complete specification of the system with these event structures is:

specification TwoKeySystem [KI, Access] : noexit

type KeyOps is
sorts KeyOps
opns In1, In2, Out1, Out2 : −> KeyOps

endtype (* KeyOps *)

behaviour
KI ! In1; KI ! In2;
Access;
(
KI ! Out1; KI ! Out2; stop

[]
KI ! Out2; KI ! Out1; stop

)
[]
KI ! In2; KI ! In1;
Access;
(
KI ! Out2; KI ! Out1; stop

[]
KI ! Out1; KI ! Out2; stop

)

endspec (* TwoKeySystem *)

3.6.2 Selection Predicates

The following changes to the specification illustrate the use of selection pred-
icates. Predicates over KeyOps values have been defined to select the proper
ordering of the lock operations. IsKeyIn checks for a key being inserted, while
IsKeyOut checks for a key being extracted. IsOtherIn checks for the other key
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of the pair being inserted, while IsOtherOut similarly checks for extraction. No-
tice that in spite of having no parameters, the system has memory: each value
identifier following a ‘?’ is like a variable that stores a value for later use.

library
Boolean

endlib

type KeyOps ...

type MoreKeyOps is KeyOps, Boolean
opns
IsKeyIn, IsKeyOut : KeyOps −> Bool
IsOtherIn, IsOtherOut : KeyOps, KeyOps −> Bool

eqns
forall x, y : KeyOps
ofsort Bool
IsKeyIn (In1) = true; IsKeyIn (In2) = true;
IsKeyIn (Out1) = false; IsKeyIn (Out2) = false;
IsKeyOut (In1) = false; IsKeyOut (In2) = false;
IsKeyOut (Out1) = true; IsKeyOut (Out2) = true;
not (IsKeyIn (x) and IsKeyIn (y)) =>
IsOtherIn (x, y) = false;

IsOtherIn (In1, In1) = false;
IsOtherIn (In2, In2) = false;
IsOtherIn (In1, In2) = true;
IsOtherIn (In2, In1) = true;
not (IsKeyOut (x) and IsKeyOut (y)) =>
IsOtherOut (x, y) = false;

IsOtherOut (Out1, Out1) = false;
IsOtherOut (Out2, Out2) = false;
IsOtherOut (Out1, Out2) = true;
IsOtherOut (Out2, Out1) = true;

endtype (* MoreKeyOps *)

behaviour
KI ? op1 : KeyOps [IsKeyIn (op1)];
KI ? op2 : KeyOps [IsOtherIn (op1, op2)];
Access;
KI ? op1: KeyOps [IsKeyOut (op1)];
KI ? op2: KeyOps [IsOtherOut (op1, op2)];
stop
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3.6.3 Parameters and Guards

The following changes to the specification express the same behaviour using
parameterised processes and guards. Process parameters are used as state vari-
ables, while guards place conditions on state variables for transitions to occur.
The model here is of an extended finite state machine.

library ...

type KeyOps ...

behaviour BeforeAccess [KI, Access] (false, false)

where

process BeforeAccess
[KI, Access] (InKey1, InKey2 : Bool) : noexit :=
(
[not (InKey1)] −>
KI ! In1;
BeforeAccess [KI, Access] (true, InKey2)

[]
[not (InKey2)] −>
KI ! In2;
BeforeAccess [KI, Access] (InKey1, true)

[]
[InKey1 and InKey2] −>
Access;
AfterAccess [KI] (InKey1, InKey2)

)
endproc (* BeforeAccess *)

process AfterAccess [KI] (InKey1, InKey2 : Bool) : noexit :=
(
[InKey1] −>
KI ! Out1;
AfterAccess [KI] (false, InKey2)

[]
[InKey2] −>
KI ! Out2;
AfterAccess [KI] (InKey1, false)

)
endproc (* AfterAccess *)
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4 Introduction to SDL1

4.1 Background and Notations

SDL (Specification and Description Language) was first the subject of a CCITT
Recommendation in 1976. It was already then based on a long tradition in
switching system description going back at least to the first computer-controlled
telephone switches. Since the first SDL Recommendation, SDL has evolved from
a small informal drawing technique to an extensive FDT. During this process,
constructs for coping with large systems and an advanced concept of data types
have been added. The data type concept is based on the same kernel as in
Lotos (Ehrig and Mahr (1985)). However, the language has maintained its
original flavour of graphical presentation and still provides a smooth path from
informality to formality in different version of the description. The recent ver-
sion of SDL (SDL-88) is published as CCITT Recommendation Z.100 (CCITT
(1988)) together with a User Guidelines document (CCITT (1988), Annex D)
and a formal definition (CCITT (1988), Annex F).

The language is maintained by CCITT, and a new extended version is ex-
pected to be recommended in 1992. A complete definition of SDL-92 is given
in CCITT (1992s).

This chapter mainly covers SDL-88, because the examples of the book are
written in SDL-88. Some aspects of SDL-92 are mentioned in Section 4.8.
CCITT (1991) discusses the object-oriented extensions. A few concepts have
been simplified in SDL-92 compared to SDL-88; for these concepts, the SDL-92
semantics are used in this chapter.

Although the name ‘SDL’ indicates use for specification and description,
SDL is widely used today for other purposes such as design, high-level pro-
gramming and simulation.

This chapter uses the graphical representation as much as possible. How-
ever several simple language constructs have only a textual representation. The
graphical representation is called GR (Graphical Representation), while the tex-
tual representation is called PR (Phrase Representation). Automatic translation

1Chapter 4 is by O. Færgemand.
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between PR and GR and vice versa is always possible. The description of the
PR uses the following conventions:

bold is used for a keyword
italics is used for a non-terminal construct

| represents choice between different constructs
[ ] represents an optional construct
{ } is used to group constructs.

In most cases where some concept is described as a list, e.g. signal identifier
list, the elements in the list are separated by commas. In the few cases where
this is not so, the separator will be mentioned explicitly.

The syntax given in this chapter is not complete; optional parts of produc-
tions with no connection to the text are omitted, and so are several constructs
of the language. This has been done to limit the size of the presentation. A
complete presentation of the syntax is given in CCITT (1988), Annex C.

4.2 General Model of SDL

A system is described as a number of extended finite state machines commu-
nicating by exchanging messages with each other and with the environment of
the system. The state machines work in parallel, and several occurrences of the
same state machine may concurrently exist.

The finite state machine is extended in the sense that local variables for each
machine may hold details about the history of the machine. Also branching is
allowed on state transitions for splitting into several sequences of actions. The
behaviour of a state machine is described by a start node, interpreted when
the machine is started, and a set of transitions, interpreted when the machine
receives a certain stimulus in a certain state. Part of a transition may be the
output of messages. After interpreting a transition the machine enters a new
state. The extended finite state machine is modelled by the process concept.
One occurrence of a process is called a process instance. Interpretation of a
system thus consists of interpretation of process instances. A variable is local
to the process instance owning it. This locality leads to restrictions, of course:
no information exchange is possible by means of access to global data. This
means, for instance, that one needs to model the access to a global database
by explicitly sending query messages to the database and receiving explicit
response messages. However, the locality of data is an intuitive and safe model
of a distributed, parallel system. All communication between a system and its
environment and within a system is achieved by sending messages, rather like
letters in a postal service.
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A message is modelled by a signal. A signal may carry with it a list of
values. In this case the signal must be defined with a list of data types for the
values carried by the signal. The SDL term for a set of values is a sort. A signal
is sent from one process instance to another or between the environment and
process instances within the system. When sending a signal one may directly
specify the process instance for which the signal is intended or leave it to the
system to identify the receiving process instance. In the latter case the receiver
is derived from the signal name together with the place of the sender in the
system. In addition to the explicit values that may be carried by a signal, any
signal carries information about the process instance which sent it, and about
the process instance it is sent to. By an analogy with postal service, each letter
delivered is marked with the identity of the receiver and the sender.

Address information is expressed using the sort PId (Process Identity). A
PId value identifies a process instance. All PId values are unique, and each time
a process instance is created a new, unique PId value is associated with that
process instance. Each process instance contains four predefined imperative PId
expressions (see Section 4.6.2), useful for communication with other processes:

self: the instance itself

sender: the instance from which the most recently consumed signal was sent

parent: the instance that created this one (see Section 4.5.4)

offspring: the instance most recently created by this one (see Section 4.5.4).

The PId value Null is not used for an existing process. By definition, self
will always be different from Null . For sender, Null indicates that no signal was
consumed by the process so far. For parent, Null indicates that the process
instance was created at system initialisation time. For offspring, Null indicates
that no instance so far was dynamically created by this instance.

Communication in SDL is asynchronous, i.e. no synchronisation is required
between sender and receiver. To each process instance an unlimited buffer is
attached to hold all received signals not yet consumed. In the postal anal-
ogy, each process instance has its own mailbox, and it is assumed that this
mailbox is always sufficiently large to hold the mail until the process instance
deals with it. The mailbox is thus an unbounded buffer, which is called the
input port of a process instance. No priorities are associated with the input
port. However, it is possible to retain specific signals in the input port when
required (see Section 4.5.3). This can be used to model priorities for signal
reception. In the postal analogy, a process instance can, in certain states (e.g.
‘very busy’), ask its input port to protect it from unimportant signals (e.g.
‘junk mail’). Unimportant signals (the ‘junk mail’) are still kept in the input
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port. In addition to these properties of the input ports, signals may be delayed
non-deterministically during transmission between major system components
(channel delay, see Section 4.4.1).

The rationale behind the asynchronous communication and the channel de-
lay is to model a distributed and loosely coupled system. A system with asyn-
chronous communication has a looser coupling between agents than one with
synchronous communication. A sender in an asynchronous system can never be
stuck because another communicating agent is not ready to communicate; it is
always possible to mail a letter, as opposed to establishing direct conversation
with the receiver of the letter.

4.3 General Rules

4.3.1 Nesting of Diagrams

An SDL description consists of a number of nested structures or scopes. Most
of these are shown as a diagram. A diagram is surrounded by a rectangular
frame, which may be implicit if the diagram covers a whole page. A diagram
which is nested in another diagram is conceptually drawn within that enclosing
diagram. In order to split the complete description into separate diagrams, the
actual occurrence of a nested diagram within another diagram may be replaced
by a symbol referring to the inner diagram. The reference symbol contains
the name of the inner diagram and has a shape characteristic of the diagram
being referenced. Figure 4.1 shows the various reference symbols.

4.3.2 Names

A name consists of one or more words separated by spaces, underlines (‘ ’) and
control characters, e.g. line-feed. A word consists of alphanumeric characters
and full stops (‘.’), and must contain at least one alphanumeric character. Thus
‘3.4’ is a correct word but ‘..’ is not. A word cannot be a keyword. In most
places, underline can be replaced by space as a separator between words. The
split of a name into several words enhances the readability of a specification.
An underline symbol followed by a control character is ignored. This allows a
word to be split over several lines, which is very useful within the limited space
of the graphical symbols.

4.3.3 Scope of Names

All diagrams and some constructs with no GR define a scope. Every name
is visible in the scope in which it is defined and in all enclosed scopes. For
example, a signal name defined at the system level is visible at the system level
and in all scopes within the system, i.e. in the whole system.
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block  reference

procedure reference

process reference

service reference

channel substructure reference

Figure 4.1: Reference Symbols

State (see Section 4.5.2) and connector (see Section 4.5.5) names have special
scope rules. They are visible only within the single process or procedure2 in
which they are used. This is because states and connectors are local points-of-
control within these entities.

4.3.4 Some General Symbols

Text Symbol

When textual definitions are needed in a diagram, a text symbol encloses the
textual definitions in order to distinguish them from the graphical symbols. The
text symbol is shown in Figure 4.2.

Comment

A comment is a piece of explanatory text insignificant for the formal interpre-
tation of the document, rather it increases the readability. There are two kinds
of comments; the distinction between them originates from the graphical rep-
resentation. A special comment symbol (see Figure 4.3) can be attached to

2Similar visibility rules apply within services, but the service construct is not covered
further in this chapter.



90 Using Formal Description Techniques

signal an item carrying
no further information;

Figure 4.2: Text Symbol

'this is
informal'

this is a
comment

'this is
informal

and extends
here'

Figure 4.3: Comment and Text Extension Symbols

any symbol. It indicates that its enclosed text is a comment to the symbol it is
attached to. It is also possible to define comments by enclosing any text in the
characters ‘/∗’ and ‘∗/’.

Text Extension

If text does not fit inside a symbol, it is possible to attach a text extension
symbol (see Figure 4.3). The text extension symbol is attached by a solid line
and the text in the text extension symbol is a continuation of the text in the
symbol it is attached to.

4.3.5 Informal Text

Informal text is a piece of a specification that has no formal interpretation. It
is, however, part of the specification unlike a comment. Informal text may be
formalised at a later stage or be left informal, to indicate a part of the system
that is not required to be formally specified. An example is shown in Figure 4.3.
Informal text is written as a string of characters. Section 4.5.4 elaborates on
the use of informal text.
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4.4 Structure

4.4.1 Structuring the System Level

A system consists of a number of blocks connected by channels. A block is an
enclosure for further structuring of the system, i.e. a new, nested system in its
own. Channels connect the blocks with each other and with the environment
of the system. A channel may be a one-way or two-way connection. It is
characterised by the signals that it may carry; these constitute the signal list(s)
of the channel. A channel has a signal list for each direction. One or two arrow
heads at the middle of the channel indicate the direction(s) of the channel.
Signal lists are enclosed by square brackets. Figure 4.4 shows a system diagram.
The following constructs are used:

system: s

block references: a, b

channels: c, d, e

signals: p, t

signal lists: [p], [p, t ], [t ]

text symbols: used for placing textual definitions in the diagram.

Signal definitions are placed in a text symbol, since there is no GR for signal
definitions. A signal definition has the format:

signal signal name [(sort identifier list)];
When several signals are conveyed on a channel or signal route (see Section 4.4.2)
it is useful to define a shorthand for the list of signals. A signal list definition
attaches a name to this:

signallist signal list name = signal identifier list ;
The signal list name can then be used as a shorthand. A signal list name is
distinguished from signal names by enclosing it in parentheses.

4.4.2 Partitioning

A block may be described by a block substructure diagram or a block diagram.
The two diagrams give different perspectives on the internals of a block. A block
substructure is used for further partitioning, whereas the block diagram defines
the behaviour of a block in terms of the processes contained in the block. It is
possible to give both diagrams for the same block. This is useful if one wants to
state the behaviour of a block at several levels of detail. Before interpreting the
system it is necessary to indicate which alternative in each block to interpret.
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system  s 

signal  p,t; e[t]

      b      a

c[p] d[p,t]

Figure 4.4: Example of a System

Block Substructure

Partitioning into block substructure implies partitioning a block into subblocks
which in turn are blocks. This implies new channels within the block substruc-
ture. A block substructure looks very much like a system. In fact, a system
is a substructure except that signals and sorts defined at the system level are
visible outside the system because they are used in communication with the
environment of the system. Names defined within a substructure scope are not
visible outside that scope according to the normal visibility rules. Figure 4.5
shows a substructure for block b from the example in Figure 4.4. The following
new construct is used here:

connection points: d and e are references to the enclosing structure, and
indicate how the channels of the surroundings (d and e in Figure 4.4) are
connected to channels in the substructure.

Follow the route of signal t from block a. It first enters channel d, then
continues on channel c1 (t must pass along c1, since c4 can only carry signal
p). The signal then enters block a1. The further processing of t inside a1 is not
indicated in the substructure diagram. The interfaces of a substructure must
match its surroundings, i.e. signals carried by channels of the surroundings
leading to or from the substructure must also be carried on channels in the
substructure connected to the surroundings of the substructure.
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substructure  b 

signal v; c3[t]

      a2      a1d

e

c1[p,t]

c4[p]

c2[t,v]

Figure 4.5: Example of a Substructure

Block Diagram

A block consists of processes connected by signal routes. A signal route is
a communication path without delay; this makes a signal route different from
a channel. The conceptual difference between a channel and a signal route is
that a channel connects entities in a distributed system, whereas a signal route
connects entities at the same node in the distributed system. Going back to the
postal analogy, a channel is like a sorting office or main distribution route where
delay is inevitable. A signal route, however, is local distribution of letters by a
postman. Delivering letters locally can be done without the delay of the public
mail system. The syntactic difference between signal routes and channels is
that the arrow heads are put in the middle of channels and at the end of signal
routes.

The buffering inherent in channels introduces an additional state component,
which is not always desirable, so SDL-92 allows for channels without delay.
Channels without delay have same semantics as signal routes and therefore the
same notation; the arrow heads are placed at the end of the zero-delay channel
instead of at the middle.

Figure 4.6 shows the block diagram for the block a1 in Figure 4.5. The
following new constructs are used here:

signal routes: ri, r2, r3
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block  a1

    a11 

c2

r2[t,v] r3[t]

c1 a12

ri[p,t]

Figure 4.6: Example of a Block

process references: a11 and a12, indicating that diagrams for processes a11
and a12 describe the actual behaviour of part of the system

dashed arrow: a dashed create arrow, indicating the relation ‘can dynam-
ically create’ between processes, i.e. an instance of process a11 may dy-
namically create an instance of process a12 (see Section 4.5.4).

Channel Substructure

It is possible to describe a channel further as a composite entity. This is use-
ful when describing layered protocols, or when modelling unreliable communi-
cation media. The description of the interconnection medium, which can be
described as a lower layer virtual protocol or a model of a physical communi-
cation medium, is expressed by giving a substructure for the channel. When
interpreting the system, the original channel will not be interpreted, rather its
substructure. Figure 4.7 shows a reference to a channel substructure in block
substructure b. The following new constructs are used here:

channel substructure reference: c3, indicating that the detailed behaviour
of the channel is described in a separate diagram

dashed line: this connects the channel substructure reference symbol and the
channel.
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substructure  b 

signal v; c3[t]

      b2      b1d

e

c3

c1[p]

c4[t]

c2[t,v]

Figure 4.7: Example indicating Channel Substructure

A channel substructure has the same components as a block substructure.
Figure 4.8 shows the channel substructure corresponding to channel c3 in Fig-
ure 4.7. The names at the frame connection points of the channel substructure
diagram are names of the blocks which the substructured channel connects.
Environment env always denotes the surroundings of the substructured entity.
In this example, env denotes the system scope.

In Figure 4.8, a one-way communication on the channel c3 is refined into a
two-way communication between the blocks cs1 and cs2 using the new channels
cf (channel forwards) and cb (channel backwards). This example illustrates the
refinement of a file system where the signal t holds a whole file and the signals
r, i, n within the channel substructure correspond to a record, the number of
record in the file, and getting the next record respectively.

4.4.3 Macros

Amacro is a part of a diagram or text which can be used in more than one place
in a description. In the following, only macro diagrams will be described. A
macro diagram can be used in any diagram. The use of a macro at a certain place
in a diagram is indicated by the macro call symbol, shown in Figure 4.9. A
macro may be called with actual macro parameters which are then substituted
for the macro formal parameters in the call. Macro formal parameters are
indicated by fpar. In the macro call, the lines connected to the macro call
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substructure  c3 

cs1 cs2

signal r(rec), 

i(Integer), n;

cf[r,i]

cb[n]
b2

c3i[t] c3o[t]
env

Figure 4.8: Example of a Channel Substructure

macro
  call

Figure 4.9: Macro Call Symbol

symbol are connected to the lines in the macro definition according to the names
of the entry points in the definition. The macro concept is powerful, but there
are few semantic rules associated with macros, e.g. no type checking of macro
actual/formal parameters is possible. Figure 4.10 shows the macro definition t
with entry/exit points a, b and c and formal parameter x. Figure 4.11 shows
one call of this macro. Note that k will convey a non-negative value on both
branches.
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macrodefinition  t   
fpar  x

a

x

> 0

c b

else

x := x-7

Figure 4.10: Example Macro Definition

q(p)

t(p)

a
b c

k(p) k(-p)

Figure 4.11: Example Macro Call
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4.5 Behaviour

4.5.1 Lifetime of a Process

After describing the structure of the system (the blocks and process references)
and the associated interfaces (channels and signal routes with signal lists), the
behaviour of the system can be described. This is done by describing processes.

Be careful to distinguish between the definition of a process and the vari-
ous instances of a process. The definition is the template for prescribing the
behaviour of process instances. The instances are objects in the interpreted
system. A process has the following features:

lifetime: an instance is created either at system initialisation or dynamically
by another process instance (see Section 4.5.4); it ceases to exist when it
interprets a stop symbol (see Section 4.5.1)

parameters: the actual values are assigned by the parent process instance
during the dynamic creation of the instance

variables: these form in combination with the control state, the complete state
of the instance

input port: it receives and holds signals until consumption

input-set, output-set: the sets of signals used by the process, i.e. the interface
of the process; the input-set is especially important for understanding the
convenient shorthands used in inputs and saves.

The format of a process diagram is shown in Figure 4.12. A process heading
has the format:

process process name [number of instances ] [fpar formal parameter list ]
where the number of instances has the format:

([initial numbers ] [, [maximum numbers ] ])
and a formal parameter has the format:

variable name list sort identifier
The initial numbers value denotes the number of instances for the process cre-
ated at system initialisation, i.e. by static creation. It is optional and defaults
to 0. The maximum numbers value denotes the maximum number of process
instances of the process that may exist at any time. It is optional, and when
omitted implies no limit. The following example shows the heading of a process:

process p (1, 5) fpar x Integer;
where (1, 5) means that one instance of the process will be created at system
initialisation time, i.e. statically, and that a maximum of 5 instances can exist
concurrently. Process p has one formal parameter of name x and sort Integer.
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process heading

local definitions

process graph

Figure 4.12: Process Diagram

Figure 4.13: Start and Stop Symbols

Initiating a Process Instance

Interpretation of a process instance starts by:

• assigning the value of the actual parameters to the formal parameters of
the process

• creating and possibly initialising the variables of the process

• interpreting the start node of the process graph.

The start node is indicated by the start symbol as shown in Figure 4.13. No
text is written inside this symbol. The start node is a normal transition.

Terminating a Process Instance

Interpretation of a process graph stops when the stop symbol is processed.
This symbol is shown in Figure 4.13. It is possible for several stop symbols
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state
    list

Figure 4.14: State Symbol

to appear in a process. When interpretation of the graph stops, the process
instance ceases to exist.

4.5.2 State

When a process is in a state it accepts stimuli from its input port. These stimuli
can be signals received by the input port or expired timers (see Section 4.5.6).
Spontaneous transitions from states is added in SDL-92 (see Section 4.8.2). The
state symbol is shown in Figure 4.14. A state list has the format:

state name list | ∗ [(state name list)]

where ‘∗’ indicates all states of a process. If a process reacts in the same way
to the same stimulus in all states, this notation can be used. The optional state
name list after ‘∗’ indicates all states except those in the list.

The same state may appear at several places in a process. This is advanta-
geous if the description is structured with respect to received signals instead of
being structured with respect to states.

4.5.3 Initiating a Transition

The basic way of initiating a transition is through input of a signal from the
input port of the instance. However, by using the syntactic shorthands con-
tinuous signal and enabling condition it is possible to initiate a transition
based on a logical condition. By means of the save construct it is possible to
change the order of signal consumption.

Consuming Signals

The input symbols connected to the state indicate:

• the variables that are assigned the values carried by the consumed signal

• the transition initiated by consuming the signal.
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input 
    list

Figure 4.15: Input Symbol

Before the input symbol corresponding to the consumed signal is interpreted,
the value of sender gets updated so that it denotes the PId value of the process
that sent the signal. The input symbol is shown in Figure 4.15. An input list
has the format:

stimulus list | ∗

where a stimulus has the format:

{signal identifier | timer identifier} [(variable identifier list)];

The symbol ‘∗’ indicates reception of all valid input signals and timers that
are not mentioned in a certain state. The set of valid input signals consists of
signals conveyed by signal routes to the process and signals defined locally in
the process. The notation is used if a process reacts in the same way to all
stimuli in a certain state.

Keeping Signals in the Input Port

Every valid input signal not mentioned in a state (without the input ∗ short-
hand attached) will implicitly be consumed by the process in the state. In such
a case the input results in an empty transition leading back to the same state.
Signals not explicitly mentioned in an input are thus effectively discarded. To
retain signals in the input port, the save construct must be used.

Mentioning a signal in a save attached to a state means that the signal will
not be retrieved from the input port and consumed in that state. Eventually it
will be consumed in a successive state where it is not mentioned in a save. The
same mechanism can be used for timers (see Section 4.5.6). The save symbol
is shown in Figure 4.16. A save list has the format:

signal or timer identifier list | ∗

where a signal or timer identifier has the format:

signal identifier | timer identifier

The symbol ‘∗’ indicates saving of all valid input signals and timers that are
not mentioned in a certain state. This is useful for modelling a persistent input
port where a signal is always explicitly dealt with.
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save
  list

Figure 4.16: Save Symbol

A

 x  <  7

Figure 4.17: Example of Continuous Signal

Continuous Signals

A continuous signal allows the initiation of a transition without signal re-
ception. The transition following the continuous signal will be taken only if its
Boolean condition has the value True. A continuous signal is convenient for
describing situations that do not lend themselves naturally to signal reception.
Figure 4.17 shows such a situation, where a process can spontaneously leave
state A if x is less than 7.

The priority for initiating a continuous signal is lower than that for initiating
signal reception, i.e. a transition can only be initiated by a continuous signal if
no signal can be consumed.

Enabling Conditions

An enabling condition is a continuous signal followed by an input. The input
will be consumed only if the Boolean condition of the continuous signal has the
value True. This construct is useful for modelling conditional consumption of
a signal.
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output
 body

Figure 4.18: Output Symbol

4.5.4 Transition

A transition may contain the following actions:

output: to send signals

task: to change the value of variables

create: to create process instances

decision: to branch into alternative sequences

call: to activate procedures

set, reset: to manipulate timers (see Section 4.5.6).

Sending a Signal

Sending a signal is indicated by an output symbol. The symbol with its output
body is shown in Figure 4.18. An output body has the format:

send signal address information
where a send signal has the format:

signal identifier [(expression list)]
and address information has the format3:

[to receiver ] [via [all] path];
The expression list applies only if the signal is defined to convey values. The
expressions must be of appropriate sorts according to the definition of the signal
identifier.

The receiver is a PId value that denotes a uniquely identified receiving in-
stance or the identifier of a process. If it is a PId value, it may utilise the
information in self, sender, offspring or parent expressions. If receiver is

3The use of all and a process identifier as receiver are in SDL-92 extensions relative to
SDL-88.
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a process identifier, the signal is sent to an arbitrary instance of the process
denoted. The path denotes a list of communicating paths that are the signal
routes and channels on which the signal sent must be conveyed. The keyword
all denotes a broadcast of the signal via all communication paths mentioned
in path. By analogy with the postal service, the receiver is the address details
normally written on an envelope, and the path is the optional sticker ‘via Air
Mail’.

If the to clause is omitted, the receiver is decided from the static structure
solely. This may introduce some non-determinism into the addressing. Again by
analogy with the postal service, omitting the receiver results in less well defined
actions by the postal service to deliver the letter correctly. (Non-determinism
in the case of no receiver is a simplification in SDL-92 compared to SDL-88.)

Changing the Value of Variables

Values of variables are manipulated in tasks that can be informal or formal.
Although SDL is an FDT, informal specifications are formally (sic) allowed in:

• tasks

• questions and answers of decisions

• axioms in sort definitions.

These constructs deal with the formal handling of data, but they are internal
to a process or sort. This ensures formality in the interfaces but allows infor-
mality within process and sort definitions. Informal text must, of course, be
formalised before the description can be considered complete, but in some cases
a description with some informal text left may be useful. This might apply:

• during development work, when the formal description has not yet been
fully elaborated

• when parts of the specification are intentionally left open-ended.

Syntactically, informal text is written as a character string. Naturally, there
are no interpretation rules for informal text. Figure 4.19 shows the format of
formal and informal tasks. An assignment statement has the format:

variable identifier := expression
Figure 4.20 shows an example where the same meaning (hopefully) is expressed
by formal and informal tasks.

The set and reset operations on timers (described in Section 4.5.6) and the
export operations (described in Section 4.5.8) are also written inside the task
symbol, but they are conceptually not tasks.
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character
  string
    list

 assignment
  statement
       list

Figure 4.19: Formal and Informal Tasks

  x := x+1
'increase
   x by
     one'

Figure 4.20: Example of ‘Equivalent’ Formal and Informal Tasks
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create
 body

Figure 4.21: Create Symbol

Creation of Process Instances

Dynamic creation of a process instance can be requested by an existing instance
in the same block. The reason for restricting creation to processes within the
same block is the visibility rules: the name of the process for which a new
instance is created must be visible to the creating instance. In practice, this
restriction means that every block must contain at least one process with a non-
zero initial numbers. Such a process is often referred to as a monitor process
for the block.

Dynamic creation is indicated by a create symbol. The symbol is shown in
Figure 4.21. A create body has the format:

process identifier [(actual parameter expression list)]
During creation, the values of the actual parameters are assigned to the formal
parameters of the created process instance.

If an attempt is made to interpret a create symbol when the maximum
number of instances of the process already exist (as indicated in number of
instances), no instance is created and offspring of the process attempting the
create has the value Null .

Branching

Branching in a transition is expressed by the decision symbol. A decision can
be formal or informal. It consists of a question (formal or informal) followed
by a number of branches, each associated with an answer (formal or informal).
The format of the decision symbol with its associated question is shown in
Figure 4.22. A question has the format:

informal text | expression
while each answer has the format:

(informal text) | (value range list) | informal text |
value range list | else

An example of a formal answer is : −5, 2:3, >4. This value range list corre-
sponds to the values −5, 2, 3, 4, ...
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question

answer

answer

Figure 4.22: Decision Symbol

call
 body

Figure 4.23: Procedure Call Symbol

If the question is informal text then there is no formal semantics for branch-
ing. How the answer branches are connected to the symbol is not defined in the
language, since it will be likely to depend on the actual number of branches of
a decision.

Calling Procedures

Part of a process can be described in a procedure. The definition of procedures
is described in Section 4.5.7. The procedure call symbol with its call body is
shown in Figure 4.23. A call body has the format:

procedure identifier [(actual parameter expression list)]

4.5.5 Terminating a Transition

Nextstate

A transition is terminated by a nextstate symbol containing the name of the
next state. This symbol is the same as the state symbol, and the combined use
of state and nextstate in the same symbol is often preferable. The nextstate
symbol is shown in Figure 4.24. A next state has the format:

state name | -
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next
 state

Figure 4.24: Nextstate Symbol

a+b

b :=  4

> 7

else

Figure 4.25: Merging Transitions

where ‘-’ indicates that the next state is the same as the originating state of the
transition, i.e. there is no change in the state name.

Connector

Branches of transitions can directly merge as illustrated in Figure 4.25. If this
is not convenient for drawing, out-connectors and in-connectors can be used
as shown in Figure 4.26. Several out-connectors may be used with the same
in-connector.

Unrestricted use of connectors can lead to unreadable diagrams showing
little useful structure. Some conventions should be imposed on the use of con-
nectors. However, these conventions are not part of the language definition.

4.5.6 Time

For handling time, there are facilities:
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name name

Figure 4.26: Out-Connectors and In-Connectors

• to deal with values associated with time in two predefined sorts, Time and
Duration

• to read the actual time

• to do time supervision by means of timers

• to react to expired timers

• to inspect the status of timers.

Sorts Associated with Time

The two predefined sorts for handling time are Time and Duration. Time
expresses moments in time, whereas Duration expresses time intervals. Both
have similar properties as the predefined sort Real. This means that Time
and Duration values are written as decimal floating-point numbers. It is not
part of the language to relate values of Time and Duration to real-world time
denotations like ‘5.25 pm GMT’.

Reading the Actual Time

The actual, global time is read by the imperative now operator (see Sec-
tion 4.6.2) that returns a value of sort Time. It is assumed that a global time
can be read by process instances. Of course, only local assumptions based on
reading a global time can be made by processes in a distributed system. How
time proceeds in the interpretation of a process instance is left for the particular
implementation.

Time Supervision

Time supervision is handled through the use of timers. A timer is similar in
concept to a signal. A timer definition has the format:



110 Using Formal Description Techniques

set  set 
  statement list

Figure 4.27: Set in Task Symbol

reset  reset
  statement list

Figure 4.28: Reset in Task Symbol

timer timer name [(sort identifier list)];

The optional sort identifier list can be used to distinguish between several in-
stances of the same timer by supplying different values for each instance ac-
cording to the sort list.

It is possible to set and reset a timer. A timer is set with an expiry time.
When the expiry time is reached, a signal with the name of the timer is inserted
in the input port of the process instance. Eventually, this signal can be handled
in an input, which holds the name and values of the timer.

The keywords set and reset are written inside a task symbol. Use of set is
shown in Figure 4.27. A set statement has the format:

(time expression, timer identifier [(expression list)])

The time expression denotes the expiry time, i.e. the time when a signal with
the name timer identifier and the parameters indicated by expression list will
be inserted in the input port.

A timer is cancelled by a reset statement. Use of reset is shown in Fig-
ure 4.28. A reset statement has the format:

timer identifier [(expression list)]
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Setting a timer, which is already set, implies overwriting the original expiry
time. Setting a timer to an earlier expiry time than the actual time now, causes
an immediate insertion of the timer signal in the input port. Resetting a timer
that is not set has no effect.

When the timer is set and neither consumed from the input port nor reset, it
is said to be active. An imperative Boolean operator active (see Section 4.6.2)
returns the status of a timer. An active expression has the format:

active(timer identifier [(expression list)])

4.5.7 Procedure

A procedure is a parameterised part of a process with its own scope, for sorts
and variables, for example. It has a local scope for states and connectors. Other
kinds of names from the enclosing scope (e.g. variables, synonyms and sorts)
are visible in the procedure. A procedure can have two kinds of parameters, in
and in/out:

• Actual parameters corresponding to formal in parameters are expressions,
and the values of these expressions are assigned to the formal parameters.
This kind of parameter passing is ‘call by value’.

• Actual parameters corresponding to formal in/out parameters are vari-
able identifiers, and the formal parameters are synonyms for these variables
during the interpretation of the procedure. This kind of parameter passing
is ‘call by reference’.

The format of a procedure diagram is shown in Figure 4.29. A procedure heading
has the format:

procedure procedure name fpar procedure formal parameter list
where a procedure formal parameter has the format:

[ in | in/out ] variable name list sort identifier
A procedure graph contains the same symbols as a process graph except

that the start symbol is replaced by the start procedure symbol, and the stop
symbol is replaced by the return symbol. The specific procedure symbols are
shown in Figure 4.30. When the procedure is called, the interpretation begins
in the start procedure symbol, and control returns to the calling process or
procedure when the return symbol is interpreted.

4.5.8 Communication via Shared Values

Values can be communicated between process instances only by means of sig-
nal interchange since all variables are local to process instances. In some cases
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procedure heading

local definitions

procedure graph

Figure 4.29: Procedure Diagram

Figure 4.30: Procedure Start and Return Symbols
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export
  (name)

Figure 4.31: Export Operation in Task Symbol

this is not a very elegant approach, e.g. when the behaviour of one process de-
pends on a value maintained by another process. The use of view/reveal and
import/export allows such relations. The most important difference between
view/reveal and import/export is that import/export includes an explicit
export operation that restricts reading of composite variables to well-defined
situations. Another difference is that import/export is based on signal inter-
change.

Reading within a Block

In the case of a revealed variable, the value of a variable may be read within
the same block by any process instances that has introduced the name of the
variable in a view definition. A view definition has the format:

viewed viewed name sort identifier

The variable in the owning process must have the attribute revealed in its
variable declaration (see Section 4.6.2). The value of the variable can then be
read through the imperative view operator (see Section 4.6.2) with the format:

view(viewed name, [PId expression])

The view construct is an exception to the rules of signal interfaces, and is not
recommended in general. It is part of SDL for backwards compatibility with
early versions of SDL.

Export and Import of Values

Export and import can be used for reading values from other instances all over
the system. This construct is a shorthand modelled by signal interchange in the
basic language model. The variable whose value is to be exported must have
the attribute exported in its declaration. The owning instance can then make
the actual value of the variable available to other processes by using the export
construct in a task symbol. The format of the export operation is shown in
Figure 4.31.
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The importing process must introduce the name in an import definition of
the format:

imported imported name sort identifier
The importing process obtains the most recently exported value of the variable
through an imperative import operation (see Section 4.6.2) of the format:

import(import name [, receiver ])
The sort identifier used in the variable declaration of the exporting process must
be the same as the sort identifier used in the importing process. The use of the
receiver value is as for output.

4.6 Data

4.6.1 Introduction

Any value belongs to a certain sort. A sort defines a set of values constructed
by literals and operators. A literal is a name of a value, e.g. 7 and 007 are
valid literals for the same Integer value. The operator ‘+’ is an example of an
Integer operator. The sort of a variable defines the set of values that can be
stored in the variable.

The semantics of operators are expressed by axioms. An axiom is an equa-
tion that defines the expression on the left hand side to have the same value as
the expression on the right hand side. The expressions are called terms. The
basic model (Ehrig and Mahr (1985)) implies that two terms denote different
values if they are syntactically different and not made equal by axioms, either
directly or indirectly.

The semantics of a type (sort and operators) is not defined solely by the
axioms given in the definition of the type, but by all visible type definitions
that mention the sort operators. Data types are not represented graphically
using GR syntax.

4.6.2 Use of Data

Variable

A variable is defined in a process and is local to a process instance. A variable
definition has the format:

dcl [attribute] variable name list sort identifier [:= initial value];
where an attribute has the format:

revealed | exported | revealed exported | exported revealed
The attributes revealed and exported define a variable as being respectively
revealed and exported (see Section 4.5.8).
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As an example, the definition of an Integer variable x with initial value 7
looks like:

dcl x Integer := 7;

Expression

In addition to literals and operators, expressions contain synonyms, condi-
tional expressions, imperative operators and accesses to variables.

Expressions are written in the usual style. A number of predefined operators
exist, e.g. ‘+’ and or. They are written using infix notation, e.g. A + B, A or B.
The predefined operators have the normal binding priority, e.g. in 2 ∗ 3 + 4, ‘∗’
takes priority over ‘+’. User-defined operators are normally used in prefix form,
e.g. an operator opx taking a, b and c as operands in an expression is written
opx(a,b,c).

As an example of an expression, the variable x introduced above can be used
in:

(x > 0) and True or (x < 0) and False

The operator and takes priority over or so the expression has the same value
as x > 0.

Overloading of operators is allowed, so the same operator may be used in
different contexts, e.g. ‘+’ can be used both in Real and Integer expressions.

A synonym is a name for the value of an expression. It is useful for attaching
a symbolic name to some general value. A synonym definition has the format:

synonym synonym name [sort identifier ] = ground expression;

The sort identifiermay be omitted if the sort can be derived from the expression.
An example of a synonym for an Integer expression is:

synonym number of deposits = 0;

A conditional expression denotes one of two expressions depending on a
condition. A conditional expression has the format:

if Boolean expression
then Expression1
else Expression2

fi

If the Boolean expression evaluates to True the value of the conditional expres-
sion is Expression1 else it is Expression2. As an example, x can be assigned
according to some condition:

x :=
if overdrawn

then number of withdrawals
else number of deposits

fi;
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Name Literals Operators

Boolean True, False not, and, or, xor, =>
Char characters en-

closed by ′ ′

<, <=, >, >=

Integer ..., -1, 0, 1, ... −, +, −, ∗, /, <, <=, >, >=, Float, Fix
Natural 0, 1, 2, .. as Integer
Real ..., -1, 0, 1, ... −, +, −, ∗, /, <, <=, >, >=

-9.99, ..., 5.86, ...
PId Null none
Duration as Real +, −, >, ∗, /
Time as Real +, −, −, <, <=, >, >=
Charstring characters en-

closed by ′ ′

MkString, Length, First, Last, //, (index),
SubString(string, start position, length)

Figure 4.32: Predefined Sorts with their Literals and Operators

An imperative operator is an operator whose result does not depend solely
on the values of its parameters. The imperative operators are:

now: the actual time

self, parent, offspring, sender: PId expressions for addressing

import: imported value

view: viewed value

active: status of timer

any: any value of a sort (SDL-92 only).

Predefined Sorts

Many specifications can be written without defining new sorts because a wide
selection of predefined sorts are available. The predefined sorts are listed to-
gether with their literals and operators in Figure 4.32.

Integer and Real both provide ‘−’ for negation and binary subtraction. Float
and Fix are used to convert between Integer and Real. Natural is a syntype (see
Section 4.6.5) of non-negative Integers. The predefined number sorts have radix
10. PId is further described in Section 4.2. Charstring is based on the string
generator described in Section 4.6.4. MkString accepts a Char and returns a
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Charstring of length 1. ‘//’ is the concatenation operator. The expression (in-
dex) is used for indexing in extracting or modifying one Char in the Charstring.

In addition to the operators explicitly defined for a sort, all sorts have the
Boolean operators ‘=’ and ‘/=’ (different from) predefined.

4.6.3 Definition of New Sorts

A data sort definition consists of a signature and properties in the format:

newtype data sort name
signature properties

endnewtype [data sort name];

The signature defines the literals and the operators with the sorts of their
operands and result. The properties value defines the semantics of the liter-
als and operators.

A sort definition may also contain constructs which map the spelling of the
literals onto the values of the sort, e.g. it is necessary to formally define that
the literal 7 has the same value as 007. This is not further elaborated here.

Signature

A signature has the format:

literals literal list
operators operator signature list

where an operator signature has the format:

operator name : argument sort list −> result sort

The elements in an operator signature list are separated by ‘;’.

Properties

The properties are given as a list of equations. The elements in properties are
separated by ‘;’. An equation has the format:

unquantified equation | quantified equation |
conditional equation | informal text

where an unquantified equation has the format:

left hand term == right hand term

The symbol ‘==’ denotes the defining equality of an equation, whereas ‘=’
denotes a Boolean operator.

In axioms it is possible to use so-called axiomatic variables, which are names
representing any value of a certain sort in the axiom. If the sort of an axiomatic
variable cannot be uniquely determined from its use, it must be explicitly in-
troduced in a quantified equation of the format:

for all value name list in sort identifier (properties)
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Name Parameters

String element type, empty list literal
Array element type, index type
Powerset member type

Figure 4.33: Predefined Generators

A conditional equation holds when some restrictions, written as unquantified
equations , are met. The elements in an unquantified equation list are separated
by ‘;’. A conditional equation has the format:

unquantified equation list ==> unquantified equation

The unquantified equation is considered only if the equations in the unquantified
equation list can be derived from other equations of the sort.

Finally, it is possible to stipulate properties of a sort as informal text instead
of as formal equations4.

4.6.4 Generator

A generator is a parameterised type that can be instantiated to form more
complete type definition. It may have the following kinds of parameters: type,
literal, operator, constant. The use of generators will be described with only
the predefined sort generators shown in Figure 4.33.

Charstring is an example of an instantiation of String with the parameters
Char and ′′ (empty Charstring). Array corresponds to an explicitly described
function from index sort to item sort. There are no requirements that the
index sort of an array is discrete and limited. Powerset means a set (not the
mathematical meaning of a set of subsets).

A number of operators are available for these predefined generators, e.g.
indexing an array and insertion of a member into a Powerset.

4.6.5 Syntype

A syntype is a sort with a restricted set of values with respect to the newtype
it is based on. An example is the formulation of the predefined sort Natural:

syntype Natural = Integer constants >= 0;
endsyntype Natural;

4SDL-92 allows for alternative definitions of sorts, see Section 4.8.4.
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4.6.6 Shorthands

Some convenient shorthands for sort definitions are available. They can be
mapped onto the constructs described so far. It is possible to base a new sort
definition on existing ones by using inheritance5. This is used for the definition
of Duration, for example, which inherits features from Real. The inheriting sort
may add operators, literals and axioms.

The ordering of values of a sort can be indicated by including the word
ordering in the operator signature list of the sort. If the same sort includes
a non-empty literal list, the literals are implicitly ordered in ascending order.
For example, adding ordering to the sort Colour implies that Red < Yellow,
Yellow < Blue and Blue < Green.

A structure sort is a composite sort whose values consist of a list of field
values. This concept appears as a list, record, tree, etc. in many languages. An
example of a structure definition is the definition of the sort Car:

newtype Car;
struct

Brand Manufacturer,
Year Natural,
Paint Colour,
Licence Number Natural,
Owner Citizen;

adding
literals Herbie;
axioms BrandExtract!(Herbie) == Volkswagen;

endnewtype Car;
This example defines Car as a structure. For use in axioms, a struct sort has
the following operators implied:

Make!: to build a value from the individual field values
field nameModify!: to modify one field
field nameExtract!: to extract one field.

In the example above, BrandExtract! extracts the Brand field and thus indicates
that a Herbie car is a Volkswagen.

Accessing a field of a struct in an expression outside the data type definition
or for variable access is denoted by writing the name of the struct followed by
‘!’ and the field name. For the following declarations:

dcl Vehicle Car, Joe Citizen;
the expression:

Vehicle!Owner := Joe;

5This is the only use of inheritance in SDL-88. The object-oriented extensions in SDL-92
allow for a more general use of inheritance in specialisation of types (see Section 4.8.1).
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assigns Joe as the owner of Vehicle. A struct value is constructed by enclosing
the field values with ‘(.’ and ‘.)’, as in:

Vehicle := (. Ford, 1970, Red, 17, Joe .);

4.6.7 Example

A sort with literals Red, Yellow, Blue and Green and no explicit operators has
the definition:

newtype Colour;
literals Red, Yellow, Blue, Green;

endnewtype Colour;

For a value of this sort, the predefined operators ‘=’ and ‘/=’ are available, e.g.
one can ask if a Colour variable has the value Red. Now extend the definition
with a Mix operator for mixing colours:

• mixing a colour with itself results in same colour

• the order of mixing has no importance

• mixing Yellow and Blue results in Green.

newtype Colour;
literals Red, Yellow, Blue, Green;
operators Mix: Colour, Colour −> Colour;
axioms

Mix(c, c) == c;
Mix(c1, c2) == Mix(c2, c1);
Mix(Yellow, Blue) == Green;

endnewtype Colour;

These axioms do not exclude the mixing of colours other than Yellow and Blue,
but they do not indicate the result of other possible mixings. (In fact they
state that other mixings do not yield Green.) The example also illustrates that
the literals are just names for some values; a sort can contain values without
literals.

4.7 Summary of Symbols

Figure 4.34 shows all symbols of SDL-88, and gives section references except
for those symbols marked with ‘-’ which have not been covered.
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4.8 New Language Developments

Although it is intended to keep the language stable, SDL-92 has evolved slightly
from SDL-88. Changes to SDL-88 are mainly extensions except for a few cases
of simplifications. The approach protects the investment in tools, education
and work based on SDL-88. This section briefly describes the major extensions.

4.8.1 Object Orientation

SDL-92 contains concepts for object-oriented structuring. These concepts in-
clude system, block, process and service types that can be instantiated in differ-
ent contexts. These types have gates which can be connected to communication
paths in specific contexts. In addition to these new types, SDL-92 also considers
signals, procedures and sorts as types.

A general type (called the supertype) can be specialised into more spe-
cific types (called subtypes). In this specialisation, the subtype inherits the
properties of the supertype. Specialisation allows a subtype:

• to add properties to those of its supertype and

• to redefine properties marked as virtual in its supertype.

Properties can, for example, be definitions enclosed in the type or state transi-
tions for process types, service types and procedures.

Types can be parameterised. Parameterisation encourages re-use of defini-
tions in different contexts of the same system. A package concept allows re-use
across systems. A package consists mainly of types.

4.8.2 Non-Determinism

Two constructs have been added to SDL-92 for describing non-determinism:
spontaneous transitions and undecided values.

A spontaneous transition allows non-deterministic initiation of transi-
tions. Several spontaneous transitions may be attached to the same state. A
spontaneous transition is denoted by an extension of the format for an input
list, having value none.

An undecided value is generated by the new imperative operator any (see
Section 4.6.2). The operator takes a sort as operand and returns any value of
that sort. An any expression has the format:

any(sort identifier)
As an example, any(Boolean) returns True or False in a non-deterministic way.
Based on this operator, an undefined decision is introduced. It is denoted by a
decision symbol containing the keyword any without answers indicated.
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channel (4.4.1)

 

macro inlet (-)

priority input (-) priority output (-)

procedure call (4.5.4)

macro outlet (-)

option area (-)

frame (4.3.1)
block reference (4.3.1)
task (4.5.4)

comment (4.3.4) connector (4.5.5)

create line (4.4.2) create request (4.5.4)

decision (4.5.4)
continuous signal (4.5.3)
enabling cond. (4.5.3)

input (4.5.3) macro call (4.3.4)

output (4.5.4)

procedure reference (4.3.1)

 procedure start (4.5.7) process reference (4.3.1)

set and reset (4.5.6)
export (4.5.8)

Figure 4.34: Table of Symbols
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return (4.5.7) save (4.5.3)

service reference (-) signal list (4.4.1)

state (4.5.2)
nextstate (4.5.5)

stop (4.5.1)

text extension (4.3.4) text (4.3.4)

transition option (-)
channel
substructure
reference (4.4.2)

signal route (4.4.2)

Figure 4.34 (continued)
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4.8.3 Extended Procedure Calls

Procedures that return values are allowed in SDL-92. This implies that proce-
dures can be used in expressions. Remote procedure calls have also been added.
This allow a process to call a procedure in another process as if it were defined
locally.

The combination of value-returning procedures and remote procedure calls
results in a more elegant model than signal interchange in cases of two-way
communication.

4.8.4 Alternatives to Axioms

SDL-92 offers two alternatives to the axiomatic definition of operators. The
properties of an operator can be described by means of a value-returning pro-
cedure (without side-effects such as input or output). Instead of giving the
properties of a sort in SDL, one may state the signature solely and refer to
another data formalism (e.g. ASN.1 or C) for supplying the behaviour of the
operators of the sort. This opens up the possibility of future links between SDL
and other data formalisms



Part II

Specification with the FDTs

This part of the book illustrates each of the FDTs on a graded series of exam-
ples, starting with a simple communications service and working up to a large
communications protocol. Although the examples have a flavour of data com-
munications, they illustrate general aspects of the FDTs that apply to many
other application areas. The examples have been written for readers with little
knowledge of data communications, so they should be comprehensible to every-
one. The reader should have a working knowledge of the FDTs from Part I of
the book before tackling Part II. Individual chapters in this part are as follows:

Chapter 5 specifies the Daemon Game, a simple game of chance for multiple
players.

Chapter 6 specifies an Unreliable Medium, a basic communications service
that does not guarantee correct delivery of messages.

Chapter 7 specifies a Sliding Window Protocol that can safely transfer
messages over an unreliable medium in a flow-controlled manner.

Chapter 8 specifies the Abracadabra Service, a connection-oriented service
that embodies major features of more complex services.

Chapter 9 specifies the Abracadabra Protocol that implements the Abra-
cadabra Service over an unreliable medium.

All the formal descriptions of one example can be read in order to compare the
FDTs. Alternatively, all the formal descriptions in one FDT can be read in
order to learn how to use it effectively. For some chapter N, each example is
presented in the following format to facilitate comparison:

Section N.1 gives the informal description of the example that was used to write
the formal descriptions.

Section N.2 lists and resolves the faults, omissions and ambiguities that were
found in the informal description during the writing of the formal
descriptions.
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Section N.3 describes the example formally in Estelle.

Section N.4 describes the example formally in Lotos.

Section N.5 describes the example formally in SDL.

Section N.6 summarises the lessons learned from writing the formal descrip-
tions.

Note that the informal descriptions are given just as they were first shown to
the specifiers. The errors in the informal descriptions have deliberately not been
corrected. The reason for this is that one of the major benefits of using FDTs is
to identify errors. By leaving the informal descriptions in their original form, it
becomes clearer where the writing of formal descriptions uncovered problems.

The reader might find it educational to scrutinise the informal descriptions
for deficiencies before reading what the authors of the formal descriptions found
to be wrong. (The lists of errors reported in this book are not guaranteed com-
plete!) The formal descriptions reflect the corrected informal descriptions. The
lists of errors have the secondary benefit of indicating the classes of deficiencies
that are found in informal descriptions. The conclusion of each chapter tries to
categorise and generalise the errors that were found.

To assist reference to the formal descriptions, each major component (type,
channel, procedure, process, block, module) is indexed in Appendix B at the
end of the book. The formal descriptions of the examples have been harmonised
wherever possible. Inevitably there are differences in approach since the char-
acteristics of an FDT often dictate a particular architecture and style of de-
scription. At the most fundamental level the FDTs take different views of
interactions. Even for one FDT the approach varies from author to author and
example to example. This is only to be expected since writing a formal descrip-
tion is hardly a mechanical process; if it were, then it would not need human
judgment and skill.

The formal descriptions have been checked with tools as thoroughly as prac-
ticable. This is not to say that they are perfect! A formal description may
indeed have errors; it would be surprising if the formal description of a large
or complex system could be written faultlessly. The important point, however,
is that a formal description is unambiguous; it can be proven to be wrong in a
way that an informal description cannot.



5 Daemon Game

This chapter describes the interface to a multi-player game of chance. Although
not presented as a communications example, the game illustrates important
features found in many communications systems. Non-determinism and con-
currency also arise in this game – major issues in more complex problems. The
game was originally devised by R. L. Tenney as a graded series of examples to
illustrate Estelle.

5.1 Informal Description1

The Daemon Game is a simple game having several players. The game is
the system that is to be defined in a chosen FDT. The players belong to the
environment of this system.

In the system there is a daemon that generates Bump signals randomly. A
player has to guess whether the number of generated Bump signals is odd or
even. The guess is made by sending a Probe signal to the system. The system
replies by sending the signal Win if the number of the generated Bump signals
is odd, otherwise by the signal Lose.

The system keeps track of the score of each player. The score is initially 0.
It is increased by 1 for each successful guess (signal Win is sent), and reduced
by 1 for each unsuccessful guess (signal Lose is sent). A player can ask for the
current value of the score by the signal Result, which is answered by the system
with the signal Score.

Before a player can start playing, the player must log in. This is accom-
plished by the signal Newgame. A player logs out by the signal Endgame. The
system allocates a player a unique identifier on logging in, and de-allocates it
on logging out. The system cannot tell whether different identifiers are being
used by the same player.

1Section 5.1 is by K. J. Turner, based on the original description by R. L. Tenney.
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5.2 Errors in the Informal Description2

5.2.1 Presence of Daemon

Should the daemon be an integral part of the description, or is it an artefact of
the informal explanation?

It was not intended that the daemon be part of the system description.
However, it was decided to include formal descriptions with and without a
daemon in order to show how FDTs can be used to express external behaviour
and internal structure. Two versions of the daemon game have therefore been
formalised: an explicit version that features the daemon, and an implicit version
that does not.

5.2.2 Login to a Current Game

What should happen if a player who is already logged in tries to issue Newgame
again? The informal description does not clearly cover this case.

The intention was to treat games like ‘Bingo’ game panels with buttons
for input and indicators for output. Newgame should therefore be allowed to
happen in a current game, but should be ignored.

5.2.3 Attempted Play before Login

What should happen if a player issues any signal other than Newgame before
logging into a game? The informal description says that a player must first log
in, but does not say what happens if Newgame is not the first signal.

The intention was to allow Probe, Result, or Endgame when a game is not
current, but to ignore these signals.

5.2.4 Identification of Players and Games

The informal description precludes the case of logging into a current game,
because it implies that a further login will result in a new game. This contra-
dicts the intended behaviour as described in Section 5.2.2. Presumably some
identifiers are needed, but how should they be allocated and what should they
distinguish?

The intended behaviour was that each game should be distinguished from
the system’s point of view by some identifier. The system was not intended to
be able to tell which player (or even players) were issuing signals for a game. A
player should therefore be able to play multiple games simultaneously without

2Section 5.2 is by K. J. Turner, based on problems found by the authors of the formal
descriptions.
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the system knowing; the players should be an anonymous part of the environ-
ment of the system.

5.2.5 Player Use of System Signals

What should happen if the player issues Win, Lose, or Score signals?
The intention was to disallow such behaviour: it simply must not happen,

as opposed to happening but be ignored.

5.2.6 Interruption of Probe or Result

Should it be allowable for another signal to be processed by the system between
Probe and Win/Lose, or between Result and Score?

The intention was that Probe and Result should be followed by their respec-
tive responses before any other signal is processed.

5.2.7 Counting of ‘Bump’ Signals

In deciding whether a player wins or loses, is it necessary to use the count of
Bump signals since the system started or since that game started?

The intention was to count the number of Bump signals since a game
started.

5.3 Formal Description in ESTELLE3

5.3.1 Formal Description with Explicit Daemon

Figure 5.1 shows the architecture of the daemon game description in Estelle

using an explicit daemon; a description without an explicit daemon is given
in Section 5.3.2. Interaction points are shown as circles and labelled by their
names. Those marked with a central dot are bound both by a connect and an
attach and thus logically continue the path of interactions to or from a child
module. The description of ManagerBody illustrates the dynamic structuring
capabilities of Estelle. Declaring the Manager module to be a systempro-
cess is a way to guarantee fairness in the service provided to the players, because
the Game modules will be synchronised.

Definitions of bodies for the Player and the Daemon are not described, as
these are not relevant to the description: each may behave in any way consistent
with the corresponding channel definition. A Player instance corresponds to

3Section 5.3 is by R. L. Tenney.
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Figure 5.1: Explicit Daemon Game in ESTELLE – Architecture
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one game played by a person (with each person possibly playing more than one
game).

The Manager handles the instantiation and eventual removal of game in-
stances, as the players initiate and terminate them. Once it has established the
game, the GameServer channel is attached by the Manager to the newly es-
tablished games, so that the remaining interactions between the player and the
game require no mediation by the Manager. The shared variable Done is used
by the game to indicate to its manager-parent that its user has finished play,
so the game should be removed (released). This approach is one of several
possible; it was chosen to show the use of shared variables.

The game modules simply implement the rules of the game as given in the
informal description. The Distributor module distributes the daemon’s Bump
signal to each of the games.

The daemon game was originally invented as a graded series of examples,
each more complex than the next, to explain Estelle. In its original, simplest
version, the game had no beginning and no end: it allowed one player, and
it did not report a score. In this case, it is unnecessary to have the complex
structure given here since there are only empty Daemon and Player modules,
and a Game module that has states and no variables. Each version of the game
in the series forced the use of more complex Estelle constructs until the most
complete version of the game (approximating the one given here) made use of
a fairly large subset of Estelle. The informal description of the game given
here was initially written by augmenting the old, original informal description;
perhaps that affected some of the design choices.

specification DaemonGame;

const NGames = any integer; { Game limit of implementation }

channel DaemonServer (User, Provider);
by Provider:
Bump;

channel GameServer (Player, Machine);
by Player:
Probe; { Player takes a turn }
Result; { Player requests the score }
Newgame; { Player initiates a game }
Endgame; { Player terminates a game }

by Machine:
Win; { Tells Player of win }
Lose; { Tells Player of loss }
Score (nwon: integer); { Tells Player of score after Result }
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module Daemon systemprocess;
ip D: DaemonServer (Provider) individual queue;

end; { Daemon }

body DaemonBody for Daemon;
external;

module Player systemprocess;
ip G: GameServer (Player) individual queue;

end; { Player }

body PlayerBody for Player;
external;

module Manager systemprocess;
ip
P: array [1..NGames] of GameServer (Machine) common queue;
D: DaemonServer (User) common queue;

end; { Manager }

body ManagerBody for Manager;

module Distributor process;
ip
G: array [1..NGames] of DaemonServer (Provider)
common queue;

D: DaemonServer (User) common queue;
end; { Distributor }

body DistributorBody for Distributor;

trans
when D.Bump
begin
{ Distribute the Bump to all games }
all i: 1 .. NGames do
output G[i].Bump

end;
end; { DistributorBody }

module Game process;
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ip
P: GameServer (Machine) common queue;
D: DaemonServer (User) common queue;

export Done: boolean;
end; { Game }

body GameBody for Game;
var NCorrect: integer;
state EVEN, ODD; { Records parity of bumps }
stateset EITHER = [EVEN, ODD];

initialize
to EVEN
begin
NCorrect := 0;
Done := false;

end;

trans
{ *** Player makes a guess *** }
when P.Probe
from EVEN to EVEN
begin
NCorrect := NCorrect − 1;
output P.Lose

end;
from ODD to ODD
begin
NCorrect := NCorrect + 1;
output P.Win

end;

{ *** Player wants the score *** }
when P.Result
from EITHER to same
begin
output P.Score(NCorrect)

end;

{ *** Player is done *** }
when P.Endgame
from EITHER to same
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begin
Done := true { Cause Manager to stop game }

end;

{ *** Player requests a new game *** }
when P.Newgame
from EITHER to same
begin
{ Ignore Player’s error }

end;

{ *** Daemon generates Bump *** }
when D.Bump
from EVEN to ODD
begin
end;

from ODD to EVEN
begin
end;

end; { GameBody }

{ The actual manager description begins here }
modvar
GameInstance: Game;
DistributorInstance: Distributor;

state MANAGING;

initialize
to MANAGING
begin
init DistributorInstance with DistributorBody;
attach D to DistributorInstance.D;

end;

trans
any GameNumber: 1..NGames do

{ *** Player requests a new game *** }
when P[GameNumber].Newgame
begin
init GameInstance with GameBody;
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attach P[GameNumber] to
GameInstance.P;

connect GameInstance.D to
DistributorInstance.G[GameNumber];

end;

{ *** Ignore Player’s errors *** }
when P[GameNumber].Probe
begin
end;

when P[GameNumber].Result
begin
end;

when P[GameNumber].Endgame
begin
end;

trans
{ *** Clean up after game *** }
provided exist GameBody: Game suchthat GameBody.Done
begin
all GameBody: Game do
if GameBody.Done then release GameBody

end;
end; { Manager }

{ Here is the body of the specification itself }
modvar
DaemonInstance: Daemon;
ManagerInstance: Manager;
PlayerInstance: array [1..NGames] of Player;

initialize
begin
init DaemonInstance with DaemonBody;
init ManagerInstance with ManagerBody;
all i: 1 .. NGames do
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Figure 5.2: Implicit Daemon Game in ESTELLE – Architecture

begin
init PlayerInstance[i] with PlayerBody;
connect ManagerInstance.P[i] to
PlayerInstance[i].G

end;
connect DaemonInstance.D to ManagerInstance.D;

end;
end. { DaemonGame }

5.3.2 Formal Description without Explicit Daemon

This alternative approach to describing the Daemon Game avoids explicit rep-
resentation of the daemon. The description given in Section 5.3.1 was written
to reflect the informal description more naturally. However, it was recognised
that there was no way a player could distinguish between a system that had
a central daemon and a system where the effect of the daemon was purely
non-determinism. The architecture of the alternative description without the
daemon is shown in Figure 5.2. Note that no Distributor module is needed.

In reading the specification itself, note that there are no longer any bumps
from a daemon to be stored by the Game module. There is therefore no longer
any need for it to maintain a state, so the GameBody does not have a state
declaration nor do any of its transitions have a from or to clause.

Although some parts of the specification are the same as in Section 5.3.1,
they have been repeated here for completeness.

specification DaemonGame;
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const NGames = any integer; { Game limit of implementation }

channel GameServer (Player, Machine);
by Player:
Probe; { Player takes a turn }
Result; { Player requests score }
Newgame; { Player initiates a game }
Endgame; { Player terminates a game }

by Machine:
Win; { Tells Player of win }
Lose; { Tells Player of loss }
Score (nwon: integer); { Tells Player of score after Result }

module Player systemprocess;
ip G: GameServer (Player) individual queue;

end; { Player }

body PlayerBody for Player;
external;

module Manager systemprocess;
ip P: array [1..NGames] of GameServer (Machine) common queue;

end; { Manager }

body ManagerBody for Manager;

module Game process;
ip P: GameServer (Machine) common queue;
export Done: boolean;

end; { Game }

body GameBody for Game;
var NCorrect: integer;

initialize
begin
NCorrect := 0;
Done := false;

end;

trans
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{ *** Player makes a guess *** }
when P.Probe
begin
NCorrect := NCorrect − 1;
output P.Lose

end;

when P.Probe
begin
NCorrect := NCorrect + 1;
output P.Win

end;

{ *** Player wants the score *** }
when P.Result
begin
output P.Score(NCorrect)

end;

{ *** Player is done *** }
when P.Endgame
begin
Done := true { Cause Manager to stop game }

end;

{ *** Player requests a new game *** }
when P.Newgame
begin
{ Ignore Player’s error }

end;

end; { GameBody }

{ The actual manager description begins here }
modvar GameInstance: Game;

state MANAGING;

initialize
to MANAGING
begin
end;
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trans
any GameNumber: 1..NGames do

{ *** Player requests a new game *** }
when P[GameNumber].Newgame
begin
init GameInstance with GameBody;
attach P[GameNumber] to
GameInstance.P;

end;

{ *** Ignore Player’s errors *** }
when P[GameNumber].Probe
begin
end;

when P[GameNumber].Result
begin
end;

when P[GameNumber].Endgame
begin
end;

trans
{ *** Clean up after game *** }
provided exist GameBody: Game suchthat GameBody.Done
begin
all GameBody: Game do
if GameBody.Done then release GameBody

end;
end; { Manager }

{ Here is the body of the specification itself }
modvar
ManagerInstance: Manager;
PlayerInstance: array [1..NGames] of Player;

initialize
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begin
init ManagerInstance with ManagerBody;
all i: 1 .. NGames do
begin
init PlayerInstance[i] with PlayerBody;
connect ManagerInstance.P[i] to
PlayerInstance[i].G

end;
end;

end. { DaemonGame }

5.4 Formal Description in LOTOS4

5.4.1 Formal Description with Explicit Daemon

The top-level structure of the Lotos description is as follows. The gates are:

P: for all communication between players and the system; interactions are
tagged with the identifier of a game in order to distinguish them

D: an internal gate for communication between the daemon and the games; a
Bump signal is represented purely by synchronisation at D, i.e. there is no
value in the event.

The data types are:

Identifier: for distinguishing games

IdentifierSet: for indicating the identifiers that may be used to distinguish
games

Integer: for scoring

Signal: for interactions between players and the system.

The processes are:

System: for explaining the top-level specification behaviour; this is decomposed
into the independent constraints on permitted games

4Section 5.4 is by K. J. Turner, with early input from W. F. Chan (University of Stirling,
Stirling, UK).



Daemon Game 141

NoGame: for describing the behaviour of a game which is not current (i.e. not
logged into)

Game: for describing the behaviour of a game that is current (i.e. logged into)

Daemon: for describing the behaviour of the daemon.

The major decision taken in writing the description was whether to repre-
sent the daemon explicitly. In the following description, the daemon is explicitly
represented as a process that interacts with game processes. The daemon pro-
cess is responsible for generating Bump signals. The description was written
this way in order to reflect the informal description more naturally. However,
the philosophy of Lotos is to describe only observable behaviour, so this style
of description is unnatural in Lotos. An alternative description without an
explicit daemon is therefore given in Section 5.4.2.

The Lotos description shows a clear separation between static aspects (the
data typing) and dynamic aspects (the behaviour). The data typing draws on
already established data types, which are defined in an Annex to the Lotos

standard. The description of the data types concerns itself with implementation-
independent aspects; for example, scores are described as mathematical integers,
not as bit patterns.

The behaviour description illustrates the ‘constraint-oriented’ style in which
Lotos can be used. In this style, behaviour is decomposed into largely separate
constraints which are then combined using the appropriate Lotos operators
(mainly parallel composition). In the description, the overall system behaviour
is expressed in terms of game behaviours. These in turn are expressed in terms
of the login/logout behaviour and game-playing behaviour. The data typing
also shows a similar modularity, whereby more complex data types (e.g. Iden-
tifierSet) are built out of simpler ones.

The whole description of the system is parameterised by the gate at which
external communication occurs with players (P), and by the set of game iden-
tifiers which may be used (Ids). The system never terminates (noexit).

specification DaemonGame [P] (Ids : IdSet) : noexit

library
Boolean, Set (* From standard library *)

endlib

The following type defines game identifiers. The only formal property that
identifiers have is that they are distinct. This is explained by giving a base
value (BaseId) and an operation for reaching all other identifier values (NextId).
Equality (eq) and inequality (ne) are defined for game identifiers.
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type Identifier is Boolean
sorts Id
opns
BaseId : −> Id
NextId : Id −> Id
eq , ne : Id, Id −> Bool

eqns
forall Id, Id1, Id2 : Id
ofsort Bool
BaseId eq BaseId = true;
BaseId eq NextId (Id) = false;
NextId (Id) eq BaseId = false;
NextId (Id1) eq NextId (Id2) = Id1 eq Id2;
Id1 ne Id2 = not (Id1 eq Id2)

endtype (* Identifier *)

The following type actualises the standard library data type Set to define a
set of game identifiers. A set of game identifiers is a parameter to the overall
description.

type IdentifierSet is Set actualizedby Identifier, Boolean using
sortnames
Id for Element
Bool for FBool
IdSet for Set

endtype (* IdentifierSet *)

The following type defines the integers (..., -1, 0, 1, ...) in terms of a 0 value, an
‘add one’ operation (Inc), and a ‘subtract one’ operation (Dec). The Inc and
Dec operations are inverses.

type Integer is
sorts Int
opns
0 : −> Int
Inc, Dec : Int −> Int

eqns
forall n : Int
ofsort Int
Inc (Dec (n)) = n;
Dec (Inc (n)) = n

endtype (* Integer *)

The following type defines the signals between the players and the system. With
the exception of Score, these signals are constants.
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type Signal is Integer
sorts Sig
opns
Newgame, Endgame, Probe, Win, Lose, Result : −> Sig
Score : Int −> Sig

endtype (* Signal *)

The following behaviour expression describes the entire game. It is parame-
terised by the given gate and set of identifiers. The internal gate D is used for
communication between the daemon and system processes.

behaviour
hide D in System [P, D] (Ids) |[D]| Daemon [D]

where

The following process describes the overall behaviour of the system. It sets up
games independently in parallel one by one, assigning each of them a unique
identifier from the given set. The effect is that all possible games are imme-
diately available and are not created on demand. However, the games must
all synchronise on signals from the daemon at gate D. The process is non-
terminating, since all the games are.

process System [P, D] (Ids : IdSet) : noexit :=
choice Id : Id []
[(Card (Ids) eq Succ (0)) and (Id IsIn Ids)] −> (* One Id *)
NoGame [P, D] (Id)

[]
[(Card (Ids) gt Succ (0)) and (Id IsIn Ids)] −> (* Several Ids *)
(
NoGame [P, D] (Id)

|[D]|
System [P, D] (Remove (Id, Ids))

)

where

The following process describes the behaviour of a game when it is not current
(i.e. logged into). The process is non-terminating, since on completion of a game
it offers to start a new game. Unwanted signals from the player or the daemon
are discarded while a game is not in progress.

process NoGame [P, D] (Id : Id) : noexit :=
P ! Id ! Newgame; (* Start game *)
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(
(* start with score 0 and even Bumps *)
Game [P, D] (Id, 0 of Int, false) >> NoGame [P, D] (Id)

)
[]
P ! Id ! Probe; NoGame [P, D] (Id) (* Ignored *)

[]
P ! Id ! Result; NoGame [P, D] (Id) (* Ignored *)

[]
P ! Id ! Endgame; NoGame [P, D] (Id) (* Ignored *)

[]
D; NoGame [P, D] (Id) (* Bump *)

where

The following process describes the behaviour of a current game. Only the
parity of the number of Bump signals is relevant, so the actual number of the
signals is not stored. The process is entered after Newgame, and terminates
once Endgame is received.

process Game [P, D] (Id : Id, Total : Int, Odd : Bool) : exit :=
P ! Id ! Newgame; (* Ignored *)
Game [P, D] (Id, Total, Odd)

[]
P ! Id ! Probe; (* Check count of Bumps *)
(
[Odd] −> (* Count is odd? *)
P ! Id ! Win; Game [P, D] (Id, Inc (Total), Odd)

[]
[not (Odd)] −> (* Count is even? *)
P ! Id ! Lose; Game [P, D] (Id, Dec (Total), Odd)

)
[]
P ! Id ! Result; (* Return score *)
P ! Id ! Score (Total); Game [P, D] (Id, Total, Odd)

[]
P ! Id ! Endgame; (* Finish game *)
exit

[]
D; (* Change parity on Bump *)
Game [P, D] (Id, Total, not (Odd))

endproc (* Game *)

endproc (* NoGame *)
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endproc (* System *)

The following process describes the behaviour of the daemon. It simply gen-
erates an endless series of event offers at the D gate, corresponding to Bump
signals.

process Daemon [D] : noexit :=
D; Daemon [D]

endproc (* Daemon *)

endspec (* DaemonGame *)

5.4.2 Formal Description without Explicit Daemon

It was recognised that there was no way a player could distinguish between
a system that had a central daemon and a system that had one independent
daemon per game process. Descriptions of these two systems in Lotos would
be observationally equivalent. If two players sent Probe at almost the same time
and one received Win while the other received Lose, they would conclude that
the system had internally generated Bump in between the two signals. This
would be true no matter how close in time the two Probe signals were. Since
the two Probe signals could never be simultaneous in Lotos and could not be
determined to be simultaneous in the real world, the players could not observe
whether there were one or many daemons in the system. This illustrates a deep
difference found between some FDTs. FDTs such as Lotos model concurrency
by interleaving of events, whereas others model simultaneity using the concept
of ‘true concurrency’.

Having no central daemon process, or for that matter any daemon processes
at all, reflects the emphasis in Lotos on observational behaviour. A well-
written Lotos description will focus on the sequences of interactions that can be
externally observed, and will avoid unnecessary and implementation-dependent
detail. To this extent, the informal description is weak because it describes a
particular mechanism for implementing the system, not the externally required
behaviour. The informal description is an example of over-specification, which
must be carefully avoided in standards.

The formal description in Section 5.4.1 has one daemon for the whole system.
However, since the daemon is simply a source of non-determinism, it can be
dispensed with altogether. The manifestation of the daemon is that a player
receives a Win or Lose signal after a Probe. It is therefore not necessary to
model the Bump signals (which are, after all, invisible from the outside), nor
to count whether an odd or even number has occurred. Such non-determinism
is simply hidden as an internal event in the Lotos description. The following
description dispenses with the internal gate D and the Daemon process. The
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formal description is substantially the same as the one in Section 5.4.1, so
informal commentary is provided only where there are significant differences.
The data types are identical and so are not repeated here.

specification DaemonGame [P] (Ids : IdSet) : noexit

library ...

type Identifier is ...

type IdentifierSet is ...

type Integer is ...

type Signal is ...

The top-level behaviour expression does not have to introduce a hidden gate for
communication with the daemon. There is therefore no D gate for a daemon in
this or the following processes.

behaviour
System [P] (Ids)

where

Since the game processes do not have to synchronise jointly with a daemon, they
are completely independent. This leads to a simpler definition of the system as
a set of parallel game processes. The base case for recursion (an empty identifier
set) has behaviour stop. Since the game processes never synchronise and do
not terminate, it is not necessary to describe the base case specially.

process System [P] (Ids : IdSet) : noexit :=
choice Id : Id []
[Id IsIn Ids] −>
(NoGame [P] (Id) ||| System [P] (Remove (Id, Ids)))

where

It is not necessary for a game to check for Bump signals, nor to record the parity
of the current number of Bumps. Instead, when a player probes the system, a
non-deterministic Win/Lose decision is made.

process NoGame [P] (Id : Id) : noexit :=
P ! Id ! Newgame; (* Start game *)
(
(* start with score 0 *)
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Game [P] (Id, 0 of Int) >> NoGame [P] (Id)
)

[]
P ! Id ! Probe; NoGame [P] (Id) (* Ignored *)

[]
P ! Id ! Result; NoGame [P] (Id) (* Ignored *)

[]
P ! Id ! Endgame; NoGame [P] (Id) (* Ignored *)

where

process Game [P] (Id : Id, Total : Int) : exit :=
P ! Id ! Newgame; (* Ignored *)
Game [P] (Id, Total)

[]
P ! Id ! Probe; (* Check count of Bumps *)
(
i ; (* Count assumed odd *)
P ! Id ! Win; Game [P] (Id, Inc (Total))

[]
i ; (* Count assumed even *)
P ! Id ! Lose; Game [P] (Id, Dec (Total))

)
[]
P ! Id ! Result; (* Return score *)
P ! Id ! Score (Total); Game [P] (Id, Total)

[]
P ! Id ! Endgame; (* Finish game *)
exit

endproc (* Game *)

endproc (* NoGame *)

endproc (* System *)

endspec (* DaemonGame *)

5.5 Formal Description in SDL5

5Section 5.5 is by F. Belina.
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5.5.1 Formal Description with Explicit Daemon

The formal description with an explicit daemon is shown in Figure 5.3. The
following commentary refers to the parts of this figure.

DaemonGame System Diagram

The DaemonGame system contains only block, Game, that is referenced in the
system diagram. The system diagram thus gives only an overview of the system,
indicating the constituent blocks and channels that connect the blocks with each
other and with the boundary of the system. Detailed descriptions are given in
other diagrams.

Note that an SDL system may ignore some possible sequences of signals
coming from the environment. For example, a Probe signal coming from a
player who has not logged in is ignored by DaemonGame. In other words, the
allowed behaviour of the environment is specified indirectly in the SDL system
description.

Game Block Diagram

The Game block has two process types, Monitor and Game. There is a single
Monitor process that is created at the same time as the system is created. There
may be many Game processes that are created dynamically, one for each player.

A player is regarded as a process in the environment of the system. Each
process in SDL is given a unique address of sort PId, and each signal carries
the address of the sending process. Thus when a player logs in by the signal
Newgame, the address is known to the system and a Game process is created
for the player. The process presents itself by sending the signal Gameid to the
player and takes care of the rest of the game session.

The Monitor process has the task of creating Game processes and distribut-
ing Bump signals to all the Game processes. There is a need to introduce
some new signals (Gameover and Gameoverack) between Monitor and Game to
terminate a game session in a safe way.

This approach to the architecture is rather natural. A unique Monitor pro-
cess is necessary to receive signals from the environment (Newgame and Bump)
that cannot be addressed to a specific process since these signals are sent with-
out an address.

The relation between the Monitor and Game processes could be simplified
by addressing the Endgame signal to Monitor. This would then update its
record of players and Game processes, passing the signal to the Game process
in question. However, this would require a coupling between a player and the
corresponding Game process in the Monitor process.
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Monitor Process Diagram

The Monitor process registers new players, creates a Game process for each of
them, and distributes Bump signals to all the Game processes. If a registered
player tries to log in, then no action is taken.

Registered players and created Game processes are recorded in variables of
sort Pidset, a set of process addresses. Note that no record is kept for the
coupling between a player and the corresponding Game process.

The description of Pidset is based on the pre-defined generator Powerset and
is included in the process diagram. Note that operator names ending with ‘!’
are used only within axioms. The unique! operator is part of the description of
the pre-defined sort PId. It creates a unique PId value (process address) based
on the given PId value. The take! operator returns a PId value from a Pidset by
trying all possible PId values starting with null. The take operator returns an
element of a Pidset. Variables of sort Pidset will have the default initial value
empty.

Game Process Diagram

A Game process is created for a new player to take care of the rest of the game
session. The address of the player is given in the formal parameter player. When
a player logs out, the Monitor process must be informed by signal Gameover in
order to stop sending Bump signals to the Game process. The Game process
can then terminate.

Textual Representation

SDL/PR is a textual representation that is mainly used as a standard inter-
change format. To give a flavour of it, this chapter includes the SDL/PR corre-
sponding to the SDL/GR diagrams; only the diagrams are given for the other
examples in this book. A software tool was used to convert the graphical rep-
resentation into the textual representations. The textual representations make
use of remote descriptions to separate the description into different levels of
abstraction. The textual representation of Figure 5.3 is as follows.

system DaemonGame;

signal
Newgame, Probe, Result, Endgame, Gameid, Win, Lose,
Score (Integer), Bump;

channel GameServer.in
from env to Game
with Newgame, Probe, Result, Endgame;
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Game
Bump

DaemonServer

signal 
Newgame, Probe, Result, 
Endgame, Gameid, Win, Lose, 
Score(Integer), Bump;
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system DaemonGame  1(1)
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Figure 5.3: Explicit Daemon Game in SDL – Graphical Description
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block Game

Game (0, )

R1 R2 

R4

Newgame

Monitor (1,1)

Gameid,
Win,
Lose,
Score

Probe,
Result,
Endgame

R3

R5

Bump,
GameoverackGameover

signal 
Gameover(PId),
Gameoverack;

GameServer.in GameServer.out

D
ae

m
on

S
er

ve
r

Bump

 1(1)

Figure 5.3 (continued)



152 Using Formal Description Techniques

dcl  player  PId; /* Is used for storing the identity of the player */
dcl 	users Pidset;  /* Keeps record of the players /*
dcl  games Pidset; /* Keeps record of the Game processes */
dcl  copy Pidset, game PId;

process  Monitor  1 (1)

Newgame

idle

sender
in users

games := incl
(offspring, games)

users := incl
(sender, users)

(false)

(true)

Gameover
(player)

games := del
(sender, games)

users :=del
(player, users)

Gameoverack
to sender

Bump

copy :=  
games

copy = 
empty

Bump 
to game

copy := del
(game, copy)

(false)

(true)

game :=
take(copy)

Game
(sender)

idle

idle

idle

newtype  Pidset Powerset(PId) adding
  operators
    take!: Pidset, PId --> PId;
    take: Pidset --> PId;
  axioms
    take(empty) == Error!;
    take(Pidset) == take!(Pidset,null);
    take!(empty,PId) == Error!;
    take!(Pidset,PId) == if PId in Pidset then PId
      else take!(Pidset,unique!(PId)) fi;
  default empty;
endnewtype Pidset;

Figure 5.3 (continued)
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even

Probe

Lose 
to player

Result End_
game

Score(count)
to player

dcl  count Integer := 0;
      /* Counter to keep 
          track of score */

Win
to player

Bump

odd

process  Game  1 (1)
fpar player PId

Gameover
(player)

waitforack

Game_
overack

Gameid 
to player

even,odd

Probe Bump

even

count :=
count+1

The hyphen means 
that the state is 
not changed

count :=
count - 1

Figure 5.3 (continued)
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endchannel GameServer.in;

channel GameServer.out
from Game to env
with Gameid, Win, Lose, Score;

endchannel GameServer.out;

channel DaemonServer
from env to Game
with Bump;

endchannel DaemonServer;

block Game referenced;

endsystem DaemonGame;

block Game;

connect GameServer.in and R1, R2;
connect GameServer.out and R3;
connect DaemonServer and R5;

signal
Gameover (PId), Gameoverack;

signalroute R1
from env to Monitor
with Newgame;

signalroute R2
from env to Game
with Probe, Result, Endgame;

signalroute R3
from Game to env
with Gameid, Win, Lose, Score;

signalroute R4
from Game to Monitor
with Gameover;

from Monitor to Game
with Bump, Gameoverack;

signalroute R5
from env to Monitor
with Bump;
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process Monitor (1, 1) referenced;

process Game (0, ) referenced;

endblock Game;

process Monitor;

dcl player PId; /* Is used for storing the identity
of the player */

dcl users Pidset; /* Keeps record of the players */
dcl games Pidset; /* Keeps record of the Game processes */
dcl copy Pidset, game PId;

newtype Pidset Powerset (PId) adding
operators
take! : Pidset, PId −> PId;
take : Pidset −> PId;

axioms
take (empty) == Error!;
take (Pidset) == take! (Pidset, null);
take! (empty, PId) == Error!;
take! (Pidset, PId) ==
if PId in Pidset
then PId
else take! (Pidset, unique! (PId))

fi;
default empty;

endnewtype Pidset;

start;
nextstate idle;

state idle;
input Newgame;
decision sender in users;
(true) :
(false) :
create Game (sender);
task games := incl (offspring, games);
task users := incl (sender, users);

enddecision;
nextstate idle;
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input Gameover (player);
task games := del (sender, games);
task users := del (player, users);
output Gameoverack to sender;
nextstate idle;

input Bump;
task copy := games;
grs1 :
decision copy = empty;
(true) :
nextstate idle;

(false) :
task game := take (copy);
output Bump to game;
task copy := del (game, copy);
join grs1;

enddecision;

endprocess Monitor;

process Game;

fpar player PId;

dcl count Integer := 0; /* Counter to keep track of score */

start;
output Gameid to player;
nextstate even;

state waitforack;
input Gameoverack;
stop;

state even, odd;
input Result;
output Score (count) to player;
nextstate −;

input Endgame;
output Gameover (player);
nextstate waitforack;

state odd;
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input Probe;
output Win to player;
task count := count + 1;
nextstate −; /* The hyphen means that the state

is not changed */
input Bump;
nextstate even;

state even;
input Bump;
nextstate odd;

input Probe;
output Lose to player;
task count := count − 1;
nextstate −;

endprocess Game;

5.5.2 Formal Description without Explicit Daemon

The formal description without an explicit daemon is shown in Figure 5.4. The
following commentary refers to the parts of this figure. As the version without
a daemon is based closely on the version with a daemon, only the differences
are noted below.

DaemonGame System Diagram

A construct for non-determinism has been introduced in place of the daemon so
as to represent the non-deterministic behaviour of the game. As a consequence,
the Bump signal has been removed and all the diagrams have been simplified.

Game Block Diagram

In the Game block, the interaction between Monitor and Game processes has
been simplified. Since a game session can be terminated in an easier way, the
Bump and Gameoverack signals have been removed.

Monitor Process Diagram

In the Monitor process, the transitions for the signals Bump and Gameoverack
have been removed.

Game Process Diagram

In the Game process, the reception of Bump signals has been replaced by spon-
taneous transitions, using the keyword none in place of the signal name Bump.
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Game

signal 
Newgame, Probe, Result, 
Endgame, Gameid, Win, Lose, 
Score(Integer);

Newgame,
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Endgame
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Win,
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system DaemonGame  1(1)
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Figure 5.4: Implicit Daemon Game in SDL – Graphical Description



Daemon Game 159

block Game

Game (0, )

R1 R2 

R4

Newgame

Monitor (1,1)

Gameid,
Win,
Lose,
Score

Probe,
Result,
Endgame

R3

Gameover

signal 
Gameover(PId);

GameServer.in GameServer.out

 1(1)

Figure 5.4 (continued)
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dcl  player  PId; /* Is used for storing the identity of the player */
dcl 	users Pidset;  /* Keeps record of the players /*

process  Monitor  1 (1)

Newgame

idle

sender
in users

users := incl
(sender, users)

(false)

(true)

Gameover
(player)

users :=del
(player, users)

Game
(sender)

idle

idle

newtype  Pidset Powerset(PId) adding
  operators
    take!: Pidset, PId --> PId;
    take: Pidset --> PId;
  axioms
    take(empty) == Error!;
    take(Pidset) == take!(Pidset,null);
    take!(empty,PId) == Error!;
    take!(Pidset,PId) == if PId in Pidset then PId
      else take!(Pidset,unique!(PId)) fi;
  default empty;
endnewtype Pidset;

Figure 5.4 (continued)
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even

Probe

Lose 
to player

Result End_
game

Score(count)
to player

dcl  count Integer := 0;
      /* Counter to keep 
          track of score */

Win
to player

none

odd

process  Game  1 (1)
fpar player PId

Gameover
(player)

Gameid 
to player

even,odd

Probe none

even

count :=
count+1

The hyphen means 
that the state is 
not changed

count :=
count - 1

Figure 5.4 (continued)
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The effect is the same, namely a spontaneous state transition between even
and odd. The process can now terminate directly without waiting in the state
waitforack for the signal Gameoverack.

Textual Representation

The textual representation of Figure 5.4 is as follows. Since substantial parts
of this are the same as in Section 5.5.1 they have been omitted.

system DaemonGame;

signal
Newgame, Probe, Result, Endgame, Gameid, Win, Lose,
Score (Integer);

channel GameServer.in ...

channel GameServer.out ...

block Game referenced;

endsystem DaemonGame;

block Game;

connect GameServer.in and R1, R2;
connect GameServer.out and R3;

signal Gameover (PId);

signalroute R1 ...
signalroute R2 ...
signalroute R3 ...
signalroute R4
from Game to Monitor
with Gameover;

process Monitor (1, 1) referenced;

process Game (0, ) referenced;

endblock Game;

process Monitor;
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dcl player PId; /* Is used for storing the identity
of the player */

dcl users Pidset; /* Keeps record of the players */

newtype Pidset ...

start;
nextstate idle;

state idle;
input Newgame;
decision sender in users;
(true) :
(false) :
create Game (sender);
task users := incl (sender, users);

enddecision;
nextstate idle;

input Gameover (player);
task users := del (player, users);
nextstate idle;

endprocess Monitor;

process Game;

fpar player PId;

dcl count Integer := 0; /* Counter to keep track of score */

start;
output Gameid to player;
nextstate even;

state even, odd;
input Result;
output Score (count) to player;
nextstate −;

input Endgame;
output Gameover (player);
stop;
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state odd;
input Probe;
output Win to player;
task count := count + 1;
nextstate −; /* The hyphen means that the state

is not changed */
input none;
nextstate even;

state even;
input none;
nextstate odd;

input Probe;
output Lose to player;
task count := count − 1;
nextstate −;

endprocess Game;

5.6 Conclusion6

It is remarkable that such an apparently simple example should result in so
many different interpretations. It took several iterations among the authors of
the descriptions to determine exactly what the original intentions were. The
conclusions from this example are as follows:

• It is difficult to be precise about even simple things.

• It is commonly forgotten to describe all error cases. Failure to do so
often results in problems of incompatibility between implementations of a
complex description.

• It is easy to be unclear about the responsibilities of different parts of a
system, and how these parts should view each other.

• The description of a system may be unintentionally biased towards an
implementation by giving irrelevant detail. This may exclude other, valid
implementations.

6Section 5.6 is by K. J. Turner.



6 Unreliable Medium

The Daemon Game of Chapter 5 provides a service to its users, the players.
A communications medium also provides a service – it attempts to transfer
messages on behalf of the protocol entities that use it. An absolute guarantee
of delivery can never be given by a medium; errors such as message loss or
corruption may occur. This chapter illustrates how an unreliable medium may
be formally described. In communications terms, the medium supports a point-
to-point, bidirectional connection-less service.

6.1 Informal Description1

The Unreliable Medium operates between two points, and supports full du-
plex (two-way, simultaneous) transfer of messages. No acknowledgement is given
of whether a message is delivered successfully or not. The medium is unreliable
in that it may lose, corrupt, duplicate or re-order messages.

The medium service ‘M ’ is intended to support a one-way transfer protocol
such as the sliding window protocol (Chapter 7). It therefore allows a transmit-
ter at one end to send data messages and a receiver at the other end to confirm
their arrival with acknowledgement messages.

6.2 Errors in the Informal Description2

6.2.1 Delivery of Corrupted Messages

Does the medium deliver corrupted messages, or are they discarded within the
medium?

The medium was intended to deliver corrupted messages, and the protocol
to detect this by some unspecified means.

1Section 6.1 is by K. J. Turner.
2Section 6.2 is by K. J. Turner, based on problems found by the authors of the formal

descriptions.
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6.2.2 Transfer of Data and Acknowledgements

Does the medium support data and acknowledgement service primitives, or does
the protocol have to encode this information in protocol data units?

The intention was that data messages and acknowledgement messages be
dealt with separately by the medium.

6.2.3 Corruption of Messages

Can acknowledgement messages as well as data messages be mishandled in the
medium?

The intention was that loss, duplication or re-ordering of acknowledgements
could occur. However, an acknowledgement message could never be corrupted
into a data message nor vice versa since they are handled separately (see Sec-
tion 6.2.2).

6.3 Formal Description in ESTELLE3

Figure 6.1 shows the architecture of the unreliable medium description in Es-

telle. The medium is described quite simply as a single module with inter-
action points MT (for use by a protocol transmitter) and MR (for use by a
protocol receiver). Its unreliable behaviour is hidden by the procedure mung4,
which is defined only in outline. The medium description has been written to
avoid irrelevant details such as how to re-order or lose messages in the medium;
this is implementation-dependent detail inside mung. In general, an Estelle

description is parameterised by its primitive procedures and functions and de-
pends on their operation. For example, if there were no guarantee that mung
would eventually allow messages to be delivered in unaltered form, a protocol
could not use the medium effectively. The medium is expected to perform an
operation within some maximum delay.

The transitions in the following are numbered only for convenient reference.

specification UnreliableMedium;

default individual queue;

type
SeqType = integer; { Sequence number type, >= 0 }
UserDataType = ...; { Some suitable type, e.g. a string }
DTPDUType = { Data message }

3Section 6.3 is by R. L. Tenney and T. P. Blumer.
4It is reputed that the slang word ‘mung’ is short for ‘modify until no good’.
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Transmitter
❤

Receiver
❤

Unreliable Medium UM

❤MT ❤MR

Figure 6.1: Unreliable Medium in ESTELLE – Architecture

record
Seq: SeqType;
Msg: UserDataType;

end;
AKPDUType = { Acknowledgement message}
record
Seq: SeqType;

end;
QueueData = { Queue data item }
record
Seq: SeqType;
Msg: UserDataType

end;
QueueType = ...; { Some suitable queue structure,

e.g. a linked list }

channel Tx(Transmitter, Medium);
by Transmitter:
MDTreq(PDU : DTPDUType);

by Medium:
MAKind(PDU : AKPDUType);

channel Rx(Receiver, Medium);
by Receiver:
MAKreq(PDU : AKPDUType);

by Medium:
MDTind(PDU : DTPDUType);

module UM systemprocess;
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ip
MT : Tx(Medium);
MR : Rx(Medium);

end;

body UMBody for UM;
const MaxDelay = any integer; { implementation maximum delay }

{ The following procedures and functions manipulate queues in
the usual fashion }

procedure initqueue(var q: QueueType);
primitive;

procedure enqueue(Data: QueueData; var q: QueueType);
primitive;

procedure dequeue(var Data: QueueData; var q: QueueType);
primitive;

function isempty(q: QueueType): boolean;
primitive;

{ The following procedure models the unreliability of the medium.
It may lose, corrupt, duplicate or re-order some of the entries of
the queue, q, and may also leave it unaltered. }

procedure mung(var q: QueueType);
primitive;

var
TtoR: QueueType; { Transmitter to receiver queue }
RtoT: QueueType; { Receiver to transmitter queue }

initialize
provided ( MaxDelay > 0 )
begin { 1 }
initqueue(TtoR);
initqueue(RtoT);

end;

trans
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when MT.MDTreq
var QueueElement: QueueData;
begin { 2 }
QueueElement.Seq := PDU.Seq;
QueueElement.Msg := PDU.Msg;
enqueue(QueueElement, TtoR);

end;
when MR.MAKreq
var QueueElement: QueueData;
begin { 3 }
QueueElement.Seq := PDU.Seq;
enqueue(QueueElement, RtoT);

end;

trans
provided not isempty(TtoR)
delay(0, MaxDelay)
var
PDUtoSend: DTPDUType;
QueueElement: QueueData;

begin { 4 }
mung(TtoR);
if not isempty(TtoR) then
begin
dequeue(QueueElement, TtoR);
PDUtoSend.Seq := QueueElement.Seq;
PDUtoSend.Msg := QueueElement.Msg;
output MR.MDTind(PDUtoSend);

end
end;

provided not isempty(RtoT)
delay(0, MaxDelay)
var
AKtoSend: AKPDUType;
QueueElement: QueueData;

begin { 5 }
mung(RtoT);
if not isempty(RtoT) then
begin
dequeue(QueueElement, RtoT);
AKtoSend.Seq := QueueElement.Seq;
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output MT.MAKind(AKtoSend)
end

end;
end; { UMBody }

{ Here is the body of the specification itself }

modvar
UMInstance : UM;

initialize
begin
init UMInstance with UMBody;

end;
end. { UnreliableMedium }

6.4 Formal Description in LOTOS5

The medium could be represented as a process with two gates, or with a single
gate and two service access points. The representation with one gate m has
been chosen since it is more general and just as abstract as the one with two
gates.

An outline representation of a protocol supporting a service at gate s over
the medium would be:

specification Protocol [s] (...) : noexit

behaviour
hide m in
ProtocolEntities [s, m] (...) || UnreliableMedium [m] (...)

where

process ProtocolEntities [s, m] (...) : noexit ...

process UnreliableMedium [m] (...) : noexit ...

endspec (* Protocol *)

However, the description of the medium service in this chapter is self-
contained. Figure 6.2 shows the decomposition of the processes in the descrip-
tion.

5Section 6.4 is by F. M. Fournón y González-Barcia.
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UnreliableMedium

❄
Transfer

PPPPPq
✏✏✏✏✏✮

HalfTransfer

❄
Bag

HalfTransfer

Figure 6.2: Unreliable Medium in LOTOS – Process Decomposition

The medium service is a very simple one. In most services, the constraints at
the top level are concerned with acceptance of primitives and transfer of data.
For the unreliable medium, however, the acceptance constraints are missing
because there are no restrictions: indications or requests are accepted at all
times.

The full duplex transfer of data from one end to the other is decomposed
into two identical simplex (one-way) links. Each of these links is described using
a process that behaves like a bag (a set with duplicates).

The basic elements of the medium service are the MSAPs (Service Access
Points) it supports, the SPs (Service Primitives) exchanged at these points,
and the SDUs (Service Data Units) carried by those primitives.

The service is accessed via the m (medium) gate.

specification UnreliableMedium [m] : noexit

Only the Boolean data type from the standard library is required.

library
Boolean

endlib

The specification of MSAPs provides two distinct values (mt and mr) for the
transmitting and receiving ends.

type MSAPs is
sorts MSAP
opns mt, mr : −> MSAP

endtype (* MSAPs *)
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Nothing definite is said in the informal description about the service data units
of the medium except that there are data messages and acknowledgement mes-
sages. A protocol would embed protocol messages in medium service data units,
encoded in some way. Nothing is also known about the detection of corrupted
messages in the protocols, but it can be assumed that this would be part of
the protocol encoding/decoding functions. Thus, the most abstract and general
view of the informal description is as a set of distinct messages6 (just data and
ack here) with an undefined Corrupts operation that checks if one service data
unit is a corruption of another. Several SDU values may be a corruption of a
given SDU.

type SDUs is Boolean
sorts SDU
opns
data, ack : −> SDU
Corrupts : SDU, SDU −> Bool

endtype (* SDUs *)

The medium service primitives have three kinds of operations: constructors for
requests and indications (MDTreq, MDTind, MAKreq, MAKind), a selector to
extract a service data unit (SDUOf ), and recognisers for request and indication
primitives (IsMreq, IsMind)7.

type MSPs is SDUs, Boolean
sorts MSP
opns
MDTreq, MDTind : SDU −> MSP
MAKreq, MAKind :SDU −> MSP
SDUOf : MSP −> SDU
IsMreq, IsMind : MSP −> Bool

eqns
forall sp : MSP, sdu : SDU
ofsort SDU
SDUOf (MDTreq (sdu)) = sdu;
SDUOf (MDTind (sdu)) = sdu;
SDUOf (MAKreq (sdu)) = sdu;
SDUOf (MAKind (sdu)) = sdu;

ofsort Bool

6In the description of the sliding window protocol in Section 7.4, this type is replaced
by the more specific one of protocol data units. It would be convenient to have separate
specification modules, but Lotos does not support these.

7In more complex descriptions, each type of service primitive would be identified with a
natural number to simplify the definition of recognisers.
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IsMreq (MDTreq (sdu)) = true;
IsMreq (MDTind (sdu)) = false;
IsMreq (MAKreq (sdu)) = true;
IsMreq (MAKind (sdu)) = false;
IsMind (sp) = not (IsMreq (sp));

endtype (* MSPs *)

As noted earlier, the medium service has only transfer constraints.

behaviour
Transfer [m]

where

Process Transfer is composed of two identical halves, each representing a sim-
plex link from one MSAP to the other. It is a matter for the protocol to decide
how to use these links (e.g. for only the transmitter to originate data messages).

process Transfer [m] : noexit :=
HalfTransfer [m] (mt, mr) ||| HalfTransfer [m] (mr, mt)

where

Process HalfTransfer accepts a request primitive and passes it as a medium
object to a Bag process forked from itself.

process HalfTransfer [m] (transmitter, receiver : MSAP) : noexit :=
m ! transmitter ? sp : MSP [IsMreq (sp)];
(
HalfTransfer [m] (transmitter, receiver)

|||
Bag [m] (receiver, Object (sp))

)

where

The simplex link represented by HalfTransfer handles medium objects. An
object is created from a request primitive, can be corrupted, and can give rise
to indication primitives. The medium carries an object presented as a service
request, and delivers it transformed into an service indication. Corruption of
objects affects only their data, not their kind. Several object values may be a
corruption of a given object.

type Objects is MSPs, SDUs, Boolean
sorts Obj
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opns
Object : MSP −> Obj
Indication: Obj −> MSP
Corrupts : Obj, Obj −> Bool

eqns
forall sdu, sdu1, sdu2 : SDU
ofsort MSP
Indication (Object (MDTreq (sdu))) = MDTind (sdu);
Indication (Object (MAKreq (sdu))) = MAKind (sdu);

ofsort Bool
Corrupts (Object (MDTreq (sdu1)),
Object (MDTreq (sdu2))) =
Corrupts (sdu1, sdu2);

Corrupts (Object (MDTreq (sdu1)),
Object (MAKreq (sdu2))) =
false;

Corrupts (Object (MAKreq (sdu1)),
Object (MDTreq (sdu2))) =
false;

Corrupts (Object (MAKreq (sdu1)),
Object (MAKreq (sdu2))) =
Corrupts (sdu1, sdu2);

endtype (* Objects *)

Process Bag delivers the objects it receives in any order. It also deals with
loss, corruption and duplication of objects. All these actions happen in a non-
deterministic way, represented by choices preceded by an internal event. Cor-
ruption of objects is represented as a choice of corrupted value.

process Bag [m] (sap : MSAP, obj : Obj) : noexit :=
i; (* Object discarded *)
stop

[]
i; (* Object duplicated *)
(Bag [m] (sap, obj) ||| Bag [m] (sap, obj))

[]

i; (* Object corrupted *)
(
choice newobj : Obj [] (* Choose corruptions of object *)
[Corrupts (newobj, obj)] −>
Bag [m] (sap, newobj)

)
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[]
i; (* Object delivered *)
m ! sap ! Indication (obj); stop

endproc (* Bag *)

endproc (* HalfTransfer *)

endproc (* Transfer *)

endspec (* UnreliableMedium *)

6.5 Formal Description in SDL8

The formal description is shown in Figure 6.3. The description demonstrates
that the conceptual view of a service provider as an abstract queue manager
can be supported by SDL. The transmitter and receiver are assumed to be
located in the environment and to use a proper transfer protocol (e.g. a sliding
window protocol) to cope with the unreliability of the medium. The descrip-
tion therefore consists only of a system UnreliableMedium containing a block
Medium.

The blockMedium communicates with the environment via two bidirectional
channels: mt (to the medium from the environment – the transmitter), and
mr (from the medium to the environment – the receiver). Within the block,
each channel splits into two (unidirectional) signalroutes: channel mt splits into
signalroutes mtd for data and mta for acknowledgements, and channel mr splits
into signalroutes mrd for data and mra for acknowledgements.

Treatment of data within the medium is handled by process MsgManager
whose behaviour is described by a sequence of operations on a queue of data
items, asynchronously triggered by a ‘guard’ process MsgHazard. Similarly,
treatment of acknowledgements within the medium is handled by process Ack-
Manager whose behaviour is described by a sequence of operations on a queue
of data items, asynchronously triggered by a ‘guard’ process AckHazard. For
realism, it has been assumed that messages and acknowledgements carry a CRC
(Cyclic Redundancy Check) that is used to detect corruption.

A medium can be considered as a transfer service provider between two
points. The idea of describing a service provider as an abstract queue manager
is well-known in OSI (Open Systems Interconnection). The specific queue man-
agement policy determines the kind of service. In the formal description of the
unreliable medium the queue management is specialised to reflect its character-
istics. Whenever signal MDTreq is received, a new item is added to the queue.

8Section 6.5 is by S. Trigila.
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mrmt

system  UnreliableMedium

[MDTreq] [MDTind][MAKreq] [MAKind]

signal MDTreq (SeqnoType, BitString, DataCrc),
           MDTind (SeqnoType, BitString, DataCrc),
           MAKreq (SeqnoType, AckCrc),
           MAKind (SeqnoType, AckCrc);

synonym lenDataCrc  Integer = external; /* length of CRC on data */
synonym lenAckCrc  Integer = external; /* length of CRC on acks  */

generator Queue (type Item)
/ * see definition in the Sliding Window Protocol  specification*/
endgenerator Queue;

syntype SeqnoType = Natural endsyntype SeqnoType;
syntype DataCrcIndex = Integer
     constants 1:lenDataCrc endsyntype DataCrcIndex; 
syntype AckCrcIndex = Integer
     constants 1:lenAckCrc endsyntype AckCrcIndex;

newtype DataCrc array (DataCrcIndex,Bit); endnewtype DataCrc; 
newtype AckCrc array (AckCrcIndex,Bit); endnewtype AckCrc;
newtype BitString string (Bit,''); endnewtype BitString;
newtype Bit  literals  0,1; endnewtype Bit;
newtype MediumMessage struct
               s SeqnoType;
	              b BitString;
               c DataCrc; endnewtype MediumMessage;
newtype MedMsgQueue Queue (MediumMessage); 
       endnewtype MedMsgQueue;
newtype MediumAck struct
               s SeqnoType;
               c AckCrc; endnewtype MediumAck;
newtype MedAckQueue Queue (MediumAck); 
       endnewtype  MedAckQueue;

Medium

1(1)

Figure 6.3: Unreliable Medium in SDL – Graphical Description
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block  Medium

mm
[(lm)]

[(la)]

[MAKreq]

[MDTind][MDTreq]

[MAKind]
mt

mta

mt
mtd

mr
mrd

mr
mra

signal ANormal, ALose, ADup, AReord, ACorrupt,
           MNormal, MLose, MDup, MReord, MCorrupt;
signallist  la = ANormal, ALose, ADup, 
                        AReord, ACorrupt;
signallist  lm = MNormal, MLose, MDup, 
                         MReord, MCorrupt;

aa

MsgHazard
(1,1)

MsgManager 
(1,1)

AckManager
(1,1)  

AckHazard
(1,1)

1(1)

/* Processes MsgHazard and 
AckHazard are not defined */

Figure 6.3 (continued)
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process MsgManager

dcl  mq  MedMsgQueue,
       qitem  MediumMessage,
       seqno  SeqnoType,
       data  BitString,
       dcrc  DataCrc;

MDTreq
 (seqno,data, 

dcrc)

—

Transfer

MNormal

MLose MDup

seqno:=qitem!s,
data:=qitem!b,
dcrc:=qitem!c 

qitem!s:=seqno,
qitem!b:=data,
qitem!c:=dcrc

qitem:= 
qfirst(mq),

mq:=qrest(mq)

mq:=qadd 
(qfirst(mq),mq)mq:=qrest(mq)

MDTind
(seqno,data,

dcrc)

—

— —

MReord

mq:=qadd(qfirst
(mq),qrest(mq))

MCorrupt

/* randomly
modify qitem */

qitem:= 
qfirst(mq),

mq:=qrest(mq)

mq:=qconcat
(mq,qadd

(qitem,qnew))

—

—

mq := qnew

mq:=qadd
(qitem,mq)

1(1)

Figure 6.3 (continued)
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process AckManager

dcl  ma  MedAckQueue,
       qitem  MediumAck,
       seqno SeqnoType,
       acrc  AckCrc;

MAKreq
(seqno,acrc)

—

Transfer

ANormal

ALose ADup AReord

ACorrupt

qitem!s:=seqno,
qitem!c:=acrc

qitem:= 
qfirst(ma),

ma:=qrest(ma)

qitem:= 
qfirst(ma),

ma:=qrest(ma)

ma:=qadd(qfirst 
(ma),qrest(ma))

ma:=qadd 
(qfirst(ma),ma)ma:=qrest(ma)

MAKind
(seqno,acrc)

ma:=qconcat 
(ma,qadd

(qitem,qnew))

— —

— — —

ma := qnew

seqno:=qitem!s,
acrc:=qitem!c 

/* randomly 
modify qitem */

ma:=qadd
(qitem,ma)

1(1)

Figure 6.3 (continued)
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From time to time the first item is removed from the queue and the correspond-
ing signal MDTind issued, or ‘unfair’ operations are performed on the queue.
The overall set of non-deterministic factors causing all this is summarised in
process MsgHazard which ‘suggests’ to MsgManager, via suitable signals, the
operation to be carried out on the queue: normal delivery, loss, duplication,
reordering or corruption. The same possibilities apply for acknowledgements,
dealt with by MAKreq, MAKind, AckHazard and AckManager.

The signals MNormal and ANormal trigger fair operations on the queues
of data and acknowledgements, whereas MLose, MDup, MReord, MCorrupt,
ALose, ADup, AReord and ACorrupt trigger unfair operations. In the process
bodies of MsgManager and AckManager, unfair operations are described by
means of standard functions on the abstract data type queue. Process bodies
forMsgHazard and AckHazard are left undefined9. In fact they summarise some-
thing that is beyond control of the specifier and as such cannot be described.
An SDL specifier would best avoid their appearance by simply locating them in
the environment. They have been shown explicitly here for the sake of greater
clarity.

When describing a system with SDL, it is completely up to the specifier
where to position its boundary with the environment. In the formal description,
the medium was considered as a system on its own because the protocol was
not of interest. If the protocol were relevant, it would be possible to move
the system boundary and include the description of the protocol entities. The
block Medium itself could be reused entirely in this larger description, except
that signal and data definitions at system level would have to be enriched to
reflect the protocol.

6.6 Conclusion10

Even with this small example there were still useful lessons to be learned in
writing the formal descriptions. It is tempting to assume that a commonly used
concept (an unreliable medium in this case) will be understood in the same way
by everyone. The conclusions from this example are as follows:

• It is important to define the boundary of a system clearly. In this case,
the boundary between the medium and the protocol using it were not
clearly drawn in the informal description. Clarification was needed of
where to locate functions such as detection of corruption and identification
of message types.

9This section uses strict SDL-88. An alternative approach is shown in Section 5.5.2, where
the spontaneous transition feature of SDL-92 has been used to model non-determinism

10Section 6.6 is by K. J. Turner.



Unreliable Medium 181

• The range of errors a system may cause needs to be carefully stated. For
example, it is vital for a protocol to know exactly what kinds of error
may occur in the medium (e.g. corruption of message data content but
not message type).

• Before writing a formal description of a system, it is worth formally de-
scribing its infrastructure first. The unreliable medium supports the slid-
ing window protocol of Chapter 7. Problems resolved in formalising the
medium saved effort in writing the much larger description of the protocol.
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7 Sliding Window Protocol

A sliding window protocol is one of the simplest protocols, yet it illustrates
important flow control and error recovery mechanisms found in many commu-
nications systems. Sequence numbering and windows are used for flow control.
The protocol is designed to operate over an unreliable medium and so employs
sequence numbering and acknowledgements. The protocol described in this
chapter could be supported by the unreliable medium described in Chapter 6.
The seminal paper on the sliding window protocol, Stenning (1976), described
the protocol in a Pascal-like language and investigated its correctness.

7.1 Informal Description1

The Sliding Window Protocol supports a unidirectional flow of data with
a positive handshake on each transfer. An acknowledgement window is used
for flow control. The protocol supports the sliding window service ‘S ’ over
an unreliable medium service ‘M ’ that may lose, corrupt, duplicate or re-order
messages. It is assumed that the corruption of messages can be reliably detected
by the protocol by some unspecified means such as a checksum. The protocol
has no connection or disconnection procedures.

7.1.1 Sequence Numbering

The transmitter sends a sequence number with each message. A sequence num-
ber is unbounded and is incremented for each new message. The first message
transmitted has sequence number 1.

The receiver sends an acknowledgement when it receives a message. The
acknowledgement carries a sequence number that refers to the last message
successfully transferred to the receiving user. If an acknowledgement has to be
sent before a successful reception (e.g. the first message was corrupted), it is
given sequence number 0.

1Section 7.1 is by K. J. Turner, derived from the narrative and programs in Stenning
(1976).
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Lowest
Unacked

Highest
Sent

✛ Transmitter Window Size ✲

Figure 7.1: Sliding Window Protocol – Transmitter Window

7.1.2 Transmitter Behaviour

The transmitter maintains a window of sequence numbers as shown in Fig-
ure 7.1. This gives the lowest sequence number for which an acknowledgement
is awaited, and the highest sequence number so far used. The window size is
limited to the value TWS (Transmitter Window Size).

The transmitter behaves initially as (1) below, and then loops doing (2), (3)
and (4) where possible:

(1) LowestUnacked is set to 1, HighestSent to 0 and TWS to a positive value
dependent on the implementation.

(2) If the current window size (HighestSent − LowestUnacked) is less than
TWS, then a message with the next sequence number (HighestSent + 1)
may be transmitted. In this case, HighestSent is incremented and a timer
for that message is started.

(3) If an acknowledgement is received that is not corrupted and has a se-
quence number not less than LowestUnacked, then all timers for messages
up to and including that sequence number are cancelled. In this case,
LowestUnacked is set to the sequence number following the acknowledged
one.

(4) If a timeout occurs, then the timers for all messages transmitted after the
timed out one are cancelled. All these timed out messages are retransmit-
ted (in sequence, starting with the earliest) and have timers started for
them.

7.1.3 Receiver Behaviour

The receiver maintains a window of sequence numbers as shown in Figure 7.2.
This gives the lowest sequence number that is awaited and the highest sequence
number that has been received. The window size is limited to the value RWS
(Receiver Window Size).
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Next
Required

Highest
Received

✛ Receiver Window Size ✲

Figure 7.2: Sliding Window Protocol – Receiver Window

The receiver behaves initially as (1) below, and then loops doing (2) and (3)
where possible.

(1) NextRequired is initialised to 1, and TWS to to a positive value dependent
on the implementation.

(2) If a message is received that is not corrupted, has not already been re-
ceived, and is within the maximum receive window (defined by Next-
Required and RWS), then all messages from NextRequired up to but not
including the first unreceived message are delivered to the receiving user2.
In this case, NextRequired is set to the sequence number of the next mes-
sage to be delivered to the receiving user.

(3) If a message is received under any circumstances, an acknowledgement
giving the sequence number of the last delivered message (NextRequired −
1) is returned.

7.2 Errors in the Informal Description3

7.2.1 Window Size

In Sections 7.1.2 and 7.1.3, do TWS and RWS need to have the same value?
What should happen if these parameters are not positive?

The window sizes are intentionally allowed to be different. If a window size
is not positive, the protocol should simply fail to transmit messages (TWS ≤ 0)
or receive them (RWS ≤ 0).

2There may be no such messages if there is a gap due to misordering.
3Section 7.2 is by K. J. Turner, based on problems found by the authors of the formal

descriptions.
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7.2.2 Flow Control

Section 7.1.3 is unclear as to what ‘delivery’ of a message means. Does it mean
dispatch by the receiver to its user or receipt by its user? These may not be
the same if there is buffering or delay between the receiver and its user.

Since the interface between the receiver and its user depends on the im-
plementation, it is not reasonable to restrict the meaning of ‘delivery’ in the
informal description. Similarly, the concept of ‘delivery’ in a formal description
depends on the particular FDT used.

7.2.3 Value of Time-Out Period

Is the timeout period mentioned in Section 7.1.2 fixed for all implementations,
fixed for one implementation, or dynamically variable?

The timeout period was meant to be left open, i.e. to be specified at a lower
level of description.

7.2.4 Receiver Window Size

In Section 7.1.3, should the receiver initialise RWS? The informal description
refers to TWS.

It was intended that RWS be initialised. The mention of TWS was a typo-
graphical error.

7.2.5 Sequence of Operations

In Sections 7.1.2 and 7.1.3, do the phrases ‘(2), (3) and (4)’ and ‘(2) and (3)’
mean a sequence in time, or a set of operations that may be carried out in
parallel?

A sequence in time was intended.

7.2.6 Transmit Window Size

Figure 7.1 and the definition of ‘current window size’ of Section 7.1.2 are incon-
sistent.

The value ‘HighestSent − LowestUnacked + 1’ should have been defined as
the current window size.

7.2.7 Receive Window Size

Section 7.1.3 says that a message may be processed if its sequence number lies
‘within the maximum receive window’. Is the upper bound of this included in
this range (i.e. NextRequired + RWS )?
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The upper bound is not included. The text should have read ‘within the
current receive window (NextRequired + RWS − 1)’.

7.2.8 Retransmission on Timeout

What are ‘all these timed out messages’ mentioned in Section 7.1.2? Only one
message has in fact timed out. The phrase might also mean all the messages
following, but not including, the timed out one.

The intention was that the timed out message and all messages sent later
be retransmitted.

7.3 Formal Description in ESTELLE4

The architecture of the formal description is shown in Figure 7.3. All the
modules of the description are systemprocesses, and so run asynchronously.
As these modules are not refined into submodules, the global behaviour would
not change if they were designated systemactivities. The crucial point is that
they are distinct systems. An explicit Timermodule was chosen for two reasons:

• it shows a way to manage timeouts without using delay clauses directly,
although an Estelle description of a timer module would obviously use
these; delay clauses are used for timeouts in the example of section 9.3

• it seemed to model the informal requirements more closely.

The Timer module is not described because it was felt that it would make
the text longer without really adding much information to the example. Unless
cancelled, the Timer module generates an interaction for each data interaction
that arises, in order to ensure retransmission.

The sliding window protocol is unusual in several ways. For example, its
data flow is unidirectional, leading to a few peculiarities in the architecture of
the formal description such as having distinct and different modules acting as
peers.

The transmitter uses primitive procedures and functions to buffer messages
until they are acknowledged. BuffSave stores a PDU (Protocol Data Unit –
a message) by its sequence number and data. BuffFree discards the buffered
message with a given sequence number. BuffRetrieve extracts the buffered data
with a given sequence number. The transmitter also uses Corrupted (to check if
a PDU has been corrupted in transit) and PDUDT (to construct a data PDU).

The receiver has corresponding primitive procedures and functions to buffer
messages until they need to be delivered. PDUSave stores a PDU. PDURetrieve

4Section 7.3 is by R. L. Tenney and T. P. Blumer.
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TransmitterUser
❤

ST

ReceiverUser
❤

SR

Transmitter

❤ST

❤
MT

❤T Timer❤ Receiver

❤SR

❤
MR

UM (Unreliable Medium)

❤MT ❤MR

Figure 7.3: Sliding Window Protocol in ESTELLE – Architecture

extracts the buffered PDU for a given sequence number. The receiver also
uses Corrupted (to check if a PDU has been corrupted in transit), PDUAK (to
construct an acknowldegement PDU) and UserData (to extract the data part
of a PDU).

specification SlidingWindowProtocol;

default individual queue;

type
SeqType = integer; { Sequence number type, >= 0 }
UserDataType = ...; { Some suitable type, e.g. a string }
DTPDUType = { Data message }
record
Seq: SeqType;
Msg: UserDataType;

end;
AKPDUType = { Acknowledgement message}
record
Seq: SeqType;

end;

channel TxUser(User, Transmitter);
by User:
SDTreq(Data : UserDataType);
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channel RxUser(User, Receiver);
by Receiver:
SDTind(Data : UserDataType);

channel Tx(Transmitter, Medium);
by Transmitter:
MDTreq(PDU : DTPDUType);

by Medium:
MAKind(PDU : AKPDUType);

channel Rx(Receiver, Medium);
by Receiver:
MAKreq(PDU : AKPDUType);

by Medium:
MDTind(PDU : DTPDUType);

channel Time(Transmitter, Timer);
by Transmitter:
TimeReq(Seq : SeqType);
TimeCanc(Seq : SeqType);

by Timer:
TimeResp(Seq : SeqType);

module TransmitterUser systemprocess;
ip ST : TxUser(User);

end;

body TransmitterUserBody for TransmitterUser;
external;

module ReceiverUser systemprocess;
ip SR : RxUser(User);

end;

body ReceiverUserBody for ReceiverUser;
external;

module UM systemprocess;
ip
MT : Tx(Medium);
MR : Rx(Medium);

end;
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{ The body for the UM module is given in Section 6.3 }

body UMBody for UM;
external;

module Timer systemprocess;
ip T : Time(Timer);

end;

body TimerBody for Timer;
external;

module Transmitter systemprocess;
ip
ST : TxUser(Transmitter);
MT : Tx(Transmitter);
T : Time(Transmitter);

end;

{ Transmitter module body }

body TransmitterBody for Transmitter;

const TWSMax = any integer; { Maximum window size }

state SENDING;

{ Save user data in buffer until acknowledgement }

procedure BuffSave(s : SeqType; d : UserDataType);
primitive;

{ Free user data buffer entry after acknowledgement }

procedure BuffFree(s : SeqType);
primitive;

{ Retrieve user data entry from buffer }

function BuffRetrieve(s : SeqType) : UserDataType;
primitive;

{ Returns true if the PDU is corrupted }
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function Corrupted(PDU : AKPDUType) : boolean;
primitive;

{ Construct a DT PDU from the user data and sequence number }

function PDUDT(s : SeqType; d : UserDataType) : DTPDUType;
primitive;

var
LowestUnacked : SeqType;
HighestSent : SeqType;
TWS : integer;

initialize
to SENDING
provided (TWSMax > 0)
begin
LowestUnacked := 1;
HighestSent := 0;
TWS := TWSMax;

end;

trans

{ Transmit while window not full }
from SENDING to same
when ST.SDTreq
provided HighestSent − LowestUnacked + 1 < TWS
begin
HighestSent := HighestSent + 1;
output T.TimeReq(HighestSent);
output MT.MDTreq(PDUDT(HighestSent, Data));
BuffSave(HighestSent, Data);

end;

{ Receive acknowledgement }
from SENDING to same
when MT.MAKind
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provided (PDU.Seq >= LowestUnacked) and
(PDU.Seq <= HighestSent) and not Corrupted(PDU)
var S : SeqType;
begin
for S := LowestUnacked to PDU.Seq do
begin
output T.TimeCanc(S);
BuffFree(S);
end;

LowestUnacked := PDU.Seq + 1;
end;

{ Receive acknowledgement not in window }
provided otherwise
begin
{ Ignore this acknowledgement }

end;

{ Timer response }
from SENDING to same
when T.TimeResp
provided (Seq >= LowestUnacked) and
(Seq <= HighestSent)
var S : SeqType;
begin
for S := Seq to HighestSent do
begin
output T.TimeCanc(S);
output MT.MDTreq(PDUDT(S, BuffRetrieve(S)));
output T.TimeReq(S);
end;

end;

provided otherwise
begin
{ Ignore timer response for sequence number outside
window, e.g. when an acknowledgement arrives just as
the timer responds }

end;

end; { TransmitterBody }

module Receiver systemprocess;
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ip
SR : RxUser(Receiver);
MR : Rx(Receiver);

end;

{ Receiver module body }

body ReceiverBody for Receiver;

const RWSMax = any integer; { Maximum window size }

state RECEIVING;

{ Construct an AK PDU, given the sequence number }

function PDUAK(S : SeqType) : AKPDUType;
primitive;

{ Retrieve PDU with sequence number S from buffer, returning a
PDU with sequence number 0 if not in buffer }

function PDURetrieve(S : SeqType) : DTPDUType;
primitive;

{ Save the PDU in the buffer }

procedure PDUSave(PDU : DTPDUType);
primitive;

{ Returns true if the PDU is corrupted }

function Corrupted(PDU : DTPDUType) : boolean;
primitive;

{ Return the user data from the given PDU }

function UserData(p : DTPDUType) : UserDataType;
primitive;

var
NextRequired : SeqType;
HighestReceived : SeqType;
RWS : integer;
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initialize
to RECEIVING
provided RWSMax > 0
begin
NextRequired := 1;
HighestReceived := 0;
RWS := RWSMax;

end;

trans

{ Receive message in window }
from RECEIVING to same
when MR.MDTind
provided (PDU.Seq >= NextRequired) and
(PDU.Seq < NextRequired + RWS) and
not Corrupted(PDU)
var
S : SeqType;
TPDU : DTPDUType;
Done : boolean;

begin
PDUSave(PDU);
S := NextRequired;
Done := false;

{ Retrieve each PDU from buffer and send to user.
Stop at first gap in buffer, i.e. the first PDU not
received (sequence number 0 returned). }
repeat
TPDU := PDURetrieve(S);
if TPDU.Seq = S then
begin
{ Extract user data from PDU and send to user }
output SR.SDTind(UserData(TPDU));
S := S + 1;
end
else
{ Reached gap in buffer }
Done := true;

until Done;
NextRequired := S;
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output MR.MAKreq(PDUAK(NextRequired − 1));
end;

{ Receive message that is not in window or corrupted }
provided otherwise
begin
output MR.MAKreq(PDUAK(NextRequired − 1));

end;

end; { ReceiverBody }

{ Main body for SlidingWindowProtocol }

modvar
TransmitterInstance : Transmitter;
ReceiverInstance : Receiver;
TransmitterUserInstance : TransmitterUser;
ReceiverUserInstance : ReceiverUser;
UMInstance : UM;
TimerInstance : Timer;

initialize
begin
init TransmitterUserInstance with TransmitterUserBody;
init ReceiverUserInstance with ReceiverUserBody;
init TransmitterInstance with TransmitterBody;
init ReceiverInstance with ReceiverBody;
init UMInstance with UMBody;
init TimerInstance with TimerBody;

connect TransmitterUserInstance.ST to TransmitterInstance.ST;
connect ReceiverUserInstance.SR to ReceiverInstance.SR;
connect TransmitterInstance.MT to UMInstance.MT;
connect ReceiverInstance.MR to UMInstance.MR;
connect TransmitterInstance.T to TimerInstance.T;

end;
end. { SlidingWindowProtocol }

7.4 Formal Description in LOTOS5

5Section 7.4 is by F. M. Fournón y González-Barcia and T. de Miguel Moro.
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7.4.1 Architecture of the Formal Description

The sliding window protocol is an asymmetrical protocol in the sense that it is
composed of two different entities: the Transmitter at the sending side, and the
Receiver at the receiving side. Since the service provided by this protocol has not
been explicitly defined, different approaches could be taken when representing
the communicating entities and the architecture of the protocol.

One approach would be to consider each entity as a whole. In this way,
the transmitter user would access the service via a gate ut, and the transmitter
would access the medium via the gate mt. Similarly, the receiver user would
access the service via a gate ur, and the receiver would access the medium via
the gate mr.

An alternative approach would be to consider both entities together. In this
way, the service provided by the sliding window protocol would be accessed via
a single gate s, and the protocol would access the medium via a single gate m.
Service access points would be used to distinguish the different entities involved.
This approach is in line with the way OSI services and protocols are defined,
and does not reduces the generality or abstractness of the specification. It is
the approach chosen here.

An outline representation of the protocol and its supporting medium would
be:

specification SlidingWindowProtocol [s, m] (...) : noexit

behaviour
(TransmitterEntity [s, m] (...) ||| ReceiverEntity [s, m] (...))

||
UnreliableMedium [m] (...)

where

process TransmitterEntity [s, m] (...) : noexit ...

process ReceiverEntity [s, m] (...) : noexit ...

process UnreliableMedium [m] (...) : noexit ...

endspec (* SlidingWindowProtocol *)

This chapter contains only the specification of the protocol. The specifica-
tion of the unreliable medium in Chapter 6 is used in part for the protocol. The
style of the specification is constraint-oriented. At the top level, the behaviour
of the protocol is divided into two constraints, TransmitterEntity and Receiver-
Entity. Each of these entities is further divided into the constraints related to
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one gate (local constraints) and the constraints involving both gates. The local
constraints comprise those for gate s and those for gate m. The constraints
involving both gates are further decomposed into simpler processes.

The basic elements of the protocol are the SAPs (Service Access Points)
it supports, the SPs (Service Primitives) exchanged at these points, the SDUs
(Service Data Units) carried by those primitives, and the PDUs (Protocol Data
Units) in which they are embedded.

The overall structure of the specification in terms of the nesting of definitions
is:

specification SlidingWindowProtocol

library

type SSAPs
type SSDUs
type SSPs
type PDUs
type EnrichedNat
type MSAPs
type MSPs

behaviour

process TransmitterEntity
process LocalConstraints
process SGate
process MGate
process MGate1

process TransmitterConstraints
type TimerSignal
process AllTimers
process Timer
process AnyTimer
process Identification
type NaturalMod

type PDUQueue
process Transmitter
process Sender
process AckRec
process ReleaseQueue

process TimeOut
process Retransmission
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process IgnoreAckedAck
process PDUCorrectness
process IgnoreCorruptedPDU

process ReceiverEntity
type PDUSet1
type PDUSet
type PDUSetIndexed
process LocalConstraints
process SGate
process MGate

process Receiver
process Receiver1
process DeliverMessages

process IgnoredPDU
process SendAck

type NatMinus

7.4.2 Top-Level Specification

The sliding window protocol provides its service through the s gate, and accesses
the medium via the m gate. The overall specification is parameterised by the
maximum window sizes (tws, rws).

specification SlidingWindowProtocol [s, m] (tws, rws : Nat ) : noexit

Natural numbers, Booleans and sets are required from the standard library.

library
NaturalNumber, Boolean, Set

endlib

7.4.3 Top-Level Data Types

The specification of SAPs provides two distinct values (ut and ur) for the trans-
mitting and receiving ends.

type SSAPs is
sorts SSAP
opns ut, ur : −> SSAP

endtype (* SSAPs *)
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Nothing definite is said in the informal description about the data units carried
by the protocol except that there are data messages and acknowledgement mes-
sages. Thus, a sort with distinct values would be enough. For testing purposes,
however, and in order to use a set of PDUs later, equality (eq) has been defined
so that (in)equality of PDUs can be defined. Just two data messages (data1,
data2 ) are specified.

type SSDUs is Boolean
sorts SSDU
opns
data1, data2 : −> SSDU
eq : SSDU, SSDU −> Bool

eqns
forall data : SSDU
ofsort Bool
data1 eq data2 = false;
data2 eq data1 = false;
data eq data = true;

endtype (* SSDUs *)

Service primitives have three kinds of operations: constructors for requests
and indications (UDTreq, UDTind), a selector to extract a service data unit
(DataOf ), and recognisers for request and indication primitives (IsUDTreq, Is-
UDTind)6.

type SSPs is SSDUs
sorts SSP
opns
UDTreq, UDTind : SSDU −> SSP
IsUDTreq, IsUDTind : SSP −> Bool
DataOf : SSP −> SSDU

eqns
forall sp : SSP, sdu : SSDU
ofsort SSDU
DataOf (UDTreq (sdu)) = sdu;
DataOf (UDTind (sdu)) = sdu;

ofsort bool
IsUDTreq (UDTreq (sdu)) = true;
IsUDTreq (UDTind (sdu)) = false;
IsUDTind (sp) = not (IsUDTreq (sp));

endtype (* SSPs *)

6In more complex descriptions, each type of service primitive would be identified with a
natural number to simplify the definition of recognisers.
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Protocol Data Units

With respect to the protocol data units, only the structure but not actual
encoding is given in the informal description. In general, medium service data
units would carry the encoded representation of the PDUs. Another data type
would therefore be required for mapping between that encoded format and the
logical structure. Since no encoding is defined for the sliding window protocol,
no intermediate mapping is required.

There is another implication of the absence of this encoding. The corruption
of PDUs has to be ‘reliably detected’. Without an encoded format, it cannot
be guessed how corruption arises or how it can be detected. The only way
of representing this is with an extra operation Corrupt and an IsCorrupted
predicate.

(In)equality of PDUs is also defined. This is necessary when defining PDUSet
later, based on the Set type from the standard library. There, eq and ne are
formal operations that require to be actualised.

type PDUs is SSDUs, NaturalNumber, Boolean
sorts PDU
opns
MakeDTPDU : SSDU, Nat −> PDU
MakeAKPDU : Nat −> PDU
DataOf : PDU −> SSDU
SeqNo : PDU −> Nat
IsCorrupted : PDU −> Bool
IsDTPDU : PDU −> Bool
IsAKPDU : PDU −> Bool
Corrupt : PDU −> PDU
eq , ne : PDU, PDU −> Bool

eqns
forall sn, sn1, sn2 : Nat, data, data1, data2 : SSDU,
pdu, pdu1, pdu2 : PDU
ofsort SSDU
DataOf (MakeDTPDU (data, sn)) = data;

ofsort Nat
SeqNo (MakeDTPDU (data, sn)) = sn;
SeqNo (MakeAKPDU (sn)) = sn;

ofsort Bool
IsCorrupted (MakeDTPDU (data, sn)) = false;
IsCorrupted (MakeAKPDU (sn)) = false;
IsCorrupted (Corrupt (pdu)) = true;
IsDTPDU (MakeDTPDU (data, sn)) = true;
IsDTPDU (MakeAKPDU (sn)) = false;
IsAKPDU (MakeDTPDU (data, sn)) = false;
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IsAKPDU (MakeAKPDU (sn)) = true;
IsCorrupted (pdu) =>
IsDTPDU (pdu) = false;

IsCorrupted (pdu) =>
IsAKPDU (pdu) = false;

Corrupt (pdu1) eq Corrupt (pdu2) = pdu1 eq pdu2;
not (IsCorrupted (pdu1)) =>
pdu1 eq Corrupt (pdu2) = false;

not (IsCorrupted (pdu2)) =>
Corrupt (pdu1) eq pdu2 = false;

IsDTPDU (pdu1), IsAKPDU (pdu2) =>
pdu1 eq pdu2 = false;

IsDTPDU (pdu2), IsAKPDU (pdu1) =>
pdu1 eq pdu2 = false;

MakeDTPDU (data1, sn1) eq MakeDTPDU (data2, sn2) =
(data1 eq data2) and (sn1 eq sn2);

MakeAKPDU (sn1) eq MakeAKPDU (sn2)= sn1 eq sn2;
pdu1 ne pdu2 =
not (pdu1 eq pdu2);

endtype (* PDUs *)

Finally, the number 1 is defined for convenience as a short way of saying
‘Succ (0)’.

type EnrichedNat is NaturalNumber
opns 1 : −> Nat
eqns
ofsort Nat
Succ (0) = 1;

endtype (* EnrichedNat *)

Medium Service Data Types

The medium service has data types for service access points and service prim-
itives, but in place of the service data units of Section 6.4 there are protocol
data units.

type MSAPs is
sorts MSAP
opns mt, mr: −> MSAP

endtype (* MSAPs *)

type MSPs is PDUs, Boolean
sorts MSP
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opns
MDTreq, MDTind : PDU −> MSP
MAKreq, MAKind :PDU −> MSP
PDUOf : MSP −> PDU
IsMreq, IsMind : MSP −> Bool

eqns
forall sp : MSP, pdu : PDU
ofsort PDU
PDUOf (MDTreq (pdu))= pdu;
PDUOf (MDTind (pdu))= pdu;
PDUOf (MAKreq (pdu))= pdu;
PDUOf (MAKind (pdu))= pdu;

ofsort Bool
IsMreq (MDTreq (pdu)) = true;
IsMreq (MDTind (pdu)) = false;
IsMreq (MAKreq (pdu)) = true;
IsMreq (MAKind (pdu)) = false;
IsMind (sp) = not (IsMreq (sp));

endtype (* MSPs *)

7.4.4 Top-Level Behaviour

The sliding window protocol provides its service through the s gate, and accesses
the medium via the m gate. At the top level, the protocol is split into two
asymmetrical entities, TransmitterEntity and ReceiverEntity. Each one has as
parameters the service access points and the maximum window size.

behaviour
[tws gt 0] −>
TransmitterEntity [s, m] (ut, mt, tws)

|||
[rws gt 0] −>
ReceiverEntity [s, m] (ur, mr, rws)

where

7.4.5 Transmitter Entity

The TransmitterEntity process is divided into the constraints local to each gate,
and the constraints related to both gates. The latter ones accept only correct
PDUs from the medium, ignoring the incorrect ones.
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process TransmitterEntity [s, m]
(ssap : SSAP, msap : MSAP, tws : Nat) : noexit :=
LocalConstraints [s, m] (ssap, msap)

||
(
(
TransmitterConstraints [s, m] (tws)

|[m]|
PDUCorrectness [m]

)
|||
IgnoreCorruptedPDU [m]

)

where

Transmitter Local Constraints

The LocalConstraints process is divided into the constraints at gate s and at m.

process LocalConstraints [s, m]
(ssap : SSAP, msap : MSAP) : noexit :=
SGate [s] (ssap)

|||
MGate [m] (msap)

where

The constraint at gate s always allows service requests at the ssap service access
point.

process SGate [s] (ssap : SSAP) : noexit :=
s ! ssap ? sp : SSP [IsUDTreq (sp)];
SGate [s] (ssap)

endproc (* SGate *)

The constraints at gate m are also simple: once the first service request has
been dealt with, any indication is allowed or any request with a data PDU.

process MGate [m] (msap : MSAP) : noexit :=
m ! msap ? msp : MSP
[IsMreq (msp) and IsDTPDU (PDUOf (msp))];

MGate1 [m] (msap)

where
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process MGate1 [m] (msap : MSAP) : noexit :=
m ! msap ? msp : MSP
[IsMreq (msp) and IsDTPDU (PDUOf (msp))];

MGate1 [m] (msap)
[]
m ! msap ? msp : MSP [IsMind (msp)];
MGate1 [m] (msap)

endproc (* MGate1 *)

endproc (*MGate *)

endproc (* LocalConstraints *)

Transmitter Constraints

The constraints involving both gates are divided into those dealing with timers
and those dealing with the transmitter itself. The Transmitter process is ini-
tialised with the maximum window size, a highest sequence number sent of 0,
a lowest unacknowledged sequence number of 1, and an empty retransmission
queue.

process TransmitterConstraints [s, m] (tws : Nat) : noexit :=
hide t in
AllTimers [t] (tws + 1, 0)

|[t]|
Transmitter [s, m, t] (tws, 0, 1, empty)

where

Timers

Although the actual passage of time cannot be represented in Lotos, the events
of timer expiry as well as timer set-up or release can be modelled. The informal
description does not specify the actual period before a time-out occurs. This
can be easily represented in Lotos because the time elapsed between any two
consecutive events is always undefined. Timer events are signalled through the
t gate. A timer can be set or reset and can expire.

type TimerSignal is
sorts TimerSignal
opns set, reset, expired : −> TimerSignal

endtype (* TimerSignal *)
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A maximum of tws + 1 timers are required, so there is one timer for each
transmitted PDU awaiting acknowledgement by the receiver. Each timer is
identified by the sequence number of the transmitted PDU, calculated modulo
tws + 1.

process AllTimers [t] (MaxId, TimerId : Nat) : noexit :=
[TimerId lt MaxId] −>
(
AllTimers [t] (MaxId, TimerId + 1)

|||
Timer [t] (MaxId, TimerId)

)

where

process Timer [t] (MaxTimer, TimerId : Nat) : noexit :=
AnyTimer [t]

||
Identification [t] (MaxTimer, TimerId)

where

Process AnyTimer behaves as an entity waiting to be set up, and then expires
if it is not disrupted by a reset. Process Identification ensures that AnyTimer
deals with events for the appropriate timer.

process AnyTimer [t] : noexit :=
t ? AnyId : Nat ! set;
(
(* The amount of elapsed time is undefined *)
t ? AnyId : Nat ! expired;
exit

[>
t ? AnyId : Nat ! reset;
exit

)
>>
AnyTimer [t]

endproc (* AnyTimer *)

process Identification [t] (MaxTimer, TimerId : Nat) :
noexit :=
t ? Identifier : Nat ? AnySignal : TimerSignal
[TimerId = (Identifier Mod MaxTimer)];
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Identification [t] (MaxTimer, TimerId)

where

type NaturalMod is NaturalNumber
opns Mod : Nat, Nat −> Nat
eqns
forall x, y : Nat
ofsort Nat
x Mod 0 = x;
x lt y =>
x Mod y = x;

x Mod y = (x + y) Mod y;
endtype (* NaturalMod *)

endproc (* Identification *)

endproc (* Timer *)

endproc (* AllTimers *)

PDU Queues

A queue7 of PDUs has a constructor (Put) and two selectors (First and Remove).
No recognisers are required in the body of the specification. Note that the
description of the queue is incomplete; for example, equations such as:

First (empty) = ...;
Remove (empty) = ...;

have not been included. With equations like these the data types become more
complicated and less clear, distracting the reader from the real meaning of the
specification8. The alternative of avoiding selectors and replacing them with
constructors and the choice operator can be unsatisfactory because ADT op-
erations are ‘simulated’ with behavioural constructs and dispersed throughout
the specification. For an implementor, this use of choice may be difficult or
even impossible to translate to executable code.

type PDUQueue is PDUs, Boolean
sorts PDUQueue

7The library type String could have been used here, but it was felt to be less intuitive.
8Lotos strictly speaking requires data types to be specified completely, although this may

not be required in normal mathematical practice. For example, the usual definition of division
of numbers is quite acceptable even though division by zero is undefined.
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opns
empty : −> PDUQueue
Put : PDU, PDUQueue−> PDUQueue
First : PDUQueue −> PDU
Remove : PDUQueue −> PDUQueue

eqns
forall pdu, pdu1, pdu2 : PDU, pq : PDUQueue
ofsort PDU
First (Put (pdu, empty)) = pdu;
First (Put (pdu1, Put (pdu2, pq))) =
First (Put (pdu2, pq));

ofsort PDUQueue
Remove (Put (pdu, empty)) = empty;
Remove (Put (pdu1, Put (pdu2, pq))) =
Put (pdu1, Remove (Put (pdu2, pq)));

endtype (* PDUQueue *)

Transmitter Behaviour

The transmitter can either send messages (process Sender), receive acknowl-
edgements and empty the retransmission queue (process AckRec), ignore ac-
knowledgements for already acknowledged messages (process IgnoreAckedAck)
or deal with a time-out (process TimeOut). Unacknowledged PDUs are kept in
a queue for retransmission.

process Transmitter [s, m, t]
(tws, hs, lu : Nat, rq : PDUQueue) : noexit :=
(
Sender [s, m, t] (tws, hs, lu, rq)

[]
AckRec [m, t] (hs, lu, rq)

[]
TimeOut [m, t] (hs, lu, rq)

[]
IgnoreAckedAck [m] (hs, lu, rq)

)
>>
accept hs, lu : Nat, rq : PDUQueue in
Transmitter [s, m, t] (tws, hs, lu, rq)

where



208 Using Formal Description Techniques

Sending a Message

The Sender process accepts a message from the user if the window is not full.
Then a data PDU is constructed and sent to the receiver, a timer is started,
the highest sequence number sent is incremented, and the PDU is put in the
queue for possible retransmission.

process Sender [s, m, t] (tws, hs, lu : Nat, rq : PDUQueue) :
exit (Nat, Nat, PDUQueue) :=
s ? ssap : SSAP ? sp : SSP [hs lt (lu + tws)];
(
let pdu : PDU = MakeDTPDU (DataOf (sp), hs + 1) in
m ? msap : MSAP ! MDTreq (pdu);
t ! hs + 1 ! set;
exit (hs + 1, lu, Put (pdu, rq))

)
endproc (* Sender *)

Reception of an Acknowledgement

If an acknowledgement is received whose sequence number is greater than or
equal to the last unacknowledged one and less or equal to the highest one sent,
the corresponding queued messages are released.

process AckRec [m, t] (hs, lu : Nat, rq : PDUQueue) :
exit (Nat, Nat, PDUQueue) :=
m ? msap : MSAP ? msp : MSP
[(SeqNo (PDUOf (msp)) ge lu) and
(SeqNo (PDUOf (msp)) le hs)];

ReleaseQueue [t] (hs, SeqNo (PDUOf (msp)), rq)

where

In the ReleaseQueue process, the timers are also reset and LowestUnacked is set
to the sequence number of the received acknowledgement plus 1.

process ReleaseQueue [t] (hs, sn : Nat, rq : PDUQueue) :
exit (Nat, Nat, PDUQueue) :=
let pdu : PDU = First (rq) in
t ! SeqNo (pdu) ! reset;
(
[SeqNo (pdu) lt sn] −>
ReleaseQueue [t] (hs, sn, Remove(rq))

[]
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[SeqNo (pdu) eq sn] −>
exit (hs, sn + 1, Remove(rq))

)
endproc (* ReleaseQueue *)

endproc (* AckRec *)

Error Conditions

The last event that can affect the Transmitter process is the expiry of a timer. If
this happens, all the messages queued after the timed out one are retransmitted.

process TimeOut [m, t] (hs, lu : Nat, rq : PDUQueue) :
exit (Nat, Nat, PDUQueue) :=
t ? sn : Nat ! expired [(sn le hs) and (sn ge lu)];
Retransmission [m, t] (sn, rq)

>>
exit (hs, lu, rq)

where

Before the actual retransmission of each message takes place, its corresponding
timer is reset.

process Retransmission [m, t] (sn : Nat, rq : PDUQueue) :
exit :=
let pdu : PDU = First (rq) in
m ? msap : MSAP ! MDTreq (pdu);
t ! SeqNo (pdu) ! reset;
t ! SeqNo (pdu) ! set;
(
[SeqNo (pdu) lt sn] −>
Retransmission [m, t] (sn, Remove(rq))

[]
[SeqNo (pdu) eq sn] −>
exit

)
endproc (* Retransmission *)

endproc (* TimeOut *)

Acknowledgements whose sequence number corresponds to released PDUs or to
unsent ones are ignored.



210 Using Formal Description Techniques

process IgnoreAckedAck [m] (hs, lu : Nat, rq : PDUQueue) :
exit (Nat, Nat, PDUQueue) :=
m ? msap : MSAP ? msp : MSP
[(SeqNo (PDUOf (msp)) lt lu) or
(SeqNo (PDUOf (msp)) gt hs)];

exit (hs, lu, rq)
endproc (* IgnoreAckedAck *)

endproc (* Transmitter *)

endproc (* TransmitterConstraints *)

Finally, process PDUCorrectness ensures that TransmitterConstraints sees only
uncorrupted PDUs. IgnoreCorruptedPDU absorbs those that are corrupted.

process PDUCorrectness [m] : noexit :=
m ? msap : MSAP ? msp : MSP
[not (IsCorrupted (PDUOf (msp)))];

PDUCorrectness [m]
endproc (* PDUCorrectness *)

process IgnoreCorruptedPDU [m] : noexit :=
m ? msap : MSAP ? msp : MSP [IsCorrupted (PDUOf (msp))];
IgnoreCorruptedPDU [m]

endproc (* IgnoreCorruptedPDU *)

endproc (* TransmitterEntity *)

7.4.6 Receiver Entity

The ReceiverEntity process comprises the constraints local to each gate, and the
constraints pertaining to both gates. The Receiver process is initialised with the
maximum window size, a next required sequence number of 1, and an empty
set of received PDUs.

process ReceiverEntity [s, m]
(ssap : SSAP, msap : MSAP, rws : Nat) : noexit :=
LocalConstraints [s, m] (ssap, msap)

||
Receiver [s, m] (rws, 1, {} of PDUSet)

where
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Sets of PDUs

A set of PDUs is used almost everywhere in the receiver. This is made from
the Set type in the standard library, enriching it with operations for handling
indexes. Firstly, Set is instantiated using PDU for elements.

type PDUSet1 is Set actualizedby PDUs using
sortnames
PDU for Element
Bool for FBool

endtype (* PDUSet1 *)

Now, a PDUSet instance of the type is created with elements PDUs. This would
allow sets of other sorts of elements without destroying Set. Although both
actualisation and renaming could have been done in the same type definition,
it is perhaps clearer this way.

type PDUSet is PDUSet1 renamedby
sortnames PDUSet for Set

endtype (* PDUSet *)

Finally, the type is enriched with operations to access PDUs in the set using
their sequence numbers as an index. This avoids defining and handling sets of
sequence numbers as well. Calls to GetPDU are guarded so that is used only
when the given sequence number is known to be present.

type PDUSetIndexed is PDUSet
opns

IsSeqNoIn : Nat, PDUSet −> Bool
GetPDU : Nat, PDUSet −> PDU

eqns
forall sn : Nat, pdu : PDU, pduset : PDUSet
ofsort Bool
SeqNo (pdu) eq sn =>
sn IsSeqNoIn Insert (pdu, pduset) = true;

SeqNo (pdu) ne sn =>
sn IsSeqNoIn Insert (pdu, pduset) =
sn IsSeqNoIn pduset;

sn IsSeqNoIn {} = false;
ofsort PDU
SeqNo (pdu) eq sn =>
GetPDU (sn, Insert (pdu, pduset)) = pdu;

SeqNo (pdu) ne sn =>
GetPDU (sn, Insert (pdu, pduset)) =
GetPDU (sn, pduset);

endtype (* PDUSetIndexed *)
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Receiver Local Constraints

The local constraints are very simple, allowing certain primitives at only the
receiver service access points. Indications only are allowed at the s gate.

process LocalConstraints [s, m] (ssap : SSAP, msap : MSAP) :
noexit :=
SGate [s] (ssap)

|||
MGate [m] (msap)

where

process SGate [s] (ssap : SSAP) : noexit :=
s ! ssap ? sp : SSP [IsUDTind (sp)];
SGate [s] (ssap)

endproc (* SGate *)

At the m gate, an indication is allowed and then a request carrying an AK
PDU.

process MGate [m] (msap : MSAP) : noexit :=
m ! msap ? msp : MSP [IsMind (msp)];
m ! msap ? msp : MSP
[IsMreq (msp) and IsAKPDU (PDUOf (msp))];

MGate [m] (msap)
endproc (* MGate *)

endproc (* LocalConstraints *)

Receiver Behaviour

The receiver keeps every message received in a PDUSet and sends an acknowl-
edgement. All received PDUs whose sequence numbers are consecutive are
delivered to the user. An acknowledgement is sent in reply to an ignored PDU.

process Receiver [s, m] (rws, nr : Nat, ps : PDUSet) : noexit :=
(
Receiver1 [s, m] (rws, nr, ps)

[]
IgnoredPDU [m] (rws, nr, ps)

)
>>
accept nr : Nat, ps : PDUSet in
Receiver [s, m] (rws, nr, ps)
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where

The messages stored in the PDUSet must not be corrupted, must have a se-
quence number that falls in the receiver’s maximum window size rws, and must
not already have been received.

process Receiver1 [s, m] (rws, nr : Nat, ps : PDUSet) :
exit (Nat, PDUSet) :=
m ? msap : MSAP ? msp : MSP
[not (IsCorrupted (PDUOf (msp))) and
(SeqNo (PDUOf (msp)) lt (nr + rws)) and
(SeqNo (PDUOf (msp)) ge nr) and
(PDUOf (msp) NotIn ps)];

DeliverMessages [s, m] (nr, Insert (PDUOf (msp), ps))

where

Consecutive messages are delivered to the user and removed from the queue by
process DeliverMessages The process is finished when a gap is found in the set
of stored messages.

process DeliverMessages [s, m] (nr : Nat, ps : PDUSet) :
exit (Nat, PDUSet) :=
[nr IsSeqNoIn ps] −>
(
let pdu : PDU = GetPDU(nr, ps) in
s ? ssap : SSAP ! UDTind (DataOf (pdu));
DeliverMessages [s, m] (nr + 1, Remove (pdu, ps))

)
[]
[not (nr IsSeqNoIn ps)] −>
(
SendAck [m] (nr)

>>
exit (nr, ps)

)
endproc (* DeliverMessages *)

endproc (* Receiver1 *)

PDUs not handled by the receiver are ignored, but an acknowledgement is sent
anyway. The Pred operation is defined for the sequence numbers (naturals) in
order to be able subtract 1.
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process IgnoredPDU [m] (rws, nr : Nat, ps : PDUSet) :
exit (Nat, PDUSet) :=
m ? msap : MSAP ? msp : MSP
[IsCorrupted (PDUOf (msp)) or
(SeqNo (PDUOf (msp)) ge (nr + rws)) or
(SeqNo (PDUOf (msp)) lt nr) or (PDUOf (msp) IsIn ps)];

SendAck [m] (nr)
>>
exit (nr, ps)

endproc (* IgnoredPDU *)

Finally, an acknowledgement is sent to the transmitter for sequence number
‘NextRequired − 1’.

process SendAck [m] (sn : Nat) : exit :=
m ? msap : MSAP ! MAKreq (MakeAKPDU (Pred (sn)));
exit

where

type NatMinus is NaturalNumber
opns Pred : Nat −> Nat
eqns
forall n : Nat
ofsort Nat
Pred (Succ (n)) = n;

endtype (* NatMinus *)

endproc (* SendAck *)

endproc (* Receiver *)

endproc (* ReceiverEntity *)

endspec (* SlidingWindowProtocol *)

7.5 Formal Description in SDL9

The architecture of the formal description is a natural mapping between the
structuring features of SDL and the layering concepts of OSI. The SlidingWin-
dowProtocol system is modelled as the composition of three blocks, Transmit-
terEntity, ReceiverEntity and Medium. The transmitter and receiver users are

9Section 7.5 is by S. Trigila.
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located in the environment: they interact with the system via two service access
points modelled by means of two unidirectional channels, st (from the environ-
ment to TransmitterEntity) and sr (from ReceiverEntity to the environment).
The channels st and sr carry the signals SDTreq and SDTind respectively. These
model interactions between the user and the provider of a unidirectional data
transfer service.

The TransmitterEntity sends data over the medium (MDTreq signal) and
gets acknowledgements from it (MAKind signal) by using bidirectional chan-
nel mt. Conversely, the ReceiverEntity gets data from the medium (MDTind
signal) and sends acknowledgements over it (MAKreq signal) by using bidi-
rectional channel mr. The TransmitterEntity block consists of a process type
Transmitter, instantiated just once at system start-up time. The ReceiverEntity
block consists of a process type Receiver that is also instantiated once at system
start-up time.

The Medium block is given in Section 6.5 rather than here because it is not
an integral part of the protocol specification. Although the SDL description of
the sliding window protocol is not meant to include a formal description of the
medium, many of the protocol features arise from the nature of the medium.
Of course, a formal description of the block Medium would be essential in order
to simulate the protocol or to validate it against the required service.

The informal description does not suggest any names for protocol data units,
so DT is used for data and AK for acknowledgements. According to the prin-
ciples of OSI, the TransmitterEntity and ReceiverEntity should interact with
the Medium via service primitives such as Mreq and Mind in order to convey
protocol data units. In order to avoid mapping between service data units and
protocol data units, the informal description made the simplification that the
medium distinguishes between data and acknowledgements. The formal descrip-
tion therefore uses ‘MDTreq ’ instead of ‘Mreq (DT)’, ‘MDTind ’ for ‘Mind (DT)’,
‘MAKreq ’ for ‘Mreq (AK)’, and ‘MAKind ’ for ‘Mind (AK)’. Four corresponding
signals have been defined. From this point of view, Medium can be thought of
as just a block performing transfer and renaming of signals (requests becoming
indications in both directions).

The informal description requires an individual timer to be set for each
message sent. This is dealt with in SDL by using a timer tim with multiple
instances referred to by a value in the range [0..tws]. The indexing value is used
when (re)setting a given instance or to indicate which timer instance has ex-
pired. When timer primitives set and reset are used, a duration value should
be specified. If specifying a value is undesirable, such primitives cannot be
used. As an alternative, three external signals, say SetTimer, ResetTimer and
TimerExpiry, could be used between the process Transmitter and the environ-
ment. Unfortunately, this solution would introduce an unacceptable level of
detail into the overall system block interaction diagram and therefore has not
been adopted. However, it should be noted that the Estelle and Lotos de-
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scriptions of the sliding window protocol model timers without any delay value.
Timer management is a convenient feature of SDL.

The dynamic part of the SDL description is, to some extent, implementation-
oriented because it suggests algorithms to manipulate concrete data structures
such as arrays and queues. However, the real purpose of any such algorithm is
to show what the protocol does and not how it does it.

The formal description of the sliding window protocol is hopefully self-
explanatory; very few comments were felt to be necessary.

The diagrams of Figure 7.4 refer to the macro DataTypeDef given below.
This macro defines data types and instances that are applicable at system level.
The formal description makes extensive use of complex data structures. A queue
is used to store messages for which an acknowledgement is awaited. Two arrays
with as many components as the receiver window size are used to support the
receiver window mechanism. By using external synonyms, the description is pa-
rameterised with respect to the transmit and receive window sizes, the timeout
period, and the checksum field lengths. Although the informal description does
not mention the use of a CRC (Cyclic Redundancy Check) to protect protocol
data units against corruption, it has been specified for realism. The format of
the CRC depends on the kind of message (data or acknowledgement).

macrodefinition DataTypeDef;

synonym tws Integer = external; /* Transmitter window */
synonym rws Integer = external; /* Receiver window */
synonym delta Duration = external; /* Timeout period */
synonym LenDataCrc Integer = external; /* Data CRC length */
synonym LenAckCrc Integer = external; /* Ack CRC length */

generator Queue (type Item)
literals qnew;
operators
qadd : Item, Queue −> Queue;
qfirst : Queue −> Item;
qrest : Queue −> Queue;
qconcat: Queue, Queue −> Queue;
qdelete : Integer, Queue −> Queue;
qempty : Queue −> Boolean;

axioms
qfirst (qnew) == error!;
qfirst (qadd (x, qnew)) == x;
qfirst (qadd (x1, qadd (x2, q))) == qfirst (qadd (x2, q));
qrest (qnew) == qnew;
qrest (qadd (x, qnew)) == qnew;
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qrest (qadd (x1, qadd (x2, q))) == qadd (x1, qrest (qadd (x2, q)));
qconcat (qnew, q) == q;
qconcat (qadd (x1, q1), q2) == qadd (x1, qconcat (q1, q2));
qdelete (0, q) == q;
qdelete (i, q) == qdelete (i − 1, qrest (q));
qempty (qnew);
not (qempty (qadd (x, q)));

endgenerator Queue;

syntype DataCrcIndex = Integer
constants 1 : LenDataCrc

endsyntype DataCrcIndex;

syntype AckCrcIndex = Integer
constants 1 : LenAckCrc

endsyntype AckCrcIndex;

syntype Tsn = Integer /* Integer in range 0 .. tws − 1 */
constants 0 : tws − 1

endsyntype Tsn;

syntype Rsn = Integer /* Integer in range 0 .. rws − 1 */
constants 0 : rws − 1

endsyntype Rsn;

syntype SeqnoType = Natural
endsyntype SeqnoType;

newtype DataCrc array (DataCrcIndex, Bit)
/* For a given sequence number and user data field, calculate the
CRC for an MDT protocol data unit */
operators dcheck : SeqnoType, BitString −> DataCrc;

endnewtype DataCrc;

newtype AckCrc array (AckCrcIndex, Bit)
/* For a given sequence number, calculate the CRC for an MAK
protocol data unit */
operators acheck : SeqnoType −> AckCrc;

endnewtype AckCrc;

newtype MsgBuf array (Rsn, BitString);
endnewtype MsgBuf;
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[MDTreq]

[MDTind]

[SDTreq] [SDTind]

[MAKreq]

mrmt

system SlidingWindowProtocol

[MAKind]

Medium

st sr

TransmitterEntity ReceiverEntity

/* A uni-directional data transfer protocol 
having the following features is described:
     - transmit window mechanism
     - positive acknowledgement
     - individual timers
     - retransmission on timeout */

signal
     SDTreq (BitString), 
     SDTind (BitString),
     MDTreq (SeqnoType,BitString,DataCrc),
     MDTind (SeqnoType,BitString,DataCrc),
     MAKreq (SeqnoType,AckCrc),
     MAKind (SeqnoType,AckCrc);

macro DataTypeDef;

1(1)

Figure 7.4: Sliding Window Protocol in SDL – Graphical Description
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block  ReceiverEntity

[SDTind]

[MAKreq]

mr

r

[MDTind]

sr
rSapReceiver

(1,1)

block TransmitterEntity

Transmitter
(1,1)

st
tSap

[SDTreq]

[MAKind]

[MDTreq]

mt

t

1(1)

1(1)

Figure 7.4 (continued)
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SDTreq
(data)

hs:=hs+1

(false)(true)

hs:=0,
lu:=1

(true)

(false)

(false)

(true)

process Transmitter

Retransmit
(seqno,hs,cq)

1(2)

/* This process consists of 
two states: DataTransfer, 
where data transfer 
normally occurs, and 
WindowClosed, where 
data transfer is suspended 
because maximum size has 
been reached by the 
current transmit window */ Release

Timers

Retransmit

dcl hs, lu, seqno
      SeqnoType,
      cq MsgQueue,
      data BitString,
      acrc AckCrc;
timer tim (Tsn);

cq:=qadd
(data,cq)

set(now+delta,
tim(hs mod tws))

MDTreq (hs,
data,dcheck
(hs,data))

——

MAKind
(seqno,acrc)

—ReleaseTimers
(lu, seqno)

    cq:= qdelete
(seqno–lu+1,cq)

lu:=seqno+1

tim
(seqno)

ReleaseTimers
(seqno,hs)

DataTransfer

Window
Closed

acrc=acheck
(seqno)

seqno≥lu

hs<lu+tws

Figure 7.4 (continued)
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(true)

(true)

process  Transmitter 2(2)

—

Window
Closed

DataTransfer

—

tim 
(seqno)

ReleaseTimers
(seqno,hs)

Retransmit
(seqno,hs,cq)seqno≥lu

MAKind
(seqno,acrc)SDTreq

cq:=qdelete
(seqno–lu+1,cq)

lu:=seqno+1

acrc=acheck
(seqno)

(false)

(false)

ReleaseTimers
(lu,seqno)

Figure 7.4 (continued)
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process Receiver

Deliver
Messages

/* This process has only
the DataTransfer state. In
order to cope with
sequential delivery of
messages to its local
user, it maintains an
array recbuf whose
components buf fer
messages according to
their sequence number
and a boolean array
a l readyRec whose
components flag the
status (old/new) of the
homologous components
in recbuf */

(true)

(true)

(false)

(false)

(true)

(false)

(true)

(false)

dcrc=
dcheck(seqno,

data)

 nr≤seqno≤ 
nr+rws–1

DeliverMessages
(nr,seqno,recbuf,

alreadyRec)

—

—

nr:=1,
r:=0

alreadyRec(r):=false,
r:=r+1

r≤rws–1

DataTransfer

alreadyRec
(seqno mod

 rws)

alreadyRec(seqno 
mod rws):=true

recbuf(seqno 
mod rws):=data

MDTind(seqno,
data,dcrc)

MAKreq(nr–1,
acheck(nr–1))

dcl 
r, nr, seqno SeqnoType, 
data BitString, 
dcrc DataCrc,
recbuf MsgBuf, 
alreadyRec MsgReceived;

1(1)

Figure 7.4 (continued)
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procedure ReleaseTimers fpar in si,sj SeqnoType; 

(true)(false)

dcl  r Tsn,
       k SeqnoType;

k:=sj–si+1, 
r:=si mod tws

k>0

reset(tim(r))

r:=(r+1) mod tws, 
 k:=k–1

1(1)

/* Takes care of resetting
all timers associated with a
range of data items for
which an acknowledgement
has been received. */

Figure 7.4 (continued)
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(false) (true)

procedure  Retransmit  fpar  in  p, v  SeqnoType, cq  MsgQueue;

k>0

inf:=qfirst(cq),
cq:=qrest(cq),

cq:=qadd(inf,cq)

MDTreq(p,inf,
dcheck(p,inf))

p:=p mod tws;
set(now+delta,

tim(p))

p:=(p+1) mod tws,
k:=k–1

k:=v–p+1

(false)

(true)
k1>0

inf:=qfirst(cq),
cq:=qrest(cq),

cq:=qadd(inf,cq),
k1:=k1–1

dcl  inf BitString,
       k, k1 SeqnoType;

k1:=p–lu+1

1(1)

/* Is in charge of re-submitting
to the medium all data items
already sent and still awaiting
acknowledgement for which
timers have expired. */

Figure 7.4 (continued)
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(true)

(false) (true)

(false)

procedure  DeliverMessages  fpar in/out  xnr, xseqno  SeqnoType,
                                                 recbuf  MsgBuf,
                                                 alreadyRec MsgReceived;

xseqno=xnr

alreadyRec(xnr 
mod rws)

alreadyRec
(xnr mod rws):=

 false

xnr:=xnr+1

SDTind(recbuf
(xnr mod rws))

MAKreq
(xnr,acheck(xnr))

1(1)

/* Takes care of sending a
sequence of acknowledged,
contiguously numbered and
properly sorted data items off
to the user before sliding the
window. */

Figure 7.4 (continued)
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newtype MsgReceived array (Rsn, Boolean);
endnewtype MsgReceived;

newtype MsgQueue Queue (BitString);
endnewtype MsgQueue;

newtype BitString string (Bit,");
endnewtype BitString;

newtype Bit
literals 0, 1;

endnewtype Bit;

endmacro DataTypeDef;

7.6 Conclusion10

This example is fairly typical of the style of protocol descriptions. The defi-
ciencies found in the informal description included the usual straight errors or
lack of information. However, some interesting and general types of errors were
found:

• It is easy to forget to state whether the extreme values of a range are
included or excluded.

• The word ‘and’ can be ambiguous in natural language. For example, it is
commonplace in restaurant menus to see that a meal is followed by ‘coffee
and tea’ !

• A natural language description can easily lapse into ‘elegant variation’11.
For example, the same thing may be called a ‘unit’, a ‘component’, a ‘sub-
system’, and a ‘module’. Although this is acceptable in a literary work,
such a style leads to imprecision in a specification.

• A deep and lengthy discussion took place between the authors of the formal
descriptions as to how to interpret the ‘time-out’ parameter. The informal
description refers to ‘a timer’ being started. Such use of the word ‘a’ is
ambiguous. In this case it could reflect the fact that each message has
an individual timer, that some particular value is used for each message
timer, or that any timer value (perhaps different from timer values used
on other occasions) is used.

10Section 7.6 is by K. J. Turner.
11This is the phrase used by Fowler (1968).
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• The issue of time-outs is also tied up with the distinction between a non-
deterministic specification and a partial specification. A non-deterministic
specification of a timer could say that the timer value would be chosen (by
some means that could not be determined). A partial specification could
indicate that a single timer value would be used, but that the precise
value would be defined when the specification was made total (i.e. at a
later stage in the design).
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8 Abracadabra Service

The unreliable medium of Chapter 6 provides a simple connection-less service to
support a variety of protocols. This chapter presents the converse situation – a
simple connection-oriented service that may be realised by a variety of protocols.
The major new complexity introduced by this example is the concept of the
phase of a service, with the need to progress between phases and the possibility
of both ends becoming out of step. This places demands on the structuring
features of FDTs. The Abracadabra example was devised by K. J. Turner as a
vehicle for evaluating formal specification languages. The reason for the name
will become evident in Chapter 9.

8.1 Informal Description1

The Abracadabra Service operates between a pair of users, addressed as
UserA and UserB. Each user is presumed to have some local interface to the
underlying protocol entity. The service ‘A’ is connection-oriented and transfers
data reliably. The service primitives supported by the service provider are as
follows:

Phase Kind Name Parameters

Connection Request ConReq -
Indication ConInd -
Response ConResp -
Confirmation ConConf -

Data Request DatReq Service Data Unit
Indication DatInd Service Data Unit

Disconnection Request DisReq -
Indication DisInd -

Only the data primitives carry a parameter – an SDU (Service Data Unit)
that contains user data. The basic relationship between service primitives is
shown in Figure 8.1. More complex situations are described below.

1Section 8.1 is by K. J. Turner.
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User Provider User

ConReq ✲PPPPPPPq ✲ ConInd

❄

ConConf ✛

✏✏✏✏✏✏✏✮

✛ ConResp

DatReq ✲PPPPPPPq ✲ DatInd

DisReq ✲PPPPPPPq ✲ DisInd

Figure 8.1: Abracadabra Service – Relationship between Primitives
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A connection may be established through the service by either user. The
normal sequence of primitives is ConReq, ConInd, ConResp, ConConf. How-
ever, if both users simultaneously initiate a connection then each end sees only
ConReq, ConConf. A connection establishment attempt may be abandoned by
the initiator sending DisReq before receiving ConConf. A connection estab-
lishment attempt may also be abandoned by the responder sending a DisReq
following ConInd.

Once a connection is established, either user may send a DatReq which will
be delivered as DatInd. Data messages are preserved in sequence and content,
except when a disconnection occurs. In this case, an undefined number of data
messages already in the service provider may be lost. Data transfer is subject
to flow control by back-pressure.

Either user may terminate an established connection by issuing a DisReq.
This normally leads to a DisInd being delivered to the other user, but if the
other user issues a DisReq in the meantime then the connection is terminated
immediately.

The service provider itself may abandon a connection attempt or may termi-
nate the connection. Normally each user that knows of a connection (attempt) is
informed of provider termination by DisInd. However, if the user issues DisReq
in the meantime then the DisInd is not delivered.

Once a connection has been terminated, either user may initiate a new
connection with ConReq.

8.2 Errors in the Informal Description2

8.2.1 Flow Control

Is it reasonable that the informal description should require flow control by
back-pressure since this depends on implementation features?

Flow control by back-pressure is an implicit feature of many service def-
initions in OSI (Open Systems Interconnection), although it is not normally
referred to by this explicit name. The mechanisms for realising flow control by
back-pressure lie partly in the service provider (i.e. the protocol) and partly in
the interface between the service users and the service provider. The latter is
dependent on the actual implementation. Although the precise mechanisms for
achieving flow control by back-pressure would not normally be included in a
service definition, it is permissible to refer to the end-to-end effect of these.

2Section 8.2 is by K. J. Turner, based on problems found by the authors of the formal
descriptions.
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8.2.2 Repeated Connection Request

Should ConReq be accepted while a connection is being attempted or is current?
More generally, should the behaviour of the service under incorrect use by the
service user be described?

The intention was that a ConReq should be issued only once to establish
a connection. In general, the actual FDT being used affects how service user
misbehaviour should be described most naturally.

8.2.3 Simultaneity

What does ‘simultaneously’ mean in the context of both users initiating a con-
nection, or ‘in the meantime’ if both users try to disconnect?

The intended meaning was the period of time between one user initiating
an action and its effect at the other user.

8.3 Formal Description in Estelle3

The modules and interaction points for the Abracadabra Service description are
shown in Figure 8.2. The service provider is modelled by two identical processes,
one for each SAP. Of course, there are other solutions possible that use only
one process. The reason for choosing two processes is that there may be a delay
between the acceptance of a service primitive by the service provider and the
delivery of the corresponding service primitive to the respective service user.
This delay is modelled by the communication via channel Internal between
the two SAPManager modules. If a service description were produced using
only one process for the service provider, time constraints would have to be
introduced for the delivery of service primitives corresponding to submitted
ones. The two-process solution has been used for the sake of simplicity.

When one SAPManager receives a service primitive at a service access point,
it will send an internal message to the SAPManager for the other service access
point. This will the result in a service primitive being delivered to the user at
this service access point. For example, a ConReq from user A will generate the
internal message IConReqInd, resulting in a ConInd to user B. The names for
the internal messages are hopefully obvious.

The processes of the service provider do not have to communicate through an
unreliable medium that supports the underlying protocol. Instead, the inability
of the service provider to establish or maintain a connection due to an internal
error is modelled in the service description by the use of non-determinism.

The transitions in the following are numbered only for convenient reference.

specification AbracadabraService;

3Section 8.3 is by D. Hogrefe.
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User UA
❤

U

User UB
❤
U

SAPManagerA

❤User

SAPManagerB

❤User
Int Int❤ ❤

AbraService
❤UserA ❤UserB

Figure 8.2: Abracadabra Service in ESTELLE – Architecture

default individual queue;

type
UserDataType = ...; { Some suitable type, e.g. a string }

channel SSAP(User, Provider);
by User:
ConReq;
ConResp;
DatReq(UserData: UserDataType);
DisReq;

by Provider:
ConInd;
ConConf;
DatInd(UserData: UserDataType);
DisInd;

channel Internal(A, B);
by A, B:
IConReqInd;
IConRespConf;
IDatReqInd(UserData: UserDataType);
IDisReqInd;

module User systemprocess;
ip U: SSAP(User);
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end;

body UserBody for User;
external;

module AbraService;
ip
UserA: SSAP(Provider);
UserB: SSAP(Provider);

end;

body AbraServiceBody for AbraService;

module SAPManagerA systemprocess;
ip
User: SSAP(Provider);
Int: Internal(A);

end;

body SAPManagerBodyA for SAPManagerA;

state DISCONNECTED, CALLED, CALLING, CONNECTED;

stateset DISallowed = [CALLED, CALLING, CONNECTED];

initialize to DISCONNECTED
{ There are no variables }
begin
end;

trans

{ *** Connection *** }

from DISCONNECTED to same
when User.ConReq
{ Provider refuses connection attempt }
begin { 1 }
output User.DisInd;

end;
from DISCONNECTED to same
when Int.IDatReqInd(UserData)
begin { 2 }
output Int.IDisReqInd;
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end;
from DISCONNECTED to CALLING
when User.ConReq
begin { 3 }
output Int.IConReqInd;

end;
from DISCONNECTED to CALLED
when Int.IConReqInd

begin { 4 }
output User.ConInd;

end;
from CALLED to CONNECTED
when User.ConResp
begin { 5 }
output Int.IConRespConf;

end;
from CALLED to CONNECTED
{ Collision situation }
when User.ConReq
begin { 6 }
output User.ConConf;
output Int.IConRespConf;

end;
from CALLING to CONNECTED
when Int.IConRespConf
begin { 7 }
output User.ConConf;

end;
from CALLING to CONNECTED
{ Collision situation }
when Int.IConReqInd
begin { 8 }
output User.ConConf;
output Int.IConRespConf;

end;

{ *** Data transfer *** }

from CONNECTED to same
when User.DatReq(UserData)
begin { 9 }
output Int.IDatReqInd(UserData);

end;
from CONNECTED to same
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when Int.IDatReqInd(UserData)
begin { 10 }
output User.DatInd(UserData);

end;

{ *** Disconnection *** }

from CONNECTED to DISCONNECTED
when User.DatReq(UserData)
begin { 11 }
output User.DisInd;
output Int.IDisReqInd;

end;
from CONNECTED to CALLED
when Int.IConReqInd
begin { 12 }
output User.ConInd;

end;
from DISallowed to DISCONNECTED
{ Spontaneous disconnection by the provider }
begin { 13 }
output User.DisInd;
output Int.IDisReqInd;

end;
from DISallowed to DISCONNECTED
when User.DisReq
begin { 14 }
output Int.IDisReqInd;

end;
from DISallowed to DISCONNECTED
when Int.IDisReqInd
begin { 15 }
output User.DisInd;

end;

end; { SAPManagerBodyA }

module SAPManagerB systemprocess;
ip
User : SSAP(Provider);
Int: Internal(B);

end;

body SAPManagerBodyB for SAPManagerB;
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state DISCONNECTED, CALLED, CALLING, CONNECTED;

stateset DISallowed = [CALLED, CALLING, CONNECTED];

initialize to DISCONNECTED
{ There are no variables }
begin
end;

trans

{ *** Connection *** }

from DISCONNECTED to same
when User.ConReq
{ Provider refuses connection attempt }
begin { 1 }
output User.DisInd;

end;
from DISCONNECTED to same
when Int.IDatReqInd(UserData)
begin { 2 }
output Int.IDisReqInd;

end;
from DISCONNECTED to CALLING
when User.ConReq
begin { 3 }
output Int.IConReqInd;

end;
from DISCONNECTED to CALLED
when Int.IConReqInd

begin { 4 }
output User.ConInd;

end;
from CALLED to CONNECTED
when User.ConResp
begin { 5 }
output Int.IConRespConf;

end;
from CALLED to CONNECTED
{ Collision situation }
when User.ConReq
begin { 6 }



238 Using Formal Description Techniques

output User.ConConf;
output Int.IConRespConf;

end;
from CALLING to CONNECTED
when Int.IConRespConf
begin { 7 }
output User.ConConf;

end;
from CALLING to CONNECTED
{ Collision situation }
when Int.IConReqInd
begin { 8 }
output User.ConConf;
output Int.IConRespConf;

end;

{ *** Data transfer *** }

from CONNECTED to same
when User.DatReq(UserData)
begin { 9 }
output Int.IDatReqInd(UserData);

end;
from CONNECTED to same
when Int.IDatReqInd(UserData)
begin { 10 }
output User.DatInd(UserData);

end;

{ *** Disconnection *** }

from CONNECTED to DISCONNECTED
when User.DatReq(UserData)
begin { 11 }
output User.DisInd;
output Int.IDisReqInd;

end;
from CONNECTED to CALLED
when Int.IConReqInd
begin { 12 }
output User.ConInd;

end;
from DISallowed to DISCONNECTED
{ Spontaneous disconnection by the provider }
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begin { 13 }
output User.DisInd;
output Int.IDisReqInd;

end;
from DISallowed to DISCONNECTED
when User.DisReq
begin { 14 }
output Int.IDisReqInd;

end;
from DISallowed to DISCONNECTED
when Int.IDisReqInd
begin { 15 }
output User.DisInd;

end;

end; { SAPManagerBodyB }

{ Main body for AbraServiceBody }

modvar
A: SAPManagerA;
B: SAPManagerB;

initialize
begin
init A with SAPManagerBodyA;
init B with SAPManagerBodyB;
attach UserA to A.User;
attach UserB to B.User;
connect A.Int to B.Int;

end;

end; { AbraServiceBody }

{ Main body for specification AbracadabraService }

modvar
UA, UB: User;
AS : AbraService;

initialize
begin
init UA with UserBody;
init UB with UserBody;
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init AS with AbraServiceBody;
connect UA.U to AS.UserA;
connect UB.U to AS.UserB;

end;

end. { AbracadabraService }

8.4 Formal Description in LOTOS4

8.4.1 Architecture of the Formal Description

The specification follows the constraint-oriented approach. This style empha-
sises the orthogonality of certain restrictions, or constraints, on behaviour. It
permits the specifier to avoid repeating the same restrictions in different parts
of the specification (though it cannot, of course, prevent a specifier from doing
so!).

The constraints are combined using the parallel operator ‘||’. A behaviour
expression of the form b1 || b2 permits a behaviour if and only if both b1 and
b2 permit it. This allows each of b1 and b2 separately to permit a wider range
of behaviour than is permitted by their combination, provided that the other
behaviour expression precludes the extraneous behaviours. The constraint-
oriented style thus composes individual constraints which each permit more
than their combination.

The individual constraint may be composed from other constraints or may
be constructed from individual interactions placed in some temporal ordering by
operators for sequencing (‘;’), choice (‘[]’), etc. This style of description is similar
to the state-machine approach often used to model services and protocols.

The specification describes the behaviour of a single connection between
two service access points. The description has been written in a more general
way than is strictly necessary in order to illustrate how to specify more general
services. For example, it could easily be extended to deal with a number of
service access points and to deal with new kinds of service primitives. The
reason for choosing a more abstract approach was to show how more complex
services could be described.

Each interaction has three parts: the service boundary at which the interac-
tions occur, the address within the service boundary, and the service primitive
that occurs. The service boundary is represented throughout the specification
by a single gate, a. The address at which interactions occur is denoted by a
value of sort ASAP. The service primitive is denoted by a value of sort ASP.
The structure of a typical interaction is therefore represented by

a ! address ! sp

4Section 8.4 is by A. J. Tocher and F. M. Fournón y González-Barcia.



Abracadabra Service 241

Where more than one possibility is permitted, the more general form is used:

a ? User : ASAP ? sp : ASP [Predicate]

This introduces two bound variables, User and sp, and permits any interaction
such that the predicate holds over those variables.

The overall structure of the specification in terms of the nesting of definitions
is:

specification AbracadabraService

library

type ASAP
type ASDU
type SetOfASAP
type ASP
type Object

behaviour

process Connection
process CEPs
process CEP
process PrimitiveOrdering
process DataTransfer
process Disconnect

process Addressing
process Association
type BasicMedium
type DisconnectedMedium
type Medium
process Assoc
process TransferIn
process TransferOut

process BackPressure

8.4.2 Top-Level Specification

The description is parameterised by the gate that represents the service bound-
ary at which all interactions will occur.

specification AbracadabraService [a] : noexit
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8.4.3 Basic Types

Library Types

The standard library types used in this specification are the Booleans, natural
numbers, octet strings, decimal digits and sets.

library
Boolean, NaturalNumber, OctetString, DecDigit, Set

endlib

Service Access Points

It is sufficient to introduce two distinct addresses, UserA and UserB , at which
the service may be used. Boolean equality and inequality are defined for ad-
dresses.

type ASAP is Boolean
sorts ASAP
opns
UserA, UserB : −> ASAP
eq , ne : ASAP, ASAP −> Bool

eqns
forall a1, a2 : ASAP
ofsort Bool
UserA eq UserA = true;
UserA eq UserB = false;
UserB eq UserA = false;
UserB eq UserB = true;
a1 ne a2 = not (a1 eq a2)

endtype (* ASAP *)

Service Data Units

The service data units have the same structure and operations as the standard
type OctetString, but the values are of sort ASDU rather than OctetString.

type ASDU is OctetString renamedby
sortnames ASDU for OctetString

endtype (* ASDU *)
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Sets of Service Access Points

Sets of service access points are represented by the type SetOfASAP that is an
instantiation of the standard library type Set with element sort ASAP.

type SetOfASAP is Set actualizedby ASAP, Boolean using
sortnames
ASAP for Element
Bool for FBool
SetOfASAP for Set

endtype (* SetOfASAP *)

Service Primitives

The service primitives are represented by values of sort ASP. There are eight
constructors corresponding to the eight kinds of primitive. Of these construc-
tors, only those constructing data requests and data indications take a param-
eter – a service data unit.

For each constructor (e.g. ConReq) there is a recogniser (e.g. IsConReq)
that indicates whether its argument is of the corresponding kind. There are
also recognisers for whether a given primitive is a request or indication.

The function SDUOf extracts the user data from its argument: if there is
no data then the result is the null user data value, ‘<>’.

The auxiliary function map is used to simplify the definition of the recog-
nisers (each of which would otherwise have to be defined over the eight distinct
forms of primitive!). The important property of map is that it is injective: any
other such function would suffice.

Lastly, Boolean equality is defined over service primitives, based on equality
of the kind of primitive and the user data carried.

type ASP is Boolean, ASDU, DecDigit
sorts ASP
opns
ConReq, ConInd, ConResp, ConConf : −> ASP
DatReq, DatInd : ASDU −> ASP
DisReq, DisInd : −> ASP
SDUOf : ASP −> ASDU
map : ASP −> DecDigit
IsConReq, IsConInd, IsConResp, IsConConf,
IsDatReq, IsDatInd,
IsDisReq, IsDisInd : ASP −> Bool

IsReq, IsInd : ASP −> Bool
eq : ASP, ASP −> Bool

eqns
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forall d : ASDU, sp, sp1, sp2 : ASP
ofsort ASDU
SDUOf (ConReq) = <>;
SDUOf (ConInd) = <>;
SDUOf (ConResp) = <>;
SDUOf (ConConf) = <>;
SDUOf (DatReq (d)) = d;
SDUOf (DatInd (d)) = d;
SDUOf (DisReq) = <>;
SDUOf (DisInd) = <>

ofsort DecDigit
map (ConReq) = 0;
map (ConInd) = 1;
map (ConResp) = 2;
map (ConConf) = 3;
map (DatReq (d)) = 4;
map (DatInd (d)) = 5;
map (DisReq) = 6;
map (DisInd) = 7

ofsort Bool
IsConReq (sp) = map (sp) eq 0;
IsConInd (sp) = map (sp) eq 1;
IsConResp (sp) = map (sp) eq 2;
IsConConf (sp) = map (sp) eq 3;
IsDatReq (sp) = map (sp) eq 4;
IsDatInd (sp) = map (sp) eq 5;
IsDisReq (sp) = map (sp) eq 6;
IsDisInd (sp) = map (sp) eq 7;
IsReq (sp) =
IsConReq (sp) or IsConResp (sp) or IsDatReq (sp) or
IsDisReq (sp);

IsInd (sp) = not (IsReq (sp));
sp1 eq sp2 =
(map (sp1) eq map (sp2)) and (SDUOf (sp1) eq SDUOf (sp2))

endtype (* ASP *)

Service Objects

While in transit, the information encoded in a request/response or indica-
tion/confirmation is represented as a service object. The concept of service
object is introduced since request/response and indication/confirmation reflect
the two directions of information flow between the service and a user of the ser-
vice. However within the service itself, that particular notion of direction has
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no meaning and is not relevant for information in transit within the service5.
There is a distinct kind of object for each request–indication or response–

confirmation pair. The naming of objects is straightforward, apart from Con
(for connection request/indication) and Cak (connection acknowledgement, for
connection response/confirmation). The operation object transforms primitives
to objects. The operations indication and altindication (‘alternative indication’)
transform objects to indications or confirmations respectively. Boolean equality
is defined over sort Object.

type Object is ASP
sorts Object
opns
object : ASP −> Object
indication,
altindication : Object −> ASP

IsCon, IsCak,
IsDat, IsDis : Object −> Bool
eq : Object, Object −> Bool

eqns forall sp : ASP, obj, obj1, obj2 : Object, data : ASDU
ofsort Bool
IsCon (object (sp)) = IsConReq (sp) or IsConInd (sp);
IsCak (object (sp)) = IsConResp (sp) or IsConConf (sp);
IsDat (object (sp)) = IsDatReq (sp) or IsDatInd (sp);
IsDis (object (sp)) = IsDisReq (sp) or IsDisInd (sp);
obj1 eq obj2 =
(indication (obj1) eq indication (obj2)) and
(altindication (obj1) eq altindication (obj2))

ofsort ASP
indication (object (ConReq)) = ConInd;
indication (object (ConInd)) = ConInd;
indication (object (ConResp)) = ConConf;
indication (object (ConConf)) = ConConf;
indication (object (DatReq (data))) = DatInd (data);
indication (object (DatInd (data))) = DatInd (data);
indication (object (DisReq)) = DisInd;
indication (object (DisInd)) = DisInd;
altindication (object (ConReq)) = ConConf;
altindication (object (ConInd)) = ConConf;
altindication (object (ConResp)) = ConInd;
altindication (object (ConConf)) = ConInd;
altindication (object (DatReq (data))) = DatInd (data);
altindication (object (DatInd (data))) = DatInd (data);

5Put another way, this avoids the problem of when a request become an indication.
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altindication (object (DisReq)) = DisInd;
altindication (object (DisInd)) = DisInd

endtype (* Object *)

8.4.4 Top-Level Behaviour

The constraints on the behaviour of the service are decomposed into two prin-
cipal areas of concern:

• the single bidirectional connection between addresses UserA and UserB
without regard to back-pressure (process Connection)

• back-pressure in the system as a whole (process BackPressure).

behaviour
Connection [a] (UserA, UserB)

||
BackPressure [a]

where

8.4.5 A Single Connection

The constraint on a single bidirectional connection between two given addresses
is decomposed into constraints concerning:

• the relative order of service primitives within each endpoint separately
without reference to the relative order between endpoints (process CEPs)

• the relative order of service primitives at opposite endpoints without ref-
erence to the relative order within each endpoint (process Association).

process Connection [a] (UserA, UserB: ASAP) : noexit :=
CEPs [a] (UserA, UserB)

||
Association [a] (UserA, UserB)

where
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Both Connection Endpoints

The constraints on the relative order of primitives at each end of the connection
are independent of each other. The constraint on a single endpoint is described
by process CEP at a given endpoint address. Their independence is represented
by the use of the interleaving operator ‘|||’ in composing the constraints.

process CEPs [a] (UserA, UserB : ASAP) : noexit :=
CEP [a] (UserA)

|||
CEP [a] (UserB)

where

A Single Connection Endpoint

The constraint at a single endpoint is decomposed into two constraints concern-
ing:

• the order of primitives (process PrimitiveOrdering)

• the address at which the interactions occur (process Addressing).

process CEP [a] (UserX : ASAP) : noexit :=
PrimitiveOrdering [a]

||
Addressing [a] (UserX)

where

Primitive Ordering

The order of primitives is constrained to begin with a ConReq or ConInd, after
which the disconnection phase (process Disconnect) may be entered at any
stage. Until the disconnection phase is entered, any next interaction must be
either a ConConf or ConResp according to the kind of the first interaction and
after this the data transfer phase (process DataTransfer) may be entered.

process PrimitiveOrdering [a] : noexit :=
a ? User : ASAP ? sp1 : ASP
[IsConReq (sp1) or IsConInd (sp1)];

(
a ? User : ASAP ? sp2 : ASP
[(IsConReq (sp1) implies IsConConf (sp2)) and
(IsConInd (sp1) implies IsConResp (sp2))];



248 Using Formal Description Techniques

DataTransfer [a]
[>
Disconnect [a]

)

where

Data Transfer Phase

The data transfer phase constraint permits only DatReq and DatInd service
primitives.

process DataTransfer [a] : noexit :=
a ? User : ASAP ? sp : ASP
[IsDatReq (sp) or IsDatInd (sp)];

DataTransfer [a]
endproc (* DataTransfer *)

Disconnection Phase

The disconnection phase constraint permits an initial DisReq or DisInd. Af-
ter the initial interaction the constraint reverts to the primitive ordering on a
connection.

process Disconnect [a] : noexit :=
a ? User : ASAP ? sp : ASP
[IsDisReq (sp) or IsDisInd (sp)];

PrimitiveOrdering [a]
endproc (* Disconnect *)

endproc (* PrimitiveOrdering *)

Constraining the Address

The constraint on addressing permits any interactions provided they occur at
the given address, UserX.

process Addressing [a] (UserX : ASAP) : noexit :=
a ! UserX ? sp : ASP;
Addressing [a] (UserX)

endproc (* Addressing *)

endproc (* CEP *)

endproc (* CEPs *)
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8.4.6 Bidirectional Transfer of Service Primitives

The end-to-end constraint on the bidirectional transfer of service primitives is
that transfer in each direction separately satisfies the constraint on unidirec-
tional transfer of service primitives (process Assoc). The transfers in opposite
directions are mutually independent, modelled here by the interleaving opera-
tor ‘|||’. The instantiations of Assoc are parameterised by the addresses of each
endpoint and an initial empty medium.

process Association [a] (UserA, UserB : ASAP) : noexit :=
Assoc [a] (UserA, UserB, empty)

|||
Assoc [a] (UserB, UserA, empty)

where

8.4.7 The Medium

The service behaves as a medium with specific reordering properties. This is
more complex than the Unreliable Medium of Chapter 6, so an alternative and
more general approach has been taken. The data type representing the medium
is defined in three stages:

• a basic medium is defined as a simple FIFO (First-In First-Out) queue,
formalised in type BasicMedium

• this is augmented in type DisconnectedMedium with the transformations
associated with the occurrence of provider disconnects

• this in turn is augmented in type Medium with the transformations asso-
ciated with possible reorderings of objects in the medium.

The Basic Medium

A medium may have the value empty. If it is non-empty, it is equivalent to
some other medium, asm, with an additional object, aso, appended. In this
case the resulting medium is denoted by aso +−− asm.

A non-empty medium may alternatively be viewed as having a head object,
aso, and a remainder, asm. This view is denoted by asm −−+ aso and is useful
when removing the first element of a medium. The relationship between the
two views is expressed in the first two equations.

The reason for not defining ‘head’ and ‘tail’ operations is to avoid error values
in the definitions (i.e. head or tail of an empty medium). In the behavioural
part of the specification, a medium is used declaratively (‘choose head and tail
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values which combine to form the current medium’) rather than imperatively
(‘decompose the current medium into its head and tail’).

As usual, Boolean equality is also defined.

type BasicMedium is Object, Boolean
sorts Medium
opns
empty : −> Medium
+−− : Object, Medium −> Medium
−−+ : Medium, Object −> Medium
eq : Medium, Medium−> Bool

eqns
forall sm, sm1, sm2 : Medium, obj, obj1, obj2 : Object
ofsort Medium
obj +−− empty = empty −−+ obj;
(obj2 +−− (sm −−+ obj1)) =
((obj2 +−− sm) −−+ obj1)

ofsort Bool
sm eq sm = true;
(obj2 +−− sm2) eq empty = false;
empty eq (obj1 +−− sm1) = false;
(obj2 +−− sm2) eq (obj1 +−− sm1) =
((obj2 eq obj1) and (sm2 eq sm1))

endtype (* BasicMedium *)

Provider Disconnection of the Medium

The ability of the service provider to cause one or more disconnects at any time
is now added in the definition of type DisconnectedMedium. For medium s and
medium t, the expression s disconnects t is true if and only if s can be derived
by adding zero or more (provider) disconnects to the end of t.

type DisconnectedMedium is BasicMedium
opns

disconnects : Medium, Medium −> Bool
eqns
forall obj, obj1 : Object, sm, sm1 : Medium
ofsort Bool
empty disconnects empty = true;
empty disconnects (obj +−− sm) = false;
(obj1 +−− sm1) disconnects sm =
(((obj1 +−− sm1) eq sm) or
(IsDis (obj1) and (sm1 disconnects empty)))

endtype (* DisconnectedMedium *)
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Reorderings of the Medium

The ability of the provider to reorder and destroy objects in the medium at any
time is modelled much as for provider disconnection, namely by defining how
two media are related.

Two auxiliary relations are introduced. The ability of a disconnect to can-
cel a preceding connect is expressed in the relation negate. The ability of a
disconnect to overtake and delete any preceding object other than a connect is
expressed in the relation destroy.

One medium , m1 , is a valid reordering of another medium, m2 , if and only
if m1 can be derived from m2 by the application of one or more negations or
destructions. The first three equations relating to reorders state that an empty
medium can be a reordering only of an empty medium or a medium initially
containing a disconnect immediately following a connect.

The next three equations address the case where the reordered medium is
non-empty. The first of these states that a non-empty medium cannot arise
from an empty one. The second states that a non-empty medium can arise
from one containing precisely one object only if the two media are the same.
The third, and most complex, equation states that a non-empty medium can
arise from an original medium containing at least two objects only if one of the
following conditions holds:

• their respective last objects are the same and the front of the resulting
medium is a valid reordering of the front of the original

• the first two objects of the original medium negate each other and the
remainder can be transformed to give the resulting medium

• the last object of the original medium can destroy the penultimate object,
and the remaining medium can be validly transformed to the resulting
medium.

type Medium is DisconnectedMedium
opns

negates ,
destroys : Object, Object −> Bool

reorders : Medium, Medium−> Bool
eqns
forall m, m0, m1, m2 : Medium,
obj, obj0, obj1, obj0a, obj1a : Object

ofsort Bool
obj1 destroys obj0 =
IsDis (obj1) and (not (IsCon (obj0)));

obj1 negates obj0 =
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IsDis (obj1) and IsCon (obj0);
empty reorders empty = true;
empty reorders (obj0 +−− empty) = false;
empty reorders (obj1 +−− (obj0 +−− m)) =
(obj1 negates obj0) and (empty reorders m);

(obj +−− m) reorders empty = false;
(obj +−− m) reorders (obj0 +−− empty) =
(obj eq obj0) and (m reorders empty);

(obj +−− m) reorders (obj1 +−− (obj0 +−− m0)) =
((obj eq obj1) and

(m reorders (obj0 +−− m0))) or
((obj1 negates obj0) and
((obj +−− m) reorders m0)) or
((obj1 destroys obj0) and
((obj +−− m) reorders (obj1 +−− m0)))

endtype (* Medium *)

8.4.8 Using the Medium

Process Assoc uses the medium in defining the behaviour of unidirectional trans-
fer between two addresses (UserA and UserB, in either order). It repeatedly
offers to transfer a primitive into or out of the medium (processes TransferIn
and TransferOut).

Process Assoc accepts requests and responses at address UserX and delivers
indications at address UserY. For a given state of medium, sm, acceptance or
delivery of a primitive leads to a new state of the medium, sm1. After this,
and before the next external interaction, the state of the resulting medium may
be transformed by any valid combination of provider disconnections and then
reordering. This is done in the following stages.

All media, sm3, are identified which could be derived as a reordering of
another medium, sm2, which in turn could be derived as a disconnection of the
given medium, sm1. In the most general case, the future behaviour will offer a
range of choices one based on each possible derived medium, sm3.

However, if it is possible for sm3 to be non-empty (i.e. it can be decomposed
into a head, obj, and a tail, sm4) and it is possible for a disconnect object to
have reached the head of the queue, then the provider may unilaterally choose to
offer future behaviour based only on that specific transformation of the medium.
(This is indicated by the internal event i.) Similarly, if it is possible for the
transformed medium to be empty, then the provider may unilaterally choose
to offer future behaviour based solely on that transformation of the medium.
(Again, the internal event i is used to indicate this.)

process Assoc [a] (UserX, UserY : ASAP, sm : Medium) :
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noexit :=
(
TransferIn [a] (UserX, sm)

[]
TransferOut [a] (UserY, sm)

)
>>
accept sm1 : Medium in
(
choice sm2, sm3 : Medium []
[(sm2 disconnects sm1) and
(sm3 reorders sm2)] −>
(
choice sm4 : Medium, obj : Object []
[sm3 = (sm4 −−+ obj)] −>
(
Assoc [a] (UserX, UserY, sm3)

[]
[IsDis (obj)] −>
i;
Assoc [a] (UserX, UserY, sm3)

)
[]
[sm3 = empty] −>
i;
Assoc [a] (UserX, UserY, sm3)

)
)

where

8.4.9 Medium Input and Output

Process TransferIn accepts any request or confirmation at a given address and
appends it to the given medium. Conversely, process TransferOut offers delivery
of the indication or confirmation corresponding to the object, if any, at the
head of the given medium. (This is possible when the given medium can be
decomposed into a head and tail.) If the given medium is empty, then process
TransferOut is unable to offer any delivery.

process TransferIn [a] (User : ASAP, sm : Medium) :
exit (Medium) :=
a ! User ? sp : ASP [IsReq (sp)];



254 Using Formal Description Techniques

exit (object (sp) +−− sm)
endproc (* TransferIn *)

process TransferOut [a] (User : ASAP, sm : Medium) :
exit (Medium) :=
choice sm1 : Medium, obj : Object []
[sm = (sm1 −−+ obj)] −>
a ! User ? sp : ASP
[(sp eq indication (obj)) or
(sp eq altindication (obj))];

exit (sm1)
endproc (* TransferOut *)

endproc (* Assoc *)

endproc (* Association *)

endproc (* Connection *)

8.4.10 Back-pressure Flow Control

The constraint associated with back-pressure flow control is that data requests
may be prohibited at any address at any time. The decision as to where and
when to prohibit data requests rests solely with the service provider, and ap-
pears to a service user as uncontrollable non-determinism.

process BackPressure [a] : noexit :=
choice RefuseDatReq : SetOfASAP []
i;
a ? User : ASAP ? sp : ASP
[(IsDatReq (sp) implies (User NotIn RefuseDatReq))];

BackPressure [a]
endproc (* BackPressure *)

endspec (* AbracadabraService *)

8.5 Formal Description in SDL6

The SDL description of the Abracadabra Service appears in Figure 8.3. The
service is modelled as a system AbraService consisting of a single block Serv

6Section 8.5 is by S. Trigila.
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communicating with the environment via two channels, UserA and UserB, rep-
resenting the service access points. The service users are located in the environ-
ment. The service primitives are represented by means of signals; only DatReq
and DatInd have a UserDataType parameter.

The service provider behaves non-deterministically in that it may refuse con-
nection attempts and may disrupt established connections on its own initiative
for some internal reasons. The channels AServOnOff and BServOnOff from the
environment to block Serv have therefore been introduced. They carry signals
ServiceOn and ServiceOff asynchronously and unpredictably, causing service
availability to change.

Block Serv comprises processes SAPManagerA and SAPManagerB that
mirror each other. The processes are active from system start-up, and model
the behaviour of the service at each service access point. Channels to/from the
environment are mapped one-to-one onto corresponding signalroutes within the
block. Peer processes SAPManagerA and SAPManagerB communicate via sig-
nalroute Internal to transfer four possible ‘objects’ in each direction: connection
request/indication, connection response/confirmation, data and disconnection.

The formal description deals with two key aspects of behaviour:

• local behaviour, i.e. correct sequencing of service primitives transferred at
one access point

• end-to-end behaviour, i.e. correct relationship between service primitives
transferred at different access points.

Local behaviour is described independently by processes SAPManagerA and
SAPManagerB. End-to-end behaviour is described by the mapping that each
process performs between service primitives on the user signalroute and objects
on the internal signalroute. The implicit underlying queue mechanism models
the delay from a service primitive being accepted at one SAP to the delivery
of the corresponding service primitive at the remote SAP. Signals ServiceOn
and ServiceOff may be independently received by either of the SAPManager
processes. This explains why two distinct but equivalent channels have been
defined.

Since SAPManagerA and SAPManagerB have identical behaviour, they
have been described by means of macro SAPManagerDef which acts as a kind of
process template. There are five states in it: Idle, Disconnected, Calling, Called
and Connected. Their informal meaning is given through comments embedded
in the formal description. Note the difference between Idle and Disconnected.
In the Idle state, no connection can be set up because some unspecified in-
ternal condition makes the service provider unavailable. In the Disconnected
state, a connection attempt is allowed when a connection request primitive or
a connection object arrives.
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system AbraService

UserB

[(InSP)][(OutSP)]

AServOnOff

UserA

[(InSP)] [(OutSP)]

BServOnOff

Serv

/* The Abracadabra service is specified as a block communicating with
two users by means of two channels, UserA and UserB, representing
service access points. Users themselves are located in the environment
and non-deterministic behaviour of the service is modeled by means of
two signals ServiceOn ServiceOff issued from the environment either
via channel AServOnOff or via channel BServOnOff */

1(1)

signal ConReq, ConInd, ConResp, ConConf, DisReq, DisInd,
           DatReq (UserDataType), DatInd (UserDataType),
           ServiceOn, ServiceOff;
signallist InSP = ConReq, ConResp, DisReq, DatReq;
signallist OutSP = ConInd, ConConf, DisInd, DatInd;

newtype UserDataType  array (Natural, Bit);
endnewtype UserDataType;

newtype Bit
      literals 0,1;
endnewtype Bit;

ServiceOn,
ServiceOff

ServiceOn,
ServiceOff

Figure 8.3: Abracadabra Service in SDL – Graphical Description
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block Serv

UserA
RUserA

AServOnOff
RAServOnOff

UserB
RUserB

Internal

BServOnOff
RBServOnOff

[(InSP)]

[(InSP)]

[(OutSP)]

[(OutSP)]

SAPManagerA
(1,1)

SAPManagerB
(1,1)

1(1)

/* This block consists of two mirror processes abstractly
describing the local behaviour of the service with regard to
the users.
These processes communicate via a bidirectional signal
route Internal, which models the finite time it takes for a
service primitive issued at one end-point to be converted
into a correspondent service primitive at the other end-point.
The signal route models a queue which accommodates the
following objects: Connection Request/Indication,
Connection Response/Confirmation, Data, Disconnection */

signal 
IConReqInd,
IConRespConf, 
IDis, IDat(UserDataType);

ServiceOn,
ServiceOff

ServiceOn,
ServiceOff

IConReqInd,
IConRespConf,
IDis,IDat

IConReqInd,
IConRespConf,
IDis,IDat

Figure 8.3 (continued)
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process SAPManagerA

process SAPManagerB

SAPManagerDef

SAPManagerDef

1(1)

1(1)

/*This process abstractly
describes the behaviour of the
service at one end-point.*/ 

dcl UserData UserDataType;

/*This process abstractly
describes the behaviour of the
service at one end-point.*/ 

dcl UserData UserDataType;

Figure 8.3 (continued)
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1(4)macrodefinition SAPManagerDef

ServiceOn

DisInd IDis

IConReqIndConReq

Idle

— —

ServiceOff

Disconnected

IConReqIndConReq

Calling Called

IConReqInd ConInd Idle

/* The process consists of five states
      Idle: service not available
      Disconnected: service available; no connection in progress or active
      Calling: a connection initiated by the local user is being established
      Called: a connection initiated by the remote user is being established 
      Connected: data transfer is possible. */

Figure 8.3 (continued)
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2(4)macrodefinition SAPManagerDef

IConRespConf,

IConReqInd
IDis DisReq

ConConf

Connected Disconnected

DisInd IDis

Disconnected

Calling

DisInd

ServiceOff

Idle

IDis

Figure 8.3 (continued)
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3(4)macrodefinition SAPManagerDef

ConResp

IDis

IDisConReq

Called

Connected

DisIndIConRespConfIConRespConf

ConConf

DisReq

Disconnected

Idle

DisInd

ServiceOff

IDis

Figure 8.3 (continued)
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4(4)macrodefinition SAPManagerDef

IDis

IDis

Connected

DisInd

DisReq

Disconnected

IDat
(UserData)

DatInd
(UserData)

DatReq
(UserData)

IDat
(UserData)

—

DisInd

ServiceOff

Idle

IDis

Figure 8.3 (continued)
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The Abracadabra Service example shows that SDL can satisfactorily de-
scribe connection-oriented services. Informal service definitions in standards
sometimes use state machines to represent the service; however, what they ac-
tually represent is a local view of the service at one end-point. This information
is not enough to describe all possible sequences of service primitives, so further
specification of allowed service interactions has to be provided – a time-sequence
diagram. The SDL description in this section uses a state-oriented approach,
but deals adequately with an end-to-end view of the service. The description
captures the distributed nature of the service provider, with its characteristic
behaviour of relating information exchanges occurring at different service access
points.

An abstract style of specification is demonstrated in this example. Non-
deterministic behaviour is modelled by using signals from the environment and
corresponding channels to convey them. The only channels used for concrete
information are UserA and UserB; the others exist in the abstract model only.

8.6 Conclusion7

Writing formal descriptions of the Abracadabra Service revealed similar kinds
of deficiencies in the informal description as were found with the Unreliable
Medium of Chapter 6. However, the connection-oriented nature of the Abra-
cadabra Service exposed new kinds of problem:

• Realistic systems may have ‘phase change’ problems, when the bound-
ary between different phases of operation is not clearly delineated. It is
important to describe these cases fully.

• The distributed nature of a service has a marked effect on how it is for-
mally described. If the basic nature of interactions in an FDT is asyn-
chronous, care must be taken to deal with change-over situations (e.g. a
disconnection has been signalled but data is still waiting in the channel to
be received). If the basic nature of interactions is synchronous, buffering
must be introduced in the description to reflect the distributed operation
of the service.

• It is difficult to decide how best to describe user misbehaviour. If user er-
rors are explicitly addressed as part of the informal description then they
will be reflected in a formal description. However, a service is often an ab-
straction of an interface and is not necessarily implemented in exactly the
same way. Service descriptions therefore tend to avoid dealing with inter-
face errors. However, a formal description has to ascribe some meaning to

7Section 8.6 is by K. J. Turner.
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invalid behaviour. A formal description could omit an explicit description
of invalid user behaviour and so be a partial specification. However, the
formal description would still have some implicit meaning in these cases.

Interestingly, the philosophy of each FDT is different when it comes to
dealing with such error conditions. In Estelle, invalid user behaviour
would result in deadlock. Estelle experts therefore prefer to describe
invalid user interactions as being accepted but ignored. In Lotos, invalid
user behaviour would also result in deadlock. However, because Lotos

experts prefer to take an abstract view, no explicit description would nor-
mally be included for user misbehaviour. In SDL, invalid behaviour can-
not arise from the point of view of the system since invalid signals are
discarded.



9 Abracadabra Protocol

The Abracadabra Service of Chapter 8 needs to be supported by a connection-
oriented protocol. Because of the extra complexity required to handle connec-
tion and disconnection, the protocol has been simplified to have limited flow
control and error recovery.

The essence of the Sliding Window Protocol in Chapter 7 is its flow control
mechanism. The Abracadabra Protocol described in this chapter is effectively a
Sliding Window Protocol with a window size of 1. This degenerate case has been
widely studied as the Alternating Bit Protocol, so-called because its sequence
numbers alternate between 0 and 1. Although the Sliding Window Protocol
allows its sequence numbers to increase indefinitely, most protocols recycle se-
quence numbers when they reach some limiting value. Sequence numbers in
this protocol are modulo 2.

The Alternating Bit Protocol supports a unidirectional flow of information
with a positive handshake on each transfer. The Abracadabra Service is sym-
metrical, however, so the Alternating Bit Protocol is used for each direction of
transfer. This extra structure is the final touch needed to complete the series of
graded examples illustrating the use of FDTs. The bibliography in Appendix A
lists sources of more complex or more realistic formal descriptions.

9.1 Informal Description1

9.1.1 Overall Structure

The Abracadabra Protocol is so named because it has:

• Alternating Bit sequence numbers, Retransmission on timeout, and Ac-
knowledgements in one direction

• Connection And Disconnection

• Alternating Bit sequence numbers, Retransmission on timeout, and Ac-
knowledgements in the other direction.

1Section 9.1 is by K. J. Turner.
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Figure 9.1: Abracadabra Protocol in Context

The protocol operates over a full-duplex, unreliable communications medium
between two stations. The two stations communicate by transfer of PDUs
(Protocol Data Units). The protocol is two-way simultaneous, symmetrical
and reliable. The protocol may be in one of several phases: connection, data
transfer, disconnection or error.

Figure 9.1 shows the Abracadabra Protocol in the context of the underlying
medium and the Abracadabra Service.

9.1.2 Protocol Data Units and Parameters

The protocol data units of the protocol are tabulated below; only DT and AK
carry parameters. Each service data unit is carried in one DT protocol data
unit, and each protocol data unit is carried in one service data unit of the
underlying medium. In communications terms this means that the protocol
does not support blocking, segmentation or concatenation.

The protocol is parameterised by two constants N and P . N (a positive
integer) is the maximum number of attempts to transmit a PDU without re-
ceiving an acknowledgement. P (which exceeds the round-trip transit delay) is
the time period that should elapse before attempting retransmission.
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Purpose Name Parameters Corresponding
Service Primitives

Connection Request CR - ConReq, ConInd
Connection Confirmation CC - ConResp, ConConf
Data Transfer DT Service Data Unit DatReq, DatInd

Sequence Number
Acknowledgement AK Sequence Number -
Disconnection Request DR - DisReq, DisInd
Disconnection Indication DC - -

9.1.3 Connection Phase

A connection attempt is made following ConReq by sending a CR. If a CC
is received, a ConConf is issued and the data transfer phase is entered; the
same is true if CR is received instead. If DR is received or DisReq occurs,
the disconnection phase is entered. If any PDU other than CC , CR or DR is
received it is ignored. If no response to CR is received within period P , the
CR is retransmitted. A maximum of N connection attempts (i.e. N periods of
value P) is permitted. After this, the error phase is entered.

When no connection is set up, receipt of a CR causes a ConInd ; any other
PDU is ignored. If a ConResp follows, then CC is sent and the data transfer
phase is entered. If, however, the connection attempt is abandoned with DisReq
then the disconnection phase is entered.

9.1.4 Data Transfer Phase

A DatReq leads to a DT being sent. On receipt of the corresponding AK , a
further DatReq may be accepted. If the corresponding AK is not received within
period P , the DT is retransmitted. A maximum of N transmission attempts
(i.e. N periods of value P) is permitted. After this, the error phase is entered.

DT and AK PDUs carry a one-bit sequence number that is independent for
each direction of transmission. The sequence number starts at 0 after connec-
tion. A correct acknowledgement to a DT bears the next (i.e. other) sequence
number2. If an AK with the wrong sequence number is received then the error
phase is entered.

When a DT is received, it is acknowledged by an AK with the next sequence
number after the one in the DT . However, if a further DT is received before
the AK is sent then the error phase is entered. If a DT bears the sequence
number expected then a DatInd is issued, otherwise the DT is not delivered to
the user.

2Note that the receiver in the Sliding Window Protocol sends the sequence number of the
message being acknowledged. The Abracadabra Protocol follows the more common rule of
sending the sequence number of the next message expected.
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A CC is sent in response to a CR that is received initially in the data transfer
phase, before any DT or AK PDUs. If a DR is received by either station the
disconnection phase is entered. If any PDU apart from DT , AK , CR (initial
transmission only) or DR is received then the error phase is entered.

9.1.5 Disconnection Phase

A DisReq leads to a DR being sent. On receipt of DC the connection is ter-
minated and a new connection may be attempted; the same is true if DR is
received instead. If a further DR is received, DC is sent. Any other kind of
PDU is ignored. If no response to DR is received within period P , the DR
is retransmitted. A maximum of N disconnection attempts (i.e. N periods of
value P) is permitted. After this, the connection is considered to have been
terminated and a new connection may be attempted.

When a DR is received, it is acknowledged with DC . If a connection is
established, a DisInd is issued. After this, a new connection may be attempted.
Any PDU other than DR or CR that arrives subsequently is ignored.

9.1.6 Error Phase

A protocol error leads to the error phase being entered and DR being sent.
This is identical to the disconnection phase except that the station detecting
the error also issues DisInd before sending the DR.

9.1.7 Underlying Medium Service

The unreliable medium service of Chapter 6 could, in principle, be used to
support the Abracadabra Protocol. However, to simplify the mapping of data
units it was assumed in Chapter 6 that the medium supported separate data
and acknowledgement service primitives. This approach is not general, however,
since a service should not need to know about the protocol data units used by
a protocol. The medium of Chapter 6 is unidirectional, whereas a bidirectional
medium is needed for the Abracadabra Protocol. The medium is also allowed to
corrupt, duplicate or re-order messages as well as lose them; the Abracadabra
Protocol is designed to deal with message loss only.

A simpler unreliable medium is therefore appropriate for this example. The
medium supports a pair of service access points, addressed as MedA or MedB .
The service is accessed by service primitives Mreq and Mind (Medium Re-
quest/Indication) that carry service data units corresponding to protocol data
units. The medium service is connection-less, bidirectional and transparent.
Messages may be lost, but may not be corrupted, duplicated, re-ordered or cre-
ated. Either station may issue an Mreq , which will be delivered as an Mind
with the same data or will be lost.
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9.2 Errors in the Informal Description3

9.2.1 Premature Transmission of DT

Is it reasonable that Section 9.1.4 should consider it an error if a further DT is
received before an AK can be transmitted?

The intention was to trap misuse of the protocol by the transmitter, or to
detect that the timeout period was too short. However, this was perhaps an
unnecessary complication.

9.2.2 Stopping Retransmissions

Should Sections 9.1.3 and 9.1.4 explicitly say that retransmission of a CR or
DT is stopped if the error phase is entered?

Retransmission a timed out PDU was intended to cease on entry to the error
phase.

9.2.3 Retransmission Limit and Period

What should be the behaviour of the protocol if parameters N and P of Sec-
tion 9.1.2 are not positive?

The intention was that the protocol should refuse to accept or transmit any
messages.

9.2.4 DR when Disconnected

Section 9.1.3 says that receipt of any PDU other than CR is ignored when no
connection is set up. However, Section 9.1.5 says that if a further DR is received
in the disconnection phase it should result in DC . Which is correct?

The description of the disconnection phase is correct. Receipt of DR when
not connected was intended to result in DC .

9.2.5 Connection Refusal

If DR is received in response to CR, should a DisInd be given to the User?
Section 9.1.3 says only that the disconnection phase is entered.

The intention was to inform the initiating user by DisInd if the connection
is refused.

3Section 9.2 is by K. J. Turner, based on problems found by the authors of the formal
descriptions. As reported by de Saqui-Sannes and Courtiat (1990), Blumer and Parker (1990),
and Tenney (1992) the protocol can fail to operate incorrectly under extreme conditions, e.g.
when P is too small or repeated transmissions fail to get through.
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9.2.6 Connection Refusal

Should the disconnection phase be entered if the connection is refused by the
other party, i.e. is it correct to follow the sequence CR, DR, DC ? This is implied
by Sections 9.1.3 and 9.1.5.

Although the informal description is valid, it is more usual to find that
protocols refuse a connection by the sequence CR, DR. The informal descrip-
tion should therefore refer to DR being sent and a ‘not connected’ state being
entered, rather than the disconnection phase being entered.

9.2.7 Ignoring Out-of-Sequence Data

Section 9.1.4 says that a DT with an incorrect sequence number is not delivered
to the user. Should this say that the corresponding DatInd is not delivered?

The informal description is worded rather loosely and should have referred
to DatInd .

9.3 Formal Description in ESTELLE4

The description modules are systemprocesses, and so run asynchronously.
As the modules are not refined into submodules, the global behaviour of the
description would not change if they were designated systemactivities. The
crucial point is that they are distinct systems.

The modules and interaction points for the Abracadabra Protocol descrip-
tion are shown in Figure 9.2. The structure illustrates one way to solve the
common case of peer-to-peer communication. Peer protocol entities logically
communicate with each other, but they actually communicate via an underly-
ing service. When describing a protocol it is thus not possible for an entity to
‘send a protocol data unit’. Instead, it must package a protocol data unit up
into a service data unit and send it via a request to the underlying service. The
peer entity must unwrap the protocol data unit from the service data unit that
appears in the corresponding indication from the underlying service.

The description is broken up into several modules. The protocol itself is
described in the Station module, the main one of interest. The Station modules
have been written as though they were communicating directly, so they have
the illusion of sending or receiving a protocol data unit directly. To permit this,
a TransCode module has been interposed between each Station module and the
underlying medium service. The TransCode module encodes the protocol data
unit from the Station module in an Mreq primitive of the medium. Conversely,
the TransCode module decodes an Mind primitive from the medium.

4Section 9.3 is by T. P. Blumer and R. L. Tenney.
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Figure 9.2: Abracadabra Protocol in ESTELLE – Architecture
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The structuring into modules uses Estelle features that make the sub-
structures ‘invisible’ to the rest of the system. The AbraProtocol module simply
serves to form the substructures and connect them together; it does not have
any transitions of its own. Note that the TransCode module has only one (un-
named) state, so from and to clauses are unnecessary for its transitions.

The Abracadabra Protocol description in Estelle is fairly straightforward
since the order of the transitions of the StationBody closely follows the order
in the original description. Indeed, this portion of the formal description was
written almost as a translation of the informal description.

The main differences between the Abracadabra Service and Protocol descrip-
tions arise from the service being an abstraction of the protocol. The interface
to the user is, of course, identical in both cases. In the service description there
are no retransmissions and no alternating bit since these are invisible to the
user. Furthermore, the processes of the service provider at the service access
points do not have to communicate through an underlying service. Instead, the
inability of the service provider to establish or maintain a connection (where
the protocol’s retransmissions have failed) is modelled in the service description
by the use of non-determinism.

Although back-pressure flow control has a global end-to-end effect, its exact
realisation depends on local implementation of the interfaces. The protocol
description therefore does not deal with it, but could be modified to do so as
explained at the end of this section.

Since the Abracadabra Protocol is significantly more complex than the other
examples, Figure 9.3 has been provided to show which transition numbers are
applicable for which inputs in which states.

specification AbracadabraProtocol;

default individual queue;

timescale seconds;

const
N = any integer; { Number of transmission tries }
P = any integer; { Delay amount for timers }

type
SeqType = 0..1; { Sequence number type }
UserDataType = ...; { Some suitable type, e.g. a string }
PDUType = (CR, CC, DT, AK, DR, DC);
SDUType =
record
PDU : PDUType;
SeqNo : SeqType;
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Input State
CLOSED CRSENT CRRECV ESTAB DRSENT

ConReq 2 35 35 35 35
ConResp 36 36 10 36 36
DatReq 37 37 37 13 37
DisReq 38 6 11 23 38

CR 9 4 30 17, 18 30
CC 31 3 31 19 31
DT 32 32 32 16 32
AK 33 33 33 14, 15 33
DR 27 5 12 26 25
DC 34 34 34 20 24

Figure 9.3: Abracadabra Protocol in ESTELLE – Transitions

UData : UserDataType
end;

channel SSAP(User, Provider);
by User:
ConReq;
ConResp;
DatReq(UserData : UserDataType);
DisReq;

by Provider:
ConInd;
ConConf;
DatInd(UserData : UserDataType);
DisInd;

channel PeerCode(Peer, Coder);
by Peer, Coder:
CR;
CC;
DT(Seq : SeqType; UserData : UserDataType);
AK(Seq : SeqType);
DR;
DC;

channel MSAP(User, Provider);
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by User:
Mreq(SDU: SDUType);

by Provider:
Mind(SDU: SDUType);

module User systemprocess;
ip U : SSAP(User);

end;

body UserBody for User;
external;

module UnreliableMedium systemprocess;
ip MedA, MedB : MSAP(Provider);

end;

body UnreliableMediumBody for UnreliableMedium;
external;

module AbraProtocol systemprocess;
ip
User : SSAP(Provider);
Medium : MSAP(User);

end;

body AbraProtocolBody for AbraProtocol;

module Station process;
ip
User : SSAP(Provider);
Peer : PeerCode(Peer);

end;

body StationBody for Station;

state
CLOSED, CRSENT, CRRECV, ESTAB, DRSENT;

stateset
CRignore = [CRRECV, DRSENT];
CCignore = [CLOSED, CRRECV, DRSENT];
DTignore = [CLOSED, CRSENT, CRRECV, DRSENT];
AKignore = [CLOSED, CRSENT, CRRECV, DRSENT];
DCignore = [CLOSED, CRSENT, CRRECV];
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ConReqIgnore = [CRSENT, CRRECV, ESTAB, DRSENT];
ConRespIgnore = [CLOSED, CRSENT, ESTAB, DRSENT];
DatReqIgnore = [CLOSED, CRSENT, CRRECV, DRSENT];
DisReqIgnore = [CLOSED, DRSENT];

var
Sending : boolean;
SendSeq, RecvSeq : SeqType;
OldSendSeq : SeqType;
CRRetranRemaining : integer;
DTRetranRemaining : integer;
DRRetranRemaining : integer;
OldData : UserDataType;
DTorAK : boolean;

procedure InitVar;

begin
Sending := false;
SendSeq := 0;
RecvSeq := 0;
{ Setting the following counters to −1 guarantees that
the predicates that check them will fail }
CRRetranRemaining := −1;
DTRetranRemaining := −1;
DRRetranRemaining := −1;
DTorAK := false;

end;

initialize
to CLOSED
begin { 1 }
{ Variables are initialised on leaving CLOSED since the
protocol module may cycle through CLOSED repeatedly }

end;

trans

{ *** Connection phase *** }

{ User requests connection }
from CLOSED to CRSENT
when User.ConReq
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begin { 2 }
{ Initialise module variables on leaving CLOSED }
InitVar;
output Peer.CR;
CRRetranRemaining := N − 1;

end;

{ Other user accepted connection }
from CRSENT to ESTAB
when Peer.CC
begin { 3 }
output User.ConConf;
CRRetranRemaining := −1;

end;

{ Colliding CRs }
from CRSENT to ESTAB
when Peer.CR
begin { 4 }
output User.ConConf;
CRRetranRemaining := −1;

end;

{ Other user rejected connection }
from CRSENT to CLOSED
when Peer.DR
begin { 5 }
output User.DisInd;
CRRetranRemaining := −1;

end;

{ Sender requests disconnection }
from CRSENT to DRSENT
when User.DisReq
begin { 6 }
output Peer.DR;
CRRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

{ Retransmission timer for CR fires }
from CRSENT to same
provided CRRetranRemaining > 0
delay (P)
begin { 7 }
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CRRetranRemaining := CRRetranRemaining − 1;
output Peer.CR;

end;

{ Terminate retransmission of CR }
from CRSENT to DRSENT
provided CRRetranRemaining = 0
delay (P) { Allow time for last CR }
begin { 8 }
{ Enter error phase }
output User.DisInd;
output Peer.DR;
CRRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

{ Receive connect request from peer entity }
from CLOSED to CRRECV
when Peer.CR
begin { 9 }
{ Initialise module variables on CLOSED }
InitVar;
output User.ConInd;

end;

{ User accepts connection }
from CRRECV to ESTAB
when User.ConResp
begin { 10 }
output Peer.CC;

end;

{ User rejects connection }
from CRRECV to CLOSED
when User.DisReq
begin { 11 }
output Peer.DR { Just once }

end;

{ Other user disconnected }
from CRRECV to CLOSED
when Peer.DR
begin { 12 }
output User.DisInd;
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output Peer.DC;
end;

{ *** Data transfer phase *** }

{ Send data in DT PDU }
from ESTAB to same
when User.DatReq
provided not Sending
begin { 13 }
OldData := UserData;
output Peer.DT(SendSeq, OldData);
OldSendSeq := SendSeq;
SendSeq := (SendSeq + 1) mod 2;
Sending := true;
{ Turn on retransmission timer }
DTRetranRemaining := N − 1;

end;

{ Receive acknowledgement with correct sequence number in
AK PDU }
from ESTAB to same
when Peer.AK
provided Seq = SendSeq
begin { 14 }
Sending := false;
{ Turn off retransmission timer }
DTRetranRemaining := −1;
DTorAK := true;

end;

{ Receive acknowledgement with incorrect sequence number in
AK PDU }
from ESTAB to DRSENT
when Peer.AK
provided Seq <> SendSeq
begin { 15 }
{ Enter error phase }
output User.DisInd;
output Peer.DR;
DTorAK := true;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;
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{ Receive data in DT PDU }
from ESTAB to same
when Peer.DT
begin { 16 }
if Seq = RecvSeq then
begin
output User.DatInd(UserData);
RecvSeq := (RecvSeq + 1) mod 2;

end;
{ Send AK with next expected sequence number }
output Peer.AK(RecvSeq);
DTorAK := true;

end;

from ESTAB to same
when Peer.CR
provided not DTorAK
begin { 17 }
output Peer.CC;

end;

from ESTAB to DRSENT
when Peer.CR
provided DTorAK
begin { 18 }
{ Enter error phase }
output User.DisInd;
output Peer.DR;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

from ESTAB to DRSENT
when Peer.CC
begin { 19 }
{ Enter error phase }
output User.DisInd;
output Peer.DR;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;
when Peer.DC
begin { 20 }
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{ Enter error phase }
output User.DisInd;
output Peer.DR;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

{ Retransmission timer for DT fires }
from ESTAB to same
provided DTRetranRemaining > 0
delay (P)
begin { 21 }
DTRetranRemaining := DTRetranRemaining − 1;
output Peer.DT(OldSendSeq, OldData);

end;

{ Terminate retransmission of DT }
from ESTAB to DRSENT
provided DTRetranRemaining = 0
delay (P)
begin { 22 }
{ Enter error phase }
output User.DisInd;
output Peer.DR;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

{ *** Disconnection phase *** }

{ Receive disconnect request from user }
from ESTAB to DRSENT
when User.DisReq
begin { 23 }
output Peer.DR;
DTRetranRemaining := −1;
DRRetranRemaining := N − 1;

end;

{ Receive DC }
from DRSENT to CLOSED
when Peer.DC
begin { 24 }
DRRetranRemaining := −1;
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end;

{ Receive DR }
from DRSENT to CLOSED
when Peer.DR
begin { 25 }
DRRetranRemaining := −1;

end;

{ Receive DR }
from ESTAB to CLOSED
when Peer.DR
begin { 26 }
output User.DisInd;
output Peer.DC;
DTRetranRemaining := −1;

end;

{ Reply to retransmitted DR }
from CLOSED to same
when Peer.DR
begin { 27 }
output Peer.DC;

end;

{ Retransmission timer for DR fires }
from DRSENT to same
provided DRRetranRemaining > 0
delay (P)
begin { 28 }
DRRetranRemaining := DRRetranRemaining − 1;
output Peer.DR;

end;

{ Terminate retransmission of DR }
from DRSENT to CLOSED
provided DRRetranRemaining = 0
delay (P)
begin { 29 }
{ The connection is regarded as closed }
DRRetranRemaining := −1;

end;

{ Ignore other PDUs }
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from CRignore to same
when Peer.CR
begin { 30 }
end;

from CCignore to same
when Peer.CC
begin { 31 }
end;

from DTignore to same
when Peer.DT
begin { 32 }
end;

from AKignore to same
when Peer.AK
begin { 33 }
end;

from DCignore to same
when Peer.DC
begin { 34 }
end;

from ConReqIgnore to same
when User.ConReq
begin { 35 }
end;

from ConRespIgnore to same
when User.ConResp
begin { 36 }
end;

from DatReqIgnore to same
when User.DatReq
begin { 37 }
end;

from DisReqIgnore to same
when User.DisReq
begin { 38 }
end;

end; { StationBody }
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{ *** TransCode *** }

module TransCode process;
ip
Up : PeerCode(Coder);
Down : MSAP(User);

end;

body TransCodeBody for TransCode;

var SDU: SDUType;

procedure BuildCR(var SDU: SDUType);
begin
SDU.PDU := CR

end;

procedure BuildCC(var SDU: SDUType);
begin
SDU.PDU := CC

end;

procedure BuildDT(Seq: SeqType; Data: UserDataType;
var SDU: SDUType);
begin
SDU.PDU := DT;
SDU.SeqNo := Seq;
SDU.UData := Data

end;

procedure BuildAK(Seq: SeqType; var SDU: SDUType);
begin
SDU.PDU := AK;
SDU.SeqNo := Seq

end;

procedure BuildDR(var SDU: SDUType);
begin
SDU.PDU := DR

end;

procedure BuildDC(var SDU: SDUType);
begin
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SDU.PDU := DC
end;

trans

when Up.CC
begin { 1 }
BuildCC(SDU);
output Down.Mreq(SDU)

end;

when Up.CR
begin { 2 }
BuildCR(SDU);
output Down.Mreq(SDU)

end;

when Up.DT
begin { 3 }
BuildDT(Seq, UserData, SDU);
output Down.Mreq(SDU)

end;

when Up.AK
begin { 4 }
BuildAK(Seq, SDU);
output Down.Mreq(SDU)

end;

when Up.DR
begin { 5 }
BuildDR(SDU);
output Down.Mreq(SDU)

end;

when Up.DC
begin { 6 }
BuildDC(SDU);
output Down.Mreq(SDU)

end;

when Down.Mind
provided (SDU.PDU = CR)
begin { 7 }
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output Up.CR
end;

when Down.Mind
provided (SDU.PDU = CC)
begin { 8 }
output Up.CC

end;

when Down.Mind
provided (SDU.PDU = DT)
begin { 9 }
output Up.DT(SDU.SeqNo, SDU.UData)

end;

when Down.Mind
provided (SDU.PDU = AK)
begin { 10 }
output Up.AK(SDU.SeqNo)

end;

when Down.Mind
provided (SDU.PDU = DR)
begin { 11 }
output Up.DR

end;

when Down.Mind
provided (SDU.PDU = DC)
begin { 12 }
output Up.DC

end;

end; { TransCodeBody }

{ Main body for AbraProtocolBody }

modvar
S : Station;
XC : TransCode;

initialize
begin
{ Instantiate modules and make connections }
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init S with StationBody;
init XC with TransCodeBody;
attach User to S.User;
connect S.Peer to XC.Up;
attach Medium to XC.Down;

end;
end; { AbraProtocolBody }

{ Main body for AbracadabraProtocol }

modvar
A, B : AbraProtocol;
UA, UB : User;
UM : UnreliableMedium;

initialize
provided (N > 0) and (P > 0)
begin { 1 }
init UA with UserBody;
init UB with UserBody;
init A with AbraProtocolBody;
init B with AbraProtocolBody;
init UM with UnreliableMediumBody;
connect UA.U to A.User;
connect UB.U to B.User;
connect A.Medium to UM.MedA;
connect B.Medium to UM.MedB;

end;

end. { AbracadabraProtocol }

To deal with back-pressure flow control it would be possible to introduce primi-
tive functions ReceiverBlocked andMediumBlocked. These functions would yield
‘true’ when the recipient of an interaction wished to assert back-pressure flow-
control. Being primitive, the functions would clearly show that back-pressure
flow control is indeed a local implementation issue that depends on the avail-
ability of local channel resources. The firing of transitions with output on a
channel would depend on the value of these primitive functions.

The functions for back-pressure flow control would necessarily be primitive;
it is unlikely that they could be written in Estelle. From the point of view
of the formal semantics of Estelle, a description is technically incomplete
until all primitive functions and procedures have been formally described in
terms of the semantic model. However, for an implementation it is enough
to have a description of the desired behaviour which is sufficiently detailed
for an implementation to be made. The intended meaning of a function like
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ReceiverBlocked could be formalised in terms of the Estelle semantic model;
it would be defined in terms of the status of the user module queues.

The following changes describe the transmitting and receiving stations as
subject to back-pressure flow control. Since the TransCode module is a simple
translator, its actions are not subject to flow control. Instead the Stationmodule
is the focus of this activity. The effect of back-pressure on the sending user or
underlying medium has not been shown since these modules are external and so
unspecified. The following functions should be declared in the body of Station:

function MediumBlocked: boolean;
primitive;

function ReceiverBlocked: boolean;
primitive;

The effect of these functions can be described in terms of the queues of the un-
reliable medium module UM and the user modules UA and UB. The provided
clauses for transitions 13 and 16 in the body of Station. should become:

{ Send data in DT PDU }
from ESTAB to same
when User.DatReq
provided not Sending and not MediumBlocked
begin { 13 }
{ As previously }

end;

{ Receive data in DT PDU }
from ESTAB to same
when Peer.DT
provided not ReceiverBlocked
begin { 16 }
{ As previously }

end;

9.4 Formal Description in LOTOS5

9.4.1 Top-Level Specification

The overall structure of the specification in terms of the nesting of definitions
is:

specification AbracadabraProtocol

5Section 9.4 is by J. A. Mañas and F. M. Fournón y González-Barcia.
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library

type ASAP
type ASDU
type ASP
type SeqNo
type PDUs
type MSAPs
type MSPs

behaviour

type TimerEvent

process Timer
process Count

process Protocol
process OneConnection
process UpperAssociation
process Stick

process LowerAssociation
process Stick

process Coordination
process Noticer
process Connection
process Transfer
type FIFO
process Sender
process Receiver

process Disconnection
process TryDisconnect
process Error
process DiscConditions
process AnyMSP

Externally, the protocol exchanges data with its environment through two
gates: an upper gate a at the Abracadabra Service, and a lower gate m at the
Unreliable Medium Service. A protocol entity must be able to establish a new
connection after ending a previous one. The association between service access
points is therefore established dynamically when a connection is set up.

There are two parameters that characterise protocol behaviour. Several
kinds of PDU may be retransmitted under control of a timer that allows up
to N transmissions at intervals of P time units. Natural numbers are used for
these parameters.
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specification AbracadabraProtocol [a, m] (N, P : Nat) : noexit

9.4.2 Basic Types

The protocol operates between protocol entities that support an upper service
(the Abracadabra Service) using a lower service (the Unreliable Medium Ser-
vice). There are thus three main kinds of data: protocol data units (between
Abracadabra Protocol entities), upper service data units (for Abracadabra Ser-
vice users), and lower service data units (for the Unreliable Medium Service).

Library Types

First of all, the standard library types for booleans, natural numbers, octet
strings and decimal digits are needed. As explained later, decimal digits are
needed to provide an identification for service primitives in order to simplify
their specification.

library
Boolean, NaturalNumber, OctetString, DecDigit

endlib

Abracadabra Service Data Types

The Abracadabra Service supports SAPs (Service Access Points) at which SPs
(Service Primitives) are exchanged. Service Primitives may carry SDUs (Service
Data Units). The specification of SAPs simply requires a sort with distinguished
values (UserA and UserB).

type ASAP is Boolean
sorts ASAP
opns UserA, UserB : −> ASAP

endtype (* ASAP *)

SDUs are based on the standard type OctetString .

type ASDU is OctetString renamedby
sortnames ASDU for OctetString

endtype (* ASDU *)

Service primitives are a bit harder to specify. There are three groups of opera-
tions. The first group comprises the constructor operations that are strictly
required to state the primitives that may be exchanged with the Abracadabra
Service user. The second group is the auxiliary selector operation SDUOf that
extracts the SDU in a service primitive. The third group provides a number of
recogniser operations. These are boolean functions that check which kind of
SDU (and therefore PDU) is under consideration.

Typically, it is convenient to isolate the exchange of a service primitive from
its breakdown into fields. It is therefore usual to find the following kind of thing
in a formal description:
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Gate ... ? sp : ASP [IsDat (sp)];
... SDUOf (sp) ...

which shows a DatReq or DatInd service primitive being accepted and its con-
tents being used somewhere else. Certainly, these auxiliary operations may be
avoided with the following approach:

choice d : ASDU []
Gate ... ! DatReq (d) ...;
... d ...

[]
Gate ... ! DatInd (d) ...;
... d ...

but the resulting specification is more contrived. Of course, it is a matter of
taste to choose one or the other style in such a case. The more constructive
approach with SDUOf has been used for the Abracadabra Protocol.

There is a naive way of specifying the recognisers by means of exhaustive
enumeration of all the cases:

ofsort Bool
IsConReq (ConReq) = true;
IsConReq (ConInd) = false;
IsConReq (ConResp) = false;
IsConReq (ConConf) = false;
IsConReq (DatReq) = false;
IsConReq (DatInd) = false;
IsConReq (DisReq) = false;
IsConReq (DisInd) = false;
IsConInd (ConReq) = false;
...

This results in a tedious 8×8 equations. The neatest solution is to identify every
kind of SDU with some unique identifier; consecutive decimal digits are used
here. Although this is something of a specification ‘trick’, the simplification
it brings is worthwhile. If there are N service primitives to be recognised,
direct enumeration requires N2 equations. Mapping each kind of SDU to some
identifier and checking these requires only 2N equations.

type ASP is Boolean, ASDU, DecDigit
sorts ASP
opns
ConReq, ConInd, ConResp, ConConf : −> ASP
DatReq, DatInd : ASDU −> ASP
DisReq, DisInd : −> ASP
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SDUOf : ASP −> ASDU
map : ASP −> DecDigit
IsConReq, IsConInd, IsConResp, IsConConf,
IsDatReq, IsDatInd,
IsDisReq, IsDisInd : ASP −> Bool

IsCon, IsDat, IsDis : ASP −> Bool
eqns
forall d : ASDU, sp, sp1, sp2 : ASP
ofsort ASDU
SDUOf (ConReq) = <>;
SDUOf (ConInd) = <>;
SDUOf (ConResp) = <>;
SDUOf (ConConf) = <>;
SDUOf (DatReq (d)) = d;
SDUOf (DatInd (d)) = d;
SDUOf (DisReq) = <>;
SDUOf (DisInd) = <>

ofsort DecDigit
map (ConReq) = 0;
map (ConInd) = 1;
map (ConResp) = 2;
map (ConConf) = 3;
map (DatReq (d)) = 4;
map (DatInd (d)) = 5;
map (DisReq) = 6;
map (DisInd) = 7

ofsort Bool
IsConReq (sp) = map (sp) eq 0;
IsConInd (sp) = map (sp) eq 1;
IsConResp (sp) = map (sp) eq 2;
IsConConf (sp) = map (sp) eq 3;
IsDatReq (sp) = map (sp) eq 4;
IsDatInd (sp) = map (sp) eq 5;
IsDisReq (sp) = map (sp) eq 6;
IsDisInd (sp) = map (sp) eq 7;
IsCon (sp) =
IsConReq (sp) or IsConInd (sp) or IsConResp (sp) or
IsConConf (sp);

IsDat (sp) = IsDatReq (sp) or IsDatInd (sp);
IsDis (sp) = IsDisReq (sp) or IsDisInd (sp);

endtype (* ASP *)
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Protocol Data Units

To deal with errors in the delivery of PDUs (Protocol Data Units), a one-bit
sequence number is included in some PDUs. Two alternating bit values are
specified, SN0 and SN1 , and an operation next to relate them. The library
type Bit might have been used here, but it does not have the equivalent of a
next operation.

type SeqNo is
sorts SeqNo
opns
SN0, SN1 : −> SeqNo
next : SeqNo −> SeqNo

eqns
ofsort SeqNo
next (SN0) = SN1;
next (SN1) = SN0;

endtype (* SeqNo *)

The core of the data specification is of the PDUs, pieces of information ex-
changed between peer protocol entities to perform the protocol. Their specifi-
cation is straightforward from the informal description.

type PDUs is SeqNo, ASDU
sorts PDU
opns
CR, CC : −> PDU
DT : SeqNo, ASDU −> PDU
AK : SeqNo −> PDU
DR, DC : −> PDU

endtype (* PDUs *)

Unreliable Medium Service Data Types

The data types of the Unreliable Medium Service are rather similar to those of
the Abracadabra Service.

type MSAPs is
sorts MSAP
opns MedA, MedB : −> MSAP

endtype (* MSAPs *)

type MSPs is PDUs, Boolean, DecDigit
sorts MSP
opns
Mreq, Mind : PDU −> MSP
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SDUOf : MSP −> ASDU
SeqNoOf : MSP −> SeqNo
IsMreq, IsMind : MSP −> Bool
IsCR, IsCC, IsDT,
IsAK, IsDR, IsDC : MSP −> Bool

map : MSP −> DecDigit
eqns
forall b : SeqNo, d : ASDU, pdu : PDU, sp : MSP
ofsort ASDU
SDUOf (Mreq (DT (b, d))) = d;
SDUOf (Mind (DT (b, d))) = d;

ofsort SeqNo
SeqNoOf (Mreq (DT (b, d))) = b;
SeqNoOf (Mind (DT (b, d))) = b;
SeqNoOf (Mreq (AK (b))) = b;
SeqNoOf (Mind (AK (b))) = b;

ofsort DecDigit
map (Mreq (CR)) = 0;
map (Mind (CR)) = 0;
map (Mreq (CC)) = 1;
map (Mind (CC)) = 1;
map (Mreq (DT (b, d))) = 2;
map (Mind (DT (b, d))) = 2;
map (Mreq (AK (b))) = 3;
map (Mind (AK (b))) = 3;
map (Mreq (DR)) = 4;
map (Mind (DR)) = 4;
map (Mreq (DC)) = 5;
map (Mind (DC)) = 5;

ofsort Bool
IsMreq (Mreq (pdu)) = true;
IsMreq (Mind (pdu)) = false;
IsMind (Mreq (pdu)) = false;
IsMind (Mind (pdu)) = true;
IsCR (sp) = map (sp) eq 0;
IsCC (sp) = map (sp) eq 1;
IsDT (sp) = map (sp) eq 2;
IsAK (sp) = map (sp) eq 3;
IsDR (sp) = map (sp) eq 4;
IsDC (sp) = map (sp) eq 5;

endtype (* MSPs *)
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9.4.3 Top-Level Behaviour

The description of the protocol needs a protocol entity and a timeout mecha-
nism. These are modelled at the outermost level by two processes that interact
at the internal (hidden) timer gate timer . The actual action performed by the
protocol on each timer event depends on its state, as specified later.

behaviour
hide timer in
Timer [timer] (N, P)

|[timer]|
Protocol [a, m, timer]

where

9.4.4 Timer

There are three kinds of event at timer gate timer : Start (to initiate a trans-
mission attempt), Retry (to cause a retransmission) and Kill (to abort a trans-
mission attempt).

type TimerEvent is
sorts TimerEvent
opns Start, Retry, Kill : −> TimerEvent

endtype (* TimerEvent *)

On a Start event, a count is started. The count is interrupted whenever a new
cycle starts. Note that in Lotos events are just offered. There is no way to
require an event to occur; only if all partners involved in an event agree will it
take place. This meaning is completely different from that in other languages
where timeouts may be modelled as preemptive interrupts. This concept must
be clearly understood to grasp the modelling of the Timer process. It offers the
following sequences of events for the protocol to choose:

Start: initiate a transmission attempt

Start, Retry: cause a retransmission

Start, Kill: abort a transmission attempt.

process Timer [timer] (N, P : Nat) : noexit :=
timer ! Start;
(
Count [timer] (Succ (0), N, P)

[>
Timer [timer] (N, P)
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)

where

As each period P elapses, retransmissions are allowed up to N transmissions
in total. When the count reaches N , the retransmission procedure must abort
(i.e. engage in Kill). Lotos lacks the concept of a clock, so P cannot be used
to influence the Lotos description at all. All that can be specified is that some
internal action occurs to step time on and allows a Retry action.

process Count [timer] (count, max, P : Nat) : noexit :=
[count lt max ] −>
(* Time period P *)
timer ! Retry;
Count [timer] (Succ (count), max, P)

[]
[count eq max] −>
(* Time period P *)
timer ! Kill;
stop

endproc (* Count *)

endproc (* Timer *)

This completes the description of the Timer process within the expressive-
ness limitations imposed by Lotos. The protocol entity synchronises on timer
events to take decisions about when to retry or abort a transmission attempt.

9.4.5 Protocol Entity

The protocol entity must be able to deal with an indefinite number of sequential
connections; when a connection is terminated a new one may be established.

process Protocol [a, m, timer] : noexit :=
OneConnection [a, m, timer]

>>
Protocol [a, m, timer]

where

One Connection

Each connection requires the coordination of service primitives at the upper
(Abracadabra) and lower (Medium) service access points.
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process OneConnection [a, m, timer] : exit :=
(UpperAssociation [a] ||| LowerAssociation [m])

|[a, m]|
Coordination [a, m, timer]

where

Service Access Point Association

Service access points are associated when a connection is established, and later
disassociated for the next connection. The informal description leaves open
how these associations are made, so the Lotos description is quite abstract.
On the first service primitive exchanged, the SAP address is provided by the
environment (by whatever means). In the second and later interactions, the
gate ‘sticks’ to the same address until the association is broken.

process UpperAssociation [a] : exit :=
a ? sap : ASAP ? sp : ASP;
Stick [a] (sap)

[>
exit

where

process Stick [a] (sap : ASAP) : noexit :=
a ! sap ? sp : ASP;
Stick [a] (sap)

endproc (* Stick *)

endproc (* UpperAssociation *)

The same remarks apply to the lower gate as well.

process LowerAssociation [m] : exit :=
m ? msap : MSAP ? sp : MSP;
Stick [m] (msap)

[>
exit

where

process Stick [m] (msap : MSAP) : noexit :=
m ! msap ? sp : MSP;
Stick [m] (msap)

endproc (* Stick *)
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endproc (* LowerAssociation *)

Coordination Procedures

So far, the architecture of the protocol has been straightforward. The coordi-
nation procedures are the architectural core of the description. This refinement
step requires a large number of considerations to be taken into account, and the
decisions taken here have a major influence on the rest of the description. A
wrong architectural decision can easily preclude the proper description of the
inner details of the protocol. The activities to be coordinated are:

• the connection phase

• the data transfer phase

• user or medium-initiated disconnection

• an exception mechanism to cope with errors.

To start coordinating all these pieces, first notice that the connection and
data transfer phases are neatly independent and strictly sequenced. Data trans-
fer starts only after a connection is established:

Connection [a, m, timer, error]
>>
Transfer [a, m, timer, error]

This models ‘normal behaviour’ – setting up a connection and transferring data
forever. This normal behaviour may be interrupted by disconnection. Either
the user may request a disconnection, a disconnection PDU may arrive, or an
internal error may cause a disconnection. Any of these requires clearing up the
current state of normal behaviour. To achieve this, the disable operator ‘[>’ is
used:

(
Connection [a, m, timer, error]

>>
Transfer [a, m, timer, error]

)
[>
(
Disconnection [a, m, timer]

[]
Error [a, m, timer, exception]

)
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where Error takes care of internal exceptions, and Disconnection of other causes.
The rationale for the gates error and exception is given later.

This model is not yet completely right, however, since disconnection is not
allowed before a connection has been established. More precisely, the protocol
will allow the user to disconnect only after a connection attempt has been ini-
tiated. Furthermore, the reaction of the protocol to an incoming disconnection
PDU is completely different depending on whether there is an active connection
or not.

It is therefore necessary to filter out some events that are permitted in the
description above. This requires a constraint to relate connection establishment
state to disconnection procedures:

(
(
Connection [a, m, timer, error]

>>
Transfer [a, m, timer, error]

)
[>
(
Disconnection [a, m, timer]

[]
Error [a, m, timer, exception]

)
)

|[a, m]|
DiscConditions [a, m] (false)

where the false parameter of DiscConditions says that no connection is initially
established.

There is still one more matter to describe, namely errors. Many program-
ming languages have features to deal with exceptions. Upon occurrence of some
exception, control is passed to an external piece of code that has access to the
state of the system and may take appropriate recovery action. In Lotos there
are no global variables, so it is necessary to rely on ‘strong’ operators like ‘[>’
to clear up after an error. But disabled behaviour cannot synchronise with dis-
abling behaviour. (In P [> Q , P cannot signal to Q .) The behaviour raising
the exception therefore has to synchronise with an outer behaviour that in turn
synchronises with the exception handler.

There is thus one more element of superstructure that is needed to com-
municate with both: an ‘exception noticer’. When an error is reported by the
normal behaviour it is passed onto the exception handler.

Now the architecture is complete, and processes Coordination and Noticer
can be defined in full.

process Coordination [a, m, timer] : exit :=
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hide error, exception in
Noticer [error, exception]

|[error, exception]|
(
(
(
Connection [a, m, timer, error]

>>
Transfer [a, m, timer, error]

)
[>
(
Disconnection [a, m, timer]

[]
Error [a, m, timer, exception]

)
)

|[a, m]|
DiscConditions [a, m] (false)

)

where

Process Noticer accepts an error signal and passes it on as exception to the
exception handler. An exit must always be offered in order to allow the whole
behaviour to exit and proceed to a new instantiation of process OneConnection.
Lotos requires all the parallel behaviours to exit simultaneously.

process Noticer [error, exception] : exit :=
error;
exception;
stop

[>
exit

endproc (* Noticer *)

Connection Phase

The Connection process deals with setting up a connection, requested by a user
or via the medium. Connection may exit, when it will enable the data transfer
phase. It may also raise an error condition that will clear up the steps so far.
The choices offered are as follows:

• The user requests a connection. The Timer process is started, and the
protocol entity tries to establish a connection. If this process exits, the
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connection is confirmed and the data transfer phase is enabled. Alterna-
tively, the error condition may be raised.

• A request to connect comes via a CR PDU. This is notified to the local
user. If the local user confirms that the connection should be established,
the data transfer phase is enabled.

• Any other PDU is ignored.

process Connection [a, m, timer, error] : exit :=
(
a ? sap : ASAP ! ConReq;
timer ! Start;
m ? msap : MSAP ! Mreq (CR);
TryConnect [a, m, timer, error]

>>
a ? sap : ASAP ! ConConf;
exit

)
[]
(
m ? msap : MSAP ! Mind (CR);
a ? sap : ASAP ! ConInd;
a ? sap : ASAP ! ConResp;
m ? msap : MSAP ! Mreq (CC);
exit

)
[]
(
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and not (IsCR (sp) or IsDR (sp))];

Connection [a, m, timer, error]
)

where

Process TryConnect offers the following choices:

• The connection attempt may be accepted, enabling the data transfer
phase.

• Other Mind events are ignored.

• If the Timer process allows it, retry the connection attempt.
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• If the Timer allows it, abort the connection attempt and raise the error
condition.

process TryConnect [a, m, timer, error] : exit :=
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and (IsCR (sp) or IsCC (sp))];

exit
[]
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and (IsDT (sp) or IsAK (sp) or
IsDC (sp))];

TryConnect [a, m, timer, error]
[]
timer ! Retry;
m ? msap : MSAP ! Mreq (CR);
TryConnect [a, m, timer, error]

[]
timer ! Kill;
error;
stop

endproc (* TryConnect *)

endproc (* Connection *)

Data Transfer Phase

Process Transfer deals with exchange data, coming from the user or received
via the medium. It continues forever, until disconnection disables it or an
error condition occurs. The incoming and outgoing data are basically two
independent flows of information that may be directly modelled by means of
interleaving.

Both the Sender and Receiver processes start with a sequence number of
SN0 . The Receiver also starts with an empty queue of pending data, and a
beginning flag set to indicate that no data has yet arrived. This flag is considered
later when the details of Receiver are presented.

process Transfer [a, m, timer, error] : noexit :=
Sender [a, m, timer, error] (SN0)

|||
Receiver [a, m, error] (SN0, empty, true)

where
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The need for a queue requires justification. According to the informal descrip-
tion, an AK is required before a new DT may be sent. The Sender process
thus has to consider only one DT at most. But there may be several SDUs ‘in
transit’, and these must be queued up in the Receiver process.

The ‘+’ operation appends SDUs to the queue. The head operation extract
the first one in the queue, while tail returns all but the first element in the
queue. Lastly, the HasEntries predicate checks whether the queue is empty or
holds at least one SDU. Note that Lotos associates infix operators to the left,
so that q + d + dd is read as (q + d) + dd .

type FIFO is Boolean, ASDU
sorts Queue
opns
empty : −> Queue
+ : Queue, ASDU −> Queue

head : Queue −> SDU
tail : Queue −> Queue
HasEntries : Queue −> Bool

eqns
forall d, dd : ASDU, q : Queue
ofsort ASDU
head (empty + d) = d;
head (q + d + dd) = head (q + d);

ofsort Queue
tail (empty + d) = empty;
tail (q + d + dd) = tail (q + d) + dd;

ofsort Bool
HasEntries (empty) = false;
HasEntries (q + d) = true;

endtype (* FIFO *)

Process Sender takes care of one SDU at a time. If the SDU is successfully
acknowledged from the peer entity, a new one may be accepted. Alternatively,
an error may be notified to clear everything up. On receipt of a DatReq , the
Timer process is started and the Sender process tries to send the SDU.

process Sender
[a, m, timer, error] (b : SeqNo) : noexit :=
a ? sap : ASAP ? sp : ASP [IsDatReq (sp)];
timer ! Start;
m ? msap : MSAP ! Mreq (DT (b, SDUOf (sp)));
TrySend [a, m, timer, error] (b, SDUOf (sp))

>>
Sender [a, m, timer, error] (next (b))
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where

The formal description of the TrySend process is directly derived from the
informal description:

• A correct AK lets Sender deal with another SDU.

• If Timer allows it, a retransmission may be attempted.

• If Timer allows it, retransmission may be aborted and the error condition
raised.

• An incorrect AK raises the error condition.

process TrySend [a, m, timer, error]
(b : SeqNo, D : ASDU) : exit :=
m ? msap : MSAP ! Mind (AK (next (b)));
exit

[]
timer ! Retry;
m ? msap : MSAP ! Mreq (DT (b, D));
TrySend [a, m, timer, error] (b, D)

[]
timer ! Kill;
error;
stop

[]
m ? msap : MSAP ! Mind (AK (b));
error;
stop

endproc (* TrySend *)

endproc (* Sender *)

The Receiver process is a difficult piece of behaviour to specify. It has to deal
with a sequence number and with a queue of SDUs already received but not
yet delivered. It needs to react specially to CR PDUs before any SDU has been
received. These considerations lead to three parameters for the process. The
choices offered are as follows:

• Before a DT or AK is received, a CR may be accepted and a CC sent in
response.

• After a DT or AK has been received, a CR will give rise to an error
condition.

• If a CC or DC is received, an error condition is raised.
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• If a DT arrives and then another one before an acknowledgement is sent,
an error condition is raised6. Unless this situation arises, an AK will be
sent after the DT. If the DT has the correct sequence number it is queued
for delivery to the user, otherwise it is ignored.

• If there are SDUs queued, the first one may be delivered to the Abra-
cadabra Service User.

Back-pressure flow control might be dealt with in Receiver . The Abra-
cadabra Service may refuse to accept further DatReq primitives when there
are ‘too many’ SDUs in transit. What constitutes ‘too many’ depends on the
implementation, and usually models the situation where the service provider
temporarily runs out of resources. The informal description might be expected
to state more precisely how back-pressure flow control arises from the exchange
of PDUs, but surprisingly it does not!

There are a number of places to cover this concept in the description, all of
them related to the situation of too many SDUs queued in the receiver. What
can the receiver do to inform its peer not to accept further DatReq primitives?
The sender could be forced to retransmit in one of the following ways:

• Delay sending an AK . This may force the sender to retry, but it may
happen that a new DT is received too fast and an error condition is
raised. This approach is rather dubious.

• Do not send an AK at all. This contradicts the informal description, and
is subject to the retransmission limit. This behaviour is not ideal either.

• Send an AK with the wrong sequence number. The same considerations
apply as with not sending an AK . This might be the easiest way of ‘fixing’
the protocol design, but has not been adopted because it is inconsistent
with the informal description. The description of Receiver would be mod-
ified as follows if the protocol were redesigned this way:

...
[]
[HasEntries (q)] −>
i;
m ? msap : MSAP ! Mreq (AK (b));
Receiver [a, m, error] (b, q, false)

The Receiver process is specified as:

6This part of the behaviour faithfully reflects the informal description. However, a sensible
implementation of the protocol should not cause this error to arise.
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process Receiver [a, m, error]
(b : SeqNo, q : Queue, beginning : Bool) : noexit :=
[beginning] −>
m ? msap : MSAP ! Mind (CR);
m ? msap : MSAP ! Mreq (CC);
Receiver [a, m, error] (b, q, beginning)

[]
[not (beginning)] −>
m ? msap : MSAP ! Mind (CR);
error;
stop

[]
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and (IsCC (sp) or IsDC (sp))];

error;
stop

[]
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and IsDT (sp)];

(
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and IsDT (sp)];

error;
stop

[]
m ? msap : MSAP ! Mreq (AK (next (SeqNoOf (sp))));
(
[SeqNoOf (sp) = b] −>
Receiver [a, m, error]
(next (b), q + SDUOf (sp), false)

[]
[SeqNoOf (sp) = next (b)] −>
Receiver [a, m, error] (b, q, false)

)
)

[]
[HasEntries (q)] −>
a ? sap : ASAP ! DatInd (head (q));
Receiver [a, m, error] (b, tail (q), beginning)

endproc (* Receiver *)

endproc (* Transfer *)
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Disconnection Phase

A disconnection may be started by the user or by an incoming request from the
peer protocol entity. When a DR is received, a DC is sent. If the user is aware
of the connection then a disconnection primitive must occur, otherwise the user
does not need to be informed and the protocol entity just tidies up itself. The
user may issue a DisReq or accept a DisInd .

process Disconnection [a, m, timer] : exit :=
a ? sap : ASAP ! DisReq;
timer ! Start;
m ? msap : MSAP ! Mreq (DR);
TryDisconnect [a, m, timer]

[]
m ? msap : MSAP ! Mind (DR);
m ? msap : MSAP ! Mreq (DC);
(
a ? sap : ASAP ? sp : ASP [IsDis (sp)];
exit

[]
exit

)
endproc (* Disconnection *)

Process TryDisconnect is similar to the TryConnect and TrySend processes.
There is only one new aspect: if an abort is allowed, no error condition is
raised. Instead the protocol entity just resets itself, becoming ready for a new
connection.

process TryDisconnect [a, m, timer] : exit :=
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and (IsDR (sp) or IsDC (sp))];

exit
[]
m ? msap : MSAP ? sp : MSP
[IsMind (sp) and (IsCR (sp) or IsCC (sp) or
IsDT (sp) or IsAK (sp))];

TryDisconnect [a, m, timer]
[]
timer ! Retry;
m ? msap : MSAP ! Mreq (DR);
TryDisconnect [a, m, timer]

[]
timer ! Kill;
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exit
endproc (* TryDisconnect *)

Error Phase

An error condition may be raised from several states during the connection
or data transfer phases. It is captured by process Noticer that gives control
to the Error process by means of the exception event. Error disables normal
behaviour, getting control of the protocol entity at the same level as a discon-
nection request. An exception forces disconnection on the users, and tries to
disconnect in a similar way to disconnection initiated by the user or protocol
entity.

process Error [a, m, timer, exception] : exit :=
exception;
a ? sap : ASAP ? sp : ASP [IsDis (sp)];
timer ! Start;
m ? msap : MSAP ! Mreq (DR);
TryDisconnect [a, m, timer]

endproc (* Error *)

Imposing Constraints on Disconnection

The formal description so far has a deficiency: it allows disconnection before
connecting! The easiest way to handle this is to add constraints on when a
connection can be released.

A protocol entity starts in a state where it may not disconnect, so the boolean
MayDisconnect is initially false. The choices offered are as follows:

• The reception of any connection or data primitive on the user side implies
that the user is aware of the connection. In this case the user must discon-
nect (DisReq) or be informed of disconnection (DisInd). This choice does
not impose any constraint on the behaviour of the entity; it just notes that
disconnection may now occur.

• If the user is aware of the connection, a DisReq may be issued. The
guard prevents the user from issuing a DisReq before a connection has
been started. After the user disconnects, the protocol entity may need to
exchange PDUs with its peer in order to disconnect. The precise PDUs
and their sequencing are covered in the description of the disconnection
phase and are not repeated here. Process AnyMSP just absorbs these
PDUs.

• An Mind must be accepted at any time. Any PDU apart from DR re-
quires no further action, so the constraints imposed by the connection and
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data transfer phases apply. Only DR requires special consideration. If
it is received when the user is aware of a connection, the user must be
informed by DisInd unless the user has already invoked DisReq . This re-
fines the description of process Disconnection. If a DR is received when
the user is unaware of a connection then DiscConditions just exits, forcing
OneConnection to exit without issuing a DC .

• An Mreq is always allowed, without influencing the rest of the behaviour.
This choice is required because DiscConditions synchronises on gate m,
and so must synchronise on everything that happens on that gate even if
it has no interest in it.

process DiscConditions [a, m] (MayDisconnect : Bool) :
exit :=
a ? sap : ASAP ? sp : ASP [IsCon (sp) or IsDat (sp)];
DiscConditions [a, m] (true)

[]
[MayDisconnect] −>
a ? sap : ASAP ? sp : ASP [IsDis (sp)];
AnyMSP [m]

[]
m ? msap : MSAP ? sp : MSP [IsMind (sp)];
(
[IsDR (sp)] −>
m ? msap : MSAP ! Mreq (DC);
(
[MayDisconnect] −>
a ? sap : ASAP ? sp : ASP [IsDis (sp)];
exit

[]
[not (MayDisconnect)] −>
exit

)
[]
[not (IsDR (sp))] −>
DiscConditions [a, m] (MayDisconnect)

)
[]
m ? msap : MSAP ? sp : MSP [IsMreq (sp)];
DiscConditions [a, m] (MayDisconnect)

where

process AnyMSP [m] : exit :=
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m ? msap : MSAP ? sp : MSP;
AnyMSP [m]

[]
exit

endproc (* AnyMSP *)

endproc (* DiscConditions *)

endproc (* Coordination *)

endproc (* OneConnection *)

endproc (* Protocol *)

endspec (* AbracadabraProtocol *)

9.4.6 Development of the Formal Description

The end result of writing the formal description is satisfying. The formal de-
scription has been extensively evaluated against the informal description. The
text of this section was used literally for checking by Lotos tools. Of course,
checking can never be complete so there may be remaining flaws.

What is harder to check is whether the informal description has been in-
terpreted correctly. There may almost certainly be other interpretations of the
informal description that would imply different formal descriptions. But this is
the whole point of having formal descriptions – the meaning cannot be debated.

The process of writing the formal description was not too hard. In Lotos

terms, the stages of development were:

getting to know the informal description
>>
writing a service specification (in Lotos)

>>
(
(
drafting the protocol specification

>>
checking basic capabilities with a simulator

>>
extensively checking test cases with a compiler

>>
systematically inspecting states with a simulator

)
|[text]|
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documenting the specification
)

Reading and understanding the informal descriptions of the Abracadabra Ser-
vice and Protocol took one day, including taking plenty of notes, making dia-
grams and integrating details from various places.

Then a ‘throw-away’ specification of the Abracadabra Service was written
to develop a clearer understanding of the functionality of the Abracadabra Pro-
tocol7. After writing the throw-away service description, it became clear that
only the data types could be used in the protocol description. This was very
surprising at first, but in retrospect it was inevitable due to the very different
kinds of structure.

Any description starts by specifying the basic data types. The data types
used in the service were extended with the types particular to the protocol:
PDUs, medium service primitives and medium service access points. When the
formal description was first drafted, only constructive operations were specified
for the data types. As the behaviour description was developed, the convenience
of boolean predicates showed up and the types were extended accordingly. Even
later, when equations had to be provided, the convenience of the map operations
arose and these were introduced.

Behaviour description started at the outermost level and went smoothly
down to the level of process Coordination. Initially the description did not have
a Timer process; it was introduced later as explained below. When it became
necessary to specify Coordination, devising the architecture explained in the
text was a significant step. It was not too difficult due to previous experience
with similar Lotos specifications. The need for the different elements was clear
from the beginning; the need for a normal behaviour that may be disabled is
quite a common situation. Avoiding unwanted behaviours by adding constraints
was also a well-known technique. The treatment of the exceptions with a no-
tifier and an error handler is fairly usual too. The basic architectural concepts
were therefore available, so it was mainly a matter of combining them with the
appropriate Lotos operators.

The Timer process underwent some evolution. In an early version of the
description there were only local timers. Every process passed on the N and P
parameters, and every Try... process had to maintain a count of retries. This
worked but was clumsy. Eventually, it was realised that the protocol engages
in only one retransmission at a time. It was therefore useful to move the re-
transmission mechanism to the outermost level and let the different phases of
behaviour reuse it. The design of a resettable timer was very easy, and its re-
moval from various places in the description led to a major simplification. This
is an important architectural feature that could be useful with other protocols.

7In fact, the formal description of the Abracadabra Service in Section 8.4 was written
in parallel by other authors. The protocol description was harmonised with this service
description.
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Even if there were several timers running concurrently, simply adding an iden-
tification parameter to Start , Retry and Kill events would suffice to distinguish
them, allowing several timers to run in parallel. Concurrent timers were not
needed for the Abracadabra Protocol so a simplification could be made.

As the different aspects of process Coordination were specified, it was dis-
covered that a few parameters were needed to denote some initial state of a
subsidiary behaviour. This required modifying the process instantiations. The
same process of iterative refinement arose with respect to the gates passed be-
tween processes.

The approach to specifying the Try... processes was revised several times in
the interests of brevity, clarity and homogeneity. The Try... processes conform
to same schema; the same approach may work with other protocols too. Apart
from the removal of retransmission handling to Timer, the other changes were
cosmetic.

The most problematic part of the formal description was process DiscCondi-
tions . Up to this point, every piece of Lotos was written to formalise a part
of the informal description. But DiscConditions had to coordinate all those
pieces. Informal languages tend to be poor at giving such over-arching con-
straints. They are usually spread over the whole description, and must be care-
fully collected from here and there when writing a formal description. They are
also usually very specific to the problem under study.

Within one day of beginning work on the formal description a draft was
ready for checking. A symbolic simulation was tried; it deadlocked! This was
not really a surprise since there a number of processes that must synchronise at
every event on gate m. A specifier tends to concentrate on ‘positive’ constraints
on events, and may easily forget to explicitly allow behaviour when no constraint
is being imposed. This kind of error mostly affected the specification of process
DiscConditions.

The checking now uncovered a number of editorial errors where Mreq and
Mind had been interchanged. This kind of error could not have been detected
by checking static semantics. Another group of errors was found, relating to the
acceptance of Mind . Although an Mreq is issued by the protocol entity without
any constraint from the medium, the opposite situation applies to Mind . Any
Mind must be accepted at any moment; it may be discarded by the protocol
entity, but must be accepted from the medium. These errors were detected
during exhaustive testing, and forced the introduction of more ‘null’ constraints.

A symbolic simulator was used to exercise the specification, and it discovered
the most fundamental flaws. Then a compiler was used to run a large number
of test cases, highlighting most of the remaining errors. Lastly, and with great
patience, the symbolic simulator was used again for exhaustive inspection. This
revealed the final, and really tricky, errors. Note that running tests will check
that expected behaviours are there and may occur. But it is hard to check that
undesired behaviours may not happen. There are rejection tests, of course, but
it is faster to inspect the menus offered during simulation and to check that
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there are no unexpected offers.
The description was checked, revised and rechecked during a period of three

days. This phase of development coincided with writing the explanatory text.
A tool was used to combine a narrative description with the Lotos text. As the
description was developed, this allowed changes to be checked immediately by
tools and reflected in the up-to-date documentation. In fact, the final checking
was undertaken on the literal text of this section.

9.4.7 Conclusion

It has proven to be rapid and practicable to specify, check and document the
Abracadabra Protocol in Lotos. Strenuous attempts have been made to pro-
duce a specification that is not only correct, but is also readily comprehensible
and of general architectural value. The development of the description has been
summarised for others to benefit from the experience.

Lotos is not a simple language to use, and the process of writing formal
descriptions in general is still poorly understood. The experience of this section
will hopefully be of benefit to the community of specifiers.

9.5 Formal Description in SDL8

The SDL description of the Abracadabra Protocol appears in Figure 9.4. The
protocol is modelled as a system Abracadabra, consisting of only one block
Station that represents a protocol entity. Accordingly, the boundary of the
system is represented by the user service access point (channel User) and the
medium service access point (channel Med).

Block Station is refined into two processes, SenderReceiver and Transcode.
SenderReceiver describes the protocol entity as an extended finite state machine
that relates input service primitives and/or protocol data units to output service
primitives and/or protocol data units. Transcode describes the lowest level of
functionality of the protocol, i.e. PDU encoding and decoding. The PduType
and UserDataType components of a protocol data unit are encoded in an Mreq
primitive or are decoded from an Mind primitive.

Process SenderReceiver has five states:

Closed: the protocol entity is ready to accept a Connection Request

CRsent: the protocol entity is waiting for a Connection Confirmation from the
peer protocol entity

CRrecv: the protocol entity is waiting for a Connection Response from its user

Send: data transfer is permitted

8Section 9.5 is by F. Bertolotti, L. Cerchio and S. Trigila.
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system Abracadabra

Station

User

[(ToU)]

[(FromU)]

Med

[Mind]

[Mreq]

newtype UserDataType 
String(Bit,")
endnewtype;
newtype Bit
   literals 0,1;
   operators
      "NOT":  Bit  ->  Bit;
   axioms
      not(0) == 1;
      not(1) == 0;
endnewtype Bit;
newtype PduType
   literals 
DC,CC,AK,DT,CR,DR;
endnewtype;
newtype UnitDataType 
struct
   Pdu     PduType;
   Udata  UserDataType;
endnewtype;

signal ConReq, ConInd,
   ConConf, ConResp,
   DatReq(UserDataType),
   DatInd(UserDataType),
   DisInd, DisReq,
   Mreq(UnitDataType),
   Mind(UnitDataType);
signallist ToU =
   ConInd, ConConf,
   DatInd, DisInd;
signallist FromU =
   ConReq, ConResp,
   DatReq, DisReq;

 1(1)

Figure 9.4: Abracadabra Protocol in SDL – Graphical Description
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block Station

signal DC,CC,AK(Bit),
   CR,DR,DT(UserDataType);
signallist Lis =
   DC,CC,AK,CR,DR,DT;

Rint

SenderReceiver

Transcode

(1,1)

(1,1)

User

RUser

Med

RMed

[(ToU)]

[(FromU)]

[Mreq]

[Mind]

[(Lis)]

[(Lis)]

 1(1)

Figure 9.4 (continued)
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process  SenderReceiver  1(6)

The process is waiting
for connection request

CRremaining:=N

Closed

CR DRConReq

CR DCConInd

set(now +
P, Timer1)

CRsent

CRrecv

—
DTorAK:=False,

SendSeq := 0,
RecvSeq := 0

DTorAK:=False,
SendSeq := 0,
RecvSeq := 0

timer Timer1;
synonym P Duration = external;
synonym N Natural = external; /* the maximum number of 
transmissions for CR, DR and DT */
dcl Seq Bit;
dcl UserData UserDataType;
dcl DTorAK Boolean; /*DT or AK received */
dcl SendSeq, RecvSeq Bit; /* sequence number */
dcl CRremaining, DRremaining, DTremaining Integer; /* indicates the 
remaining number of transmissions for CR, DR and DT respectively */

Figure 9.4 (continued)



316 Using Formal Description Techniques

process  SenderReceiver  2(6)

The process is waiting
for connection 
confirmation

(True)

If CR is received, then both
stations request connection
at the same time

(False)

The process 
retransmits 
a CR

CRremaining 
> 0

CRremaining:=
CRremaining–1

—

Send

DRsent

 DR,DisInd

DRremaining 
:= N

set(now +
P, Timer1)

set(now +
P, Timer1)

DRsent

DRremaining 
:= N

DR

set(now +
P, Timer1)

CRsent

DRCR, CC

reset(Timer1)

ConConf

Timer1 DisReq

DisInd

reset(Timer1)

Closed

CR

Figure 9.4 (continued)
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process  SenderReceiver 3(6)

The process is waiting
for ConResp from the 
user

DRCC

Send Closed Send Closed

DR DisReqConReqConResp

DC, 
DisInd

CC, 
ConConf

CRrecv

Figure 9.4 (continued)
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process  SenderReceiver 4(6)

(True)

(False)

(True)
(False)

Send,Wait

DR CRCC,DC DisReq

DRsent

 DR,DisInd

DRremaining 
:= N

DC, DisInd

reset(Timer1)

Closed

The correctness 
of the sequence 
number is checked

The sequence number is 
removed from UserData

     DT
(UserData)

DRsent

 DR,DisInd

DRremaining 
:= N

CC

DRsent

DRremaining 
:= N

DRDTorAK

—

DTorAK:=True,
Seq:=UserData

(Length(UserData))

Seq=
RecvSeq

    AK
(RecvSeq)

—

RecvSeq :=
not(RecvSeq)

    AK
(RecvSeq)

UserData :=
Substring(UserData, 1, 
Length(UserData)-1)

DatInd
(UserData)

—

set(now +
P, Timer1)

set(now +
P, Timer1)

set(now +
P, Timer1)

Figure 9.4 (continued)



Abracadabra Protocol 319

process  SenderReceiver 5(6)

The process is waiting for 
acknowledgement of DT;
DatReq are saved in the
input port of the process

The process 
is prepared 
to send DT

WaitSend

Wait

DatReq
(UserData)

DT
(UserData)

DatReq

Send

DRsent

DRremaining 
:= N

DTremaining 
:= N

 AK (Seq)

SendSeq
=Seq

Timer1 

DTremaining
        > 0

DT
(UserData)

— DRsent

 DR,DisInd

DRremaining 
:= N

set(now +
P, Timer1)

set(now +
P, Timer1)

set(now +
P, Timer1)

set(now +
P, Timer1)

(True)

(False)
(True)

(False)

SendSeq :=
not(SendSeq)

reset(Timer1),
DTorAK:=True

DTremaining:=
DTremaining–1

 DR,DisInd

Figure 9.4 (continued)
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process  SenderReceiver 6(6)

(True)

(False)

The process is 
waiting for the 
disconnection 
confirmation DC

If DR is received, 
then both stations 
request 
disconnection
at the same time DRsent

DC,DR Timer1 

reset(Timer1) DTremaining:=
DTremaining–1

Closed

Closed

DTremaining
> 0

DR

—

set(now +
P, Timer1)

Figure 9.4 (continued)
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process  Transcode 1(2)

— — —

—

—

—

CR CC DC

 AK (Seq)

DR

    DT
(UserData)

Sdu := (.CR,".) Sdu := (.CC,".) Sdu := (.DC,".) Sdu := (.DR,".)

Sdu := (.DT,".)Sdu := (.AK,
MkString(Seq).)

Mreq
  (Sdu)

TransWait

Mreq
  (Sdu)

Mreq
  (Sdu)

Mreq
  (Sdu)

Mreq
  (Sdu)

Mreq
  (Sdu)

Assembling 
protocol data
units into service 
primitives

dcl Sdu UnitDataType;
dcl UserData UserDataType;
dcl Seq Bit;

Figure 9.4 (continued)
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process  Transcode 2(2)

(CR) (CC) (DC) (DR)(DT)(AK)

TransWait

Mind 
(Sdu)

—

Sdu!Pdu

—— —

—

—

CR CC DC DR

DT 
(Sdu!Udata)

Extracting protocol 
data
units from service 
primitives

Seq:=Sdu!Udata
(Length

(Sdu!Udata))

 AK (Seq)

Figure 9.4 (continued)
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Wait: data transfer is delayed until previous data is acknowledged; in the mean-
time, data transfer requests from the user are buffered.

A timer is needed in order to count down the maximum delay for Connection
Confirmation and for Data acknowledgement. The SDL built-in constructs for
timer management are used, with an instance called Timer1.

Process Transcode consists of just one state, Transwait. In fact, encoding
or decoding is always enabled and the mapping function does not require any
memory of past conditions.

The approach taken consists of formally describing the protocol by express-
ing the behaviour of just one party. This is sufficient due to the symmetry of the
Abracadabra Protocol. It would not be the case for unsymmetrical protocols,
where it would be necessary to describe the individual behaviour of each party.

Interactions with the medium use only the signals Mreq and Mind, meaning
protocol data unit transmission and reception respectively. The medium is
implicitly assumed to be ready for transmission or reception at all times.

Isolating low-level features of the protocol such as encoding and decoding
greatly improves readability of the formal description. The partitioning of block
Station into processes SenderReceiver and Transcode serves this purpose without
necessarily imposing this structure on an actual implementation.

The SDL description of the Abracadabra example shows how SDL can sat-
isfactorily express both services and protocols. Nevertheless, it is interesting to
note how the approaches taken in describing a service and a protocol may differ
substantially. For the service description an end-to-end view was considered
appropriate, whereas with the protocol description a local view was chosen.
Adopting a local description for the service would have resulted in incomplete
specification. This would have failed to capture the distributed nature of the
service provider, with its property of delaying information exchange between
users. As a consequence, some valid sequences of service primitives would not
have been modelled. Conversely, an end-to-end description for the protocol that
described both protocol entities would have caused duplication in the descrip-
tion due to their equivalent behaviour.

The approach chosen for the description of the service had to rely on a
higher degree of abstraction than was appropriate for the protocol. For example,
the solution of using signals from the environment in order to express non-
determinism is the only one possible in SDL. Unfortunately it leads to a system
interaction diagram where the intuitive mapping between channels and physical
pathways for information is no longer valid. However, the approach chosen for
the description of the protocol turned out to be quite natural; all the SDL
features that have been used are easily justified and intuitively appropriate.



324 Using Formal Description Techniques

9.6 Conclusion9

Considering the comparative complexity of this example, the variety of errors
found was quite small. The following types of errors are additional to those
discovered while formalising the Abracadabra Service:

• More ‘phase change’ problems were found in formally describing the pro-
tocol than were found with the service. It is frequent in protocols like
Abracadabra to find that in error cases one protocol entity has a different
view of the state of connection from the other protocol entity (e.g. the
so-called ‘half-open connection’). It is important to describe change-over
or cross-over situations fully.

• It is also important to relate the behaviour of a service to its underlying
protocol properly. By theoretical verification, it is possible to show us-
ing FDTs that a service is indeed satisfied by its protocol. A degree of
confidence may also be established by comparing the results of simulating
(symbolically executing) the service and protocol formal descriptions.

• It is easy in an informal description to make loose statements such as ‘a
protocol data unit is not delivered’ where it is actually the user data that
is meant. Writing a formal description soon uncovers such vagueness and
can be used to improve the informal description.

• Valid limits for system parameters should be clearly stated so that the
behaviour of the system under extreme conditions is known.

9Section 9.6 is by K. J. Turner.



Part III

Development with the FDTs

This part of the book deals with development methods and tools for each of the
FDTs. The reader should have a working knowledge of the FDTs from Part I
of the book before tackling Part III. Individual chapters in this part are as
follows:

Chapter 10 deals with development using Estelle.

Chapter 11 deals with development using Lotos.

Chapter 12 deals with development using SDL.
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10 Development with ESTELLE
1

10.1 Introduction

This chapter illustrates various stages in development using Estelle with ref-
erence to an integrated set of software tools called the EWS (ESTELLE Work
Station, Ayache et al. (1989)). The EstelleWork Station consists of a syntax-
driven graphical editor, an Estelle-to-C compiler, a simulator and an imple-
mentation kernel. The Estelle Work Station is the outcome of the project
SED (SEDOS ESTELLE Demonstrator), undertaken under the second Esprit pro-
gramme in Europe. The tools were used as industrial prototypes for validating
real-sized Estelle descriptions in four important areas: computer networks,
industrial systems, telecommunications and space communications.

Prior to this work, the Esprit project Sedos (Software Environment for the
Design of Open distributed Systems) participated in the definition of Estelle
within ISO. Sedos developed the research prototype tools described by Diaz et
al. (1989). These were subsequently enhanced to form industrial prototype tools
under the name of the Estelle Development Toolset, described by Budkowski
(1992). The Estelle Development Toolset has also been used to validate real-
sized protocol descriptions in Estelle.

It will be explained how an Estelle description is built, modified, checked,
executed, debugged and tested with the aid of a proven methodology. The
methodology was developed by the Sedos project and is the basis for the Es-

telle Work Station and the Estelle Development Toolset. Both of these
embody further enhancements, resulting in some different tools. All the tools
are described in Section 10.3. The methodology helps a user to build a de-
scription using the editor, to check the syntax and static semantics2 with the
translator, and to build an internal representation called the intermediate
form. This representation is used to generate code in a language such as C
that can be executed on the Estelle Work Station. The C output is the ba-
sis for both simulation and implementation environments. The fact that the
same C code is run through the simulator and then used for implementation
is an important advantage of this approach. It ensures a steady progression of

1Chapter 10 is by V. Chari.
2Errors in static semantics include type incompatibilities and scope rule violations.
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Estelle Manuscript

❄
Editor

❄
Estelle Description

❄
Translator

❄
Intermediate Form

❄
C Code Generator

❄
C Code

❄ ❄

Simulation Kernel
and C Libraries

❄

Implementation Kernel
and C Libraries

❄
Link Editor

❄

Link Editor

❄
Executable Code Executable Code

Figure 10.1: Outline Operation of the ESTELLE Work Station

confidence in the description as the various tools are used.
Figure 10.1 shows how the different tools are integrated. The result of each

processing step is as follows:

• The output of the syntax-driven editor is a list of parsing errors to be
corrected, or a correctly parsed and nicely indented Estelle description.

• The output of the translator is a list of errors detected during parsing and
static semantics checking, or the internal representation of the description
in intermediate form. This comprises data structures and access functions
that may be handled by programs. It contains the Estelle description
and, optionally, extra attributes that say how to process the intermediate
form (such as obtaining certain variants in code generation for simulation
or implementation). The supplementary information does not alter the
representation of the Estelle description in any way.

• The C code generator maps the Estelle description onto C data struc-
tures (representing the Estelle and Pascal data structures) and C func-
tions (standing for Estelle transitions). It also contains the C translation
of the attributes added for further processing.
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• The executable code produced for simulation by the link editor comes from
the C code generated by the Estelle description, the simulator monitor,
and the C libraries corresponding to C functions that simulate specific
Estelle and Pascal operations.

• Similarly, the executable code produced for implementation by the link ed-
itor comes from the same C code for the Estelle description, the imple-
mentation monitor, and additional libraries to perform specific operations
under Unix.

10.2 Development of the Daemon Game

The Daemon Game example of Chapter 5 will be used to illustrate development
with the Estelle Work Station. The following refers to the description in
Section 5.3.1 with an explicit daemon. The main features of the tools are
explained for the following processing steps:

• transformation and refinement using the editor and the compiler

• verification and validation using the compiler and the simulator

• implementation using the implementation kernel

• conformance testing using the simulator on particular scenarios.

10.2.1 Transformation and Refinement

Two practical aids offered by the editor are holophrasting and pretty print-
ing. The holophrasting mechanism is powerful and useful; it gives a view of
the description at various levels of detail, ranging from the bare architectural
structure of the description to its complete text. Pretty printing is a valuable
help in all stages of development.

Estelle allows undefined aspects in an abstract description so that imple-
mentation detail can be dealt with at a later stage when the implementation
context is clear. This gradual refinement of the description is carried out by
completing undefined elements in four categories:

• any values of constants

• ‘...’ undefined types

• primitive procedure or function bodies that depend on the implementa-
tion

• external module bodies.
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Type of Code Size (bytes)

Estelle description 78561
C automatically generated from Estelle 278105
Primitive procedures/functions written directly in C 65500
Object code obtained from C derived from Estelle 107479
Object code obtained from directly programmed C 31000
Executable C 155648

Figure 10.2: ESTELLE Code Generation Statistics

In the Daemon Game, the constant value of the number of games is irrelevant
at the abstract description level and so is defined as any integer. At the concrete
description level, it has a precise value such as 2 for two players.

The translator may be invoked to check just the syntax and the static se-
mantics while the description is being developed. Only when the specification
is complete and correct (for the syntax and static semantics), is the translator
in a position to build the intermediate form.

The user may gradually refine the C code to be obtained, both the code
generated automatically from the Estelle description and also other code
programmed directly in C. The latter might include implementation-dependent
primitive functions, and extra procedures used during simulation for displaying
Estelle variables. The user refers to the symbolic names in the Estelle

description; the correspondence with C variables is established by the tools.
The association between the different portions of C code can be controlled by
the user with the help of special comments. For example, a special comment in
the Estelle description may instruct the C code generator to insert text in C,
or may give the correspondence between a C data structure and an undefined
type. The use of special comments is illustrated in Section 10.2.3.

The external keyword in Estelle allows a module body to be given in
a separate compilation unit. This feature is supported by the Estelle Work
Station.

All the C code is put through a C compiler and link editor in order to
produce the executable code. Figure 10.2 shows typical figures drawn from the
experiments of the EWS project, giving an insight into the ratio of the various
forms of codes. One of the Estelle descriptions dealt with aspects of FTAM
(File Transfer And Manipulation). This experiment involved the integration of
ASN.1 and Estelle. The C code automatically generated from ASN.1 and the
C code automatically generated from Estelle were designed to match.
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10.2.2 Verification and Validation

The objective of this step is to aid in debugging the C code obtained from the
description. The abstract description of the Daemon Game in Section 5.3.1
defines DaemonBody and PlayerBody as having external module bodies. The
concrete description must fill these in. The Daemon Game description was
executed on the Estelle Work Station as three Estelle systems with the
attributes of systemactivity. The undefined module bodies were therefore
elaborated as shown later.

Essentially, the DaemonBody is based on a counter called BumpNumber
which is incremented until it reaches BumpLimit (a constant). DaemonBody
outputs Bump interactions. In the DaemonBody module, the calls to the prim-
itive function display print the value of BumpNumber on the screen. Daemon-
Body contains three transitions:

• The initialize transition sets the initial value of the automaton state to
Active and sets BumpNumber to 0.

• The first transition from state Active, introduced by the delay clause, has
a provided clause with a condition that BumpNumber must be less than
BumpLimit. This is called a spontaneous transition because it is eligible
to fire when the enabling conditions are true. The delay clause has two
time bounds (1, 12) which define a time range. If the other clauses of
the enabling conditions are continuously true for at least 1 time unit, the
transition is eligible for firing and remains eligible for 12 units of time. In
between these two time bounds the transition may or may not fire. After
12 time units the transitions must fire. This reflects non-deterministic
behaviour. When the description is simulated, the choice depends on the
transition selection policy of the simulator. After this transition, the state
remains Active and Bump is output; BumpNumber is also increased by
one.

• The second transition from state Active, introduced by the delay clause,
has a provided clause with a condition that BumpNumber must be equal
to BumpLimit. After the transition is fired, the state changes to Inactive
and BumpNumber is set to 0. Note that there is no other transition from
this Inactive state so the Daemon Game stops.

The PlayerBody module describes the behaviour of two Daemon Game play-
ers, introduced by the initialize transition. The other transitions deal with the
outgoing and incoming interactions from theMachinemodule. Players may take
a turn (output Probe) or may request a score (output Result). They receive
transitions introduced by the interactions Win, Lose and Score.

The initialize transition sets initial values (identity and previous score) in
the simulator data structures for the two players. This illustrates the fact that
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different Pascal data structures are handled by the simulator. The state of
the automaton is set to ReadyToPlay.

The first, and only, transition in the trans section is from ReadyToPlay to
Playing. Note that this transition has an empty body. In an alternative de-
scription this would be where a player could initiate a new game by outputting
the Newgame interaction declared in the GameServer channel definition. Note
also that there is no transition in this description that allows a player to out-
put an Endgame interaction. The simulator therefore controls the introduction
of the players and stops the game. As mentioned earlier, this occurs in the
DaemonBody when BumpLimit is reached.

There are two delay transitions that regulate the output of Probe and Result
interactions by the player. The time bounds have simulator-dependent values.

The last three transitions of the description simulate the player’s action on
receiving the interactions Score, Win and Lose. All of them have empty bodies
here.

module Daemon systemactivity;
ip D : DaemonServer (Provider) individual queue;
end; { Daemon }

body DaemonBody for Daemon;

const BumpLimit = 10;

var BumpNumber : integer;

state Active, Inactive;

initialize
to Active
begin
BumpNumber := 0;

end; { initialize }

trans
delay (1, 12)
from Active
provided BumpNumber < BumpLimit
to Active
name Bump:
begin
output D.Bump;
display (BumpNumber);
BumpNumber := BumpNumber + 1;
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display (BumpNumber);
end;

provided BumpNumber = BumpLimit
to Inactive
begin
BumpNumber := 0;
display (BumpNumber);

end;
end; { DaemonBody }

module Player systemactivity;
ip G : GameServer (Player) individual queue;

end; { Player }

body PlayerBody for Player;

const
Min = 1;
Max = 2;

type
ResultRange = Min .. Max;
PlayerClass = (Advanced, Medium, Novice);
Result = integer;
Identity =
record
IdentNumber : integer;
Value : PlayerClass;

end;

var
PlayerId : Identity;
LastResults : array [ResultRange] of Result;

state ReadyToPlay, Playing;

initialize
to ReadyToPlay

begin
case Id of
1:
begin
PlayerId.IdentNumber := 433;
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PlayerId.value := Medium;
LastResults[1] := 35;
LastResults[2] := 28

end;
2:
begin
with PlayerId do
begin
IdentNumber := 112;
Value := Novice;

end;
LastResults[1] := −18;
LastResults[2] := 2

end
end; { case }

end; { initialize }

trans
from ReadyToPlay
to Playing
begin
end;

trans
delay (0, 400)
from Playing
name Play:
begin
{ Player takes a turn }
output G.Probe

end;

delay (3, 5)
from Playing
Name MyScore :
begin
{ Player requests score }
output G.Result

end;

trans
when G.Score (Nwon)
from Playing
to Playing
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begin
end;

trans
when G.Win
from Playing
to Playing
begin
end;

trans
when G.Lose
from Playing
to Playing
begin
end;

end; { PlayerBody }

10.2.3 Implementation

The implementation kernel is common to the Estelle Work Station and the
Estelle Development Toolset. The Estelle system is a task of the host
operating system. The communication between systems within one Estelle

description is handled by the intertask communication facilities of the host oper-
ating system. The interface with the operating system is described as operations
on mailboxes. A mailbox is viewed as a FIFO (First-In First-Out) queue re-
lated to the operating system task, i.e. to the Estelle system. A special set
of primitive functions to handle this can be used in an Estelle description.
These C functions offer buffer management operations on a BufferType which
appears as an undefined type in the Estelle description. This data type and
the corresponding functions are completely described in C code.

For handling strings of characters, C is generally preferred to Pascal but
this is an implementation-dependent choice. An abstract Estelle description
will say that StringType is undefined and the string handling functions are
primitive. For example:

type StringType = ...;

function StringLength (s : StringType) : integer;
primitive;

function GetFirstChar (s : StringType) : char;
primitive;
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function Concatenate (s1 , s2 : StringType) : StringType;
primitive;

Later in development, at the concrete description level, the correspondence
between the Estelle StringType and the C type will be given in an included
file. This is achieved by a special Estelle comment to be interpreted by the
C code generator. For example, the concrete description might say:

type
{$ generate "lstring" "lstring.h"}
StringType = ...;

The C code generated for this would be:

#include "lstring.h"

extern int StringLength ();

extern char GetFirstChar ();

extern lstring Concatenate ();

10.2.4 Testing

An acceptance test for the Daemon Game may be defined in the form of the
following tests of valid player behaviour:

• check the ability of the game to accept initialization by Newgame

• check the ability of the game to respond with Win to Probe from the player
when the state is ODD

• check the ability of the game to respond with Lose to Probe from the player
when the state is EVEN

• check the ability of the game to accept Endgame from the player.

A test for invalid player behaviour might be:

• check the ability of the game to detect as invalid a Newgame interaction
from the player during the course of a game.

The executable test cases for these tests are straightforward in the sense
that they each represent a transition in PlayerBody with appropriate display
functions corresponding to the related variables, e.g. the major state and the
BumpNumber.
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10.3 Tools

This section gives some insight into the various tools that have been developed
during the Sedos and EWS projects. These tools are representative of those
developed generally for Estelle. A brief list of other Estelle tools is also
given.

10.3.1 Book-Keeping Tools

The Estelle Work Station has a syntax-driven screen editor with graphical
support. It was produced by Huybrecht (1986) using the Mira tool. A user
who is not completely familiar with Estelle syntax may receive more guidance
by having keywords and punctuation inserted automatically. A well-acquainted
user may create and modify the formal text directly. The usual functions of an
editor such as inserting, deleting, substituting and moving text are available.
The selection of syntactic units under mouse control is a useful feature. As the
text is built up, the editor displays syntactic units after parsing and pretty-
printing. The text may be displayed at different levels of abstraction by setting
a holophrasting parameter.

The Sedos Estelle editor is also a syntax-driven and interactive. It was
based on the Mentor meta-tool of Donzeau-Gouge et al. (1984), enhanced
with graphical support. The editor was intended for creating, modifying and
beautifying Estelle descriptions. It takes input from the terminal or from a
file, parses it and formats the text, including holophrasting and pretty printing.
The basic Mentor commands offer the usual editor facilities, with powerful
features based on its knowledge of Estelle syntax. The command set was
extended with macro-commands specially tailored for Estelle.

10.3.2 Front-End and Back-End Tools

The Estelle compiler comprises a translator and a code generator. The
translator was generated with the aid of the Syntax translator generation tool,
Boullier and Deschamp (1985). The translator parses the Estelle description
and checks the static semantics. It lists any errors, or builds the intermediate
form using data structures (e.g. the symbol table and the transition table). The
intermediate form is the basis for other tools that continue the processing of
descriptions. The translator also outputs a cross-reference listing of all symbols.

The code generator takes the intermediate form as input and produces pro-
gramming language code for execution in the simulation and implementation
environments. Three code generators were produced by the EWS and Sedos

projects; they generate code in Pascal, ML (MetaLanguage, Huet (1985)) and
C. The code generator in the Estelle Work Station views Estelle module
instances as tasks that run under the control of the simulation and implemen-
tation kernels. Each task has a context consisting of C data structures and C
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functions. The data environment is made up from the internal and external
variables, the interaction points and the control variables. The C functions
correspond to transition guards and transition bodies. A library of C functions
deals with the execution of Estelle-specific operations such as output and
init. Pascal declaration and statement parts are translated into C data struc-
tures and C functions that obey Pascal semantics. For simulation purposes,
display functions and other special functions for handling breakpoints are extra
features.

The implementation kernel is common to the Estelle Work Station
and the Estelle Development Toolset. The kernel offers an environment for
the execution of the C code generated from the description. The Estelle

system is executed as a single task within the target operating system. The
implementation kernel controls the scheduling of the module instances. Specific
data types and memory management functions are supported, as well as an
interface to the host operating system; the implementation kernel supports a
Unix system interface.

10.3.3 Verification Tools

There has been much research on simulators for Estelle. In fact, three
simulators were developed during the EWS and Sedos projects: the Estelle

Work Station simulator, Estim and the Estelle Debugger.
The EstelleWork Station simulator acts as an interactive symbolic debug-

ger. The user has essentially two modes of choice in the selection of transitions
to be fired: automatic selection on a random basis, or user choice based on
interactively examining the list of firable transitions at a given point in the exe-
cution. The simulator offers a wide range of display facilities such as display of
major states, module variables and interaction point queues. The hierarchical
structure of modules and their instances may be displayed graphically, as well
as their dynamic evolution. The display mechanism uses the names of symbols
in the Estelle description. Specialised functions ensure the correspondence
with the symbolic names in C.

The Estelle Work Station simulator supports a number of useful addi-
tional facilities. The user may combine automatic and interactive modes by
letting the simulator execute a given number of transitions automatically be-
fore stopping to pass the control to the user. Execution may also be stopped
at specific points, including inside a Pascal procedure or function. The simu-
lator supports backtracking, undoing a given number of transitions. Also, the
sequences of given transitions that were executed once may be stored on file
and run again during other sessions. A general help facility is available for all
operations. The screen is divided into two main sections: one shows the sim-
ulation traces; the other shows the text of the transition which was executed
last, along with the associated breakpoints that were selected.

Estim, de Saqui-Sannes and Courtiat (1988), is an interpreter written ML
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for Estelle; it uses an extended, coloured and timed Petri Net model. Estim
supports interactive access to various elements of the state, and also allows some
of them to be modified.

EDB (ESTELLE Debugger) is an interactive symbolic simulator developed by
the Sedos project, subsequently enhanced by Budkowski (1992). The debugger
is based on the semantic model described in the Estelle standard, reflecting
the atomicity of transitions in Estelle. This implies that observation and
control can be carried out only at the end of the execution of transitions; there
is therefore no point of observation or control within a transition. EDB lets the
user choose the transitions to be executed interactively or choose the automatic
random policy implemented in the simulator. There is an ‘observer’ facility that
allows certain conditions to be prescribed for stopping the simulation. When
these conditions are true they execute a set of commands, e.g. to display some
state variables. The debugger has other features such as detection of run-time
errors associated with Pascal run-time errors appearing in Estelle transitions.

These simulators are complemented by the PIPN verifier (see Azema et
al. (1984), Azema and Papapanagiotakis (1985)). This is a prototype Petri
Net-based verifier developed in Prolog by the Sedos project. It uses as its
underlying model a Predicate Petri Net. The properties of a system may be ex-
pressed using temporal logic formulae which are checked against the reachability
graph of the Predicate Net model.

More recently, Algayres et al. (1991) have developed another tool called
Vesar as an aid in design and formal verification of protocols. Vesar has ex-
tended Estelle by introducing rendezvous synchronisation for communication
between modules. Separately programmed modules observe the behaviour of
Estelle modules.

10.3.4 Other Tools

A few of the other projects and institutions involved in developing Estelle

tools are as follows. In Canada, the Universities of Montreal and British
Columbia have developed a compiler, simulators and testing systems for Es-

telle. In the USA, the National Institute of Standards and Technology has
produced a compiler, an interpreter (using SmallTalk) and a large testing sys-
tem for Estelle. Phoenix Technologies have also developed a compiler and an
implementation system. Several Universities such as Massachussetts, Delaware
and Santa Barbara have used Estelle for teaching and have produced vari-
ous tools in their research projects. In Japan, KDD has developed a prototype
compiler for Estelle.

In the area of testing, Tenney (1992) recommends some initial tests that
should be applied to protocol descriptions. The work is based on experiments
conducted by Blumer (1986) using Estelle descriptions with an automatic
implementation system. The tests expose some weaknesses of the Abracadabra
Protocol description discussed in Chapter 9. Favreau and Linn (1987) as well as
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Vuong and Chan (1988) report other experiences of using Estelle for testing.



11 Development with LOTOS
1

This chapter describes development with Lotos based on top-down stepwise
refinement. It is an instance of the general concept of stepwise refinement
particularised to the case in which Lotos and Lotos tools are used to help
preserve correctness along the design trajectory.

11.1 The Design Process

The design process consists of a set of design phases, each of one which can
be further subdivided into a set of design steps. Design starts with the most
abstract description of the system and ends with the actual system constructed.

The important milestones of the design process define its different phases.
Four phases can be identified:

• the requirements capture phase that produces a requirements docu-
ment

• the architectural phase that defines and formally describes the archi-
tecture of the system or subsystem considered

• the implementation phase that produces a formal description of the
implementation

• the realisation phase that produces the actual system.

A design step transforms a description of the system to a more refined de-
scription by making new design decisions. A design decision selects one de-
sign out of the set of possible designs that satisfy the requirements considered
relevant to the current design step.

Lotos provides formal support when designing by stepwise refinement. Dif-
ferent examples of its use have been reported by BEST (1988), Fernandez et
al. (1988), Turner (1990), Lotosphere (1990), and van Eijk, Vissers and Diaz
(1989).

1Chapter 11 is by J. Quemada, A. Azcorra and S. Pavón.
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An example of the approach is the design of a network2, in which the design
steps consist of specifying the service provided by a layer, to be implemented
by a protocol plus its underlying service (Vissers and Logrippo (1985)). This
process is undertaken iteratively until all the layers have been designed.

11.1.1 Structure of the Design Step

A precise description of a design step is needed before giving guidance on how
to carry out the development process. The model of a design step given now
has been conceived with enough generality to allow its use with different design
approaches or methods. It is compatible with different models of software life-
cycles including the waterfall model, rapid prototyping and the spiral model
(Boehm (1988), Davis et al. (1988), Zave (1984), ESA (1987)).

A design step is decomposed into concrete tasks, and may have up to three
different tasks:

Task 1: formal design

Task 2: assessment

Task 3: implementation or prototyping.

Task 1, formal design, takes as input the previous design and the require-
ments document. The requirements considered relevant for the step must be
identified and the proper design decisions satisfying the requirements must be
taken. The design must be then performed and formalised (see Section 11.2).

Task 2, assessment, is performed to achieve confidence in the correctness of
the design and/or to detect errors. The task must assess the current design for
consistency with the relevant requirements and also with the previous designs.
Two types of assessment task can be identified. The first one validates the design
by assessing the consistency of the design with respect to the requirements
considered relevant at the current step. The second one assesses the consistency
of the current design with respect to the previous design steps.

Task 3, implementation or prototyping, consists of transforming a Lotos

description of the design to a non-Lotos, technology-specific description. A
prototype is a minimal implementation that allows the operational validation
of the interpretation of the requirements made by the system designers. All the
technology-specific descriptions produced at intermediate levels of of the design
trajectory can be considered as prototypes. Only the implementation produced
from the last refinement can be considered as the implementation of the system.
It will be the only one to implement the full functionality of the system.

2In practice, network design has many technological, technical and even political con-
straints that make a pure top-down approach infeasible.
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It is important to notice that the decomposition of the design step distin-
guishes clearly between design tasks and assessment tasks, following good soft-
ware engineering practice. This separation permits the assignment of tasks to
different teams such that each team is obliged to make a different interpretation
of the requirements.

There may be design steps in which not all of the tasks are performed. Pro-
totyping is typically done only after several consecutive design steps at relevant
milestones in the development. The same can be said for the assessment task,
although it is usually more frequently performed than prototyping. On the
other hand, there may be design steps in which some tasks are performed twice.
For example, the assessment task can be undertaken by designers as well as by
managers for project control, product acceptance or certification.

The model of a design step can be adapted to a particular approach. For
example, it can be adapted to the waterfall model by having the requirements
fixed and by eliminating Task 3 (prototyping). It can also be adapted to proto-
typing approaches by allowing the modification of requirements at some point
in the design process, following the early feedback received from prototypes.

11.1.2 Support provided by LOTOS

Lotos allows the formalisation of functional aspects of design at every level of
refinement. Design thus has two aspects: a conceptual one and a formal one.
Conceptual definition and formalisation should be carried out in Task 1 either
together or in close interaction. The reason for dividing the design into two
aspects is to have a self-contained conceptual definition that can be analysed
by non-technical persons, as well as a formal one for the more technical aspects
of the design.

A design step can thus be seen as a transformation of the specification
produced in the last step to a new, more refined one. As Lotos does not allow
the representation of non-functional characteristics, these must be treated non-
formally in parallel with formalised design. Non-formal aspects are not dealt
with in this chapter.

The overhead of producing a formal specification is justified by a number of
advantages:

Task 1: Experience has shown that the sole fact of formalising an informal
design triggers the detection of a number of contradictions and loopholes.
In addition, formal specifications are unambiguous, reducing the risks of
different design teams misinterpreting requirements.

Task 2:

Subtask 2.1: The consistency of the formal design with the previous for-
mal designs is achieved by maintaining some algebraic relation be-
tween them. Such relations formalise important system design con-
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cepts. For example, the black box concept is formalised by the test-
ing equivalence of de Nicola and Hennessy (1984), interface enrich-
ment is formalised by the extension relation of Brinksma and Scollo
(1986), and option selection is formalised by the reduction relation of
Brinksma and Scollo (1986).

Subtask 2.2: Since Lotos may be symbolically executed, the consis-
tency of the current design with respect to the relevant requirements
for the step may be validated by testing procedures.

Task 3: Prototypes may be obtained from Lotos specifications in a semi-
automatic manner. Automatic production of prototypes is not possible
due to the abstract nature of Lotos and its expressive limitations. It is
at least necessary that the designer provide the mapping between Lotos

events and real events together with system characteristics that cannot be
expressed in Lotos (e.g. real-time behaviour). As prototyping is actu-
ally a realisation problem, Section 11.6 gives a deeper explanation of this
subject.

In Subtask 2.1, the verification of algebraic relations requires very large
amounts of computation, and is infeasible except for simple cases. However, as
the relations are defined in terms of the response of systems to a given set of
common tests, validation (partial verification) is possible by selecting a subset
of the complete test set (see Section 11.4).

Finally, the content and design goals of each task determine the particular
approach taken. For example, if Task 1 is performed by using correctness-
preserving transformations, Subtask 2.1 is no longer needed since the approach
is transformational.

11.2 Task 1: Producing the Formal Design

The main goal of Task 1 is production of the next design in a conceptual and
a formal manner. Both parts are intimately related and should be carried out
by the same team, but are intended for persons with different expertise; the
conceptual design is for those who do not know Lotos (e.g. managers), while
the formal design is for Lotos experts. Both outputs should complement each
other, and together constitute the formalised design and its documentation.

11.2.1 Conceptual Definition of the Design

The conceptual definition of the next design must describe its structure. It
embodies the requirements considered relevant in the step. The design decisions
taken in this step will also be stated in the conceptual definition. Finally, the
conceptual definition will include those aspects that cannot be described in
Lotos.
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The most common transformations of specifications performed during this
step are:

Functionality Decomposition: A black box description of the system or a
part of it is transformed to a white box description, where the internal
structure is made visible. Such decomposition may be carried out to obtain
a functional decomposition or a physical decomposition. The relation to
be preserved is testing equivalence (see Section 11.4).

Functionality Rearrangement: A white box description of the system or a
part of it is transformed to a different white box description, where the in-
ternal structure is adapted to the new requirements or goals of the current
design step. The relation to be preserved should be testing equivalence
when both white box descriptions have their internal interfaces hidden (see
Section 11.4).

Functionality Extension: A given system or subsystem (i.e. resource) is en-
riched. The purpose of this transformation is to include new patterns of
behaviour that do not conflict with the old ones, e.g. for error recovery.
The relation to be preserved is the extension relation (see Section 11.4).

Functionality Reduction: A given system or subsystem (resource) which has
been specified with optional behaviours is reduced in order to fix the
desired options. The purpose of this transformation is to remove non-
determinism, representing design decisions left unresolved in previous re-
finements. The relation to be preserved is the reduction relation (see
Section 11.4).

A system or subsystem description is transformed to a given Lotos imple-
mentation model. The particular implementation model is dependent on the
implementation infrastructure used. For example, for software implementations,
a mixture of monolithic and state-oriented styles is the most suitable approach
(see Section 11.3); this style has been called extended automata-oriented. The
parameterised expansion of Quemada, Pavón and Fernandez (1989) can be used
for transforming specifications written in any style to a Lotos model of an ex-
tended automaton.

The design can also be expressed using subsets of Lotos that can be ef-
ficiently implemented. For example, binary rendezvous with one-way data ex-
change only might be enforced, or selection predicates might be forbidden.

Styles play an important role while performing design steps. Section 11.3
describes some styles and illustrates their use.

The following items should be made explicit in the conceptual definition and
description of the succeeding design:

• requirements relevant to the current design step
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• functional decomposition

• physical decomposition

• visibility aspects (modification of interfaces existing in design N , creation
of new interfaces in design N + 1)

• other behavioural implications of the requirements

• design decisions made

• quality criteria

• style and language structuring issues

• relations to be preserved by a transformation

• non-functional design aspects, whether of direct or indirect relevance.

11.2.2 Formal Description of the Design

The output of this activity is a formal representation of the system as defined
conceptually. Two different approaches can be taken in the production of the
formal design:

• hand-coded design

• transformational design.

The first approach, hand-coding of specifications, is always possible but
requires a major man-power investment. In this approach, the designer starts
from the specification of the previous step and produces a specification that
formalises the conceptual design.

The second approach, using correctness-preserving transformations, is more
productive in terms of man-power, but its applicability is limited by the current
state of the art. The general use of automatic transformations is not likely to
be feasible in the near future. There exist, however, useful transformations
for a limited set of design steps, e.g. the parameterised expansion of LOLA
that derives efficient implementations (Quemada, Pavón and Fernandez (1989)).
Transformations in the direction of protocol synthesis would be of particular
interest since they would provide the basis for automating transformation of a
black box to a white box. Work in this area has been reported by Langerak
(1990), Parrow (1989), and Khendek, von Bochmann and Kant (1989).
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11.2.3 Tool Support

Task 1 needs to be supported by appropriate tool functionalities. Recall that
design should be undertaken along with assessment, so that the tools described
in this section must be complemented by assessment tools.

Editor: An editor is used to edit specifications, tests and the like. Conventional
editors, Lotos-specific syntax-oriented editors or graphical Lotos editors
may be used.

Debugger: A debugger is used to analyse the cause of errors in specifications.
Debuggers are standard tools used with programming languages; Lotos
specifications are pieces of code that have to be debugged too. Existing
Lotos tools most similar to debuggers are simulators (van Eijk (1989),
Guillemot, Haj-Hussein and Logrippo (1988)). The functionality of such
simulators is less than that of conventional program debuggers.

Transformational Environment: Design should be supported by an envi-
ronment that automatically produces correctness-preserving transforma-
tions. New design decisions should be introduced as parameters of the
transformation, or could even by chosen by the tool itself. The behaviour
part of Lotos has a very rich set of possible transformations based on
the equational characterisation of relations. The parameterised expansion
(Quemada, Pavón and Fernandez (1989)) may be used to derive efficient
implementations.

11.3 Specification Styles

It may be hard to understand why a Lotos specification should be transformed
to a different one that describes the same system (viewed as a black box). The
reasons for doing so may be illustrated by describing the concept of specification
style in Lotos. According to Vissers, Scollo and van Sinderen (1988), a speci-
fication style is effectively a way to use a language to describe a system. Styles
play an important role within the design process, and many transformations
can be presented as style transformations. From the design point of view, the
three most relevant styles are the constraint-oriented style, the resource-oriented
style and the extended automata-oriented style (a mixture of monolithic and
state-oriented styles).

11.3.1 Constraint-Oriented Style

Constraints may be seen as behavioural properties of the system to be speci-
fied. The complete system is formed by combining all these properties. The
constraint-oriented approach usually allows a straightforward formalisation of
requirements.
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Constraints are composed by means of the parallel operators. Unsynchro-
nised composition (interleaving) provides an ‘or’-like composition, whereas syn-
chronised composition (synchronisation) means an ‘and’-like composition. An
‘or’-like composition produces the union of the behavioural properties com-
posed. An ‘and’-like composition produces the intersection of the behavioural
properties composed.

An example of a constraint-oriented specification of the two-key system is
given in Section 3.3.6.

11.3.2 Extended Automata Style

Extended automata representations are used very frequently for protocol imple-
mentations. A combination of monolithic and state-oriented styles in Lotos

provides a model for a class of extended automata.

The monolithic style makes use of mainly the action prefix operator, the
choice operator, and processes. The ordering of different events in time is given
in a direct fashion, mainly by prefix and choice. Processes are used as a way of
abstracting or creating loops.

The state-oriented style is data-oriented. The state space of the system is
defined using Lotos data typing facilities. A state-oriented specification has a
unique process whose parameter(s) define the state of the system.

The rules for determining the trade-off between variables (state-oriented)
and behaviour (monolithic) are similar to those used for standard extended au-
tomata. Variables are used for coding states that have a natural interpretation,
such as sequence numbers or other type of numerical or symbolic quantities.
These represent a huge number of states in a compressed fashion. Behaviour is
used for coding states that depend on interactions with the environment. This
means that such states are related to the traces of interactions occurring at the
interfaces.

The semantic model of Lotos allows only automata having one interaction
with the environment per transition. Every transition is able to accept an input
or to generate an output, but cannot do both in the same transition.

The mapping between extended automata and the corresponding Lotos

model is that the behaviour part represents explicit states, where each state
is mapped onto a process. Each process contains the transitions starting at
its state. The context variables of an extended automaton are mapped onto
process parameters. Every state (process) must have as parameters the context
variables at least. This is summarised in Figure 11.1.

An example of an extended automata-oriented specification of the two key
system is given in Section 3.6.3.
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Extended Automata Lotos

initial state process containing it
final state process called after it
transition predicate guard and/or selection predicate
input or output event denotation
transition action process parameter actualisation

Figure 11.1: Automata States and LOTOS Constructs

11.3.3 Resource-Oriented Style

In the resource-oriented style, a system is represented as a set of abstract sys-
tem resources that are interconnected through internal gates (hidden gates).
Such gates are models of internal interfaces that are visible only within this
refinement. This is considered a white box representation because the internal
structure of the specification is made explicit by making the internal resources
and interfaces visible.

A specification of the two-key system using the resource-oriented style is
given in Section 11.7. This specification also serves the purpose of showing
where the resource-oriented style is typically used in the design trajectory.

11.3.4 Guidelines for the Use of Styles

In most cases, specifications are written using a mixture of styles. When one
of them is predominant, the specification is considered to be written in it. The
crucial issue lies in finding the trade-off between styles that leads to a well-
structured specification.

A good specification of a complex system depends on the overall decom-
position of both the behaviour and the data space in terms of subsystems, as
well as the structuring of each of these subsystems. This means that a complex
system has to be partitioned into independent subsystems, and each subsystem
has to be adequately structured. From this point of view, constraints and re-
sources are relevant elements of a semantically ‘modular’ design, whereas the
proper balance between behaviour and structured state variables is the way to
achieve a good structure inside the subsystems. Constraints and resources are
considered as parts or subsystems because there is an operator in the language
(the parallel operator) that allows them to be combined to form the system.
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Constraint-Oriented Style

Constraints represent a different way of structuring a system. Specifying a
system as a composition of constraints is a way of decomposing it, and offers a
natural way of formalising requirements or other kinds of abstract specifications.
On the other hand, while a direct implementation is possible, its execution speed
is usually low due to the big run-time overhead introduced by the extensive use
of multi-way rendezvous.

The constraint-oriented style should be used for representing systems as
black boxes without considering their internal structure. Constraints can be
considered as behavioural properties or interface invariants to some extent. This
style may lead to a declarative type of representation for the functionality of
a system. It is recommended for specifying at a high level of abstraction. For
example, it might be used to specify a service, or the preliminary designs in a
stepwise refinement process.

Extended Automata Style

This style has a fast, efficient and direct implementation when translated into
sequential languages such as C, Pascal and Ada. Consequently, extended au-
tomata specifications should be used as implementation models for deriving
efficient (in particular, fast) implementations.

Resource-Oriented Style

This style is very well suited for architectural definitions where parts and in-
terfaces are identified. Its primary characteristic is that hidden gates exist for
communication between the parts of the system. Such gates are naturally in-
troduced for modelling internal interfaces of a system in an architectural design
at different levels of abstraction.

A white box description makes internal structure explicit in terms of the in-
ternal subsystems and the interfaces connecting them. Many refinement steps
of the methodology presented here consist of taking a constraint-oriented spec-
ification representing some service, and transforming it to a resource-oriented
one where the resources are the elements used to construct the system at the
new level of abstraction.

Sometimes, a clear and short specification can be obtained when introduc-
ing hidden events for structuring purposes only. This practice is usually not
recommended, unless there are strong reasons for it.

Other Structuring Approaches

There exist other structuring approaches apart from the ones presented up to
this point. As a matter of fact, the styles described so far are bound to the
usage of the parallel operator and to the balance between behaviour and data
typing. The usage of other operators may lead to an alternative structuring
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of specifications. For example, the sequential composition operator (enabling)
combined with synchronised termination (exit) is the basis for structuring the
phases of a behaviour. The use of disabling is a way of introducing disrupting
(interrupting) behaviours.

11.3.5 Guidelines for Data Type Specification

This subsection gives some guidance on specifying data types. The specification
of sorts and operations is reasonably obvious, but it is less clear what equations
are needed.

Constructors

The first step is to identify operations that are constants. Constants are usually
not rewritten to anything else, but there are some cases where this happens (e.g.
2 = Succ (Succ (0))). Identify those constants that will not be rewritten. Select
operations that will be used in addition to these constants to construct canonical
terms. These are referred to as the constructors of the sort.

The other operations, those that are not constructors, must be reducible to
constructors, so enough equations must be written to allow this. There several
ways of identifying the equations needed, including considering every possible
combination of constructors as arguments to non-constructors.

In the case of library type NaturalNumber, the constructors were chosen to
be constant 0 and operation Succ. Any natural number is either 0 or the result
of repeated applications of Succ to 0. In the case of library type Boolean, the
constructors were chosen to be constants true and false. Expressions using not,
for example, can be reduced to either true or false by the equations.

The specifier may choose the constructors. Suppose a list of values is to be
specified with constructor operations nil (empty list) and ‘˜’ (prefix). A typical
list would be:

(e1 ˜ (e2 ˜ (e3 ˜ nil)))

The following specification uses these constructors to define derived operations
unit (to make a one-element list) and ‘+’ (list concatenation):

type List is
sorts Element, List
opns
nil : −> List
unit : Element −> List
˜ : Element, List −> List
+ : List, List −> List

eqns
forall e : Element, l1, l2 : List
ofsort List
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unit (e) = e ˜ nil;
(e ˜ l1) + l2 = e ˜ (l1 + l2);
nil + l2 = l2;

endtype (* List *)

If the constructors were chosen to be nil, unit and ‘+’, so that ‘˜’ became a
derived operation, the new equations would be:

nil + l2 = l2;
unit (e) + nil = unit (e);
(unit (e) + l1) + l2 = unit (e) + (l1 + l2);
e ˜ l2 = unit (e) + l2;

A typical list would now be constructed as:

unit (e1) + (unit (e2) + unit (e3))

Both sets of constructors are satisfactory. Other considerations such as personal
taste will decide which set is chosen.

Completeness and Consistency of Equations

Specifiers have a second problem to tackle: how many equations are needed?
Writing too many equations should not be a problem unless they are inconsis-
tent. Equations should reflect the problem closely. Avoid contrived and clever
equations that will be hard to understand later.

There are subtle faults that may sneak into the equations and cause prob-
lems. Use of a simulator or compiler is very advisable to ensure confidence, but
testing cannot in general say that there are no more errors. There are tools that
help in proving completeness and consistency of the equational theory behind
the equations. These tools may be useful for most practical cases, but definite
answers are not guaranteed in every case since some properties are undecidable.

Auxiliary Operations

Most operations can be put into general categories such as constants, con-
structors, aggregators (that build composite values), extractors (that se-
lect elements from composite values), and recognisers (that check for some
property of values). Other unclassifiable operations may also be required.

Consider the specification of the first five letters of the alphabet, with a
binary operation to check for equality:

type Letter is Boolean
sorts Letter
opns
a, b, c, d, e : −> Letter
eq : Letter, Letter −> Bool

eqns
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forall ltr : Letter
ofsort Bool
ltr eq ltr = true;
a eq b = false; a eq c = false; a eq d = false; a eq e = false;
b eq a = false; b eq c = false; ...

endtype (* Letter *)

The example shows a typical situation where a collection of objects and an
equality relation among them are required. The first equations says that any
letter is equal to itself. It is tedious to say that every letter is different from
every other letter, requiring (n − 1)2 equations. This would be impracticable
for a whole alphabet, or even impossible if the sets of values were infinite.

There is a space-saving solution that requires an auxiliary operation.
This is a function that is unimportant for the type but helps in stating its
properties. Introducing a map function that maps letters to natural numbers
greatly shortens the definition of equality since it uses the equality already
defined for naturals:

opns
...
map : Vowel −> Nat

eqns
forall ltr1, ltr2 : Letter
ofsort Nat
map (a) = 0;
map (b) = Succ (map (a));
map (c) = Succ (map (b));
map (d) = Succ (map (c));
map (e) = Succ (map (d));

ofsort Bool
ltr1 eq ltr2 = map (ltr1) eq map (ltr2);

11.4 Relations

Before describing Task 2 in detail, it is important to introduce the relations
among Lotos specifications that formalise important design ideas. As this
chapter is design-oriented, the definition of the relations is given in terms of
design ideas and not mathematical ones, although both are possible.

Two relations will be dealt with — testing equivalence and the implemen-
tation relation. Both relations are defined using the concepts of test and test
response. This makes both relations especially well suited for engineering pur-
poses, because testing is a central component of every design method. Verifica-
tion is more powerful, but the present state of the art is not advanced enough
to make large-scale use feasible.
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11.4.1 Testing Equivalence

Testing equivalence formalises an important system design concept — the black
box. Two systems are testing equivalent (equivalent black boxes) if they cannot
be distinguished by testing. This relation abstracts from the internal structure
of a system and focusses only on its responses at the visible interfaces (gates in
Lotos).

Testing is therefore a central feature of this kind of equivalence. A test
is a Lotos process that has a special termination event to signal when the
successful termination of a test is reached. The test termination event must
never appear in the specification being tested. This event is reserved only for
test construction. In the examples of this section, the event is called Success.

The application of a test to a specification can be represented in Lotos as
the parallel composition of a test process with the specification, synchronising
on the union of the gate sets of both except for Success events. This will be
referred to as the test composition. The following example represents such a
composition:

SystemUnderTest [Events ]
|[Events ]|
Test [Events, Success]

When including the δ (successful termination) event associated with exit in
a test, a small variation of this scheme must be used due to the syntactic
restrictions of Lotos.

Successful termination of a test execution means reaching a state where a
transition labelled with Success is offered. A test does not terminate in a given
execution if it reaches deadlock.

Since Lotos allows the representation of non-deterministic systems, the
response of a system to a test may change in different executions. Two types
of test responses must therefore be considered: a may response and must
response. Given a specification S and a test T , T has a may response when
applied to S if it terminates successfully for at least one execution of the test
composition. Given a specification S and a test T , T has a must response
when applied to S if it terminates successfully for every execution of the test
composition. For deterministic systems there is no difference between may and
must tests.

The response of specifications to tests allows the definition of testing equiv-
alence to be made in a simple and straightforward manner. A may (must) test
of S has a may (must) response when applied to S. The terms ‘must response’
or ‘must test’ will be used interchangeably if the specification S is implicit.

Two specifications S1 and S2 are defined to be testing equivalent if every
may (must) test of S1 is also a may (must) test of S2 and vice versa.

Verifying the equivalence of two specifications can in principle be carried out
with existing algorithms, but the complexity of such algorithms is very high.
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This makes verification infeasible even for quite simple specifications because of
state explosion.

The particular interest of testing equivalence stems from the fact that veri-
fication is equivalent to demonstrating a similar response of related systems to
every test. Consequently, by selecting a set of tests with sufficient coverage and
comparing the response of both systems to this set, there is partial or incom-
plete verification (i.e. validation). Tools exist for automating this process (see
Section 11.5).

Acceptance and Rejection Testing

The framework for testing used in the definition of testing equivalence can be
used for the derivation of tests. The manual derivation of tests from interpre-
tation of a requirements document makes use of two types of test: acceptance
tests and rejection tests. An acceptance test determines if the system accepts
a given set of interactions with the environment. A rejection test determines if
the system rejects a set of events in a given state (i.e. after a given trace).

The following describes the may sequential test and the refusal set test. The
may sequential tests provide an alternative Lotos representation of the traces
of a specification. They are the basic way to construct acceptance tests. The
refusal set tests provide an alternative Lotos representation of the refusals of
the specification and are used for constructing rejection tests.

May Sequential Test

A sequential test is any test that has only one trace of events ending in
Success :

process Sequential Test [Events, Success] : noexit :=
Event 1 ;
... (* events of the trace *)
Event n;
Success;
stop

endproc (* Sequential Test *)

A may sequential test of a specification S is a sequential test that has a may
response when applied to S. The value of a may sequential test of S is that it
is the Lotos representation of a trace of S. Traces are possible executions of
a specification. The set of all may sequential tests of S is therefore the trace
set of S.

A Refusal Set Test

A refusal set test checks if a set of events is rejected in the state where it is
applied, as defined by Brinksma and Scollo (1986):
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process Refusal Set Test [Events, Success1, Success2] : noexit :=
Rejected Event 1 ;
stop

[]
...

[]
Rejected Event m;
stop

[]
i;
Success;
stop

endproc (* Refusal Set Test *)

A ‘trick’ is used in this type of test. There is a choice of single events followed
by stop (deadlock) for the actions to be rejected. If any of the actions to be
rejected were accepted, the response would not be must. A refusal set test is
therefore a must test with the given structure.

11.4.2 Implementation Relation

The implementation relation of Brinksma and Scollo (1986) is the composi-
tion of two relations: the reduction relation and the extension relation. These
formalise two system design concepts.

The reduction relation formalises the notion of option selection. The
intuition of a reduction is related to the internal choices of a specification.
Options are specified as non-deterministic choices. If an option is selected in
advance when the specification is written then the internal choice is fixed. A
reduction is therefore obtained by removing behaviour that is excluded by pre-
selected options.

The extension relation formalises the notion of visible enrichment of the
behaviour of a specification, while still preserving the original functionality of
the system. The intuition of this relation is that any sequence of events that
is accepted by the original specification (i.e. does not lead to deadlock) must
also be accepted by the extended specification. The original functionality is
therefore completely preserved and accessible through the extended behaviour
of the specification. An observer of the extended specification is thus able to use
the original functionality or the new one. Examples of the use of the extension
relation in refinement are the inclusion of error recovery and the addition of
compatible new features.

The definition of both relations is given in terms of the responses to tests.
The importance of giving the definition in terms of test responses is that the
test application can be defined in Lotos. Tools can be used to analyse the
responses to tests, allowing the partial verification of the relation by real testing
as in Section 11.4.1.
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A specific type of test will now be defined before the notions of extension
and reduction are given.

Existential Refusal Set Test

The implementation relation is defined mathematically on the basis of refusal
sets after a given observable transition. A new type of test is now defined that
tests for existence of a refusal set after a given observable transition. Such a
test will be called an existential refusal set test, or ERS test for short.

An ERS test must test two facts: the acceptance of a given sequence of
observable transitions, and the refusal or rejection of a set of events after this.
An ERS test can be constructed from a may sequential test and a refusal
set test. This kind of test needs two success events, Success1 and Success2 :

process ERS Test [Events, Success1, Success2] : noexit :=
Accepted Event 1 ;
... (* events of observable transitions *)
Accepted Event n;
i;
Success1;
(
Rejected Event 1 ;
stop

...
[]
Rejected Event m;
stop

[]
i;
Success2;
stop

)
endproc (* ERS Test *)

The successful termination of an ERS test applied to S means that the may
sequential test leads the test composition to a (may) success state where the
application of the refusal set test has a must termination.

Reduction and Extension Relations

A specification S1 conforms to S2 if any ERS test formed with any may se-
quential test of S2, followed by any refusal set of actions of S1 and S2 which is
an ERS test of S1, is also an ERS test of S2.

A specification S1 extends S2, if:

• S1 conforms to S2
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• the trace set of S1 contains the trace set of S2.

A specification S1 reduces S2 if:

• S1 conforms to S2

• the trace set of S1 is contained in the trace set of S2.

11.5 Task 2: Assessment

As mentioned in Section 11.1.2, there are two clearly separated assessment
subtasks: the assessment of the relation to be preserved in the step, which is an
indirect assessment of the requirements fulfilled by all the previous steps; and
the assessment of the new requirements to be fulfilled in the step. The following
two subsections describe the different nature of these assessment activities.

11.5.1 Subtask 2.1: Assessing the Relation Maintained

Verification of the relation to be maintained between two consecutive designs is
the goal of this subtask. The algorithms for performing the complete verification
of relations are very complex and suffer from state explosion even for very simple
specifications. They are not practicable in most realistic cases. The alternative
consists of substituting testing for verification.

The work is divided into two consecutive parts. The first part defines the
assessment procedure, i.e. the concrete validation strategy plus the set of re-
lation assessment tests. The second part consists of actually performing the
assessment with the procedure established in the previous part.

One aspect to be considered in the assessment task is the satisfaction of the
requirements for the complete design process. The satisfaction by every new re-
finement of all the design decisions and requirements introduced in the previous
design steps must be achieved by the proper choice of the formal relation be-
tween two consecutive refinements. The relation (or mixture of relations) linking
consecutive designs must preserve the satisfaction of the relevant requirements
throughout the whole design process, such that step N can be proven to be
related to any previous step.

The algebraic relations that represent relevant system design concepts are
defined through testing and are assessed in this way. Testing is also the most
realistic way of assessing requirements. The responses to tests characterise the
properties that must be preserved along the sequence of designs. The relations
should therefore be linked in such a way that this can be achieved on a global
basis.
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11.5.2 Subtask 2.2: Assessing Relevant Requirements

In most cases, the satisfaction of relevant requirements by new design decisions
has to be assessed using informal text as the reference. An interpretation of
the informal requirements is therefore necessary in this task. To check the
interpretations requires at least two different assessments, preferably by different
teams, and checking them for consistency.

An interpretation of requirements is formalised and compared to the design.
Two approaches to this can be considered. The first one, which is part of
current software engineering practice, is based on testing. The second one is
verification-oriented and consists of using a modal logic formula derived from
the requirements to assess the design.

In the testing approach, the new design decisions of a step are assessed
with tests derived directly from the interpretation of the requirements. The
acceptance and ERS tests derived according to testing equivalence (must, may)
are well suited to this kind of assessment (see Section 11.4).

In the approach based on logic, assessment is carried out by expressing prop-
erties derived from the relevant requirements as modal formulae defined in terms
of a modal calculus for Lotos. An example of this approach is the H-M cal-
culus (de Nicola and Hennessy (1984), Cleaveland, Parrow and Steffen (1989)).
Model checking is used to verify the satisfaction of the properties. However, the
theoretical framework is not completely defined for Lotos, especially for the
data typing part. The approach is not mature enough at present to be applied
in real design. Only the testing approach has been therefore considered here.
As with Subtask 2.1, the work consists of defining the assessment procedure
and then applying it.

11.5.3 Tool Support

The assessment task needs to be supported by appropriate tools such as:

Test Generator: This tool is for generating test suites from the reference spec-
ification. The generator should be able to generate tests to assess testing
equivalence, and must/may types of tests and to assess the implementa-
tion relation. The tests generated should provide sufficient coverage. No
tool is available today for full Lotos, although Brinksma (1988) reports
developments that are under way for subsets of the language.

Test-Bed: A test-bed allows extensive analysis of the behaviour of a specifi-
cation through testing. Automatic analysis of test responses can be un-
dertaken with the expansions of LOLA (Quemada, Pavón and Fernandez
(1989)). This tool has a specialised expansion to analyse test responses.
A manual approach using existing simulators is also possible.
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Verifier: This tool is used to verify relations between specifications. As has
already been mentioned, verification for full Lotos is infeasible for prac-
tical reasons at present. A practical verification tool would of course be
extremely valuable.

Modal Verifier: This tool is used to verify whether modal formulae are satis-
fied by a specification. There are no current tools that support full Lotos
in this task. Should they become available, model-checking could be used
as a substitute for testing in some cases.

11.6 Task 3: Implementation or Prototyping

The implementation or prototyping task takes as input a low-level Lotos spec-
ification and produces a description of the design using some implementation
language(s). The low-level specification is the last Lotos description of the
system being designed and might be considered a Lotos implementation.

A wide range of implementation languages exist for software designs, such
as C, Ada, Modula 2 and occam. For hardware designs the implementa-
tion languages include HHDL, ISP, TI-HDL, VHDL and PAL. Hardware and
software designs can be considered to be the main families of implementation
technologies. Others are conceivable, or may appear in the future. Mixtures of
technologies can also be used for implementations.

The basic idea underlying the implementation procedure is to perform only
a change of representation, such that the semantics (the labelled transition
system) is preserved in the new representation. This allows tests derived from
the Lotos specification to be used with the implementation description.

Ideally, no design decisions which modify the semantics should be introduced
in the new design. However, there is no way to avoid design decisions related
to non-functional aspects of the system since these cannot be represented in
Lotos (e.g. timing or priority). These post-Lotos design decisions modify the
behaviour of the implementation with respect to the low-level specification in
such a way that testing equivalence is not completely maintained. Only some
test responses are preserved.

This task can be seen as a design step that transforms a Lotos specification
to a technology-specific design. An assessment task is therefore needed, but it
must be adapted to the new situation. The first subtask assesses that the
technology-specific design produced is consistent with the previous design. The
second subtask assesses that the design is consistent with new design decisions;
these will be mainly related to non-functional aspects.

11.6.1 Technology-Specific Design

The implementation or prototype must be constructed using the implementa-
tion language. A conceptual and a technology-specific description of the design
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must also be produced. Both will be intimately related as in the Lotos-to-
Lotos steps. The reasons for separating both activities in spite of their close
relationship are the same as for the Lotos-to-Lotos case. Both outputs com-
plement each other and together constitute the technology-specific design and
its documentation.

The conceptual definition must contain the mapping of requirements into
the current design, such that the relevant requirements are made explicit. The
design decisions taken in this task will also be stated in it.

As this task must perform a change in representation, the last Lotos design
should be as close as possible to its realisation. Only properties of the design
which cannot be expressed in Lotos should be added at this stage.

The following are the most important individual items to be considered in
the conceptual definition:

• requirements relevant for the task

• visibility aspects:

◦ mapping of abstract Lotos events into concrete realisation events

◦ mapping of Lotos abstract data types into concrete realisation types

• mapping of Lotos statements or constructs onto the implementation lan-
guage

• quantitative timing

• event priorities

• fairness or probabilistic aspects of events

• performance

• quality criteria

• other non-functional design aspects.

The generation of an implementation description is mainly a change of repre-
sentation from the low-level Lotos specification. The change of representation
should follow very regular rules, so that compilation should be feasible for most
implementation languages. The compilable subset of Lotos will depend largely
on the target implementation language. For example, software implementations
will be able to use a larger subset of Lotos than hardware implementations.
The low-level specification must use only the subset of Lotos which can be
translated into the target technology with the required performance.
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11.6.2 Assessment

Implementations or prototypes must be assessed. Testing equivalence must hold
between an implementation and the low-level specification. Testing is feasible in
nearly all technology-specific environments and is usually the basis for quality
assurance. The assessment must be based on a translation of the Lotos tests
into the technology-specific framework. Once a translation from Lotos into
the implementation language has been made, the testing procedure can also be
translated into the implementation language. The relation can then be tested
by direct execution in the implementation language.

The new design decisions related to non-functional aspects must also be
assessed. No guidelines are given here because it depends on the implementation
environment.

The expressive limitations of Lotos do not allow the Lotos to non-Lotos
step to consist of only a change of representation that retains exactly the same
behaviour. The new representation of the system will now be ‘real’. This means
that properties of the system that cannot be represented in Lotos are intro-
duced as additions in the technology-specific design. Timing and priorities are
two such aspects. The introduction of precise timing or priority modifies the
behaviour of the system, and therefore modifies the response of the implemen-
tation to tests. There may be other properties with similar effects.

The addition of timing to the events of an implementation modifies the
semantics only when parallel behaviours exist in the low-level specification.
Timed models, such as that of Quemada, Azcorra and Frutos (1990), show that
timed parallel behaviours do not preserve all the evolutions of a system in the
non-timed case.

The addition of priority to the events of the implementation obviously mod-
ifies the response to a test when there is a choice of two events at different
priority. Both can be accepted in the low-level specification, but in the imple-
mentation only the one with higher priority can be accepted. The behavioural
modifications caused by the introduction of priority are not completely clear.

The low-level specification is the reference for generating tests. All the
must and may tests should be preserved except the ones whose response in the
realisation is modified by timing or priority. The implementation must preserve
its responses to the selected tests. Coverage measures and proper test families
are necessary here also.

As before, the work consists of defining the assessment procedure and then
applying it.

11.6.3 Tool Support

Most of the tools needed in this task will be technology-specific. They might
include:
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Compiler: This should automate the translation into the implementation lan-
guage. For example, for software implementations in C the TOPO Lotos-
to-C compiler can be used (Mañas and de Miguel (1988)). The compiler
supports annotation that introduce non-functional design decisions.

Implementation Environment: This will be highly technology-dependent,
and will include tools for compilation and transformation.

Test Generator: This will have similar functionality to the Lotos test gen-
erator. It should ideally consider non-functional aspects, although this is
still a research topic.

Implementation Test-Bed: The implementation test-bed should have simi-
lar functionality to the Lotos test-bed, but for the specific implementa-
tion technology.

11.7 Example: The Two-Key System

The stepwise refinement design approach will be illustrated by a variation of
the two-key system example already used in Chapter 3. The new definition
of the two-key system reflects a simplified requirements definition:

(1) The two-key system provides controlled access to some resource, e.g. a
safety deposit box. It is controlled by two separate magnetic keys.

(2) The two-key system must have both keys inserted before it allows one
access.

(3) The extraction of keys is allowed only after access has occurred.

(4) After an access, both keys must be extracted before any key can be re-
introduced.

(5) The system is to be implemented using lock and access control devices
already chosen, but coordinated by a new controller to be designed.

(6) The lock device peripheral is to be implemented by an existing component
with the following features. Each lock interacts with the controller by
means of two signals:

(a) a Do command that allows a given operation on the lock when received
(key introduction or key extraction)

(b) an End response that tells the controller when the allowed operation
has been done.
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Initially, key introduction is blocked. After key introduction, key extrac-
tion is automatically blocked until explicitly allowed. After key extraction,
re-introduction of keys is disallowed until explicitly permitted.

(7) The access control device peripheral will be implemented with an existing
component with the following features. The access control device interacts
with the environment via two signals:

(a) a Do command that allows an access to be made

(b) an End response that tells the controller when the access has occurred.
Initially, access is disallowed. After access has occurred, new accesses
are disallowed until explicitly permitted.

These requirements specify what the system will do, but they also put con-
straints on how the system must be implemented. The following Lotos spec-
ifications represent the system at different levels of abstraction, corresponding
to the refinements of the system shown in this chapter.

The first refinement concerns the system as a black box, where only the
interactions with the outside world are shown. The first four requirements are
related to it. This description can be considered as a service.

The model of the system at the service level differentiates five events. In1
and In2 represent the action of introducing each magnetic card into the lock.
Out1 and Out2 represent the action of extracting each magnetic card from the
lock. Access represents access to the protected resource. The automaton of such
a system is represented graphically in Figure 11.2.

The second refinement is a white box description that shows how the system
is constructed. The last three requirements are related to it. The resource-
oriented style described in Section 11.3.3 is suited to providing such white box
descriptions; the detailed Lotos model for the internal structure of the system
is given in this refinement.

The third refinement represents a possible implementation of the system
using the TOPO Lotos-to-C compiler (Mañas and de Miguel (1988)) in order
to annotate and translate the controller design.

Step 1, Task 1

The first refinement represents the description of the two-key system as a black
box (at a high level of abstraction). It has a cyclic behaviour consisting of three
phases. In the first phase, the keys can be introduced in either order. The
second phase is when access actually occurs. In the third phase, the keys can
be extracted in either order. The relevant requirements in this step are (1), (2),
(3) and (4).

process Two Key System 1 [In1, In2, Access, Out1, Out2] : noexit :=
(
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Figure 11.2: The Two-Key System

In1; exit
|||
In2; exit

)
>>
Access; exit

>>
(
Out1; exit

|||
Out2; exit

)
>>
Two Key System 1 [In1, In2, Access, Out1, Out2]

endproc (* Two Key System 1 *)

This specification does not have a clear style according to the taxonomy in
Section 11.3. Its structuring makes use of phases, interleaving and synchronised
termination. However, the structure is a natural model of this system.

Step 1, Subtask 2.2

The procedure chosen to assess requirements is testing with the test expansion
function of LOLA (Quemada, Pavón and Fernandez (1989)). The test suite
must include acceptance and rejection tests. Only an example of an acceptance
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and a rejection test is given. A real test suite should, of course, have a much
larger coverage.

The first test is an example of a must test used as an acceptance test. It
tests an instance of an access cycle:

process Test1 [In1, In2, Access, Out1, Out2, Success] : noexit :=
In1; In2; Access; Out2; Out1; Success; stop

endproc (* Test1 *)

The second test is an example of a rejection test. It is a refusal set test that
assesses whether, after accepting In1 and In2, the two-key system does indeed
reject events Out1 and Out2 if access has not occurred:

process Test2 [In1, In2, Access, Out1, Out2, Success1, Success2]
: noexit :=
In1; In2;
(
Out2; stop

[]
Out1; stop

[]
i; Success

)
endproc (* Test2 *)

Step 2, Task 1

The transformation performed in this design step is functionality decomposition
(black box into white box), which produces an abstract implementation of the
system above. It is composed of a controller and three peripherals — two locks
and an access device. The models of the peripherals have to be derived from
the requirements.

This step designs the controller in a particular way. The controller first
enables the input of both keys, waiting for them to be inserted. It then enables
the access, waiting for its completion. Finally it enables the extraction of both
keys, waiting for them to be removed. The relevant requirements in this step
are (5), (6) and (7).

A formal model of a lock device according to requirement (6) is:

process Lock [Do, Input, Output, End] : noexit :=
Do; Input; End; Do; Output; End;
Lock [Do, Input, Output, End]

endproc (* Lock *)

A formal model of the access control device according to requirement (7) is:
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process AccessDev [Do, Access, End] : noexit :=
Do; Access; End;
AccessDev [Do, Access, End]

endproc (* AccessDev *)

The structure of the specification using these processes is:

process Two Key System 2 [In1, In2, Access, Out1, Out2] : noexit :=
hide DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess in
(
Lock [DoIn1, In1, Out1, EndOut1]

|||
Lock [DoIn2, In2, Out2, EndOut2]

|||
AccessDev [DoAccess, Access, EndAccess]

)
|[DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess]|
Controller
[DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess]

endproc (* Two Key System 2 *)

where process Controller is defined as:

process Controller
[DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess] : noexit :=
DoIn2; DoIn1; EndOut1; EndOut2;
DoAccess; EndAccess;
DoIn1; DoIn2; EndOut2; EndOut1;
Controller [DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess]

endproc (* Controller *)

Step 2, Subtask 2.1

The transformation changed a black box into a white box. The relation to be as-
sessed in this case is therefore testing equivalence between Two Key System 1
and Two Key System 2. Here, all the tests from the previous step must provide
the same result when applied to the design in this step. Although verification
is possible here because of the simplicity of the example, testing must be used
in realistic cases.

Subtask 2.1 should also be carried out. The models of the peripherals and
of the controller should be assessed against the requirements.

Step 3, Task 1 (LOTOS to non-LOTOS)

Suppose that the controller will be built with microprocessor-controlled hard-
ware for which a C compiler exists. The TOPO Lotos-to-C compiler could be
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used to generate the software of the controller by compiling the annotated Con-
troller process shown below. The lock and access devices are physical devices
that are connected to the controller hardware.

The complete descriptions of the peripherals and hardware would be the
input for this step. They would be used to define the C routines of the annota-
tions.

process Controller
[DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess] : noexit:=
DoIn2 (*| C DoLock(2) |*);
DoIn1 (*| C DoLock(1) |*);
(*| wait EndLock(1) |*) EndOut1;
(*| wait EndLock(2) |*) EndOut2;
DoAccess (*| C DoAccess |*);
(*| wait EndAccess |*) EndAccess;
DoIn1 (*| C DoLock(1) |*);
DoIn2 (*| C DoLock(2) |*);
(*| wait EndLock(2) |*) EndOut2;
(*| wait EndLock(1) |*) EndOut1;
Controller [DoIn1, DoIn2, EndOut1, EndOut2, DoAccess, EndAccess]

endproc (* Controller *)

Annotations are executable comments written in C which are inserted in the
Lotos specification. Each annotation has an associated C function (DoLock(x),
EndLock(x), DoAccess, and EndAccess) that links an abstract event with a real
event. Two types of annotations are used in this example:

(*| C C-Code |*) annotations are used to implement output actions. The C-
Code associated with it activates the corresponding do command of each
peripheral.

(*| wait C-Function |*) annotations are used to implement input actions. As
input actions have to wait for the signal to come from the outside world,
the annotation delays the occurrence of the associated event until the C-
Function returns a non-zero value. The C-Function will do something like
reading a hardware port that signals the end by setting some status flag.
The function will return a non-zero value when the end is detected, or a
zero value otherwise.



12 Development with SDL1

12.1 Introduction

The effective usage of SDL for the development of systems is helped by giving
some general methodological guidelines. The guidelines need not form a single,
coherent and complete methodology since they will be adapted and incorpo-
rated by SDL users into their overall methodologies, and tailored for target
applications and specific needs. The guidelines should cover the following top-
ics:

• modelling of target application architectures

• refinement of target applications

• production of an SDL specification

• derivation of implementations from an SDL specification

• data modelling

• relation to complementary non-SDL information

• formal approaches to verification and testing

• auxiliary diagrams

• documentation aspects

• tool aspects.

A complete set of guidelines for the above topics would require a separate book.
This chapter therefore focusses on the production of an SDL specification. How-
ever, there is also some discussion of implementation, validation, conformance
testing and tools.

1Chapter 12 is by F. Belina.
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12.1.1 Overview of the Method

SDL specifications can be produced with respect to structure, behaviour and
data. A specification is not, of course, complete until all three aspects have
been completely covered. However, it can be formally valid before that stage.

In the following, all three aspects will be considered in parallel. The princi-
ples followed for the definition of the steps are that each step:

• should be a natural halting point in the production process.

• should produce a self-contained result that appears meaningful and can
be checked, preferably by tools.

• should not (or to a small extent) be dependent on succeeding steps.

Each step is discussed under three headings:

Description: This is the conceptual process for the step. It is formulated
using general concepts and the corresponding SDL concepts (in italics).
Wherever possible, heuristic guidance is given.

Result: This is the result of performing the step.

Example: This illustrates the step applied to the specification of a simple lift
(elevator) system. The complete specification is given in Section 12.1.4.
The example part has been omitted for some steps in order to save space.

12.1.2 Enrichment Relations

Three classes of (partial) process specifications are considered in the steps that
follow: Pskel (skeleton), Pinf (informal) and Pfor (formal). In order to correlate
these, three relations are identified between process specifications.

B′ is an external enrichment of B if and only if:

• each state of B is a state of B′

• for an empty state transition in B leading back to the same state (e.g. a
valid input signal not mentioned in a state), a non-empty state transition
may be added to B′

• for each state transition in B, a corresponding state transition exists in
B′ that can be composed by inserting outputs and creates into the state
transition in B.

B′ is an internal enrichment of B if and only if:

• each state of B is a state of B′
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• for each state transition in B, a corresponding state transition exists in B′

that can be composed by inserting internal actions (i.e. tasks, decisions)
in the state transition of B; one branch of each decision introduced must
lead towards the termination of the original state transition.

B′ is a formalisation of B if and only if:

• for each informal text in B, the same informal text exists in B′ or it has
been formalised in B′

• B′ is an internal enrichment of B or B′ is an external enrichment of B.

External enrichment implies that new subtraces may be inserted. The expan-
sion of states implies insertion of inputs in new states. The expansion of state
transitions implies possible insertion of outputs in the state transitions. Internal
enrichment implies that a new alternative subtrace may be inserted in a state
transition through branching. It is believed to be relatively easy to let a tool
check whether a certain enrichment is fulfilled. The enrichment relations have
to some extent been pragmatically chosen.

12.1.3 The Steps

Step 1: System Boundary

Description:

• Delimit the system from its environment. Find a suitable name for the
system. Identify the agents in the environment of the system (i.e. the
different entities which the system will interact with). Describe the
purpose and characteristics of the system informally in a comment.

• Specify one channel for each identified agent in the environment, and
give a suitable name corresponding to the name of the agent.

• Introduce one dummy block within the system. This block will later
be replaced by the actual system structure.

• Identify the information flow through the system boundary in terms
of discrete events. These events constitute the system alphabet, and
are modelled by signals. The signals for external communication are
specified at the system level. State the purpose of each signal in a
comment for each signal specification. Identify the information to be
conveyed by signals, and indicate the sort of signal parameters. Use
predefined sorts as far as possible. Associate signals with channels,
either directly or by using signal lists.

• Provide a skeleton specification (without signatures) for each new sort
introduced.
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Keep in mind that the number of signals can be reduced by qualifying
signals with signal parameters. This step is a great simplification of the
considerable effort needed in the early phases of requirements capture,
analysis, etc. It may be profitable to use techniques other than SDL as a
prelude to this step.

Result: The specification of the boundary of a system, having its internal struc-
ture undefined.

Example:

system lift;

/**************************************************************

A lift consists of a car with ‘goto(floor)’ buttons and floor controls
at each floor where users can ask for upwards or downwards service.
The specification does not model the mechanical part of the lift.

The order of serving floors is that if there are more floors to be
served in the current direction, the lift continues to the next of
these floors. If there are only floors to be served in the opposite
direction, the lift moves the other way. If there are no floors waiting
to be served, the lift stays at the current floor.

A user can control the lift by:

• pressing a button at any floor for service in the desired direction
• pressing a button in the lift car for a certain floor.

In addition, the specification also covers some unusual cases,
such as starting and stopping the operation of the lift.

*************************************************************/

block dummy;
/* Minimal block syntax */

process dummy;
start;
stop;

endprocess;

endblock;
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channel car
from env to dummy with (cin);

endchannel;

channel floors
from dummy to env with (fout);
from env to dummy with (fin);

endchannel;

channel maintenance
from dummy to env with alarm;
from env to dummy with maint start, maint stop;

endchannel;

signal
goto(floor), /* Request for floor */
floor req(direction, floor), /* Request for lift */
open door(floor), /* Open door at floor */
...

signallist cin = goto, ...
signallist fin = floor req, ...
signallist fout = open door, ...

syntype floor ...

newtype direction ...

endsystem;

Step 2: System Structure

Description:

• Identify the main conceptual components of the system and name
them. These are the blocks of the system. Find a suitable name for
each block, and describe the block and its relation to its environment
(the enclosing structure) informally in a comment within the block
specification.

• Connect the blocks to the system boundary with the channels intro-
duced in Step 1.

• Identify the information flow (channels and associated signals) be-
tween blocks. Specify new signals introduced at the system level, as
in Step 1.



374 Using Formal Description Techniques

• Provide a skeleton specification of each new sort introduced at the
system level, as in Step 1.

It is advisable not to have many blocks in the same enclosure. If the number
of blocks is too large and hinders an overview, nesting should be used (see
Step 3). A block must have strong internal cohesion and must be easily
understandable on its own. A block must correspond to a self-contained
concept, e.g. a lift drive mechanism or a lift controller.

The properties to be taken into account when identifying blocks are as
follows. A block delimits visibility, so local signals and sorts can be speci-
fied within a block. Communication between blocks (i.e. channels) involves
possible delay. A block is considered as a system in its own right; it de-
fines an external alphabet for the subsystem inside the block, and acts as
a boundary to its environment.

A block can be specified directly as a block instance. However, object-
oriented SDL makes a clear distinction between type and instance; see, for
example, CCITT (1991). If the block or another block similar to it, is going
to be used somewhere else in the system, it is necessary to identify first
the more basic features of the similar blocks in a block type. The actual
blocks can then be instantiated from the general type or specialisations of
the general type. This observation is a simplification of object-oriented
methods which advocate the definition of concepts in type hierarchies.

A channel may be associated with a transmission delay, so special mod-
elling effects can be achieved by having several channels between two
blocks. Normally, two blocks within the system need only be intercon-
nected via one channel , but using more channels can be useful in special
cases.

The use of an MSCs (Message Sequence Charts) can be considered at this
step to get a useful overview of typical communication scenarios between
system components. The use of MSCs is elaborated in Step 5.

Result: Identification of blocks at system level.

Example:

block control;
/* In this example only one block is needed, and it is specified

directly. It controls the complete lift system. Minimal process
syntax is used here. */

process dummy;
start;
stop;

endprocess;
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endblock;

Step 3: Block Partitioning

Description:

• Partition each complex block into subblocks, just as in Step 2 for the
system. Repeat this until there are no complex blocks left.

If the system is large, some blocks can be considered as systems in their
own right; they can be further partitioned according to the rules given for
a system. This results in nesting of blocks. In the resulting structure, each
unpartitioned block is a placeholder for specification of behaviour. The
behaviour is described in successive steps by a number of processes within
each block.

Result: A block tree having the system as the root and unpartitioned blocks as
the leaves.

Example: None, since the lift controller is so small that substructuring is not
needed.

Step 4: Block Components

Description:

• Identify the activities within each unpartitioned block. These are the
process sets of the block. Find a suitable name for each process set,
and describe it and its relation to its environment (the enclosing block)
informally in a comment within the process specification.

• Connect the process sets to channels at the block boundary with signal
routes.

• Identify the information flow (signal routes and associated signals)
between process sets. Specify the new signals introduced, as in Step 1.

• Provide a skeleton specification of each new sort introduced, as in
Step 1.

Specify for each process set the number of instances, i.e. the initial and
maximum number of instances. For each block, at least one process set
must have an initial number greater than zero. It can be useful to state
the maximum number if each process instance corresponds to a limited
resource (e.g. some hardware device). The considerations of type identifi-
cation mentioned in Step 2 apply here to process types.

Guidelines for the identification of process sets are that each process set
represents a pattern of activity, and that this pattern can exist in a number
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of concurrent instances. Most of the heuristics from Step 2 apply to this
step as well.

The input alphabet of a process set can be specified by signal routes or by
a signal set. A signal route is a communication path between process sets
within a block, or between process sets and the surroundings of a block.
Compare this with a channel , which is a communication path between
blocks and their surroundings.

Result: Identification of process sets within the unpartitioned blocks.

Example:

block control;

process control (0, 1);
/* Controls the operation of the lift */
start; /* Minimal process syntax */
stop;

endprocess;

process maint (1, 1);
/* Initialises the operation of the lift */
start; /* Minimal process syntax */
stop;

endprocess;

signal route r car
from env to control with (cin);

signal route r floors
from control to env with (fout);
from env to control with (fin);

signal route r start
from env to maint with maint start;

signal route r alarm
from env to control with maint stop;
from control to env with alarm;

connect car and r car;
connect floors and r floors;
connect maintenance and r alarm, r start;

endblock;
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Step 5: Skeleton Process Specifications

Description:

• Identify the typical use cases, and describe these using MSCs for ex-
ample.

• Make necessary additional decisions concerning how to model the be-
haviour. This may require the introduction of new signals and sorts,
as specified in Step 1.

• Write a skeleton process specification covering the typical use cases,
but do not consider the combination of these yet.

• Consider using procedures to hide details and timers for time super-
vision. Introduce external synonyms for unspecified values.

The order of events on the vertical axis of an MSC defines one ordering
of events in a process specification, as illustrated in Figure 12.1. This
ordering constitutes (part of) a skeleton process specification. Dynamic
process creation can also be deduced from an MSC. An MSC can even be
used in earlier steps to define the communication within the system. In
this case, a vertical line in the MSC may denote a whole block.

Beginning at the start symbol of each process specification, build a tree
of states by considering the ‘normal’ behaviour of the process. Introduce
dynamic creation of process instances if needed, but do not include param-
eters for process creation yet. Indicate parameters in inputs and outputs.

Also deal with time supervision; this can be shown on an MSC if required.
Time supervision is used to model elapsed time within the model, to su-
pervise the release of a resource, and to supervise replies from unreliable
sources. Time supervision is achieved by the introduction of timers and
by set and reset actions.

If some values are naturally left unspecified (e.g. the top floor in the lift
example), this can be expressed by using external synonyms. Considering
which parts of a specification should be generic is important for increasing
the usefulness of a specification.

Result: MSCs and a skeleton process specification, Pskel.

Example: Some decisions about modelling lift behaviour must be made, e.g.
how to indicate the arrival of the lift car at a floor. This is done here by
the reception of a signal arriving at floor from the environment.

The skeleton process specification below was produced partly from the
MSC in Figure 12.1 which describes the following simple situation. A user
standing at the mth floor enters the lift car (which happens to be at the
floor). The user presses the button goto(n) and is transported to the nth
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Controlenv env

idle

idle

running

close_door(m)

door_closed(m)

start_car

stop_car

car_stopped

open_door(n)

door_opened(n)

goto(n)

arriving_at_floor(n)

control

Figure 12.1: Sample Message Sequence Chart
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floor, where the door opens on arrival. Note that only the vertical control
axis is within the SDL system.

The skeleton process specification also covers the situation when the lift
car happens to be waiting at another floor, so the user must first call for
the lift. This could be also expressed by an MSC very similar to the one
in Figure 12.1.

The skeleton process specification covers the single-user case. Some de-
tailed signalling is hidden by procedures open door and close door.

process control skel;
procedure open door referenced;
procedure close door referenced;
start;
nextstate idle;

state idle;
input goto(/* n */);
call close door(/ *m */);
nextstate running;

input floor req(/* n */);
call close door(/* m */);
nextstate running;

state running;
input arriving at floor;
call open door(/* n */);

nextstate idle;
endprocess;

Step 6: Informal Process Specifications

Description:

• Consider the combination of typical use cases, and describe these with
an MSC if appropriate.

• Identify the information that needs to be stored in the processes. In-
troduce tasks and decisions using only informal text at this stage.
Introduce any new states required.

• Write a skeleton specification of each procedure, and indicate the sort
of procedure parameters.

• Indicate the sort of process formal parameters. Specify each new sort
introduced, as in Step 1.

A choice of inputs is made according to state. A choice of outputs is
made using an informal decision. A choice of inputs and outputs uses a
combination of state and informal decisions.
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Result: Informal process specifications, Pinf , that must be an internal enrich-
ment of Pskel.

Example: For a lift that supports multiple users, goto and floor req can be
received while the lift car is running; these requests must be stored in a
reservation table. A new state floor stop is introduced for a temporary
stop at a floor, the duration being determined by timer floor delay.

synonym wait time duration = external;
/* Time for one floor */

process control inf;
procedure open door referenced;
procedure close door referenced;
timer floor delay; /* Timer for one floor */
start;
task ‘initialise variables’;
call open door (/* current */);
nextstate idle;

state idle;
input goto(/* goal */), floor req(/* goal */);
decision ‘goal = current floor’;
‘yes’: task ‘ignore’;
‘no’: task ‘update reservations’;

enddecision;
call close door (/* current */);
nextstate running;

state running;
input arriving at floor;
decision ‘floor to be served’;
‘yes’:
task ‘remove floor from reservations’;
call open door (/* current */);
set(now+wait time, floor delay);
nextstate floor stop;

‘no’:
task ‘continue’;
nextstate −;

enddecision
state floor stop;
input floor delay;
decision ‘more floors to be served’;
‘yes’:
call close door (/* current */);
nextstate running;
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‘no’: nextstate idle;
enddecision

state running, floor stop;
input goto(/* goal */), floor req(/* goal */);
decision ‘goal = current floor’;
‘yes’: task ‘ignore’;
‘no’: task ‘update reservations’;

enddecision;
nextstate −;

endprocess;

Step 7: Complete Process Specifications

Description:

• Now consider unusual cases such as error situations. Complete the
procedure specifications accordingly. Check that all signal-state com-
binations are covered.

This step terminates when no new nextstate is introduced in a state transi-
tion. A new nextstate corresponds to a state that has not been considered
yet.

Result: Complete but informal process specifications, Pinf , that must be an
external enrichment of the process specifications obtained in the preceding
step.

Step 8: Formal Process Specifications

Description:

• Identify sorts for stored information. Specify the signature of each
sort introduced so far, and use informal text for equations.

• Specify variables for stored information and input parameters. Specify
process formal parameters.

• Change informal text in tasks, decisions and answers to assignments
and expressions.

• Add parameters to inputs, outputs, creates and procedure calls.

The signature of a sort deals with literals and operator argument/result
sorts. Use predefined sorts as far as possible. Identify (in comments) the
basic set of operators and literals to construct all possible values. These
are the constructors of the sort. Specify equations for the constructors
first. Then specify equations for the remaining operators and literals.
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Result: Semi-formal sort specifications and formal process specifications, Pfor.
Pfor must be a formalisation of Pinf .

Example:

newtype direction
literals up, down;
operators
change dir: direction −> direction;

axioms
‘if direction is up then down, else up’

endnewtype;

process control for;
dcl
here floor, /* Floor the lift is at */
moving direction, /* Actual direction */
table reservations, /* Floor requests */
goal floor, /* Goal of floor request */
towards direction; /* Direction from user */

endprocess

The task:

task ‘initialise variables’;

becomes:

task here := bot floor;
task moving := up;
task table := empty serv;

Similarly, the decision:

decision ‘goal = current floor’;

becomes:

decision goal = here;

Step 9: Formal Sort Specifications

Description:

• Formalise the equations by replacing informal equations with formal
ones. Complete the sort specifications with equations.

The specifications are complete when all expressions with non-constructor
operators and literals can be rewritten as expressions containing only con-
structor operators and literals. During this step, sorts may also be made
more constructive (and therefore suitable for automatic term rewriting).

Result: Complete and formal sort specifications.
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Example:

newtype direction
literals up, down;
operators
change dir: direction −> direction;
axioms
change dir (up) == down;
change dir (down) == up;

endnewtype;

12.1.4 Full Specification of Lift Controller
system lift;

/**************************************************************

A lift consists of a car with ‘goto (floor)’ buttons and floor controls
at each floor where users can ask for upwards or downwards service.
The specification does not model the mechanical part of the lift.

The order of servicing floors is that if there are more floors to be
served in the current direction, the lift continues to the next of
these floors. If there are only floors to be served in the opposite
direction, the lift moves the other way. If there are no floors waiting
to be served, the lift stays at the current floor.

A user can control the lift by:

• pressing a button at any floor for service in the desired direction
• pressing a button in the lift car for a certain floor.

In addition, the specification also covers some unusual cases,
such as starting and stopping the operation of the lift.

*************************************************************/

signal
goto(floor), /* Request for floor */
floor req(direction, floor), /* Request for lift */
arriving at floor, /* Arrival at floor */
open door(floor), /* Open door at floor */
door opened(floor), /* Door opened at floor */
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close door(floor), /* Close door at floor */
door closed(floor), /* Door closed at floor */
stop car(floor), /* Stop car at floor */
car stopped(floor), /* Car stopped at floor */
start car(direction), /* Start car in direction */
emergency stop, /* Stop car immediately */
restart, /* Restart stopped car */
alarm, /* Alarm message */
maint start, /* Start lift operation */
maint stop; /* Stop lift operation */

synonym top floor natural = external; /* The top floor */
synonym bot floor natural = external; /* The bottom floor */
synonym wait time duration = external; /* Time for one floor */

signallist cin = goto, emergency stop restart;
signallist fin =
floor req, arriving at floor, door closed, door opened, car stopped;

signallist fout = open door, close door, stop car, start car;

syntype floor = natural
constants bot floor : top floor

endsyntype;

newtype direction
literals up, down;
operators
change dir: direction −> direction;

axioms
change dir(up) == down;
change dir(down) == up;

endnewtype;

newtype floor indicator
struct upwards boolean; downwards boolean;

endnewtype;

newtype reservations array(floor, floor indicator) adding
literals empty serv;
operators

goto req: reservations, floor, floor −> reservations;
/* Marks request to go from current floor to another */

floor req: reservations, floor, direction −> reservations;
/* Marks request to go from floor in given direction */
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floor stop: reservations, direction, floor −> boolean;
/* Checks if floor has requested service in given direction */

cancel res: reservations, direction, floor −> reservations;
/* Removes service request from floor in given direction */

more floors: reservations, direction, floor −> boolean;
/* Checks for more floors to be served from current floor

to top or bottom, depending on current direction */
more floors!: reservations, direction, integer −> boolean;
/* Additional operator to iterate over a range */

axioms
empty serv == Make!(Make!(false, false));
goal /= here ==>
goto req(r, here, goal) ==
Modify!(r, goal,
if goal > here
then upwardsModify!(Extract!(r, goal), true)
else downwardsModify!(Extract!(r, goal), true)

fi);
goto req(r, here, here) == Error!;
floor req(r, goal, d) ==
Modify!(r, goal,
if d = up
then upwardsModify!(Extract!(r, goal), true)
else downwardsModify!(Extract!(r, goal), true)

fi);
floor stop(r, d, f) ==

if d = up
then upwardsExtract!(Extract!(r, f))
else downwardsExtract!(Extract!(r, f))

fi;
cancel res(r, d, f) ==
Modify!(r, f,

if d = up
then upwardsModify!(Extract!(r, f), false)
else downwardsModify!(Extract!(r, f), false)

fi);
more floors(r, d, f) ==

if d = up
then more floors!(r, d, f+1)
else more floors!(r, d, f−1)

fi;
more floors!(r, d, f) ==

upwardsExtract!(Extract!(r, f)) or
downwardsExtract!(Extract!(r, f)) or
if d = up
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then more floors!(r, d, f+1)
else more floors!(r, d, f−1)

fi;
endnewtype reservations;

channel car
from env to control with (cin);

endchannel;

channel floors
from control to env with (fout);
from env to control with (fin);

endchannel;

channel maintenance
from control to env with alarm;
from env to control with maint start, maint stop;

endchannel;

block control referenced;

endsystem;

block control;
/* The block describes the controls of the complete lift system */

process control (0, 1) referenced;
process maint (1, 1) referenced;

signal route r car
from env to control with (cin);

signal route r floors
from control to env with (fout);
from env to control with (fin);

signal route r start
from env to maint with maint start;

signal route r alarm
from env to control with maint stop;
from control to env with alarm;

connect car and r car;
connect floors and r floors;
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connect maintenance and r alarm, r start;

endblock;

process control;
/* Controls the operation of the lift */
procedure open door referenced;
procedure close door referenced;
timer floor delay; /* Timer for one floor */

dcl
here floor, /* Floor the lift is at */
moving direction, /* Actual direction */
table reservations, /* Floor requests */
goal floor, /* Goal of floor request */
towards direction; /* Direction from user */

start;
task here := bot floor;
task moving := up;
task table := empty serv;
call open door(here);
nextstate idle;

/* The lift is waiting at the floor designated by ‘here’ */

state idle;
input goto(goal);
decision goal = here;

(true): nextstate −; /* Ignore */
(false):
task table := goto req(table, here, goal);
task moving :=
if goal > here then up else down fi;

task here := if moving = up then here+1 else here−1 fi;
call close door(here);
nextstate running;

enddecision;
input floor req(towards, goal);
decision goal = here;
(true): nextstate −; /* Ignore */
(false):

task table := floor req(table, goal, towards );
task moving := if goal > here then up else down fi;
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task here := if moving = up then here+1 else here−1 fi;
call close door(here);
nextstate running;

enddecision;

/* The lift is running between two floors */

state running;
input arriving at floor;
decision floor stop(table, moving, here);
(true):
task table := cancel res(table, moving, here);
set(now+wait time, floor delay);
call open door(here);
nextstate floor stop;

(false):
decision more floors(table, moving, here);
(false):
set(now+wait time, floor delay);
call open door(here);
nextstate floor stop;

(true):
task here := if moving = up then here+1 else here−1 fi;
nextstate −;

enddecision;
enddecision;

input goto(goal);
decision goal = here;
(true):
task table := floor req(table, goal, moving);
nextstate −;
(false):
task table := goto req(table, here, goal);
nextstate −;

enddecision;
input floor req(towards, goal);
task table := floor req(table, goal, towards);
nextstate −;

input emergency stop;
output alarm;
nextstate stopped;

/* The lift makes a temporary stop */
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state floor stop;
input goto(goal);
decision goal = here;
(true):
(false):
task table := goto req(table, here, goal);

enddecision;
nextstate −;

input floor req(towards, goal);
decision goal = here;
(true):
(false):
task table := floor req(table, goal, towards);

enddecision;
nextstate −;

input floor delay;
task moving :=
if more floors(table, moving, here)
then moving
else change dir(moving)

fi;
task table := cancel res(table, moving, here);
decision more floors(table, moving, here);
(false): nextstate idle;
(true):
task here := if moving = up then here+1 else here−1 fi;
call close door(here);
nextstate running;

enddecision;

state *;
input maint stop;
stop;

stopped *;
input restart;
nextstate running;

endprocess control;

process maint;
start;
nextstate idle;

state idle;
input maint start;
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nextstate idle;
create control;

endprocess maint;

procedure open door;
fpar here floor;
dcl f floor;
start;
output stop car(here);
nextstate wait1;

state wait1;
input car stopped(f);
output open door(f);
nextstate wait2;

state wait2;
input door opened(f);
return;

state *;
save *;

endprocedure;

procedure close door;
fpar
here floor,
towards direction;

dcl f floor;
start;
output close door(here);
nextstate wait;

state wait;
input door closed(f);
output start car(towards);
return;

state *;
save *;

endprocedure;

12.2 Implementation

The problem addressed in this section is how to bridge the conceptual gap
between abstract systems modelled by SDL and concrete systems made from
real-world hardware and software components. Real-world components nor-
mally differ from abstract components in structure as well as in behaviour.
Adaptations are therefore needed at both the abstract and the concrete level in
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order to ensure that the SDL specification faithfully models the functionality of
the real system. Documentation in addition to pure SDL is needed to describe
the concrete system and its relationships to the abstract system.

During the life-time of a system, SDL specifications are used for at least
three purposes:

• At an early stage, SDL specifications are used to specify and to validate
the functionality (behaviour) required by the user environment. For this
purpose the external behaviour should be emphasised, and irrelevant in-
ternal design details should be discarded.

• Design-oriented SDL specifications are then used to provide a firm basis
for implementation design, i.e. finding the optimum realisation. Premature
design decisions should therefore not be embedded in SDL specifications.
However, it is legitimate to give additional guidance in the form of design
constraints, i.e. properties that the implementation must have in addition
to those expressed in the SDL specification.

• After implementation design, implementation-oriented SDL specifications
are used to describe (and therefore document) the complete functional
properties of the system as implemented. For this purpose, the SDL spec-
ifications must normally be adapted to the underlying implementation.

SDL systems are constructed from abstract components well suited to the first
purpose above — modelling the observable behaviour of systems in a clear and
unambiguous way. But they are also well suited for the second purpose — act-
ing as the basis for implementation design. The abstract mechanisms of SDL
have the useful feature of combining implementation independence with imple-
mentability (except for non-constructive abstract data types). There are nor-
mally no fundamental problems in implementing SDL specifications effectively.
There is usually a choice of alternative implementations that are functionally
equivalent, but different in non-functional properties such as cost, modularity
and speed. This enables the designer to select an optimum implementation with
respect to design constraints (the non-functional properties).

In designing an implementation, it is necessary to be aware of the differences
between the abstract world of SDL and the real world of hardware and software.
Real-world components may be used to build systems that are functionally
equivalent to one expressed in SDL. A designer must know the various ways in
which the gap can be bridged. The real world differs from the abstract world
in the following respects:

• processing takes time

• errors do occur

• signals must cross physical space
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• communication primitives may be different

• concurrency may be different

• synchronisation primitives may be different

• resources are limited.

Implementation design should ideally be orthogonal to the functionality given
in the source SDL specification, but this is not always possible. If the implemen-
tation is to be distributed in a network, for instance, some of the SDL channels
will be implemented using network protocols. These protocols add functional-
ity in a distributed implementation compared to a centralised solution. Since
parts of a distributed system can fail while other parts remain operational, error
handling is different compared to a centralised system.

Implementation design can be seen as defining the mapping from an abstract
SDL system to a concrete system made up of hardware and software compo-
nents. How should this mapping be defined? Clearly, SDL can be restructured
and refined up to a point where it reflects much of the low-level design. But
the SDL specification will still be abstract and implementable in different ways.
Something is thus needed in addition to pure SDL to document the imple-
mentation design. This could be achieved by inserting design information as
comments in the SDL specification, but this would tie the SDL specification
to a particular implementation design. By documenting the implementation
design separately, it will be easier to reuse SDL specifications in systems with
different implementations.

An SDL specification will have to accommodate the implementation design
decisions. Feedback from implementation design will normally occur, leading
to restructuring and refinement of the functional design. There are thus two
aspects of implementation design: a feedforward aspect aiming at an implemen-
tation, and a feedback aspect that affects the functional design (and sometimes
the requirements specification).

But even an implementation-oriented SDL specification will leave some de-
sign decisions open. There will still be alternative ways to implement it, but
they will differ only in non-functional properties. There is consequently an or-
thogonal aspect that needs to be documented too — how the functionality is
implemented in the physical system. For this purpose, some information must
be provided in addition to the formal SDL specification.

12.3 Validation

12.3.1 Validation Support

The objective of validation is to determine if a specification fulfils the require-
ments of users and the environment of the system. In validation, as in other
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system development activities, one of the major benefits of an FDT is the pos-
sibility of using computer-based tools. The availability of tools is, of course,
a direct consequence of the formal semantics of the language, since this allows
automatic interpretation of the meaning of a specification. Computer-based
tools relevant to SDL validation are basically of two types: simulation tools,
and analysis/verification tools based on state-space exploration.

Simulation tools allow an SDL specification to be executed, allowing in-
teractive investigation of behaviour. Signals can be sent to the system and
system responses can be checked. It is usually possible to force the system
into some pre-defined state (e.g. by changing variable values or creating process
instances) and continuing the simulation from this state. Simulation tools for
SDL are commercially available from different vendors.

State-space exploration analysis/verification tools are intended to check if
certain specific properties are true of a given SDL system. These properties can
be general ones like absence of deadlock or other general errors, or they can be
system-specific properties defined by the designer of the SDL system.

For small SDL systems it is possible to verify the absence of undesirable
properties, but in general it is not possible due to problems with state explo-
sion. Nonetheless, this type of automatic analysis has been found to be very
useful even for large and complex systems. Such tools perform a more extensive
test than is possible with simulation tools. State exploration tools are used
to complement simulation tools, mainly to detect design errors involving in-
frequent system behaviours. Several state exploration tools are in use but are
not commercially available yet. This approach must therefore be considered as
somewhat research-oriented at the moment.

12.3.2 Validation Method

A method that employs simulation and state space exploration tools is outlined
below. The major ideas in this validation method are:

• use of a simulation tool to validate the capabilities of the SDL system, i.e.
to check that the expected behaviour is indeed included in the specification

• use of state-space exploration tool to find problems caused by unexpected
behaviours, such as infrequent combinations of signals and timeouts.

Before the validation process can begin, however, it is necessary to have a
complete and formal SDL system. This can be achieved by using a conventional
SDL analysis tool to make certain that the specification has valid syntax and
static semantics.

Given this statically analysed SDL specification, the first step in the val-
idation process is to use a simulation tool. The purpose of the simulation is
mainly to test that the capabilities described in the requirements specification
have been correctly included in the SDL specification. This is accomplished by
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executing the simulation tool on prescribed cases, for example those given in
message sequence charts. The simulation will look for major design flaws. As a
by-product it will also help to find minor errors that could not be detected by
static analysis.

The second step is to use a state-space exploration tool on the specification.
This sometimes also includes making modifications or extensions to the SDL
system to reduce the state-space that has to be explored. In practice, this might
include limiting the number of instances allowed for some process types, limiting
the length of channel queues, or making a fairly detailed specification of the
system environment. Analysis with a state-space exploration tool can reveal
subtle design errors. These could be unexpected signal races or infrequent
timeouts — things that are very difficult to find using simulation or manual
inspection.

12.4 Conformance Testing

12.4.1 Need for Formality

The aim of conformance testing, according to ISO (1991c), is to determine if
an implementation conforms to the requirements given in a standard. In this
context, the standard is a specification of the externally observable behaviour
of an OSI protocol.

Each such standard has a standardised test suite specified in TTCN (Tree
and Tabular Combined Notation). The test suite is executed against the imple-
mentation. If the implementation passes all the test cases in the test suite, it is
considered to conform to the standard. Standards specify requirements on only
observable behaviour, so no implementation details are known when perform-
ing tests. Tests therefore have to be devised without an inner knowledge of the
implementation.

Current standards are usually given in natural language, in some cases ac-
companied by state tables, so test suites must be developed manually. This
gives rise to problems since there is no possibility of formally verifying that a
test suite specifies the same set of requirements as the standard does.

It is believed that the use of FDTs in standardised specifications is a way
to overcome this problem. When formal specifications are available, computer-
supported tools can be used to derive and validate test suites. Much research
effort has been spent on test suite derivation during the past few years. Two ap-
proaches have been identified for SDL: automatic derivation, and test derivation
based on simulation.
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12.4.2 Automatic Test Derivation

Automatic test derivation uses techniques developed from hardware testing, or
techniques similar to the ones used in validation (e.g. state-space exploration).
The main characteristic of the approach is that a representation of the externally
observable behaviour of the system is computed. From this representation the
test suite is then automatically generated. The limitation of the approach in the
context of SDL is that the techniques used to compute the observable behaviour
impose restrictions on which SDL constructs can be used.

One example of a technique used to compute observable behaviour is based
on finite state machines. The processes in the system are transformed into a
set of finite state machines which then are composed in order to compute their
observable behaviour. Since the semantics of SDL uses extended finite state
machines, it is not possible in general to perform this transformation. Currently,
there are no available tools that can directly and automatically generate test
suites from SDL specifications.

12.4.3 Simulator-Assisted Test Derivation

The use of a simulator can assist the test derivation process in different ways.
The test designer can become familiar with the behaviour of the specification
by using a simulator. Once it is known which behaviours are appropriate to
test, the simulator can assist the derivation of the test cases by interactively
‘walking-through’ the specification. Although SDL simulators are commercially
available, interactive simulation is hard and time-consuming if the specification
is complex.

Test derivation can also be partly automated by the use of a ‘special purpose’
simulator. In this case, the test designer guides test generation by interactively
making decisions as to which behaviour to test, but the actual test generation
is performed automatically. There are several research prototypes of this kind
of simulator, so the technique will probably be available within a few years.

12.5 Tools

Tool support is highly desirable for effective use of an FDT. The kind of tool
support depends on the characteristics of the FDT and on the type of activities
for which the FDT is to be used. Tools for SDL can be classified as follows, the
order below indicating their time of appearance.

Graphical Editor: This kind of tool emerged first, since SDL was used rather
informally in the beginning. The major concern was handling the ever-
popular SDL diagrams, whose creation and update requires great effort.
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Static Analyser: This checks syntactic and static correctness using the tex-
tual representation. Conversion from graphical to textual representation
is therefore normally part of the static analyser.

Document Generator: SDL specifications are only a subset of the complete
documentation of a system. This kind of tool converts SDL specifications
to documents according to the in-house rules of an organisation.

Syntax Converter: Textual representation is used as a standard exchange
format between tools from different tool makers. In such cases a syntax
converter may be necessary to convert from the textual representation to
the graphical representation. This is not an easy task, and most tool
makers do not provide this kind of conversion.

Simulator: Simulation tools allow interactive execution/animation of an SDL
specification in order to gain a better understanding of dynamic properties.

Dynamic Analyser: This checks if some given dynamic properties are true of
an SDL system.

Code Generator: Within industry, the main emphasis is on handling detailed
implementation descriptions as a basis for producing system instances. A
largely automatic translation from SDL specifications to implementation
descriptions is therefore a prerequisite for broad industrial use of SDL.
A code generator produces programs in a chosen programming language
from an SDL specification.

A good knowledge of SDL tools can be acquired at the biennial SDL Forum.
Initially, many papers were presented at this conference on tools, partly to
discuss design problems and partly to advertise. Nowadays, such papers are
not accepted; instead the tool makers are encouraged to give demonstrations
at the Forum and to provide informative material. Figure 12.2 is based on the
demonstrations given at the fifth SDL Forum in 1991. Since some tool makers
were unable to attend the Forum, the list is not claimed to be a full one. The
summary in the figure is also necessarily rather brief.
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Name Owner Environment Features Avail.

CROCOS CRIN-CNRS, INRIA
Lorraine (France)

Sun Graphical editor, static analyser and dynamic
analyser; needs Concerto

No

EDDIE/DOC CPqD, Telebras
(Brazil)

IBM PC, Sun Graphical editor, document generator Yes

ESCORT KDD Laboratories
(Japan)

Sun Graphical editor, static analyser, document gen-
erator, simulator, dynamic analyser, MSCs se-
mantically linked to specifications

No

GEODE Verilog (France) HP 9000, IBM RS
6000, Sun, VaxStation,
X-Terminal

Graphical editor, static analyser, document gen-
erator, syntax converter, simulator, dynamic
analyser, C/Ada code generator, MSCs seman-
tically linked to specifications

Yes

GTS BT Laboratories
(UK)

Sun Test specifications and code generator for vali-
dated protocol specifications

No

MELBA RMIT (Australia) IBM PC, Sun Graphical editor, static analyser, dynamic anal-
yser, C code generator

Yes

RIGA-SDL University of Latvia
(Latvia)

IBM PC Graphical editor, static analyser, dynamic anal-
yser, Pascal code generator, MSC editor

Yes

SDL Environment Private Individual
(UK)

HP 9000, IBM RS
6000, Sun, VaxStation

Graphical editor, static analyser, syntax con-
verter; needs Concerto

Yes

SDL-Tool Jutland Telephone
(Denmark)

IBM PC Graphical editor, static analyser, MSC editor Yes

SDT Telelogic (Sweden) HP 9000, IBM PC,
IBM RS 6000, Sun,
VAX

Graphical editor, static analyser, document gen-
erator, syntax converter, simulator, dynamic
analyser, C code generator

Yes

SIGRAPH-SET Siemens Nixdorf Inf.
(Germany)

Apollo, HP 9000, SNI
Workstation

Graphical editor, static analyser, simulator, C
code generator, MSC editor

Yes
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Part IV

Appendixes

This part of the book contains reference material for the rest of the book.
Individual appendixes in this part are as follows:

Appendix A lists references and gives other sources of information on FDTs.

Appendix B is an index to the main components of each example specification.

Appendix C is the main index.
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A.2 Other Sources of Information

The following information is correct at time of publication, but may change in
future.

Most computer science journals, particularly those dealing with data com-
munications, feature papers on FDTs from time to time. There are two annual
conferences that devote a large part of their proceedings to FDTs: PSTV (Pro-
tocol Specification, Testing and Verification) and FORTE (Formal Techniques).
Both are sponsored by IFIP WG6.1, whose chairman circulates a regular elec-
tronic newsletter:

Dr. Harry Rudin
IBM Research Division
Zurich Research Laboratory
Saumerstraße 4
CH-8803 Rüschlikon
SWITZERLAND

Electronic Mail: csaddr.ifip-6-1-request@bbn.com (newsletter requests)
hr@zurich.ibm.com (personal enquiries)

The SDL Forum takes place every two years, and acts as an important means
of reporting SDL activities. There are also newsletters for FDT users. For more
information contact:

Dr. R. L. Tenney
Estelle Newsletter Editor
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Department of Mathematics and Computer Science
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70 Bow Road
Belmont MA 02178
USA

Electronic Mail: rlt@cs.umb.edu

Prof. K. J. Turner
Lotos Newsletter Editor
Department of Computing Science and Mathematics
University of Stirling
Stirling FK9 4LA
SCOTLAND

Electronic Mail: kjt@compsci.stirling.ac.uk

Mr. F. Belina
SDL Newsletter Editor
Telia Research AB
PO Box 85
Hjälmaregatan 3
S-201 20 Malmö
SWEDEN

Electronic Mail: ferenc.belina@malmo.trab.se

There are many groups world-wide who develop and use FDT tools, so it is dif-
ficult to single out any particular groups for mention. However, the individuals
below have agreed to help readers of this book by acting as initial contact for
information on tools to support a particular FDT.

Dr. R. L. Tenney
Estelle Tools Contact
Department of Mathematics and Computer Science
University of Massachusetts
70 Bow Road
Belmont MA 02178
USA

Electronic Mail: rlt@cs.umb.edu

Prof. J. A. Mañas
Lotos Tools Contact
Departmento Ingenieria Telematica
ETSI Telecomunicacion
Polytechnic University of Madrid
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E-28040 Madrid
SPAIN

Electronic Mail: lotos@dit.upm.es (general Lotos enquiries)
jmanas@dit.upm.es (personal enquiries)

Mr. O. Færgemand
SDL Tools Contact
TFL
Lyngso Alle 2
DK-2970 Horshølm
DENMARK

Electronic Mail: ove@tfl.dk



B Index to Formal Descriptions

The following is an index for the example formal descriptions, referencing each
major specification component (e.g. type, channel, procedure, process, block,
module).
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Abracadabra Protocol
in Estelle 270–288
AbraProtocol 274
AbraProtocolBody 274
BuildAK 284
BuildCC 283
BuildCR 283
BuildDC 284
BuildDR 284
BuildDT 283
InitVar 275
MediumBlocked 287
MSAP 274
PeerCode 274
ReceiverBlocked 287
SSAP 273
Station 274
StationBody 275
TransCode 283
TransCodeBody 283
UnreliableMedium 274
UnreliableMediumBody 274
User 274
UserBody 274

in Lotos 288–313
AnyMSP 309
ASAP 290
ASDU 290
ASP 291
Connection 300
Coordination 299
Count 295
DiscConditions 309
Disconnection 306
Error 308
FIFO 302
LowerAssociation 297
MSAPs 293
MSPs 293
Noticer 300
OneConnection 296
PDUs 293
Protocol 296
Receiver 305

Sender 303
SeqNo 292
Stick 297
Timer 295
TimerEvent 295
Transfer 302
TryConnect 301
TryDisconnect 307
TrySend 304
UpperAssociation 296

in SDL 313–324
Abracadabra 314
Bit 314
PduType 314
SenderReceiver 316–321
Station 315
Transcode 322–323
UnitDataType 314
UserDataType 314

Abracadabra Service
in Estelle 232–240
AbraService 234
AbraServiceBody 234
Internal 233
SAPManagerA 234
SAPManagerB 236
SAPManagerBodyA 234
SAPManagerBodyB 237
SSAP 233
User 234
UserBody 234

in Lotos 240–255
Addressing 249
ASAP 242
ASDU 243
ASP 243
Assoc 253
Association 249
BackPressure 255
BasicMedium 250
CEP 247
CEPs 247
Connection 247
DataTransfer 248
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Disconnect 248
DisconnectedMedium 251
Medium 252
Object 245
PrimitiveOrdering 248
SetOfASAP 243
TransferIn 254
TransferOut 254

in SDL 255–263
AbraService 256
Bit 256
SAPManagerA 258
SAPManagerB 258
SAPManagerDef 259–262
Serv 257
UserDataType 256

Daemon Game
no daemon, in Estelle 136–140
Game 137
GameBody 137
GameServer 137
Manager 137
ManagerBody 137
Player 137

no daemon, in Lotos 145–147
Game 147
Identifier 146
IdentifierSet 146
Integer 146
NoGame 146
Signal 146
System 146

no daemon, in SDL 157–164
DaemonGame 158, 162
Game 159, 161–163
GameServer.in 158, 162
GameServer.out 158, 162
Monitor 160, 162
Pidset 160, 163

with daemon, in Estelle 129–
136

Daemon 132
DaemonServer 131

Distributor 132
DistributorBody 132
Game 132
GameBody 133
GameServer 131
Manager 132
ManagerBody 132
Player 132

with daemon, in Lotos 140–145
Daemon 145
Game 144
Identifier 142
IdentifierSet 142
Integer 142
NoGame 143
Signal 143
System 143

with daemon, in SDL 148–157
DaemonGame 149, 150
DaemonServer 154
Game 151, 153, 154, 156
GameServer.in 149, 150
GameServer.out 150, 154
Monitor 152, 155
Pidset 152, 155

Lift Controller
in SDL
car 386
close door 391
control 387
direction 385
floor 385
floor indicator 385
floors 387
lift 384
maint 390
maintenance 387
open door 391
reservations 385

Sliding Window Protocol
in Estelle 187–195
BuffFree 190
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BuffRetrieve 190
BuffSave 190
Corrupted 191, 193
PDUAK 193
PDUDT 191
PDURetrieve 193
PDUSave 193
Receiver 192
ReceiverBody 193
ReceiverUser 189
ReceiverUserBody 189
Rx 189
RxUser 189
Time 189
Timer 190
TimerBody 190
Transmitter 190
TransmitterBody 190
TransmitterUser 189
TransmitterUserBody 189
Tx 189
TxUser 188
UM 189
UMBody 190
UserData 193

in Lotos 195–214
AckRec 208
AllTimers 205
AnyTimer 205
DeliverMessages 213
EnrichedNat 201
Identification 205
IgnoreAckedAck 210
IgnoreCorruptedPDU 210
IgnoredPDU 214
LocalConstraints 203, 212
MGate 203, 204, 212
MSAPs 201
MSPs 201
NatMinus 214
NaturalMod 206
PDUCorrectness 210
PDUQueue 206
PDUs 200

PDUSet 211
PDUSet1 211
PDUSetIndexed 211
Receiver 212
Receiver1 213
ReceiverEntity 210
ReleaseQueue 208
Retransmission 209
SendAck 214
Sender 208
SGate 203, 212
SSAPs 198
SSDUs 199
SSPs 199
TimeOut 209
Timer 205
TimerSignal 204
Transmitter 207
TransmitterConstraints 204
TransmitterEntity 203

in SDL 214–226
AckCrc 217
Bit 226
BitString 226
DataCrc 217
DeliverMessages 225
MsgBuf 217
MsgQueue 226
MsgReceived 226
Queue 216
Receiver 222
ReceiverEntity 219
ReleaseTimers 223
Retransmit 224
Rsn 217
SeqnoType 217
SlidingWindowProtocol 218
Transmitter 220–221
TransmitterEntity 219
Tsn 217

Two-Key System
in Lotos 80–83, 366–371

Unreliable Medium
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in Estelle 166–170
dequeue 168
enqueue 168
initqueue 168
isempty 168
mung 168
Rx 167
Tx 167
UM 168
UMBody 168

in Lotos 170–175
Bag 174
HalfTransfer 173
MSAPs 172
MSPs 172
Objects 174
SDUs 172
Transfer 173

in SDL 175–180
AckCRC 176
AckHazard 177
AckManager 179
Bit 176
BitString 176
DataCRC 176
MedMsgQueue 176
Medium 177
MediumAck 176
MediumMessage 176
MedMsgQueue 176
MsgHazard 177
MsgManager 178
Queue 176
Seqno 176
UnreliableMedium 176
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C Index

Compound nouns are indexed under the main noun, but also under subsidiary
words where relevant; for example, ‘child module’ is indexed under ‘module’
but also under ‘child module’. Acronyms are indexed under the abbreviation
but are cross-referenced from the full form; for example, ‘Specification and
Description Language’ is indexed under ‘SDL’. Specification identifiers are listed
separately, printed in italics. Keywords are listed separately, printed in bold.
Non-alphabetic entries in the index are mainly sorted according to their ASCII
code.
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! 72, 119
′ 116
′′ 118
( 91
) 91
(. 120
.) 120
* 100, 101
- 108
. 88
... 40, 330
/* 90
*/ 90
// 116, 117
/= 117
: 75
:= 104
; 51, 59
= 68
= 117
== 117
==> 118
>> 57, 76
? 72
[ 91
[> 58
[] 51, 59
] 91
88

|[...]| 55
|| 56, 61
||| 55, 61

Abracadabra Protocol 125, 265–325
conclusions 324–325
errors in informal description

269–270
in Estelle 270–288
AbraProtocol 274
AbraProtocolBody 274
BuildAK 284
BuildCC 283
BuildCR 283
BuildDC 284

BuildDR 284
BuildDT 283
InitVar 275
MediumBlocked 287
MSAP 274
PeerCode 274
ReceiverBlocked 287
SSAP 273
Station 274
StationBody 275
TransCode 283
TransCodeBody 283
UnreliableMedium 274
UnreliableMediumBody 274
User 274
UserBody 274

in Lotos 288–313
AnyMSP 309
ASAP 290
ASDU 290
ASP 291
Connection 300
Coordination 299
Count 295
DiscConditions 309
Disconnection 306
Error 308
FIFO 302
LowerAssociation 297
MSAPs 293
MSPs 293
Noticer 300
OneConnection 296
PDUs 293
Protocol 296
Receiver 305
Sender 303
SeqNo 292
Stick 297
Timer 295
TimerEvent 295
Transfer 302
TryConnect 301
TryDisconnect 307
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TrySend 304
UpperAssociation 296

in SDL 313–324
Abracadabra 314
Bit 314
PduType 314
SenderReceiver 316–321
Station 315
Transcode 322–323
UnitDataType 314
UserDataType 314

informal description 265–269
Abracadabra Service 125, 229–264

conclusions 263–264
errors in informal description

231–232
in Estelle 232–240
AbraService 234
AbraServiceBody 234
Internal 233
SAPManagerA 234
SAPManagerB 236
SAPManagerBodyA 234
SAPManagerBodyB 237
SSAP 233
User 234
UserBody 234

in Lotos 240–255
Addressing 249
ASAP 242
ASDU 243
ASP 243
Assoc 253
Association 249
BackPressure 255
BasicMedium 250
CEP 247
CEPs 247
Connection 247
DataTransfer 248
Disconnect 248
DisconnectedMedium 251
Medium 252
Object 245

PrimitiveOrdering 248
SetOfASAP 243
TransferIn 254
TransferOut 254

in SDL 255–263
AbraService 256
Bit 256
SAPManagerA 258
SAPManagerB 258
SAPManagerDef 259–262
Serv 257
UserDataType 256

informal description 229–231
Abstract Data Type, see ADT
Abstract Syntax Notation 1, see

ASN.1
accept 76
acceptance test 357, 368
action

denotation 73
prefix 51, 59

active 111, 116
Act One 47, 63
actual parameter 74, 99
actualisation 71
Ada 363
ADT (Abstract Data Type) 6, 47, 63

see also type
aggregator 355
all 43, 103, 104
alphabet 376
analyser 394
ancestor module 24
annotation 371
answer 104, 106
any 33–35, 41, 75, 116, 121, 329
architectural phase 343
Array 118
ASN.1 (Abstract Syntax Notation 1)

124, 330
assessment 344, 360, 361, 364
assignment statement 104
attach 23, 41, 42
auxiliary operation 355
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axiom 104, 114, 117
axiomatic variable 117

back-end tool 13
Basic Lotos 50
behaviour

conditional 73
expression 49, 50
non-deterministic 52
observable 47, 49
tree 50

binding 23
black box 48
block 91, 373

components 375
diagram 91
partitioning 375
reference 91
substructure diagram 91

book-keeping tool 12
Boolean 66, 115, 116, 353
branch 106

C 338, 363, 371
Calculus of Communicating Sys-

tems, see CCS
call 103
canonical form 64
case 39
CCITT (Comité Consultatif Inter-

national de Télégraphe et
Téléphone) xx, 4

CCS (Calculus of Communicating
Systems) 47

channel 19, 22, 91, 374
declaration 30
substructure 94
substructure reference 94

Char 116
character

string 104
Charstring 116, 118
child module 24
choice 51, 59

generalised 77
class 26
code generator 397
combination 67
Comité Consultatif International de

Télégraphe et Téléphone,
see CCITT

comment symbol 89
Communicating Sequential Pro-

cesses, see CSP
compiler 365
complete process specification 381
conceptual definition 345, 347, 363
conditional

behaviour 73
equation 68, 118

conformance 360
testing 395–396

connect 23, 41
connection point 92
connector 108
constant 118, 355
constraint-oriented style 61, 350,

352
constructor 353, 355, 382
context variable 20
continuous signal 100, 102
correctness-preserving transforma-

tion 348
CRC (Cyclic Redundancy Check)

180, 216
create

body 106
symbol 106

create 103
CSP (Communicating Sequential

Processes) 47
Cyclic Redundancy Check, see CRC

δ 54, 356
Daemon Game 28, 125, 127–164

conclusions 164
development using Estelle

329–337
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errors in informal description
128–129

informal description 127
no daemon, in Estelle 136–140
Game 137
GameBody 137
GameServer 137
Manager 137
ManagerBody 137
Player 137

no daemon, in Lotos 145–147
Game 147
Identifier 146
IdentifierSet 146
Integer 146
NoGame 146
Signal 146
System 146

no daemon, in SDL 157–164
DaemonGame 158, 162
Game 159, 161–163
GameServer.in 158, 162
GameServer.out 158, 162
Monitor 160, 162
Pidset 160, 163

with daemon, in Estelle 129–
136

Daemon 132
DaemonServer 131
Distributor 132
DistributorBody 132
Game 132
GameBody 133
GameServer 131
Manager 132
ManagerBody 132
Player 132

with daemon, in Lotos 140–145
Daemon 145
Game 144
Identifier 142
IdentifierSet 142
Integer 142
NoGame 143

Signal 143
System 143

with daemon, in SDL 148–157
DaemonGame 149, 150
DaemonServer 154
Game 151, 153, 154, 156
GameServer.in 149, 150
GameServer.out 150, 154
Monitor 152, 155
Pidset 152, 155

data type, see type
debugger 349
decision 104, 380

symbol 106
decision 103
delay 22
delay 33, 35
descendant module 24
design

phase 343
step 10, 343, 344
using FDTs 9

detach 23, 41
development 9, 327–397
disabling 58
disconnect 23, 41
disruption 58
distributed system 393
document generator 397
Duration 109, 116, 119
dynamic analyser 397

EDB (ESTELLE Debugger) 339
editor 349
enabling 57, 59, 76

condition 100, 102
end 44
endnewtype 119
endproc 49
endspec 79
endsyntype 118
endtype 65
env 95
environment 48, 95
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eqns 65
equation 64, 117, 383

conditional 68, 118
model 63
quantified 117
unquantified 118

ERS (Existential Refusal Set) 359
Estelle (Extended Finite State

Machine Language) 4
and Pascal 39
automaton basis 18
case 39
code generation 330
development 327–340
implementation 335
in brief 6
origins 17
philosophy 17
refinement 329
testing 337
tools 45, 337
tutorial 17–45
tutorials 45
validation 330

Estelle Debugger, see EDB
Estelle Work Station, see EWS
Estim 339
event 49

gate 48
internal 52
structured 72, 81
unobservable 57

EWS (ESTELLE Work Station) 327
examples

Abracadabra Protocol 265–325
Abracadabra Service 229–264
Daemon Game 127–164
how to read 125
index to formal descriptions 126,

409
informal descriptions 126
Lift Controller 384–391
Sliding Window Protocol 183–

227

structure 125
Two-Key System 58–63
Unreliable Medium 165–181

exist 44
existential refusal set test 359
Existential Refusal Set, see ERS
exit 54, 59, 76

value list 75
experiment offer 72
export 104, 113
exported 114
expression 115
extended automata-oriented style

83, 350, 352
extended finite state automaton 86,

396
Extended Finite State Machine Lan-

guage, see Estelle

extension 66, 347, 359, 360
external 330
external enrichment 370
Extract! 119
extractor 355

FDT (Formal Description Tech-
nique) 3

and standards 5
applicability 5, 14
examples 6
future development 14
in development 9
method 14
newsletter contacts 406
publications 406
purpose 5
tools 12
tools contacts 407

FIFO (First-In First-Out) 336
File Transfer And Manipulation, see

FTAM
finite state automaton 18, 86
firing 21
First 116
First-In First-Out, see FIFO
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Fix 116
Float 116
formal

design 344
language 8
parameter 74, 98, 111
process specification 370, 382

Formal Description Technique, see
FDT

Formal Techniques, see FORTE
formalisation 345
formality

reasons for 3
forone 43
FORTE (Formal Techniques) xx,

406
fpar 95
from 33, 35
front-end tool 13
FTAM (File Transfer And Manipu-

lation) 330
Full Lotos 50, 72
full synchronisation 56
function 40

as operation 64
partial 68

functionality 75
decomposition 347
extension 347
of process 49
rearrangement 347
reduction 347

gate 48, 49
identifier 49
list 49

general
parallel 55

generalised
choice 77
parallel 79

generator 118
goto 44
GR (Graphical Representation) 85

graphical editor 397
Graphical Representation, see GR
guard 73, 83

hand-coding 348
HHDL 363
hide 57, 63
hiding 57, 63
holophrasting 329

i 52
IEC (International Electrotechnical

Commission) xx, xxiii
IFIP (International Federation for

Information Processing) 406
imperative operator 116
implementation 8, 344, 362, 391–393

environment 365
kernel 338
phase 343
relation 359
test-bed 366

import 114
import 113, 116
in 76, 111
in-connector 108
in/out 111
inaction 50, 54
index

to formal descriptions 409
to self 421

index 116, 117
infix notation 115
informal

process specification 370, 380
text 90, 104

inheritance 119, 121
init 41
initialize 41
input

list 101
port 98, 100
set 98
symbol 100
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input 98
instantiation 49
instructor’s disc xix
Integer 114, 116
interaction 18, 49

point 18
interleaving 55, 61
internal

enrichment 370
event 52

International Consultative Commit-
tee on Telegraphy and Tele-
phony, see CCITT

International Electrotechnical Com-
mission, see IEC

International Federation for Infor-
mation Processing, see IFIP

International Organization for Stan-
dardization, see ISO

International Telecommunication
Union, see ITU

ISO (International Organization for
Standardization) xx, 4

ISO 8807, see Lotos

ISO 9074, see Estelle

ISP 363
ITU (International Telecommunica-

tion Union) xxiii

keyword 88

labelled transition system 363
Language Of Temporal Ordering

Specification, see Lotos

Last 116
Length 116
let 77
library 64
life-cycle 344
Lift Controller 384–391

in SDL
car 386
close door 391
control 387

direction 385
floor 385
floor indicator 385
floors 387
lift 384
maint 390
maintenance 387
open door 391
reservations 385

informal description 384
list separator 86
literal 114, 115, 118, 382
local value 76
LOLA (LOTOS Laboratory) 349, 368
Lotos (Language Of Temporal Or-

dering Specification) 4
Basic 50
development 343–371
Full 50, 72
in brief 7
Laboratory, see LOLA
tutorial 47–83

macro 95
call symbol 95

Make! 119
map 355
may

response 357
sequential test 357–359
test 357

Mentor 338
Message Sequence Chart, see MSC
MetaLanguage, see ML
method 14
Mira 337
MkString 116
ML (MetaLanguage) 338
modal

calculus 362
verifier 362

model 9
Modify! 119
Modula 2 363
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module 18
ancestor 24
body 32
child 19, 24
declaration 31
descendant 24
hierarchy 24
initialisation 26
interaction 26
outermost 31
parent 19, 24
sibling 24

monitor process 106
monolithic style 350
MSC (Message Sequence Chart) 374,

377
multi-way synchronisation 56
must

response 357
test 368

name 88
Natural 116
natural language 8
NaturalNumber 66, 353
newsletter contacts 406
newtype 118
NeXT xxi
nextstate symbol 107
noexit 76
non-constructor 353, 383
non-determinism 52, 121
non-functional property 363, 392,

393
none 121
normal form 64
now 109, 111, 116
Null 87

object-oriented structuring 121
observable behaviour 47
occam 363
offspring 87, 103, 116
ofsort 65

Open Systems Interconnection, see
OSI

operation 64
operator 114, 115, 118, 382

imperative 116
overloading 115
priority 115
signature 117

opns 65
ordering 119
OSI (Open Systems Interconnection)

4
out-connector 108
output 86

body 103
set 98
symbol 103

output 42, 103
overloading 115

package 121
PAL 363
parallel composition 55
parameter

actual 74, 99
formal 74, 98
list 49

parameterisation
of process 74, 83
of type 70

parameterised expansion 347, 349
parent 87, 103, 116
parent module 24
partial function 68
Pascal 336, 338

and Estelle 39
Phrase Representation, see PR
PId (Process Identity) 87, 101, 103,

116
PId 116
PIPN 340
Powerset 118
PR (Phrase Representation) 85
prefix notation 115
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premiss 68, 73
pretty printing 329
primitive 40, 330
priority 365

of operators 115
priority 33, 35
procedure 40, 107, 111, 377

call body 107
call symbol 107
formal parameter 111
graph 111
heading 111
parameter 111

process 47, 86, 98, 375
diagram 98
functionality 49
graph 99, 111
heading 98
identifier 49
initial numbers 98, 106
input port 98
input-set 98
instance 86, 99, 376
instantiation 49
lifetime 98
maximum numbers 98
monitor 106
output-set 98
parameter 98
parameterisation 74, 83
recursion 53
reference 94

process 49, 59
Process Identity, see PId
property 117
Protocol Specification, Testing and

Verification, see PSTV
protocol synthesis 349
prototyping 344, 362
provided 33, 35
PSTV (Protocol Specification, Test-

ing and Verification) 406
pure 40
pure interleaving 55

quantified equation 117
question 104, 106
queue 19

discipline 32

rapid prototyping 344
Real 109, 116
realisation phase 343
recogniser 355
recursion 53
reduction 359, 360
reference symbol 88
refusal set test 357–359, 369
rejection test 357, 369
release 24, 41
renaming 69
repetition 53
requirements capture phase 343
reset 103, 104, 110
resource-oriented style 351, 352, 369
return symbol 111
reveal 113
revealed 114
rewrite rule 64

same 38
save 98, 100, 101
save symbol 101
scope 79, 88
SDL (Specification and Description

Language) 5
communication 87
development 369–397
enrichment 370
evolution 85
Forum 406
general model 86
in brief 7
informal text 104
nested structures 88
SDL-88 85, 103, 104, 119, 121,

180
SDL-92 93, 103, 104, 118, 119,

121–124, 180
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specification purpose 392
symbol summary 122–123
tools summary 397
tutorial 85–124

SED (SEDOS ESTELLE Demonstrator)
327

Sedos (Software Environment for
the Design of Open dis-
tributed Systems) 327

Sedos Estelle Demonstrator, see
SED

selection predicate 73, 81
self 87, 103, 116
sender 87, 101, 103
sequential

composition 57
test 358

service 89
set 103, 104, 110
sibling module 24
signal 87, 91, 374

continuous 100, 102
identifier 103
list 91
list definition 91
priority 102
route 91, 93, 375

signallist 91
signature 117, 372, 382
simulator 339, 349, 394, 396, 397
skeleton process specification 370,

377
Sliding Window Protocol 125, 183–

227
conclusions 226–227
errors in informal description

185–187
in Estelle 187–195
BuffFree 190
BuffRetrieve 190
BuffSave 190
Corrupted 191, 193
PDUAK 193
PDUDT 191

PDURetrieve 193
PDUSave 193
Receiver 192
ReceiverBody 193
ReceiverUser 189
ReceiverUserBody 189
Rx 189
RxUser 189
Time 189
Timer 190
TimerBody 190
Transmitter 190
TransmitterBody 190
TransmitterUser 189
TransmitterUserBody 189
Tx 189
TxUser 188
UM 189
UMBody 190
UserData 193

in Lotos 195–214
AckRec 208
AllTimers 205
AnyTimer 205
DeliverMessages 213
EnrichedNat 201
Identification 205
IgnoreAckedAck 210
IgnoreCorruptedPDU 210
IgnoredPDU 214
LocalConstraints 203, 212
MGate 203, 204, 212
MSAPs 201
MSPs 201
NatMinus 214
NaturalMod 206
PDUCorrectness 210
PDUQueue 206
PDUs 200
PDUSet 211
PDUSet1 211
PDUSetIndexed 211
Receiver 212
Receiver1 213
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ReceiverEntity 210
ReleaseQueue 208
Retransmission 209
SendAck 214
Sender 208
SGate 203, 212
SSAPs 198
SSDUs 199
SSPs 199
TimeOut 209
Timer 205
TimerSignal 204
Transmitter 207
TransmitterConstraints 204
TransmitterEntity 203

in SDL 214–226
AckCrc 217
Bit 226
BitString 226
DataCrc 217
DeliverMessages 225
MsgBuf 217
MsgQueue 226
MsgReceived 226
Queue 216
Receiver 222
ReceiverEntity 219
ReleaseTimers 223
Retransmit 224
Rsn 217
SeqnoType 217
SlidingWindowProtocol 218
Transmitter 220–221
TransmitterEntity 219
Tsn 217

informal description 183–185
SmallTalk 340
Software Environment for the De-

sign of Open distributed
Systems, see Sedos

software life-cycle 344
sort 64, 87, 104, 114

definition 117
identifier 115

ordering 119
predefined 116

sorts 65
specification 8

in formal language 8
in natural language 8
language 8
style 348–356
style for data types 353
style guidelines 351

specification 49, 79
Specification and Description Lan-

guage, see SDL
spiral model 344
spontaneous transition 100, 121
standard

for FDT 4
use of FDT 5

start procedure symbol 111
start symbol 99
state 86

control 20
list 100
machine
extended 86
finite 86

major 20
set 38
symbol 100, 107
transition 86

state-oriented style 350
state-space exploration 394
static analyser 397
stepwise refinement 343, 366
stop 50, 54
stop symbol 99
String 118
struct 119
structure sort 119
structuring 19, 24
style 348–356

for data types 353
guidelines 351

subblock 92, 375
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SubString 116
substructure 91
subtype 121
Succ 66
supertype 121
synchronisation 49, 61

multi-way 56
parallel construct 56

synonym 115, 377
Syntax 338
syntax converter 397
syntype 118
system 371

boundary 371
structure 373

systemactivity 41
systemprocess 41

task 104, 380
of Lotos design method 344–

346, 360, 362
symbol 104

task 103
technology-specific design 363
term rewriting 383
terminate 24, 41
test

case 395
composition 356
derivation 396
generator 362, 366
suite 395

test-bed 362
testing equivalence 347, 356, 357,

364, 370
text

extension symbol 90
informal 90
symbol 89, 91

TI-HDL 363
Time 109, 116
time 365

supervision 377
timeout 52

timer 109, 377
identifier 110

to 33, 35, 104
tools 14, 397

analyser 394
back-end 13
book-keeping 12
code generator 397
compiler 365
contacts 407
debugger 349
document generator 397
dynamic analyser 397
editor 349
for Estelle 45
for FDTs 12
front-end 13
graphical editor 397
implementation
environment 365
test-bed 366

modal verifier 362
SDL summary 397
simulator 349, 394, 396, 397
static analyser 397
syntax converter 397
test generator 362, 366
test-bed 362
transformational environment

349
verifier 13, 362, 394

transformation 348
transition 33, 86

clause 33
delay 22
firing 21
name 36
nesting 36
ordering 38
spontaneous 22, 100, 121
timing 22

Tree and Tabular Combined Nota-
tion, see TTCN
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TTCN (Tree and Tabular Combined
Notation) 395

Two-Key System 58–63, 80–83, 366–
371

in Lotos 80–83, 366–371
refinement 368–371
requirements 366

type 118
actualisation 71
basic Lotos 65
combination 67
definition 64
extension 66
global 79
library 64
local 79
parameterisation 70
renaming 69

type 65

unbinding 23
undecided value 121
Unix 329, 338
unquantified equation 118
Unreliable Medium 125, 165–181

conclusions 181
errors in informal description

165–166
in Estelle 166–170
dequeue 168
enqueue 168
initqueue 168
isempty 168
mung 168
Rx 167
Tx 167
UM 168
UMBody 168

in Lotos 170–175
Bag 174
HalfTransfer 173
MSAPs 172
MSPs 172
Objects 174

SDUs 172
Transfer 173

in SDL 175–180
AckCRC 176
AckHazard 177
AckManager 179
Bit 176
BitString 176
DataCRC 176
MedMsgQueue 176
Medium 177
MediumAck 176
MediumMessage 176
MedMsgQueue 176
MsgHazard 177
MsgManager 178
Queue 176
Seqno 176
UnreliableMedium 176

informal description 165

validation 394–395
value

generation 73
matching 73
passing 73

var 40
variable 114

attribute 114
axiomatic 117

verification 357, 361
verifier 13, 362, 394
VHDL 363
view 113
view 113, 116

waterfall model 9, 344, 345
when 33
white box 347
word 88

Z.100, see SDL


