
Department of Computing Science and Mathematics
University of Stirling

An Integrated Methodology for Creating Composed
Web/Grid Services - Technical Report

Koon Leai Larry Tan

Technical Report CSM-186

ISSN 1460-9673

October 2010

Department of Computing Science and Mathematics
University of Stirling

An Integrated Methodology for Creating Composed
Web/Grid Services - Technical Report

Koon Leai Larry Tan

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44 1786 467 421, Facsimile +44 1786 464 551
Email klt@cs.stir.ac.uk

Technical Report CSM-186

ISSN 1460-9673

October 2010

Abstract

This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid
services. Web and grid services can be composed to create new services with complex behaviours. The BPEL
(Business Process Execution Language) standard was created to enable the orchestration of web services, but
there have also been investigation of its use for grid services. BPEL specifies the implementation of service
composition but has no formal semantics; implementations are in practice checked by testing. Formal methods
are used in general to define an abstract model of system behaviour that allows simulation and reasoning about
properties. The approach can detect and reduce potentially costly errors at design time.

CRESS (Communication Representation Employing Systematic Specification) is a domain-independent, graph-
ical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS
had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), execut-
ing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing
in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools
to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended
the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new
domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and
MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work
has also extended CRESS to automate implementation of composed services using the more recent BPEL standard
WS-BPEL 2.0.

i

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 1

1.2.1 Services And Their Composition . 1
1.2.2 Design-Time Analysis of Service Compositions . 1
1.2.3 Implementation and Testing of Service Compositions . 1

1.3 Objectives . 2
1.3.1 Scope and Assumptions . 2

1.4 Achievements . 2
1.4.1 Supported Analysis . 3

1.5 Thesis Structure . 3

2 Background 4
2.1 Services . 4

2.1.1 Service-Oriented Architecture Concept . 4
2.1.2 Web Service Concepts . 5
2.1.3 Grid Service Concepts . 5

2.2 Service Description . 6
2.2.1 Data Definition . 6
2.2.2 Service Interface . 7
2.2.3 Service Resource . 8
2.2.4 Service Composition . 9
2.2.5 Evaluation . 10

2.3 Formalisation . 10
2.3.1 Introduction . 10
2.3.2 Formal Methods . 10
2.3.3 Techniques . 11
2.3.4 LOTOS . 12
2.3.5 Topo/Lola . 15
2.3.6 CADP . 15
2.3.7 Evaluation . 15

2.4 Implementation . 16
2.4.1 Web Services . 16
2.4.2 Grid Services . 16
2.4.3 Service Orchestration . 16
2.4.4 Evaluation . 17

2.5 Implementation Validation and Performance Evaluation . 18
2.6 Service Composition Methodologies . 18

2.6.1 Formalising Composed Services . 18
2.6.2 Implementing Composed Services . 20
2.6.3 Comparison With Related Work . 21

2.7 CRESS . 21

ii

2.7.1 CRESS Framework . 23
2.8 Summary . 23

3 An Integrated Methodology 26
3.1 Goals . 26
3.2 Methodology Overview . 26
3.3 Development Lifecycle of Composed Web/Grid Services . 28

3.3.1 Design . 28
3.3.2 Specification . 28
3.3.3 Formal Analysis . 29
3.3.4 Implementation . 30
3.3.5 Implementation Validation . 31

3.4 Evaluation . 32

4 Describing Composed Web/Grid Services 34
4.1 Introduction . 34
4.2 The Original CRESS Notation . 34

4.2.1 Rule Box . 35
4.2.2 Service Behaviour Description . 36
4.2.3 Service Configuration . 37
4.2.4 CRESS Diagram Editors . 38
4.2.5 Checking Service Description . 40

4.3 Extensions To The CRESS Notation . 40
4.3.1 Service Diagrams . 41
4.3.2 Service Configuration . 43

4.4 Extensions To CRESS Framework . 43
4.5 Evaluation . 44

5 Formalising Composed Web/Grid Services 47
5.1 Introduction . 47
5.2 Automatic Formalisation . 48

5.2.1 Original Translation Strategy . 49
5.2.2 Extended Translation Strategy . 53
5.2.3 Automatic Specification . 54

5.3 Rigorous Validation using MUSTARD . 54
5.3.1 Original MUSTARD Overview . 54
5.3.2 Extended MUSTARD . 56
5.3.3 Tool Design Overview . 56
5.3.4 Examples . 59

5.4 Formal Verification using CLOVE . 61
5.4.1 CLOVE Notation . 62
5.4.2 Tool Support . 65
5.4.3 Examples . 71
5.4.4 Tool Integration . 73

5.5 Evaluation . 74

6 Implementing Composed Web/Grid Services 75
6.1 Automatic Implementation . 75

6.1.1 Original Translation Strategy . 76
6.1.2 Extended Translation Strategy . 81

6.2 Compatibility . 84
6.2.1 Interworking of ActiveBPEL and GT4 . 84
6.2.2 SOAP-Level Message Harmonisation . 84

6.3 Validation using MINT . 85
6.3.1 MINT Notation . 85
6.3.2 Tool Support . 86

6.3.3 Examples . 91
6.3.4 Tool Integration . 92

6.4 Evaluation . 93

7 Case Studies 95
7.1 Introduction . 95
7.2 Development Of Composed Web Services . 95

7.2.1 Service Diagrams . 96
7.2.2 Partner Specification . 100
7.2.3 Partner Implementation . 102
7.2.4 MUSTARD Scenarios . 102
7.2.5 CLOVE Properties . 106
7.2.6 Formal Specification . 107
7.2.7 Formal Analysis . 108
7.2.8 Implementation . 111
7.2.9 Implementation Validation . 112
7.2.10 Evaluation Compared To Other Approaches . 114

7.3 Development of Allocator Composed Grid Service . 116
7.3.1 Service Diagrams . 116
7.3.2 Partner Specification . 117
7.3.3 Partner Implementation . 118
7.3.4 CLOVE Properties . 119
7.3.5 MUSTARD Scenarios . 120
7.3.6 Formal Specification . 120
7.3.7 Formal Analysis . 121
7.3.8 Implementation . 122
7.3.9 Implementation Validation . 122
7.3.10 Evaluation Compared To Other Approaches . 123

7.4 Evaluation . 125

8 Conclusions 126
8.1 Thesis Summary . 126
8.2 Evaluation . 126

8.2.1 Strengths and Weaknesses . 126
8.2.2 Future Work . 127
8.2.3 Concluding Remarks . 127

Bibliography 128

A CRESS to LOTOS Translation 135

B CRESS to WS-BPEL 2.0 Translation 138

List of Figures

2.1 Service Discovery and Consuming Services . 8
2.2 Desired Approach For Creating Composed Web/Grid Services 22
2.3 CRESS Goals Compatible With Proposed Approach . 22
2.4 CRESS Framework [103] . 23
2.5 CRESS Modules Dependency [103] . 25

3.1 Integrated Methodology Development Lifecycle For Composed Web/Grid Services 27
3.2 Partner Specification Using Generated Interface . 29
3.3 Include Partner Specification Directly . 30

4.1 CRESS Feature Diagram Example . 36
4.2 CRESS Web Service Domain Configuration Diagram . 38
4.3 CRESS Diagram Translation Approach . 38
4.4 CHIVE Window . 39
4.5 CHIVE Preferences Domain Configuration (web service) . 40
4.6 Dynamic Partner Example . 42
4.7 Type Ownership Example . 43

5.1 CRESS Translation Strategy . 49
5.2 MUSTARD Architecture . 58
5.3 Levels of Automated Validation Procedure . 59
5.4 CLOVE’s Generic Framework . 65
5.5 Levels of Automated Verification Procedure . 73

6.1 Web Service Deployment Plan . 76
6.2 Include Partner Service Implementation . 81
6.3 Grid Service Partner Deployment Plan . 83
6.4 MINT Approach to Automated Implementation Validation . 87
6.5 Integration of Implementation Validation Tools and Execution Approaches 93

7.1 Composite Web Service Development . 97
7.2 Lender CRESS Diagram . 98
7.3 Supplier CRESS Diagram . 99
7.4 Broker CRESS Diagram . 100
7.5 Web Service Configuration Diagram . 101
7.6 Automated Implementation Process for Lender, Approver and Assessor 112
7.7 Allocator CRESS Diagram . 117
7.8 Grid Service Configuration . 117
7.9 Implementation of Factory and Mapper . 122

v

Chapter 1

Introduction

The claim of this thesis is that an integrated approach with highly automated formalisation, implementation and
analysis can be applied to improve development of composite web/grid services. This thesis aims to show that,
through an integrated methodology, the development of composite services can benefit from systematic, rigorous
and highly automated development techniques and tools.

1.1 Motivation
Service-oriented computing allows web and grid services to be composed to create new services. There has been
significant development in the technologies that enable creation of web/grid services such as the BPEL (Business
Process Execution Language) standard [4, 6] that is widely supported [3, 76, 111]. BPEL is a language to describe
the orchestration or flow of web services, but can also be used for grid services [91]. Formal methods enable
specification, rigorous analysis and reasoning about systems. These methods are useful to detect errors in abstract
models. Although the advantages of formal methods are being acknowledged, BPEL however has no formal
semantics in its specification [25, 74]. As a form of analysis, service implementations can be tested with tools
such as those developed for web services. The thesis aims to provide an integrated methodology to develop
web/grid service compositions, with automated support for specification, implementation and analysis.

1.2 Context

1.2.1 Services And Their Composition
The service-oriented computing paradigm conceptualises functionality as services. Services are autonomous by
nature, and can be combined to build new services – an activity generally known as composition. Web/grid services
follow this paradigm, and allow service creation via composition. Languages have been defined to describe service
compositions; their implementations perform the actual enactment of composite services. The BPEL standard is
one of the most widely adopted approaches to orchestrate services [100]. Service composition is in attractive
business proposition, but results in service behaviour becoming increasingly complex.

1.2.2 Design-Time Analysis of Service Compositions
As services become more complex, for example by means of composition, it is important to ensure their cor-
rect behaviour. Analysing services at design time has the advantages of detecting and correcting errors prior to
development, thereby reducing the cost of correcting errors discovered during later development [100]. Formal
methods can be used to rigorously analyse the abstraction of service behaviour, validated and verify its properties
[25].

1.2.3 Implementation and Testing of Service Compositions
There has been significant development in the technologies that enable creation of composite web/grid services,
and also the activity of composing services in general. The BPEL specification is the result of standardisation of

1

a language for composing web services. There is no formal semantics in BPEL, and implementations are usually
analysed by testing [74].

1.3 Objectives
The goal of this work was to develop an integrated methodology for rigorous development of composite web/grid
services, with highly automated support for specification, validation, verification, implementation, and evaluation,
and with abstraction of the underlying code implementations and analysis techniques.

Building on the original CRESS toolset, the thesis work has aimed to achieve the goal in the following ways:

• provide an abstract but accessible notation for describing web and grid service compositions

• automate the formal specification of web/grid service compositions

• allow user to specify scenarios in a high-level way, and automate their validation

• allow user to specify properties in a high-level way, and automate their verification

• automate implementation and deployment of web/grid service compositions through support for the WS-
BPEL 2.0 standard for composed services, through automated deployment and execution using ActiveBPEL,
and through support for partner web and grid services through automated deployment and execution using
the AXIS tool and Globus Toolkit

• automate testing and performance evaluation of composite services and service partners, reusing the same
validation scenarios

1.3.1 Scope and Assumptions
The integrated methodology supports the description, specification, analysis and implementation of the service
behaviour. Factors outside service functionality (e.g. quality of service) are not considered and are therefore
not defined. Resource constraints, quality of service such as networking issues and failures, and timing aspects
(e.g. real-time constraints) are not supported in this work. The formalisation supports the specification, validation
and verification of functional behaviour only, and does not support performance aspects of the formal model.
Deadlock freedom, for example, means that the service behaviour is free from deadlock with respect only to the
service functionality, not considering factors such as resource limitations. It is assumed that there are no resource
constraints with regards to executing the analysis, such as memory to hold state space. The efficiency of the
analysis execution such as speed and time are not considered as part of the thesis goal, but the focus is on the types
of analysis that are automated with abstraction of underlying tools. Implementation validation can detect defects
with regard to externally observed behaviour expected of the target service. A specific timing aspect is supported
in implementation validation where it is possible to specify and check service response timeouts. Performance
evaluation supports the analysis of target services from an external perspective, executing sequential or concurrent
runs of the tests specified for implementation validation. Performance issues internal to the target service cannot
be specifically evaluated.

1.4 Achievements
The thesis work has developed an integrated methodology where developers have a rigorous highly automated and
high-level approach to design, specify, analyse, implement, and test web/grid service compositions. The CRESS
notation has been extended with capabilities to describe grid service composition, and with features for realising
practical service compositions. The scope of formal validation has been extended to service partners for more
thorough analysis. Formal verification of composite service behaviour has automated support, abstracting the un-
derlying techniques whilst exploiting their advantages. Well-known verification properties can be readily specified
through pattern templates. Implementations of web/grid service compositions are automatically generated for de-
ployment, supporting the latest WS-BPEL 2.0 standard. The same validation tests are reused for implementation
testing, with added support for performance analysis. The integration of this work into the CRESS environment
has resulted in a rigorous development methodology for composed web/grid services. The value of the approach
has been demonstrated through case studies.

2

1.4.1 Supported Analysis
Validation can be performed on composed and partner services, where user specifies the scenarios with success or
refuse assertions, which are are automatically validated. Trace diagnostics are provided when a scenario does not
pass validation.

The label transition system is automatically generated from the specification for verification. Deadlock and
livelock freedom are two properties is fully automated. Templates are provided for user to specify well-known
(response, safety, and liveness) properties, which will then be verified. Counterexample diagnostics are provided
when compromising properties are detected in behaviour of composed service.

Scenarios for specification are used to validate (black-box approach) service implementations. Trace diag-
nostics are provided when a scenario does not pass validation. Service timeout can be imposed for invocation.
Repeated and simultaneous execution of multiple instances of scenario is supported. System level errors are
observed and reported such as unable to establish connection.

1.5 Thesis Structure
Chapter 2 provides the background and evaluation of standards, technologies and approaches to the formalisation
and implementation of web/grid service compositions. Chapter 3 presents the overall application of the methodol-
ogy, with prescribed steps from design through to post-implementation. Chapters 4 to 6 present the various aspects
of the methodology following the flow of service development: design, specification and analysis, implementation
and testing. Chapter 4 presents in detail the CRESS high-level notation and framework which is the foundation of
the methodology. It also explains the extensions developed by the thesis work, which in turn support other aspects
of the methodology. The formalisation aspect of the methodology is covered in Chapter 5, outlining the original
automated support for service specification and rigorous validation that has been extended through new work.
This is followed by the extensions and new tool developments for the thesis, which widen the scope of validation
and offer entirely new support for automated verification. Chapter 6 discusses the methodology’s approach to
automate implementation, along with the thesis extensions to support new implementation standards, and a newly
developed tool that analyses implementations. Chapter 7 demonstrates the methodology in practice on a series of
four case studies, illustrating how each aspect of the methodology benefits and supports rigorous development.
Chapter 8 concludes with an evaluation and a summary of the thesis.

3

Chapter 2

Background

This chapter evaluates the state-of-the-art spanning the various aspects involved in the development of composed
web/grid services. The concepts of service-oriented computing, specifically web and grid services, are first pre-
sented followed by a discussion of service description standards, formal methods, and service implementation
technologies. This is then followed by an evaluation of service composition techniques and methodologies with
regard to formalising and/or implementing composed services. Finally, the chapter covers the basis of the thesis
objectives and work for realising a rigorous development methodology for creating composed web/grid services.

2.1 Services

2.1.1 Service-Oriented Architecture Concept
Service-Oriented Architecture, also known as SOA, is briefly a software integration concept with a paradigm of
loosely-coupled heterogeneous components where there is autonomous and interoperable functionality known as
services by which applications are developed.

SOA defines interfaces in terms of protocols and functionality (operation). In contrast to traditional applica-
tion programming interfaces (APIs), SOA-defined interfaces are language and platform independent. This is a
key characteristic of SOA which enables choice of implementation technologies and therefore features a loosely-
coupled environment. An endpoint is the entry point to an implementation of an SOA interface, where the act of
service consumption (utilising functionality) may take place concretely. SOA achieves a heterogeneous form of
distributed computing with interoperability among services of diverse implementations, even for the same inter-
face definition. This way, features and advantages of the chosen implementation technologies can be exploited.

The SOA paradigm for building applications is ‘service orchestration’ whereby services are combined in a
logical manner as units of the application. Orchestrating services implies communication with these services and
the use of their defined interfaces (functionality) and protocols. In a loosely-coupled environment, the endpoints
to service functionality are dynamic at run-time and at the level of communication protocol. Therefore the actual
behaviour of an application which is defined by service orchestration may differ when it dynamically binds to
different service functionality. The developed application can itself define a service interface.

Service discovery is a principle that underpins the SOA loosely-coupled characteristic, allowing functionality
to be bound. Service discovery provides the search mechanisms to find suitable functionality for use in service
orchestration. Service discovery may apply at different stages of service development. Discovery used in a con-
ventional manner is the search for suitable functionality. The interfaces are then used in describing the orchestrated
flow of services. Yet another level of use is akin to a brokerage framework whereby the service orchestration itself
uses discovery to dynamically select functionality based on given criteria to achieve better results according to
specified requirements.

SOA has achieved significant attention and uptake by industries and organisations [63], largely due to its
capability for heterogeneous, dynamic interoperability. Several technologies have been developed that are based
on the SOA concept. Web and grid services are probably the most popular of these.

4

2.1.2 Web Service Concepts
Web services use a distributed computing technology that is based on XML message exchange among services
and their consumers. Web services are a specific form of SOA, defined using open standards and standard Internet
protocols. The open standards are based on XML to support information portability and platform independence.

Service interfaces are defined using the XML language WSDL (Web Services Description Language [117]).
WSDL describes functionality through ports, messages, data types, protocols, and bindings. Services that provide
the actual functionality based on a WSDL description therefore implement the WSDL service interface, implying
that the services understand the protocols defined by the WSDL. Clients use the information provided in the
WSDL service interface to engage with endpoints that provide the actual functionality. Clients communicate with
the services using the protocols described in the WSDL.

Information exchange between services and clients, i.e. service requests and responses, is achieved using
the SOAP (Simple Object Access Protocol [118]) XML-based standard, and is possible with other protocols if
described in the WSDL. The SOAP specification defines syntax for messages, specifies the encoding and serial-
ization rules for data exchange, and gives conventions for representing RPCs (Remote Procedure Calls). Service
invocations are represented as XML documents (SOAP messages), sent to the destination service to be processed
and returned as values. Essentially, the invocation details (e.g. operation parameters, operation name) are embed-
ded in the SOAP message to be sent to the target. Likewise in serialisation/deserialisation of data, a typical library
often contain components to handle SOAP-related activities such as the construction of equivalent SOAP message
service invocations. This maps the information to actual implementation code. For example, the AXIS SOAP en-
gine [5] and libraries support hosting and development of web services using the Java and C/C++ language. The
transportation of SOAP messages are automatically handled, and activities such as the serialisation/deserialisation
of data have automatically generated stubs code from AXIS in the implementation language.

Although being transport protocol-agnostic, it is common that web services use the standard Internet protocols
such as HTTP (HyperText Transfer Protocol) and the Internet protocol suite TCP/IP (named after Transmission
Control Protocol / Internet Protocol) to transport the SOAP messages to their destinations. This is typically done
with the advantage that these transport protocols are globally used. They usually do not have network configuration
issues like a firewall blocking specific ports as these well-known ports are usually open.

As interaction is oriented towards the level of SOAP message exchange, the complexity of services and clients
is not restricted and can be heterogeneous as long as the chosen implementation technologies can support SOAP
to exchange information. Therefore web services are independent from implementation platforms and languages.
This allows a free choice of preferred technology for service and client implementation, supporting heterogeneous
interoperability. SOAP message exchange supports a concept of loosely-coupled environment, where service
functionality and hence orchestration, are bound when required through the exchange of SOAP messages between
clients and endpoints.

In a loosely-coupled environment there may be the need to search for web services that have suitable function-
ality. Service discovery is a means to achieve this. As XML documents, WSDL service interfaces are portable and
may be published for discovery in many ways such as in web URLs or file storage. UDDI (Universal Description
Discovery and Integration [73]) is a registry and service discovery mechanism that is used for service registration
and querying service catalogues. UDDI is often used to publish web service listings comprising their descriptions
and interfaces, by which potential clients may access and then engage the services.

2.1.3 Grid Service Concepts
Grid services are one of the distributed computing technologies, based on the web service architecture. This means
that grid services have the (SOA) characteristics of web services. The grid computing paradigm is analogous
to that of the electrical grid. Just as access to electrical power can be achieved with standard interfaces (e.g.
sockets) regardless of source (e.g. power stations), so computing resources should be made accessible via uniform
interfaces with abstraction from their implementation and other complexities [29]. In addition to inheriting the
features of web services, grid service computing defines the concept of virtualisation where the goal is to define
uniform access via standard protocols to specific groups of resources. Grid services or computing have been
widely used across many domains such as physics, astronomy, medicine, etc. It is also used for inter-disciplinary
research in social sciences [58].

OGSA (Open Grid Service Architecture [30]) governs the concept and defines capabilities of grid computing.
OGSA has specified requirements that underpin a grid computing environment such as virtualisation of resources,
management services, resource discovery, stateful services, and virtual organisations. Virtualisation of resources,

5

such as CPU and data, means their access is via standard interfaces and abstracts away from implementation
complexity. This enables interoperability in a heterogenous environment, thereby supporting resource sharing
across organisations. Resources have management services such as supporting the monitoring and control of
resources, for example reservation of CPUs for a job execution. Resource discovery is required to support a
dynamic grid environment, comprising dynamic resource availability and resource capability that match client
requirements. OGSA specifies that services be stateful in that state is kept across invocations, for example in
long-running job execution where it may be necessary to make changes during its lifecycle. Virtual organisations,
underpinned by other capabilities of the Grid, enable entities from different organisations to participate in specific
collaborations. This uses federated authentication and authorisation to resources, governed by policies set by
resource owners. Shibboleth [40] is an infrastructural middleware to enable trust and security mechanisms.

OGSI (Open Grid Service Infrastructure [96]) was developed by the OGF (Open Grid Forum) to provide the
infrastructure layer for OGSA. OGSI is a collection of specifications comprising a specific extension of WSDL
service interfaces known as GWSDL (Grid WSDL), in anticipation for WSDL 2.0 standard [123], to define a grid
service and also underpin the objectives set by OGSA. In particular, these specifications consist of the service
interfaces for virtualised access to resources such as CPU, data access and transfer, job execution submission,
data aggregation, resource discovery etc. It also provides mechanisms to define service data (for stateful services)
and management functionality (e.g. lifecycle management), port type extensions which grid resources will can
build upon and utilise. Globus Toolkit 3 is a well-known grid service development toolkit that implements the
OGSI specifications. OGSI has a few major drawbacks, particularly the incompatibility between GWSDL and
the WSDL standard, but also the implementation between grid and web services. Both drawbacks imply there is
no direct interoperability. The OGSI approach to stateful services is to instantiate a service instance with service
data, resulting in duplicates of service functionality only differing in state information. The use of the underlying
protocols was adapted, and hence is not directly compatible with the standards. For example, orchestration OGSI
services using BPEL would require extensions [85].

WSRF (Web Service Resource Framework [39]) standard was developed by the OASIS (Organization for the
Advancement of Structured Information Standards), replacing OGSI as a more harmonised specification for both
web service and grid services. WSRF is also a collection of standards comprising service interfaces that implement
OGSA; however, instead of using GWSDL, the service interface definitions are defined using the WSDL standard.
WSRF decouples the stateful service aspect, separating service data from service implementation and thereby
having only instances of state instead of services with state. As a result, WSRF grid services are compatible
with web services, implying compatibility with technologies that are web service-compatible such as web service
orchestration, which then can be readily exploited. GT4 (Globus Toolkit 4) is also one of the well-known grid
service development toolkits that implement the WSRF specifications.

2.2 Service Description

2.2.1 Data Definition
Data is central in information exchange, and therefore implies the need for data definition whereby the structures,
types, and values can be understood. There are several data definition languages available. The DTD (Document
Type Definition [114]) and the XML Schema [121] are languages for defining XML data structures. The XML
Schema is used to define application data and even many XML standards, including those for web and grid
services.

XML Schema

XML Schema, also known as XSD (XML Schema Document [121]), is a W3C (World Wide Wide Consortium)
standard XML schema language used to describe data schemas, and that has been used to create new languages.
XSD underpins the structural and validity aspects of information that is used in the representation of XML data.
XSD has a set of primitive data type definitions and constructs to create new data structures. The complex data
structures that are typical may be nested, contain value restrictions, be constrained with occurrences (e.g. size),
have mandatory requirements, and use specified namespaces. Collectively these structural definitions and rule
descriptions constitute the XSD schema that is used to validate the conformance of XML documents. There
are validators developed for the specific purpose of validating XML documents, which is often an implicit and
embedded part of the process of using the data itself.

6

The following is an example of an XSD that described the structure of a complex data type:

<complexType name=′′proposal′′ > 0
<sequence> 1
<element name=′′name′′ type=′′xsd:string′′/> 2
<element name=′′address′′ type=′′xsd:string′′/> 3
<element name=′′amount′′ type=′′xsd:integer′′/> 4

</sequence> 5
</complexType> 6XSD schemas are widely used, and some of the schemas that were created have become standards or new

technologies. For example XSLT (Extensible Stylesheet Language Transformations [116]) is an XML language
for transforming XML documents into desired formats. XSLT language and syntax constructs are defined using
XSD, and the XML data being transformed is usually validated by XSD also. XSD is used to define SOAP
(Simple Object Access Protocol [118]) and WSDL (Web Service Description Language [117]), which are well-
known standards used to define data communication protocol and service interfaces for web services. XSD is
also directly involved in the development of application web services. Their data structures are defined and
also operationally checked in the validation of message exchange. Data structures defined in XSD can be fully
translated into implementation code which contains access functionality and (un)marshalling information for on-
the-wire transfer to carry out message exchange in XML. XSD is also used in a similar fashion in grid computing,
specifically the WSRF (Web Service Resource Framework) specifications which collectively underpin grid service
implementation.

2.2.2 Service Interface
WSDL

Adequate information such as addresses, protocols, operation names, etc. must be available in order to have the
preliminary means to invoke a service (also known as consuming it). This information constitutes the service
interface which is published externally for potential clients to use as directives that is the construction of valid
messages to exchange. WSDL is a W3C standard language [117] for defining interface to web services. WSDL in
turn uses other XML standards, particularly SOAP, as the message exchange protocol, and WS-Addressing [120]
to specify service endpoints. WSDL was also used in the WSRF specification, and in grid service interfaces.

WSDL is fundamentally used for describing the syntactic bindings of the implementing service. There are
variations supporting semantic information such as ontological annotations to describe properties and capabilities
of web services in unambiguous, computer-interpretable form. An example is the Semantic Web Services, which
uses the OWL-S (Ontology Web Language – Semantics [119, 19]) to describe concepts and properties. A WSDL
document typically contains descriptions of service ports, service operation signatures, messages, data types for
parameters, communication grammar (e.g. particular SOAP style), service namespaces, and addresses of imple-
menting endpoints. A WSDL document may also import other WSDL documents. The following XML shows the
high-level schema of WSDL:

<definitions>
<types>

definition of types in XSD language
</types>
<message>

defines messages, with logical groups of data, used by operations
</message>
<portType>

defines a port containing operations
</portType>
<binding>

defines protocols (e.g. HTTP, SOAP style) for a service
</binding>
<service>

defines the service location(s)
</service>

</definitions>

7

Figure 2.1: Service Discovery and Consuming Services

A WSDL document is defined from the root element <definitions> where, apart from the fundamental decla-
ration of XML namespace prefixes, the namespace of the service (targetNamespace attribute) is declared and used
as the qualified name in conjunction with operations and messages. Imports of other WSDL files are then specified
if necessary. After this is the definition of data types using the XSD language, enclosed within the WSDL <types>
element. These data types have qualified names comprising the defining schema’s namespace and the name of the
data type. XSD schemas defined separately may also be imported at this point. The <message> element defines a
logical group of parts and their types which will be used in the definition of operation signatures that follow. The
<portType> element specifies an endpoint to a range of operations defined with <operation>. Operations may have
inputs, outputs, and faults which make reference to the message elements for their content type. The <binding>
element defines for the associated <portType> its transport protocol and SOAP style for operations. Finally the
<service> instantiates port bindings with given names, and designates endpoint addresses for ports.

Figure 2.1 briefly illustrates a typical scenario for consuming a service. This may involve discovery, obtaining
a service interface, code generation, and then invocation. Practically, the discovery of a service and its interfaces
are prior to consuming the service for the first time. A discovery process for the service can use any means of
publication, for example UDDI registries purposed for discovering web services, or evaluation of functional com-
patibility and service. This is followed by obtaining the service interface (WSDL) of the service that is to be used,
usually by a file download process. The WSDL files contain the service communication directives, specifically
how SOAP messages are constructed to invoke services. Potential service clients are usually implemented as
applications, which act on behalf of the actual user. With regard to clients that are explicitly programmed, it is
possible to manually construct the SOAP messages either by writing the XML code or even writing a program
that does it; however, it is often the case that there are tools to translate WSDL directives into implementation
code to handle these needs, thereby allowing developers to focus on developing the actual functionality of appli-
cations. These tools usually support code translation/generation from WSDL into code stubs in supported target
implementation languages. Applications can make service invocations using these code stubs.

Most of the service orchestration technologies that are used to implement composition of services do not
require the code stub translation process. Instead, they have a framework to import the WSDL for direct use into
the enacting environment. This will create the SOAP messages directly according to the WSDL descriptions.

2.2.3 Service Resource
WSRF Specification

The WSRF specification is a framework and collection of service interfaces that implement OGSA for the devel-
opment of grid services. With its development, the difference between grid and web service implementation has
become less distinct. Services developed using WSRF development kits are sometimes known as WSRF services,
unlike the predecessor OGSI services which are known as grid services.

WSRF introduces WS-Resource [39] to represent the composition of a resource (state) and a web service.
Service operations are associated with resources identified by WS-Resource endpoints. Endpoints are referenced
using WS-Addressing, which generally contain the service address and the resource key which identifies a unique
resource.

WSRF comprises the following component specifications: WS-ResourceProperties, WS-ResourceLifeTime,
WS-BaseFaults, and WS-ServiceGroup. Each of these specifications is a WSDL service interface with defined

8

XSD types. WS-ResourceProperties specifies the functionality by which a set of typed values configured as prop-
erties of the WS-Resource may be accessed. WS-ResourceLifeTime specifies the functionality to manage the
lifetime of a WS-Resource, such as setting termination time or destroying the resource. WS-BaseFaults serves as
an extensible mechanism to describe rich service (SOAP) faults. WS-ServiceGroup defines the means by which
web services and WS-Resources can be aggregated for specific a domain (virtual organisation), supporting the
discovery and querying of registered service groups. WSRF uses the WS-Notification standard within its specifi-
cations, which is a service interface specification enabling notification that pushes information to subscribers. For
example, notification can be triggered from subscribed WS-Resources when properties (WS-ResourceProperties)
are updated, destroyed or have lifetime renewed (WS-ResourceLifeTime). Notification is also used for new mem-
ber registration in a virtual organisation (WS-ServiceGroup). GT4 is one of the popular toolkits available for
supporting WSRF services.

2.2.4 Service Composition
One of the notable characteristics of the service-oriented architecture paradigm is that existing services can be
combined together in a logical fashion, resulting in a new service which is added to the pool of existing services as
a peer service. Orchestration and choreography are terms affiliated with such composition. Although these terms
are generally used interchangeably, they do have distinct orientation. Orchestration is a centralised approach where
there is execution control of activities. Choreography defines the collective message exchange among interacting
peers – there is no centralised coordination. As with the rise of service-oriented technology, in particular for web
services and combining them, standards have been developed for describing composite behaviour.

BPEL

BPEL (Business Process Execution Language) is one of the most popular standards for orchestrating services. The
standard is a multi-organisation effort that was developed to describe composition of web services based on the
WSDL and SOAP standards. BPEL is the successor to IBM’s WSFL [60] and Microsoft’s XLANG [92], which
are web service orchestration technologies. It inherits the features of directed graphs from WSFL and blocked
structure from XLANG, as well as other characteristics and features of both predecessors. BPEL can be used for
modelling web service composition and web service choreography, which it refers to as executable process and
abstract process respectively.

BPEL models tasks as invocations of web services, where input and output are specified by messages, and
whose addresses are identified by URIs (Uniform Resource Identifiers) of WSDL port types. This implies that the
WSDL definitions of relevant Web Services are referenced in BPEL specifications. SOAP is used as the commu-
nication protocol for message exchange in service invocations. BPEL provides a range of control constructs to
model the flow of activities in a business process which is the orchestrating service, including receiving requests,
invoking partner service operations, concurrency, replies, conditional switches, etc. Data handling is expressed via
variables that are often instantiated based on message types defined in WSDL. Manipulation of data values is nor-
mally performed via XPath [115] expressions which are a form of query syntax for XML data. Process instances
can be related to message sequences using correlation sets. BPEL also supports handling of events and faults as
well as compensation of transactions. This is the executable process model, akin to the term orchestration. An
executable process specification can be deployed and be executed.

The BPEL standard can also be used to describe an abstract process. An abstract process is a business protocol,
specifying the black-box message exchange behaviour between different parties without revealing the internal
behaviour of any party, akin to choreography. The abstract process is not executable as it only specifies the
contracts of the interacting parties.

BPEL4WS (BPEL for Web Service [4]) was the initial standard that was produced from this combined effort.
OASIS took over the updates to BPEL, renaming it as WS-BPEL. Generally, BPEL and WS-BPEL refers to this
standard. The standard was further developed by the OASIS as the WS-BPEL 2.0 standard [6].

BPMN

BPMN (Business Process Modeling Notation [14]) is an OMG (Open Management Group) standardised graphical
notation intended for human readability in the description of business processes. This uses a flow-chart format
which appeals to business people, with the objective of understanding the business model. Although it is a notation
to describe business processes in general, BPMN provides a mapping for its notation to BPEL4WS in recognition

9

of its popular uptake. However, the notation covers other attributes not described in BPEL4WS. There has been
uptake of BPMN by BPEL implementation vendors who provide it as the graphical notation in their application
design tools.

WS-CDL

WS-CDL (Web Services Choreography Description Language [122]) is an XML standard that describes collabora-
tions of participants by defining from a global viewpoint their common and complementary observable behaviour.
It also describes where information exchanges occur and when the jointly agreed ordering rules need to be sat-
isfied. In short, it defines the contract by which a collaboration (business process) is achieved. A WS-CDL
document therefore specifies ‘what must happen’, not ‘how to make it happen’: it is not executable. As its nature
is choreography, the WS-CDL specification is independent from any business process implementation language.

2.2.5 Evaluation
There is a comprehensive set of (XML) standard specifications that underpins web and grid services. Amongst the
service orchestration languages, the BPEL (now referred to as WS-BPEL 2.0) is most suitable as my methodol-
ogy’s target language for implementing composed web/grid services. This is needed to achieve the thesis objective
of automated implementation. BPEL was chosen because it is an open standard, compatible with the web and grid
(WSRF) service standards, and has significant adoption in terms of BPEL engine providers and users.

2.3 Formalisation

2.3.1 Introduction
Formal methods are mathematically-based techniques used to model or specify systems at abstract level and then
rigorously analyse them to detect potential errors as early as possible. There is a prejudice that formal methods
requires highly-trained mathematicians, useful only for safety critical systems, used only by formal methods
people, cannot be applied to large scale systems, unacceptable to users, unnecessary and increases the cost of
development, but is not [43, 12]. Formal methods have been used in industry [1] and its applicability certainly can
be improved [110]. Formal methods have been used in the design of hardware such as disk[34], where it is critical
product for manufacturers and businesses to reduce operational risks and costliness of bug fixes – especially in
the later stages of design and development. Formal methods have also been applied to software to analyse its
functionality and to establish confidence in its quality, sometime even with techniques to evaluate performance.
Formal methods are applied in the design of (distributed) computer systems, including web services [84, 31, 44]
where with regards to BPEL it is acknowledge that the specification will benefit from formalism [74].

2.3.2 Formal Methods
There are different types of formal specification languages, notations, techniques and tools. Formal techniques
define abstract models of system behaviour and analyse them, which produces feedback on the quality and the
level of assurance of the system. Simulation, validation, automated theorem proving, and model-checking are
well-known techniques for analysis. Simulation is usually an interactive analysis where the formal behaviour of
the system is observed. Validation in formal methods refers to testing of the specification which can be easily
related to testing in software engineering [11]. Formal validation can be performed with controlled simulation
of the specification. Automated theorem proving is a technique that produces a formal proof of some theorem
(e.g. system property), given a description of the system, a set of axioms, and a set of inference rules. Model
checking verifies if a model with states satisfies a specified logical formula (e.g. temporal logic) thereby asserting
a property.

Petri Nets

Petri nets [82] are a modelling approach to describing concurrent and distributed systems, supporting asynchrony,
non-determinism and also true concurrency semantics. They have a graphical notation for directed bipartite graphs
comprising places, transitions and directed arcs. They have a mathematical semantics for the execution and also
analysis of models. Execution of a model involves tokens being fired upon fulfilled conditions, transiting between

10

places and following transitions along directed arcs. The standard petri net notation does not support data type
modeling. Petri-nets are a potential candidate for modelling composed web/grid services as they are suitable for
describing concurrent and distributed systems.

Automata

Automata are abstract machines with (finite) states and transitions depicting the flow between states given the
fulfilment of conditions (transitions) triggered by inputs. State machines can therefore model the behaviour of
systems. UML (Unified Modeling Language) Statecharts [41] are one such example. State machines can be
created from other formal languages, e.g. LOTOS, to labelled transition systems, and used in analysis such as
model checking. Abstract state machines, a more generalised form of state machine, support the notion of non-
determinism and data structures, for example in labelled transition systems. State machines can be composed to
model composite behaviour of components, which suits the nature of service composition.

Process Algebra

Process algebras and calculi are languages used to model concurrent systems with the concept of high-level de-
scription of communicating processes or agents. Agents can be composed together with special operators which
describe a complex behaviour; the possible interactions are defined by these composition operators. The synchro-
nisation of agent interaction points communicates information between the agents, e.g. by value passing. This
semantics is very applicable to the notion of composing web and grid services. CCS (Calculus of Communicating
Systems [46]), CSP (Communicating Sequential Processes [68]), and LOTOS (Language Of Temporal Ordering
Specification [50]) are examples of process algebras which are similar but do have distinctive differences [26].
LOTOS developed into an international standard FDT (Formal Description Technique) which has been used to
specify distributed systems and protocols. Full LOTOS includes the rigorous specification of data types which
CCS and CSP do not support.

π-calculus [69] is a specific process algebra that supports the concept of mobile processes where the control
rights of a process can be transferred. However this concept is not used from the view of the practical realisation
of web/grid services – BPEL does not move processes, although there is ability to pass endpoint references that
bind to different partners. But in doing so, there is no concept of control transfer – just dynamic binding.

Evaluation

Considering Petri nets, they offer a more primitive notation than process algebras [26]. For instance, process
algebras have the concept of using channels for communication, which enables reasoning about processes. This
makes process algebras, which have compositional semantics for agents (distributed processes constrained in
compositions), more suitable for modelling web and grid service compositions which have the notion of service
endpoints.

Process algebra notation can express composition of behaviour in a concise and compact manner in comparison
to using state machines, although in many approaches the analysis of specifications in process algebras actually
uses state machines; however this is usually automatic. In addition, the semantics of process algebras is easier
to interpret at high level, where the behaviour of communicating agents and their interaction points are depicted
more clearly. LOTOS, specifically Full LOTOS, was found to be the most suitable approach for modelling web
and grid services, thanks to: compositional semantics with support for modeling data types; its status as an
international standard; and comprehensive tools to perform analysis. There are work done in formalising web
service compositions using LOTOS [25, 17, 100].

2.3.3 Techniques
Validation

Validation, in the context of formal methods, is the testing of a system specification. Validation is performed by
controlled simulation of the formal model and checking if it behaves in accordance with the test cases. Validation
can be quickly executed, checking if the behaviour realises its functionality as required by the user, and also
analysing feature interactions [112]. This is because simulation of the model is constrained by the tests. Validation
therefore produces results and diagnostics in a short time. It can be applied to specifications that may have infinite
state space, such as having infinite range of data values, as it deals with only specific values. Validation, however,

11

only analyses the specification to an extent as large as that determined by the set of test cases or scenarios.
Analyses such as deadlock freedom, livelock freedom, and general properties across the entire system are difficult,
if not impractical to perform. Formal validation can be related to testing in software engineering context where
implementation are checked [11] if they are ‘doing the right thing’.

Verification

Verification, in context of formal methods, is the proving of system properties in general. Model checking and
theorem proving are the well-known formal verification techniques. Model checking, in simple terms, verifies if
a system model satisfies desired properties which are specified using logic formulas. As an example in process
algebra, LOTOS can be model checked (via a labelled transition system) using the µ-calculus temporal logic
property language [65]. Properties across the entire behaviour such as deadlock freedom, safety, and liveness can
be specified and verified. Model checking faces a problem of state space explosion in the case of finite state space
as a result of composition. However there are techniques that reduce [37] or avoid (symbolic model checking
[67]) this problem. Even so, model checking in finite state spaces can be practical, cost effective, and can detect
errors even in constrained spaces [18].

Another verification technique is theorem proving, with an overall concept of inference from a constructed
theory, and automated reasoning to obtain proofs. Generally there is automated deduction of theorems by the
prover inference engine from existing axioms and theorems. Theorem proving has great capacity in verification,
but is very costly and most times requires interaction or guidance (strategy, tactics) from tool users to achieve
verification [61]. This may not be considered worthwhile unless it is of high importance. In comparison, many of
the model checking techniques are cost-effective when verifying critical systems and protocols.

Evaluation

The well-known techniques have their strengths and weaknesses. With regard to web and grid services, formal
analysis requires practicality and effectiveness. Validation and verification by model checking have these attributes
– validation is fast and relevant to testing software, and model checking verification is more push-button, simpler,
practical, and cost-effective in comparison to theorem proving. The combined use of validation and verification
for composed web and grid services is able to offer formal analysis in a practical and effective way.

2.3.4 LOTOS

Concepts and Language Overview

LOTOS (Language Of Temporal Ordering Specification [50]) is a process algebra which is based on the CCS
(Calculus of Communicating Systems [46]) and CSP (Communicating Sequential Processes [68]) for describing
the dynamic behaviour of systems. LOTOS allows the modeling of concurrency (interleaving), nondeterminism,
synchronous (and asynchronous) communication. LOTOS is based on the idea that a system can be specified
by defining the temporal relation and interactions among the processes that constitute the behaviour of a sys-
tem. These points of interaction are known as (event) gates in LOTOS, and their communication is known as
synchronisation. LOTOS has powerful and expressive parallel composition operators which describe interleaving,
multi-way, and full synchronisation.

There are variations of the LOTOS language, of which Full LOTOS is used as the specification language by the
thesis. Full LOTOS consists of two parts: abstract data type modelling which is based on the ACT ONE [21] an
algebraic approach, and behaviour specification using process algebra.

A Full LOTOS specification has the syntactic structure of data types from a library, overall specification be-
haviour, local type definitions, and local process definitions. The data type library is a convenient way to include
common data types already defined, thereby reusing their specifications. The overall behaviour specifies the
behaviour of the entire system, which is a behavioural expression that typically describes the composition of pro-
cesses. Usually this composition may constrain independent processes, thereby specifying the overall behaviour
expected of the system. After the overall behaviour comes the specification of local data types which are visible
to all processes (though a process may define its own data types). Processes defines parts of behaviour which will
finally be composed as the overall behaviour. A process usually specifies at least one gate (otherwise there is no
communication at all), and may have input and exit parameters if required in its behaviour. A process behaviour
is called using its name, gates, and input parameters.

12

Data Type

Abstract data types capture the data operations and values which may be used in behaviour, enabling behaviour
to be influenced by data. A data type is usually defined by its sorts (‘types’), operations, and algebraic equations
which describe the operations. Operations can be defined to be parameterless, or infix/prefix with parameters.
Equations are rewritten/expanded to transform data values. The following is an example of a Natural data type,
with operations and equations which model an infinite value range of natural numbers.

Type Natural Is 1
Sorts 2

Nat 3
Opns 4

0: > Nat 5
succ: Nat > Nat 6
_ +_ : Nat,Nat > Nat 7

Eqns 8
ForAll m,n: Nat 9

OfSort Nat 10
m + 0 = m; 11
m + succ(n) = succ(m) + n; 12

EndType
The value 0 is represented by the parameterless operation ‘0’ which is already its canonical form as there are

no equations that rewrite it. The ‘succ’ operation represents the successor value, e.g. succ(0) which is in canonical
form corresponds to 1. The infix _+_ operation is for adding two naturals, and has the equations at line 11-12 for
rewriting. For instance, the following expression is rewritten as:

0 + succ(succ(0))
−> succ(0) + succ(0)
−> succ(succ(0)) + 0
−> succ(succ(0))

Formal data types may be specified, meaning that they are not actual types but are templates used for instan-
tiation, where the formal sorts, operations, and equations are actualised. Data types can be used as the basis of
defining new data types, where the new data types have access to their sorts, operations and properties (equations).

Behavioural Expression

LOTOS processes (defined with Process) are named behaviour expressions, similar to procedures in a program-
ming language, allowing a structured and modular expression of behaviour. Behavioural expressions determine
the possible actions that can be executed, and the possible actions that then follow. LOTOS provides a predefined
set of operators to combine behaviour expressions, creating a new behaviour expression. Table 2.1 lists a subset
of the LOTOS behaviour expression syntax. An action is an atomic behaviour expression. Actions comprise a
gate, optional list of events (value offers and acceptance), and an optional predicate that constrains event values.
The parallel composition operators ‘|||’, ‘|[...]|’, ‘||’, specifically the latter two, express behaviour synchronisation
where information exchange may take place.

Example Specification

The following is a LOTOS specification of a travel agent holiday booking behaviour using two agents for flight
booking and hotel reservation. The Airline and Hotel are independent behaviours, composed for the holiday
booking functionality. The composition for the travel agent is the logical unit behaviour of both Airline and
Hotel processes interleaved ‘|||’, with their gates synchronised with the Travel_Book process. This establishes a
means of communication between the travel agent and airline, and travel agent and hotel. The ‘hide’ operator
results in the specified flight and reserve gates becoming internal, unobservable from external view of the travel
agent. Clients need not be aware of the business partner processes inside this specification. The behaviour of
Travel_Book receives a holiday plan (line 40), then makes a flight booking request using the customer’s name and
destination of travel (line 41); it then receives the flight booking (line 42). This is similarly done for the hotel
reservation (lines 43 & 44). The travel agent then produces an itinerary with the bookings (line 45). Lines 41 and
50 are an example of value passing upon synchronisation at the gate ‘flight’ where the two values specified at line
41 are accepted at line 50. As seen, this specification constrains the behaviour in a sequential manner with the
order of flight booking followed by hotel reservation. The behaviour expressions in Airline and Hotel processes

13

Behaviour Expression Description
i Internal event
stop No behaviour
exit Successful termination
g !v1 !v2 Action at gate g with offers of values v1 then v2
g ?var:type [predicate] Action at g with value passing (acceptance) of a variable var of

a give type, with a boolean predicate constraining value range
B1; B2 Sequential behaviour where B2 follows after B1, where B1 is an

action event (not a process call)
B1 [] B2 Choice of behaviour between B1 and B2
B1 ||| B2 Interleaving behaviour of B1 and B2
B1 |[p,q]| B2 B1 and B2 synchronised at gates p and q
B1 || B2 All gates of both B1 and B2 are synchronised
hide g in B1 Gate g is hidden from behaviour external to B1, treating it as an

internal event
B1 » B2 Successful behaviour of B1 enables B2
B1 [> B2 B1 continues (may exit) unless B2 happens (disruption)

Table 2.1: A Subset of LOTOS Behavioural Expressions

are abstractions of what really happens, e.g. database entry for reservation. The data type used is of Text sort,
which was included from a library (line 2) that was already defined by the user as a common data type to represent
strings and making it available via a library. Comments in LOTOS are enclosed within ‘(*’ and ‘*)’. NoExit (e.g.
lines 1, 39) indicates that the behaviour expression should not terminate successfully at all (only stop or repeating).
Conversely, an Exit allows a behaviour expression to terminate successfully, by specifying exit action.

Specification Travel [travel] : NoExit 1
Library 2

Text 3
EndLib 4
Behaviour 5

hide flight, reserve in (6
Airline [flight] 7
||| 8
Hotel [reserve] 9

) 10
|[flight,reserve]| 11
Travel_ Book[flight,reserve,travel] 12

Where 13
Type Flight Is Text (* flight uses text library type *) 14

Sorts Flight 15
Opns 16

Flight : Text, Text > Flight (* name and destination*) 17
... 18

Type RoomBooking Is Text 19
Sorts RoomBooking 20
... 21

Type Holiday Is Text 22
Sorts Holiday 23
Opns 24

Holiday : Text,Text > Holiday 25
getDestination : Holiday > Text 26
getName : Holiday > Text 27

Eqns 28
FORALL dest,name:Text 29
OfSort Text 30

getDestination(holiday(dest,name)) = dest; 31

14

getName(holiday(dest,name)) = name; 32
EndType 33
Type Itinerary Is Flight, RoomBooking 34

Sorts Itinerary 35
Opns 36

Itinerary : Flight, RoomBooking > Itinerary 37
... 38

Process Travel_ Book [flight,reserve,travel] : NoExit : 39
travel ?plan:Holiday; 40
flight !getName(plan) !getDestination(plan); 41
flight ?flight:Flight; 42
reserve !getName(plan); 43
reserve ?roomBook:RoomBooking; 44
travel !Itinerary(flight, roomBook); 45
Travel_ Book [flight,reserve,travel] 46

EndProc 47
48

Process Airline [flight] : NoExit : 49
flight ?name:Text ?destination:Text; 50
flight !Flight(name, destination); 51
Airline [flight] 52

EndProc 53
54

Process Hotel [reserve] : NoExit : 55
reserve ?name:Text; 56
reserve !RoomBooking(name); 57
Hotel [reserve] 58

EndProc 59
EndSpec

2.3.5 Topo/Lola
Topo/Lola [80] is a set of tools can analyse data types and behaviour specified in LOTOS. Data type specification
can be analysed with respect to their operations which represent abstract data values, which in turn are used by the
system behaviour for value negotiation. Lola uses a rewriting technique that expands the algebraic data operation
equations to their canonical form and provide step-by-step trace of the expansion, which can be used to correct
specified data types. Simulation of specification can be performed interactively to observe the behaviour. Lola
supports testing, known as test expansion, that allows LOTOS processes to be specifically defined as expected or
unpermitted scenarios which are used to validate the specification. In addition to testing outcomes, Lola provides
diagnostics of the execution of test validations which can be used to inspect successful and unsuccessful path
traces of the behaviour with respect to their tests.

2.3.6 CADP
CADP (Construction and Analysis of Distributed Processes [36]) is a comprehensive suite of tools for formal
analysis, particularly supporting LOTOS specification (with undocumented support for other FDTs such as Petri
nets). CADP supports a range of analysis and tools such as simulation, testing, model checking, compositional
verification, state space reduction, bisimulation, performance evaluation, etc. CADP has two main components,
CAESAR [38] and CAESAR.ADT [32], which translate specifications into C code that is executed to simulate the
behaviour by which the model is created to be analysed. CADP has a framework and programming interface for
extensibility, supporting the possibility of combining with other tools. It also provides a graphical user interface
EUCALYPTUS Toolbox [33] to use the toolset. These contributes to the success of CADP, which has been used
in verification of many protocols, hardware and software; see the case studies found in [109].

2.3.7 Evaluation
The formalisation of composed web services is possible using Full LOTOS, as demonstrated by various work that
use the specification language to specify and analyse web service compositions [25, 17], including the approach

15

that thesis work is based on [100]. LOTOS was evaluated to be most suitable given its semantics, expressive-
ness, ability to specify data types, and availability of comprehensive tool support for validation and verification.
LOTOS is potentially applicable to formalise grid service compositions as they are largely based on similar service-
oriented architectures, with preliminary work of this research demonstrated a development approach that includes
specification and analysis of composite grid services [91].

2.4 Implementation

2.4.1 Web Services
The SOAP and WSDL standards, and other XML standards they use, are common web service specifications.
There are implementations of these standards, providing an infrastructure and framework to develop web services.
Apache AXIS is a well-known, very widely used open-source implementation of these standards.

AXIS

AXIS (Apache Extensible Interaction System [5]) is fundamentally a SOAP engine and server, but also provides
an infrastructure to enable web application servers (e.g. Apache Tomcat) to implement web services, and libraries
for client applications to communicate in SOAP. AXIS is widely used in the development and deployment of web
services. It offers open-source, stability, performance, and architectural flexibility for custom extensions. AXIS
underpins many BPEL engines, and also the Globus Toolkit. AXIS provides a framework that supports application
services and clients readily. The framework comprises tools that can generate an implementation of service stubs
from WSDL (e.g. wsdl2java for Java implementation), service implementation code skeletons, and deployment
descriptors. The service stubs provide a layer of encapsulation, taking care of underlying SOAP communication
between service and client, therefore allowing focus on development of the actual functionality of service and
client. For the same reasons, AXIS is also used in the implementation of web and grid services, both directly and
indirectly as in the case of service compositions.

2.4.2 Grid Services
Globus Toolkit

Globus Toolkit is the de facto development tool for supporting grid services [86]. Its development has progressed
from pre-web service implementations to GT3 that implements OGSI based on web service standards. GT4 is the
most recent version that implements the WSRF specification. GT4 is an open-source development toolkit for de-
veloping grid services. In addition to providing a framework and build tools for service and resource development,
Globus provides infrastructural services and interface providers that can be readily configured and deployed for
use by application services in grid environments. Infrastructural services such as MDS (Monitoring and Discovery
Service) implement the functionality commonly required in grids, as defined by OGSA. Providers are implementa-
tions of the standard interfaces defined in the WSRF collection, such as ResourceLifetime and ResourceProperties.
These provide, by deployment configuration, pluggable functionality for resources as required.

2.4.3 Service Orchestration
ActiveBPEL

ActiveBPEL is an open-source (GNU General Public License) BPEL engine [3], developed by Active Endpoints,
that deploys BPEL services and executes their processes. It was developed in Java, and can be quickly deployed
into any standard servlet container such as Apache Tomcat. It uses AXIS as the underlying web service engine.
It defines its own framework to deploy and configure BPEL services, such as the PDD (Process Deployment
Descriptor), catalogues for locating WSDL service interfaces, the file format for deployment, etc.

ActiveBPEL is purely a process execution engine and does not provide any tools for the development of the
services such as describing BPEL behaviour and service interfaces. However there are service development tools
available such as the ActiveVOS (previously ActiveBPEL Designer) that provide the environment for creating
BPEL services, interfaces, and deployment configuration for ActiveBPEL, usually graphically.

16

ActiveBPEL provides an administrative console via graphical web pages (servlets) for the configuration of the
BPEL engine, inspection of the details of service deployment, monitoring and diagnostics for process execution.
Configurations such as setting service timeouts and resource allocation, etc. can be performed via the console.
Administrators can check the deployment status containing information such deployment logs and service details
(WSDL, and catalogue consolidated by engine). The console provides graphical diagnostic of process execution
which is useful to inspect process flow, data values, and errors.

ActiveBPEL has a community that offers commercial support, contributing to the stability of the BPEL engine
and production-level confidence. This model of product development has demonstrated itself successfully, evident
from the ongoing development in the features of the engine with respect to the evolving standards, and user uptake.
The recent versions of ActiveBPEL engine support the web services standards which are harmonised with those
used in the WSRF specification, which means that grid services can also be orchestrated with the engine.

Oracle BPEL Process Manager

The Oracle BPEL Process Manager [76] is a commercial BPEL engine. It is part of the Oracle SOA Suite which is
geared towards rapid design, assembly, deployment, and management of business applications, comprising tools
such as JDeveloper which is the service development environment.

BPEL Process Manager has its own extensions in addition to supporting the WS-BPEL standard for additional
features within a BPEL service; however, this implies that using the proprietary extensions loses portability to
other BPEL engines. It provides its own application server, unlike the likes of Tomcat enabled with AXIS, which
are all open-source.

The Oracle JDeveloper can be use as the authoring tool to develop BPEL services, supporting phases in design
through coding, debugging, optimisation, profiling and deployment.

Apache ODE

The Apache ODE (Orchestration Director Engine [93]) is a business process execution engine that supports the
BPEL standard. ODE runs within Apache Tomcat like the ActiveBPEL engine. Apache ODE also provides
extensions which are beyond the WS-BPEL standard. The extensions include support for REST (Representational
State Transfer) web services, which are services that are not based on WSDL/SOAP protocol but rather based on
an architecture that uses HTTP methods explicitly as the stateless communication protocol.

Apache ODE is a barebone distribution only supplying the execution engine supplemented with a management
API which is accessed via programming. There is no user development environment for creating processes. This
is suitable for BPEL vendors who can build and distribute development environments which are based on ODE,
such as the Intalio Designer.

2.4.4 Evaluation
The evaluation of the technologies determined that AXIS and GT4 are the technologies most suitable for the
research use to implement web and (WSRF) grid services respectively, mainly for the reasons that they are widely-
adopted and open source. Considering the research objective of high-level development, this meant that the other
technologies were potential “targets” for implementation that could be supported.

The evaluation also considered the features of BPEL engines and the objective to choose a suitable BPEL
engine for implementing the web and grid service compositions. ActiveBPEL and Apache ODE were favoured
as they are open-source implementations, which are further based on open-source technologies (i.e. AXIS and
Tomcat), and support standards in harmonisation with web and (WSRF) grid services. Their engines are also
more compact compared to, for example, the Oracle Business Process Manager which provides an application
server but is heavyweight. Although both are similar in comparison and potential for use, ActiveBPEL is more
suitable for research than Apache ODE, as it has better support of features and control [13]. CRESS (see section
2.7), on which my research was based, can create BPEL services in the deployment format of ActiveBPEL as its
service implementation support. This was exploited to the research’s advantage by extending the previous work
to meet the thesis objectives. However this does not rule out the use Apache ODE and others, as the thesis’s
methodology is not constrained to any particular deployment. For instance, CRESS could be extended to generate
deployment code for Apache ODE for deployment of the same BPEL code.

17

2.5 Implementation Validation and Performance Evaluation
Implementation validation refers to the testing of implemented functionality. There are general technologies, such
as JUnit, to define and execute tests. BUnit and soapUI are examples of technologies specific to web (SOAP)
service testing. They respectively support offline simulation of BPEL orchestration (only in ActiveVOS), and web
service testing.

JUnit [54] takes a programmatic (Java) approach with a framework to construct and execute tests. With
regard to testing web and grid (composite) services, JUnit tests are basically service clients which requires the
implementation of service interfaces and protocol (SOAP). There is not much automated support apart from tools
that generate service interfaces to service stub code. Analysts or testers would have to hand-craft the tests.

BUnit (BPEL unit tests) is a functionality in ActiveVOS [2] supporting simulation of defined orchestrated
behaviour in BPEL, allowing specification and recording of data values; however, this is limited to the environment
of ActiveVOS, which is a designer for BPEL services implemented in ActiveBPEL.

soapUI [23] is a desktop application for testing web services and REST services, with support for functional
testing and load testing, and test report features. For web services, tests are oriented to the SOAP protocol,
meaning that the tester defines SOAP requests and adds them to a test case or suite, and also a variety of assertions
for response messages. soapUI is comprehensive for its purpose; however, the syntax to express tests is not very
compact, is rather low-level, and is stored as soapUI’s own XML project structure. The semantics of functional
tests is limited to response-oriented assertions. There are no direct expressions of other semantics such as refusal,
choices, non-determinism, and concurrency, which are potentially useful in describing validation scenarios.

In consideration of the thesis objectives, the technologies evaluated were found unsuitable as the technologies
are either too general (JUnit), too proprietary, and too low-level. In addition, they do not have an aspect of formal
validation for a symmetrical balance in a development methodology. These omissions, specifically in the formal
analysis, are however reasonable considering their own objectives.

2.6 Service Composition Methodologies

2.6.1 Formalising Composed Services
Other authors [17, 25] have used LOTOS to specify web services. Their work advocates the use of process algebra
as the initial step in the design and development of web services, specifically demonstrated using LOTOS. Their
approach uses refinement and reverse engineering, which respectively encode to and abstract from BPEL imple-
mentation. They define a mapping between the formal and implementation constructs as the core of the approach.
Refinement starts the development process from the abstract specification in LOTOS, where data types and system
behaviour are described. The LOTOS is then re-coded as the service implementation. Reverse engineering begins
from the BPEL implementation and is abstracted to LOTOS using the mapping. CADP is used as the underlying
formal analysis tool for the abstraction. Although the approach can be used in the development of web services,
the possibility of its application may not be very pragmatic. The mapping that was defined has not demonstrated
support for compensation and complex data structure access (although there is complex data definition); these are
all typically used in practice. As such it may not be possible to apply the reverse engineering approach to obtain
the abstraction. Abstraction of data types is into natural numbers, which is not sufficient to support the detailed
analysis of complex types where their actual value representation is important. Finally, the analysis (verification)
using CADP requires pragmas annotating the LOTOS abstract data types in order to qualify for verification, which
is hand-crafted for all types. There is no automated tool support [77].

Another process algebra approach uses value-passing CCS to formalise BPEL4WS services [124]. This work
defines a mapping from BPEL4WS to CCS. Bisimulation analysis is supported for iterative refinement of ser-
vice composition, whereby the current version (which is less abstract) is verified to be in correspondence with
the more abstract model of the previous version. However this approach does not support several of the major
BPEL4WS constructs such as parallelism, fault handling, and compensation. Dynamic process interaction is also
not considered in this work.

There is a process algebraic approach to specification and refinement of BPMN-defined workflow processes
using CSP [113]. This work uses control flow patterns (e.g. sequence, choice, parallelism and joining) which were
developed for Petri nets in separate work by another author [108], defining CSP models for workflow processes.
The FDR (Failures-Divergence Refinement) model checker is used to analyse behavioural properties by which
counterexamples can be obtained for compromising properties, and therefore to identify refinements to the model.

18

The authors have stated the limitations of their current work. Exception and compensation semantics, as well as
dataflow semantics, are not supported. There is no automated translation of BPMN to CSP models. The authors
have considered these limitations and state their intention to address them in future work.

LTSA-WS (Labelled Transition System Analyzer for Web Services [28]) is a mature approach to describe
composed web services in a BPEL-like manner. It models activities between a business process and its partners.
[28] describes an elaboration of the original LTSA-WS work. It takes a synthesis approach whereby analysers and
developers respectively describe the formal behaviour as a series of MSCs (Message Sequence Charts [52]) and an
implementation composition (a BPEL4WS process). These each generate a behavioural model using FSP (Finite
State Processes). Validation and verification are performed by comparing the two behavioural models generated
from the MSCs (Message Sequence Charts) and a BPEL4WS process, determining if the implementation contains
all the specified (formal) scenarios. This approach implies the description of the same web service composition
twice, once each for the MSCs and the BPEL4WS implementation. Validation is carried out in animation and sim-
ulation of the behavioural models, with interactive trace as diagnostics to adjust the relevant sequence diagrams.
The verification supported in this work is trace equivalence between design and implementation, interface com-
patibility such as no suitable reply from a partner implementing a specific service port, and safety and progress
properties using FSP property notation. This work employs a static representation that depends on the occurrence
of conditional variable comparisons, in order to support the modelling of process execution paths typically af-
fected by data values. Therefore detailed analysis, such as verifying properties involving specific data values, is
not considered in the verification analysis (as stated by the authors).

WSAT [31] is used to analyse and verify composite web services, particularly focusing on asynchronous com-
munication. Specifications can be written bottom-up or top-down, finally being analysed with Promela/SPIN [47].
For composite web services that interact asynchronously, WSAT is able to verify the concepts of synchronisability
and realisability. This approach makes the assumption that service links among peers are pre-determined and es-
tablished prior to interaction. This means that the locations of service partners must be statically bound. Advanced
features in BPEL, such as endpoint references that dynamically determine the peer to talk to, cannot be captured
in the WSAT model. A composite web service specification such as BPEL will usually contain error handling and
also compensation code, therefore it is desirable to be able to model compensations in web service compositions.
WSAT has not addressed these aspects, which are very commonly found in service descriptions. The scope has
yet to be comprehensive enough to be of more complete practical use for creating web service specifications. The
authors have indicated that extending WSAT to address these issues will be a direction in the future. A similar
approach to WSAT formalisation is the translation of BPEL code into specifications [72] where there is support for
the DPE (Dead Path Elimination) of the BPEL semantics; this is used for join conditions in a flow. This approach
also does not support error handling and compensation in the formalisation.

There are approaches that use Petri nets to analyse web service compositions. A theoretical framework using
Petri net-based algebra has been proposed [44] with operators such as (arbitrary) sequence, alternative, iteration,
parallelism, selection, etc. to model control flows of complex web service combinations. This approach, however,
does not provide the implementation of the framework and has not demonstrated support for fault handling and
compensation semantics. It has no pragmatic support for the kinds of analysis (e.g. compatibility) that have been
suggested. Another approach [81] developed a Petri net-based technique (C-net) to model and analyse web service
interactions, supporting basic and structured activities as well as interfaces. The C-net structure is analysed for
service compatibility in behaviour using a policy of adding information channels to resolve incompatibility. It
assumes that the services are compatible at the syntactic interface level. C-net can be transformed into BPEL code
using the ActiveVOS engine, which is pragmatic for implementation. However it does not support the fault and
compensation constructs of BPEL.

Another approach [77] provides mappings of control flow constructs for individual executable BPEL process
to Petri nets specified in PNML (Petri Net Markup Language [10]). Analysis is automated using the WofBPEL
tool [78] for detecting unreachable activities, detecting multiple simultaneously enabled activities of the same
messages types, and determining for each possible state of a process the types of messages that may be consumed
for the rest of the execution. Another similar work defines mapping semantics for BPEL to Petri nets, and auto-
mates this mapping [45]. A wide range of BPEL4WS constructs is supported. The authors state limitations [87]
that data is abstracted to tokens, and that high-level constructs such as transition guards and variables are omitted
but represented as non-deterministic choices instead of data evaluation, so the resulting model is a low-level Petri
net. The automated tool support is limited only to the transformation from BPEL to Petri nets.

A variation of π-calculus (webπ∞) was also used to define unambiguous semantics for WS-BPEL 2.0 to
address some open issues of BPEL [62] such as complete condition. Event-based mechanisms were proposed

19

with emphasis on formalising the WS-BPEL error recovery framework implemented through event, fault and
compensation handling. Variable and global state handling are not supported but have been identified as future
work. The focus is on addressing open issues of ambiguities in the specification documentation. The framework
has no automated support in specification and analysis for compositions.

Formalisation of grid service composition has had very limited attention in contrast to web services [126].
One approach uses π-calculus to formalise grid service compositions; verification is performed in consideration
of the service interactions [42]. Service behaviour is specified in π-calculus using workflow and client/server
patterns. The PGSCV (Pi-calculus based Grid Service Composition Verification) algorithm automatically analyses
the behaviour to establish interaction patterns; these are inserted into a grid service context that is used to verify
if the composition is correct. Another approach developed a variation of π-calculus; Cpi-calculus (Conditional
π-calculus) has been investigated for grid service composition [126]. It developed and proposed composition
signatures for grid services to precisely model grid service compositions, particularly of their concurrency aspects.
However this approach is not very pragmatic in a typical development environment as the specifications have to
be hand-crafted, and likewise in the analysis which requires expert knowledge of the techniques.

Web service composition has also been studied using a performance/stochastic model-based formalism. A
preliminary approach defines mappings from BPEL4WS to PEPA (Performance Evaluation Process Algebra),
implemented as an automated translation tool as proof-of-concept [70]. The approach states that the BPEL and
WSDL specifications give the structure of the PEPA model, but gives no information on the stochastic parameters
(e.g. rates) for the activities translated. The approach extends the schema for WSDL with optional estimated
“latency” attributes to be specified for each operation, and therefore translates into PEPA components with latency.
BPEL activities are defaulted to a timing of 1.0 seconds. The tool invokes the PEPA workbench to calculate the
throughout of the model. Fault handling is not addressed in the modelling, and factors such as communication
cost and load are not considered for the analysis.

Formalisation has been applied to distributed systems in general. One approach uses UML notation as a graph-
ical abstraction to formalise distributed systems (object and component middleware), using process algebra for the
underlying specification and analysis [55]. This approach suggested a set of stereotypes as UML class diagrams
and statecharts to describe synchronisation (e.g. synchronous, one-way) and threading (e.g. single-threaded,
multi-threaded) primitives. CORBA (Common Object Request Broker Architecture) is used as a superset of prim-
itives to other distributed technologies such as Java RMI (Remote Method Invocation). The approach has defined
process algebra semantics for these stereotypes. Users include the stereotype annotations in the design of class
diagrams and statecharts. UML diagrams are translated using the defined semantics into FSP, which is then model
checked using compositional reachability analysis [16] to find potential deadlocks or synchronisation flaws in the
design. Property violations are presented as UML sequence diagrams. Further work added more stereotype primi-
tives for the specification of safety and liveness properties [56]. Another approach developed a connector synthesis
technique for deadlock-free COM/DCOM applications [48, 49]. This technique uses comments in component in-
terfaces where their dynamic behaviour is specified in a CCS-like process algebra and a connector is specified
to handle interactions between clients and servers. This is synthesised and deadlock analysis is performed on it,
removing deadlock behaviour caused by the composition of components in the environment (but not those internal
to the components). The outcome is a connector implementation containing deadlock-free routing policies that
filter client requests to servers. The approach can be applied to single-threaded and single-layered (not composite)
components. The authors state a major drawback is that clients will require code modification to make calls to
the connector, which has become the new server component that contains the old ones. The authors have plans to
address this drawback and to extend this work to support multi-threaded and multi-layer servers.

2.6.2 Implementing Composed Services
There are several service development tools for creating BPEL services. ActiveBPEL Designer, Oracle JDeveloper,
BPEL Designer, and Intalio Designer are instances of such tools; some of them are available commercially and
some for community use. These tools usually support specific BPEL implementation(s). ActiveBPEL Designer
creates deployments for the ActiveBPEL engine, while JDeveloper deploys on its own application servers. BPEL
Designer and Intalio Designer are for Apache ODE.

JOpera [79] is a service composition tool for building new services by combining existing ones. It provides
a visual composition language and also a run-time platform to execute services. JOpera claims to offer greater
flexibility and expressibility than WS-BPEL. Although JOpera initially focused on web services, support for grid
service composition has also been investigated. The visual composition language is not a standard like WS-BPEL.
This is not so appealing especially for users who prefer a choice of implementations that support a standard.

20

OMII-BPEL (Open Middleware Infrastructure Institute BPEL [22]) uses BPEL to support the orchestration of
scientific workflows with a multitude of service processes and long-duration process executions. This work inves-
tigated the feasibility of orchestrating grid services. It provides a designer, Sedna [111], for process development
(now known as OMII-BPEL Designer), and a tailored ActiveBPEL engine to execute and monitor processes. This
provided the UK e-Science community with an infrastructure for developing and executing (scientific) workflows.
OMII-BPEL has provisions for WS-Security [71] to secure and authorise communication to and from the BPEL
engine, achieved by using security handlers in ActiveBPEL via the AXIS handler and architecture which allow
such extensibility.

Taverna [75] is a toolkit for developing bioinformatics workflows. It introduced SCUFL (Simple Conceptual
Unified Flow Language) to model grid applications in a specialised workflow language. Taverna eases explicit
data modelling and includes support for service discovery. Taverna has a focus on bioinformatics, although there
has been application to several domains as it was developed. Although it may have its strengths, technologies
that are based on standards such as BPEL are generally more applicable, and are more likely to be favoured by
adopters.

There is generally no support of formalisation and analysis in development and service creation tools, although
most do support static validation of implementation design. These pragmatic tools are potentially applicable and
are not in conflict with regard to the thesis objectives and methodology: instead, they complement this research.
The implementation backbone (engines) behind these tools, for instance Apache ODE, OMII-BPEL, and Tav-
erna, are potential target implementations applicable to the thesis, which takes a high-level approach to service
description and generating service implementations for supported target languages.

2.6.3 Comparison With Related Work
The thesis work differs with respect to the foregoing approaches in various ways, but also shares similar mo-
tivations. The thesis shares the motivation of automated tool support. The thesis employs a single, high-level,
graphical design to describe entire service compositions, and the composite description is automatically translated
into specification and implementation. The approach also supports grid service composition, and nested service
compositions. The thesis shares the views that process algebra approaches are suitable for service composition,
and the benefits of providing abstraction to formal methods and tools [17, 25, 55, 83]. LOTOS was chosen as
the formal specification language as it has been successfully used to describe web service composition [100], and
it allows for analysis considering data; adequate tools were already available. The thesis approach to analysis
differs. High-level languages and tools are used in this thesis to specify and highly automate validation and ver-
ification, extensible and independent of the underlying techniques. Data types and values are supported in the
formal validation and verification. Templates are provided to support verification for the definition of commonly
specified properties [66]. The WS-BPEL 2.0 standard is supported for implementation of composed services.
There is support for implementation testing that is highly automated; this reuses the same validation descriptions
as defined for specification.

However it is not necessary that other methodologies and technologies be mutually exclusive with the thesis
work. The implementation tools are complementary in that they provide service enactment engines which can
potentially be exploited as the target underlying technologies in the methodology when turning design into im-
plementation, taking advantage of their distinguished capabilities. OMII-BPEL, for example, provides a secured
BPEL engine to enact processes enabled with security mechanisms.

2.7 CRESS

CRESS is an abstract graphical notation and tool that has a methodological framework for high-level service
design, automated formalisation and analysis, and automated implementation. This approach fits nicely to the
foundational part of the thesis objectives. CRESS has a web service domain where it supports the development of
(composed) web services.

Figure 2.3 shows an overview of CRESS goals pertaining to its web service domain. These are compatible with,
and are a subset of the thesis approach proposed in figure 2.2. CRESS uses a high-level approach whereby services
and analyses are abstracted from actual technologies and automated in their realisation. These are therefore
suitable as the basis for the approach required in the thesis work. The original CRESS framework for the web
service domain supported automated specification, formal validation of composed services, and BPEL4WS as a
target language [101]. Their respective strategies could be extended to support a new domain for grid services,

21

Figure 2.2: Desired Approach For Creating Composed Web/Grid Services

Figure 2.3: CRESS Goals Compatible With Proposed Approach

automated specification for composed grid services, validation for web/grid partner services, and WS-BPEL 2.0
specification as target language for composed web/grid services. High-level verification property specification
support, automated formal verification, and automated testing have been the new areas of development to meet
the thesis required integrated methodology. CRESS’s extensibility and tool integration framework were used as
the basis to meet the thesis objectives.

CRESS is independent from domains and languages. The CRESS approach provides a simple high-level graph-
ical notation to describe services and features without binding to any actual languages or implementation. The
notation is context-free and is not bound to any particular application/domain. A domain can be added into the
CRESS framework to enable support for service description. This implies that the context for diagram description
(e.g. keywords, node syntax, etc.) are added into the CRESS framework for the new domain. Through this ap-
proach, many domains can be supported by the CRESS notation. To date CRESS has been used for creating services
in the domains of IN (Intelligent Networks), IVR (Interactive Voice Response), VoIP (Voice over Internet Proto-
cols), SIP (Session Initiation Protocol), and also WS (web services). Recently, the DS (Device Services) domain
was added which enables OSGi (Open Services Gateway Initiative, now known as OSGi Alliance [94]) services
to communicate with BPEL services. Actual implementations of a service are obtained by interpreting the high-
level diagrams according to the domain context and translating into the actual target implementation language.
Table 2.2 list a subset of the domains and their supported target languages. CRESS adopts an approach where
actual implementation language support (e.g. translation strategies) can be added to the framework to achieve
translation from CRESS descriptions of a given domain. Therefore it allows simple and manageable development
(e.g. one-time graphical description). Multiple target implementations are supported. Target implementations do
not mean only actual implementation where functionality is actually rendered, but can be virtually anything that
their corresponding translations are intended for (e.g. textual documentation). Using this approach, the formal
specification (as a target) of a CRESS diagram is automatically obtained. Automated formal specification has been
practically applied to all services in nearly all the domains supported in CRESS, which uses languages such as

22

Domain BPEL LOTOS SDL
DS

√ √

WS
√ √

IN
√ √

SIP
√ √

Table 2.2: Subset of CRESS Supported Domains and Target Languages

Target

Language

Realisation

Target

Language

Back-End

Analysis/

Simulation

Results

Target

Language

Front-End

CRESS

Diagram

Target

Language

Framework

CRESS

Code

Generator

Diagram

Editor

CRESS

Lexer

CRESS

Pre-

processor

CRESS

Parser

Figure 2.4: CRESS Framework [103]

SDL and LOTOS as target specification languages and has the potential to support others.
The CRESS approach therefore serves as a basis of rigorous development where formal specification is au-

tomatically generated, and in turn is the basis for formal analysis and thereafter implementation from high-level
design.

2.7.1 CRESS Framework
As a high-level approach, the CRESS framework is mostly focused on the CRESS diagrams which are explicitly
or implicitly involved in the activities executed by CRESS tools. For example, the generation of actual code
(specification or implementation) involves translation from the diagrams. Performing formal validation requires a
specification obtained from automated generation.

The CRESS tool framework, illustrated in figure 2.4, is extensible. The boxed area represents CRESS tools,
with tools outside being externally provided. CRESS diagrams are not part of the toolset to allow freedom of
choice of editors. Given a target context via the target language framework, CRESS diagrams are translated into
intermediate diagram format (textual) which is then syntactically parsed and checked according to the domain’s
context (for example CRESS web service notation). After this the generation of the code will take place, realised
via the target language realisation to the target language backend. Most of the tools in CRESS are written in the
Perl scripting language for the advantages of being portable and exploiting to a large extent the language’s pattern
matching capability.

Table 2.3 and figure 2.5 [103] and describes the subset of the original CRESS tool framework and its rela-
tionships which support the web services domain. There are other CRESS tools are not presented here as they are
intended for other domains not covered by the thesis such as VoIP, but they follow a similar framework dependency
on common CRESS Perl modules (.pm files).

These CRESS modules and tools together automate the formalisation and implementation of web services, re-
spectively in LOTOS and BPEL/WSDL. Formalisation in CRESS includes the specification and rigorous validation
analysis by the tools cress_lotos and cress_validate respectively. Implementation is achieved with cress_bpel. The
automated formalisation and implementation aspects of the methodology are thoroughly discussed in Chapter 5
and 6 respectively.

2.8 Summary
Significant technologies, languages, and methodologies have been evaluated to establish concretely the various
aspects of the thesis methodology objectives and how to achieve a practical, effective and rigorous development
framework for creating composed web/grid services with confidence.

CRESS was found to be suitable, in view of its practical capabilities and framework, for use as a basis for the
thesis work. It has a high-level graphical notation for describing composed services; automated approach to for-
malisation; support for the widely adopted BPEL standard; and automated implementation of services, which is a

23

Tool / Modules (.pm files) Purpose
cress_bpel main entry to translate CRESS diagrams to BPEL
cress_check check CRESS diagrams based on domain (vocabulary)
cress_create create service archives
cress_deploy deploy service archives
cress_expand expand macros in CRESS diagrams
cress_lotos main entry to translate CRESS diagrams to LOTOS

cress_validate validate CRESS diagrams
cress_bpel.pm CRESS diagram to BPEL/WSDL translator and used by

cress_bpel
cress_common.pm CRESS common definitions
cress_lexer.pm CRESS lexical analyser (diagram analyser) to produce the inter-

mediate CRESS diagram format
cress_lotos.pm CRESS diagram to LOTOS translator used by cress_lotos
cress_parser.pm CRESS diagram parser (syntax analyser) for parsing and check-

ing of CRESS diagrams produced with “cress_lexer.pm”)
cress_vocab.pm CRESS vocabulary support for all domains, e.g. web services

vocabulary defines reserved names and checks diagrams

Table 2.3: CRESS Tools Relevant to Web/Grid Services [103]

pragmatic solution for rigorously developing composed web/grid services. It has an extensible framework which
allowed the thesis work to develop aspects that were lacking in the CRESS existing approach to meet the required
methodology. This has resulted in a more thorough rigorous development environment. CRESS is complemen-
tary to many of the evaluated technologies, which can be supported in CRESS as target implementations via its
extensible framework. Developers can therefore exploit the CRESS capabilities within a single environment.

24

cress_check

cress_lotos cress_sdl

cress_expand

cress_vocabulary.pm

cress_parser.pm

cress_lexer.pm

cress_common.pm

cress_lotos.pm cress_sdl.pm

cress_vxml

cress_vxml.pm

cress_bpel

cress_bpel.pm

cress_create

cress_deploy

cress_cpl

cress_cpl.pm

cadp_annotate

Figure 2.5: CRESS Modules Dependency [103]

25

Chapter 3

An Integrated Methodology

This chapter describes the integrated methodology for creating composed web/grid services which underpins high-
level design, automated formalisation, high-level formal validation and verification descriptions with automated
analysis, automated implementation, and also automated implementation validation.

3.1 Goals
The thesis aim was to create an integrated environment for developers to create dependable composed web/grid
services. The goals are:

• easy specification and development of realistic composed web/grid services using the CRESS high-level
graphical notation and associated tools

• automated design-time (formal) analysis where specification, validation and verification are made simple
for non-experts and accessible within the same development environment

• automated implementation with easy functional and performance evaluation, reusing the design-time vali-
dation tests

3.2 Methodology Overview
Development of software in general goes through an iterative lifecycle of design and implementation, most likely
with a variety of intermediate phases for analysis (e.g. verification, validation, and testing).

The thesis work has developed a methodology as a thorough development lifecycle for creating composed
web/grid services within a single environment. The methodology is summarised in figure 3.1.

The methodology exhibits the following iterative phases: high-level design, abstract model specification,
design-phase analysis, implementation, and post-implementation analysis. From an overall perspective, the method-
ology supports development iteration. Transitions from design to analysis, to implementation, to testing are sup-
ported in a convenient manner. This automates a lot of work on behalf of the developers and analysts, enabling
them to focus on important tasks such as analysis, re-design, implementation, and testing.

The developer starts with the high-level design of the composed services and their configuration as CRESS
service diagrams and configuration diagram. This is where the developer defines application data, partner involve-
ment, service behaviour flow, and deployment configuration. These high-level descriptions are the foundation
for the rest of the methodology – specifically seen in the automated formal specification and implementation, on
which further activities are based.

Formal specification of the service behaviour is required in order to perform design analysis using validation
(scenario tests) and verification (property assertions). A specification is automatically generated by CRESS tools
that translate the high-level CRESS diagrams configuration descriptions into LOTOS specification. The generated
specification fully specifies the behaviour of all CRESS services, and provides outline behaviour for non-CRESS
partner services. The developer can provide handcrafted specifications for the non-CRESS partner services, which
are usually created for a thorough analysis. The range of analyses that can be performed depends on the depends on

26

Figure 3.1: Integrated Methodology Development Lifecycle For Composed Web/Grid Services

the details of the specification – more thorough analysis for more detailed specification. Validation and verification
of the services can be performed in either order as they are independent.

The developer defines high-level scenarios for the services to be validated using MUSTARD. The outcomes
of validation, specifically diagnostic traces of validation failures, provide the developer with feedback on the
CRESS service design and the overall specification. The developer can iterate the design, specification, and val-
idation phases until satisfactory results are achieved: the approach is entirely up to the developer’s preference
for development. For example, a developer who prefers a progressive spiral approach may add more details to
the specification of non-CRESS partner services and define more validation scenarios to be validated at the next
iteration.

The developer specifies high-level properties to be verified using CLOVE. Usually CLOVE’s predefined prop-
erty templates are used as they are commonly verified properties. The CLOVE properties may be defined at any
time and are only used when verification is performed. The outcomes of verification, in particular for compromised
properties, provide counterexamples that the developer uses to diagnose and address problems. The developer can
iterate design, specification, and verification phases as described above.

Once satisfied with the formal analysis, the developer should be more confident of the service design, partic-
ularly for the composed service. The developer then configures the services for implementation, and generates
their implementation. CRESS composed services are generated as BPEL services, and non-CRESS partner services
are generated for Java implementation. The developer then provides the detailed Java implementation of web or
grid partner services, usually by adding code to generated code skeletons. Once implementation is complete, the
services are then deployed into their respective service hosting containers (BPEL in ActiveBPEL, partner web
services in Axis, and partner grid services in Globus Toolkit 4). CRESS automates the service deployment if so
requested by the developer.

The developer can validate functionality and evaluate performance on the deployed services. Validation of
service implementations is similar to formal validation, re-using the same sets of MUSTARD scenarios but execut-
ing them against actual services using the MINT tool. This allows developers to be confident that what worked
in the design (specification validation) is also exhibited by the service implementations (the ultimate products).
The testing outcomes, specifically diagnostic traces of failure, provide feedback to the developer who uses it to
diagnose and address the problems. The design, implementation and testing are iterated until satisfactory: the
choice is up to the developer’s preference as described earlier for the formal analysis, except that usually at this
point all the MUSTARD scenarios are already specified. Once satisfied with the functional validation, the devel-
oper can proceed to performance evaluation, putting the target service under load, executing multiple tests either
sequentially or simultaneously as specified by the developer. This evaluates the service behaviour consistency as
well as obtaining insights into configuration issues such as resource allocation on hosting environments, in order
to meet the non-functional requirements of the services.

Although the methodology does not mandate that all phases be followed or in a strict pattern, convenient and
automated support for most of the phases will encourage and motivate their application. For example, developers
have the choice not to validate designs. However, design validation is simple, high-level and highly automated;
the analysis contributes to service quality. It is therefore advantageous that all phases be applied, as direct benefits
such as improved service quality can be achieved with limited effort. The methodology is based on the CRESS

27

toolset and therefore its framework, including directory structure, filename conventions, and framework-specific
files [103].

3.3 Development Lifecycle of Composed Web/Grid Services
This section prescribes the details of a typical development flow to create a composed web/grid service using the
methodology.

3.3.1 Design
Describing Service Diagrams

From the designer’s perspective, the activities in the design phase are high-level descriptions of services and
service configuration. The description notation is discussed in detail in Chapter 4. Briefly, a composite web
or grid service behaviour is described by a CRESS diagram, which may use other CRESS diagrams (dependent
diagrams) and feature templates (modular development, and reset features), varying according to the nature of
the service that is being designed and the development preference. In any composition there is definitely the
involvement of at least a root diagram which is the main description of the composed service. It is typical to start
development from the root diagram(s) – a natural flow of development as it is the basis for service creation. There
are no mandatory steps in development scenarios involving multiple CRESS diagrams. It may be preferred to start
from the the lowest level root diagrams that do not use other root diagrams as service partners (i.e. a bottom-up
approach). A top-down approach may also be used, or even both simultaneously in situations when resources
(number of developers) permit. Ultimately these diagrams are combined by CRESS and parsed for purposes such
as syntax checking and generation of code. When feature diagrams are involved (e.g. for reset features or modular
development), it may be easier if the root diagram is first described as it provides a clear guide as to what the
features should modify.

The web service examples in Chapter 7, figures 7.2, 7.3, and 7.4, show three CRESS root diagrams created
using the CHIVE editor, depicting a possible flow of composed web services along with their interaction with
other services. Chapter 4 presents the CRESS notation; for now, these diagrams contain rule boxes, nodes, arcs,
and labels. At this point, the diagrams are designs with specified dependencies between them which will be used
only when translating to specified target languages.

Describing Service Configuration

The service configuration diagram for the web and grid service domain is defined with deployment options and
parameters, along with the specific namespace configuration for each service in the composed services. The
configuration diagram does not play a direct role in this phase but underpins the later phases, providing details
such namespaces for implementation generation, style of formalisation (e.g. repeated top-level behaviour in a
LOTOS specification), specification annotation for verification, settings to generate implementation validation,
etc.

Developers should therefore describe the service configuration at this point as it will be convenient in later
phases. Particularly the Deploys options and parameters, explained in detail in Chapter 4, depend on the immediate
phase that developers want to perform. Logically, though not mandated, the next phase is formal analysis: the
deployment (Deploys) options should thus concern those pertaining to formal specification and analysis. The
configuration can be adjusted to specify implementation deployment, which has options such as the target language
(version of BPEL standard), code comments, and service timeout threshold.

3.3.2 Specification
Following the design of services, the abstract model of the service behaviour is created as the foundation for the
design-phase analysis. This is a highly automated phase. Developers do not have to build the model from scratch,
which is potentially tedious and prone to errors.

The behaviour of composed web/grid services described as CRESS diagrams are automatically and fully spec-
ified in LOTOS as the diagrams fully describe the composite behaviour. At this point, the developer would have
already specified the deployment options and services in the CRESS service configuration diagram; this infor-
mation is used by the tools that generate the LOTOS specification. There are two ways to achieve automated

28

Figure 3.2: Partner Specification Using Generated Interface

specification, the explicit and implicit approach, and they can be used in combination. Developers can explicitly
execute the tools to generate the specification, often used when partner and phantom (used for auxiliary behaviour
such as resources for example a database) services have not yet been specified. Analysts may use the specifica-
tion directly, such as specifying behaviour details for partner services, and performing their own analysis. The
implicit approach is more advanced, going straight to executing the formal analysis (implies analysis descriptions
have been specified), which will automatically generate the specification prior to performing the analysis. This
approach is likely to be used in iterative design wherein most of the specifications, especially those of the part-
ner/phantom services, have been completed and analysis with minor changes to design/behaviour are repeated
until satisfactory. Both approaches share the same specification generation process, but only the second approach
achieves automated analysis.

Specification of Partner Services

This step is used to include detailed behaviour for partners services that are not described as CRESS diagrams. The
automated generation of the LOTOS specification of the composed service includes the default interface behaviour
of these partners, thereby completing the specification to an extent that immediately supports a limited range of
analysis. Detailed analysis can be performed only if detailed behaviour is specified.

Partner service and phantom partner specifications are created according to the format and file structure as
described in section 5.2.1. These specifications are automatically included into the generated LOTOS specification
of the composed service.

While developers and analysts can specify the behaviour of partners from scratch, some effort can be saved by
using the default behaviour of the services that was generated. Figures 3.2 and 3.3 illustrate the two approaches to
specify a partner’s behaviour. The first approach uses the explicit approach described in section 5.2.1 to complete
the detailed specification. The partner’s manual specification is initially absent. The automated generation of the
LOTOS specification for the composed service is executed once. The partner’s default LOTOS service behaviour
interface will be generated as a LOTOS process within the overall specification. The analyst adds detailed be-
haviour to the default interface in this file. Subsequent automated generation of the composed service will include
the partner’s specification from the file instead of generating the default interface. This method applies for any
number of partners. The second approach is to fully specify the partner behaviour without initial specification (to
obtain the interface). CRESS will detect the partner specification and include its specification instead of generating
its interface behaviour, thereby achieving the overall detailed specification in the first generation.

3.3.3 Formal Analysis
Formal Validation

In this phase, analysts specify high-level validation scenarios for composed and partner web/grid services using
the MUSTARD notation. Each service may have its own set of validation scenarios saved as MUSTARD files
according to their service name. The scenarios can be specified at any time, for example together with the CRESS
diagram. Partner service MUSTARD files should reside in the same location as the composing service diagram.

29

Figure 3.3: Include Partner Specification Directly

Validation of a partner service will yield productive results only if its behaviour has been specified, not using the
automatically generated outline behaviour. If MUSTARD scenarios are not defined for a service or partner, then no
validation will be attempted for this.

Analysts perform automated validation using the tools (e.g. cress_validate) within the integrated development
environment. They can choose the services to be validated as it may not be always necessary to validate all services
involved in the composition. The validation is carried out by the MUSTARD tool. Scenarios that do not pass will
have diagnostic traces printed in MUSTARD notation, which can be used to analyse and correct the composite
service CRESS diagram and partner specifications that are manually specified.

Formal Verification

The methodology’s approach to support automated verification is rather similar to automated validation. Formal
verification of the composed service needs its CLOVE properties and annotated LOTOS specification. This implies
that the service configuration has specified automatic generation of the annotated LOTOS specification.

In this phase, analysts specify high-level verification properties and data value enumerations for the composed
service using the CLOVE notation, saved with the same service name with the CLOVE file suffix (.clove) in the
same location as the CRESS service diagram. The properties can specified at any time; for example together with
the CRESS diagram.

The following general guidelines may be followed for efficient verification. Verification of a composed
web/grid service that has a simple LOTOS specification and small value range of data types (specified in its
CLOVE description) may not require the compositional mode of verification as it may be less effective, particu-
larly in generating the explicit LTS that is to be verified. Generally, in this verification context, a composed service
that has only a few partner services, that does not have array data types, and does not have too large a range of
value enumerations in its CLOVE description, is suitable for the non-compositional mode. Compositional mode
is suitable otherwise, where the composite service (a CRESS diagram) comprises further composite services (e.g.
other CRESS root diagrams), and may have large data value ranges for data types and/or array data structures.

Analysts can perform automated verification using the tools (e.g. cress_verify) of the integrated development
environment. Automated verification will be carried out by the CLOVE tool. By default, deadlock and livelock
freedom are checked automatically. A verification outcome of a property is either TRUE or FALSE, meaning that
the property is respected or not. In the event of FALSE, CLOVE will initiate diagnostics by generating a pseudo-
LOTOS behaviour that gives a counterexample path trace to the property that was evaluated, exhibiting a specific
behaviour in the specification that is in contradiction. Such diagnostics are used to correct the composite service
CRESS diagram and manual partner specifications.

3.3.4 Implementation
This is the phase where the actual composed and partner services are created and deployed, and is the ultimate
objective in development. The service configuration and implementation code of owned partner services should
be provided prior to invoking automated service implementation and deployment. It is recommended that the
deployment option for WS-BPEL 2.0 be used as the adoption and implementation support for BPEL is moving
towards this standard. The service configuration diagram must also be configured with the implementation details
for the services, namely the namespaces, address, and resources if any.

Implementation for CRESS-described composed web/grid services is fully automated, with the CRESS frame-
work supporting the automatic compilation and deployment packaging for partner services that are developed
in-house. Developers provide the implementation code for a partner service in a directory of the same name in the

30

same location as the composing CRESS diagram (see sections 6.1.1 and 6.1.2 for full details). For a web partner
service, the implementation code is provided as a Java file under the same name in the partner service imple-
mentation directory. For a grid partner service, the Globus Toolkit implementation directory structure should be
followed, providing the service code implementation (Java files), required libraries (e.g. JAR files), and actual
deployment configuration (in the case of grid services, JNDI (Java Naming and Directory Interface) and WSDD
(Web Service Deployment Descriptor) files are needed). If the implementation code is not yet provided, some
effort can be saved by running the automated implementation once. This will produce a skeleton implementation
that developers can build on and then run the automated implementation again to complete it.

For illustrative purposes, assume there is a composed web service A that uses an internally owned partner
service B, and an externally owned partner service C. The composed service is to be implemented in the WS-
BPEL 2.0 specification. Implementation of partner service B is to be provided by the developer, but has not been
done yet. There is no need for a new implementation of partner service C as it is externally owned and is therefore
already coded.

The implementation phase is automated by invoking the CRESS cress_expand command-line tool. The ser-
vices that are specified in the Deploys clause of CRESS configuration diagram will be translated according to the
specified target language, for example WS-BPEL 2.0. As the above example has the situation wherein the partner
service B implementation was not provided, the service cannot yet be deployed. However the skeleton code of
the service will be generated by automatically translating to Java the service’s WSDL, which was also generated.
A developer can then build on the skeleton Java code thereby completing the implementation. Running the above
command again for the second time will achieve a full implementation that can be deployed.

CRESS will do the necessary tasks involving further code generation (e.g. translating code from WSDL),
compilation, and packaging into deployable archives. Implementations of composite services (CRESS diagrams)
are packaged in deployable archives for ActiveBPEL as .bpr files, web partner services as .wsr archives, and grid
partner services as .gar archives. Developers may choose immediate deployment to the appropriate container (.wsr
and .bpr into ActiveBPEL, .gar to Globus Toolkit) as part of the process.

3.3.5 Implementation Validation
Following the implementation and deployment of (composed) web/grid services, they can then be validated. In
this phase, the analyst may manually specify validation scenarios using the MINT notation, as well as a MINT
configuration for each service that is to have its implementation validated. The notation and properties configura-
tion parameters are described in section 6.3. Usually both validation scenarios and property files are automatically
generated for each service target if formal validation has been applied (implying MUSTARD scenarios have been
specified) and if service configuration is defined with an implementation validation option. The methodology’s
automated validation phase will translate the respective service MUSTARD scenarios into MINT. The MINT ser-
vice configuration is automatically generated for each service from the CRESS diagram descriptions and domain
service configuration during the automated implementation phase.

It is logical that services be functionally evaluated prior to measuring performance, as the latter is invalid
should the former not be satisfied. Similar to formal validation, analysts perform automated implementation
validation using the tools (e.g. cress_validate) within the integrated development environment. They can choose
the services to be validated as it may not be always necessary to validate all services involved in the composition.
The validation will ultimately be carried out by the MINT tool.

The following is an example for illustration. Suppose a composed grid service A described in CRESS uses
partner grid services B and C, and that all services have been successfully deployed with the methodology’s
automated implementation. MINT property files have been automatically generated for all services. Formal
validation has been previously performed for all three services, implying their MUSTARD files have already been
specified, and therefore implementation validation is fully automatic.

Functional validation may undergo iterations, and may involve bug fixes by making changes to CRESS dia-
grams, partner implementation code, and re-deployment. This is done until developers and analysts are satisfied
that the services are ‘doing the right thing’, as the functionality have been tested. Once satisfied with the func-
tionality of the service implementations, the developer can run the same set of tests for performance evaluation,
which can help evaluate the consistency and response times of the target service. This also assists adjustment of
the resource configuration. The analyst specifies for validation the mode of performance evaluation (sequential or
concurrent) and the number of runs per test. Sequential mode executes test runs successively upon completion of
the previous run. Sequential mode aids in evaluating behaviour consistency and the average response time under
a series of successive invocations. It may provide insights into detecting resource management issues such as a

31

resource locked but not released upon operation completion. Concurrent mode executes test runs of the same test
simultaneously to aid in evaluating behaviour consistency and the average response time under simultaneous load.
This provides insights into resource management and configuration to meet the scalability requirements of the
application.

3.4 Evaluation
The integrated methodology developed by the thesis was realised through the integration of the tools developed,
producing a thorough development lifecycle for creating composed web/grid services. Developers can graphically
compose services, validate formal test scenarios, verify service properties, obtain an implementation, and perform
functional and performance evaluation of the implementation, all within a single environment. The approach of
high-level description (for design, validate, verify, and test) and the highly automated phases results in a high-
level and rigorous development lifecycle for creating composed web/grid services of high quality. The CRESS
framework offers extensibility to exploit features and advantages of new and other existing technologies (e.g.
theorem proving, symbolic model checking, unit testing). This can strengthen and expand the methodology’s
capabilities to support service development and migration.

The high-level CRESS notation for describing web/grid service compositions enables developers to design
language-independent services that can be automatically translated into actual representations such as LOTOS
specifications and BPEL implementations. The use of the CHIVE graphical editor provides a visual environment
for the design and configuration of composed and partner web/grid services, and access to other CRESS tools.

The automated formal specification significantly enables developers to focus on design analysis. This is
achieved by the automatic generation of formal specifications from the CRESS diagrams. This can save time
and effort that is required if done manually, thereby motivating the application of formal methods to development.
The formal validation is high-level and automated, and can be applied to composed services and partner services.
Complex specifications of validation scenarios are supported by the language-independent MUSTARD notation.
Formal validation against a LOTOS specification is fully automated, with diagnostics in MUSTARD notation pro-
vided as information for the analyst to address issues. The formal verification is also high-level and automated.
High-level properties are specified and automatically verified using the CLOVE notation and tool, which will pro-
vide counter-example traces as diagnostics for compromised properties. These can be used by the developer to
improve service behaviour or design. Common specification properties are made available as templates to make
the approach even simpler. CLOVE also uses CADP’s compositional verification for LOTOS, which potentially
speeds up the verification process by reducing unnecessary state space.

Implementation is mostly automated apart from the manually written code to be provided for partner services.
The framework automatically generates the majority of code, compiles the implementations including those of
partner services, resulting in composed services and partner services packaged in deployable forms for their re-
spective hosting containers.

The methodology certainly could be improved. The following suggestions apply to individual phases but
collectively contribute to the entire potential of the methodology from the perspective of development. The formal
specification phase could be improved in usability, specifically in the area where the behaviour of partner services
(non-CRESS) has to be manually specified in the target formal language, which in this case is LOTOS. A high-level
abstract specification approach, perhaps graphically-oriented (maybe even with CRESS notation), could enable
developers to easily describe the partner service behaviour. This abstract behaviour could be translated to the
desired target language.

The relationship amongst the phases could be made dynamic in the sense that information/feedback produced
could be proactive and propagate into related phases which pick up, analyse, and use the information to support
their inner activities. For example, syntactical errors detected in a formal specification could proactively feed
back to the design phase, such as highlighting specific parts of a CRESS diagram that need attention, making it
easier and quicker for developers/analysts. Formal validation and verification could proactively relate diagnostic
information back to the design (CRESS) description and make suggestions as to where potential issues may be
found.

The manual implementation procedure for partner service implementation could be improved, especially for
developers who have to rename filename implementation stubs to the service name and then build the code. This
could be improved in two ways. Firstly this manual but simple step could be automated so that developers can
focus on the actual code development. Secondly, considering the earlier suggestion of high-level description of
partner service behaviour, this may translated to actual code. This could be inserted into the code skeletons or

32

even directly, thereby covering more development effort consistent with the design. Implementation validation
could be improved to provide more details for test runs such as a validation audit log in the form of interaction
(e.g. SOAP) messages, with attached timings and traces of each step in the validation behaviour. Such information
may provide more insights into the investigation of issues found in validation.

The methodology is currently symmetrical, apart from the verification aspect which is lacking in the imple-
mentation. Application of verification to the implementation could contribute to the quality of the actual products
which are the ultimate target. Existing or new techniques could be investigated (e.g. runtime verification and
assertions of BPEL workflows [7]) as part of the integrated methodology. A plausible approach is exploring the
potential of using CADP’s interfaces to add in hooks for evaluating properties on implementations corresponding
to the explicit state space. A symmetrical methodology would underpin a more rounded development lifecycle
for creating composed web/grid services, especially in the consistency of rigorous analysis between design and
implementation.

33

Chapter 4

Describing Composed Web/Grid Services

4.1 Introduction
There are many approaches to composing services, ranging from programming, through high-level orchestration
languages, and to visual programming. For example, programming offers a high degree of control and capabilities,
but it is tedious to code and maintain the coordination of behaviour. High-level composition languages on the
other hand give specific focus to describing the functional interaction of composition units, and support the logic
that constitutes the behaviour of the composed services. Visual programming enables graphical description of
system behaviour using graphical notations such as UML (Unified Modeling Language [?]), SDL (Specification
and Description Language [53]), Petri Nets [82], MSC (Message Sequence Chart [51]), and BPMN (Business
Process Modeling Notation [14]). There is growth in the use of orchestration languages with support for graphical
design, as seen from the ongoing and increasing development and adoption of service orchestration specification
standards such as BPEL and implementations such as ActiveBPEL [3] and Oracle BPM [76]. Graphical interfaces
and notations have been used to implement the composition of web/grid services. Most of them are bound to
the underlying target specification language and deployment specification. For example, ActiveDesigner [2] is a
graphical interface using the BPMN notation to specify BPEL business processes for deployment in ActiveBPEL.

The thesis work has aimed for an abstract design approach that supports automated formalisation and imple-
mentation, all integrated into one development methodology for creating composed web/grid services. A graphical
approach that is independent from actual languages and is able to be formalised can support a range of target or-
chestration languages and associated deployment methodologies, while maintaining the same high-level service
description. Similarly for formalisation, different formal representations can be obtained using the same graphical
service specification and development environment.

CRESS [99] is a notation and toolset that was developed by Prof. Kenneth J. Turner for graphical specification
and analysis of features and services. It was designed to be a flexible way of describing and combining services and
features. The CRESS approach was assessed to be suitable as a basis for meeting the thesis goals, especially with its
existing capability to compose web services in a rigorous manner, comprising support for automated specification,
and formal validation of composed services. The thesis work is an extension of the original CRESS approach,
and has extended it to support formal validation of partner services, verification, implementation validation and
performance evaluation, which the original CRESS approach did not have.

This chapter describes the CRESS notation in general and for web services, and also its use by the CRESS
framework – specifically how it underpins the abstract approach. Extensions made to the notation for the research
are then discussed in detail. This is followed by a high-level discussion of the extensions made to the framework
to meet the thesis objectives – their technical detail is covered in the corresponding later chapters.

4.2 The Original CRESS Notation
The CRESS notation was loosely based on the Chisel notation, which was developed by BellCore for describing
telephony features to meet industrial needs [98]. The notation is not bound to any language or application service
domain. Given the association with the context of an application domain (target framework), the notation will
have the semantics of services in that domain.

34

The CRESS notation consists of rounded rectangles, ellipses, arcs, and comment boxes. Rounded rectangles
(rule boxes) are used for configuration, and in individual service diagrams for usage of variables, parameters,
constants, macros, and diagram uses. Ellipses or nodes are for describing service activities, and are linked by arcs
to describe the flow of behaviour. These CRESS graphical components generally depict the service definitions,
behaviour and flow. CRESS has a general set of rules for describing and parsing a diagram syntactically. Domain-
specific constructs (such as keywords and data structure syntax) are parsed according to their target context linked
into the CRESS framework.

The graphical description of a service using the CRESS notation is generically known as a service diagram.
CRESS supports two types of service diagrams: root and feature. A root diagram is the actual description of the
service behaviour, which include activities, parameters, service flow, assignments, etc. depending on the context
of the domain. A feature diagram, as illustrated in 4.1 and discussed in 4.2.2, is similar but describes separately the
functionality which can be included into a service (a root or even a feature) diagram prior to service generation,
thereby resulting in a service having additional functionality. Features can be added or withdrawn easily as they
are not part of the root diagram. An example use is for POTS (Plain Old Telephony Service), where the call-
forwarding feature can be added or withdrawn from the service as required without changing the service (root)
diagram.

Generally, a CRESS root or feature diagram contains a rule box (see 4.2.1) and a graphical behaviour descrip-
tion (see 4.2.2). The description of a composed web service is typically a CRESS root diagram where the entire
process behaviour is fully described, comprising definitions (data types and structures, variables, constants, inclu-
sion of other CRESS diagrams, etc.) in a rule box, and the service logical behaviour (assignments, invocations,
fault handling, replies, etc.) using nodes and arcs. Concrete examples of root diagrams are given in chapter 7.
Feature diagrams may be used in a modular development of composed web services. For example, several teams
could develop their designated set of ports and operations for a composed web service separately as features, for
merging by CRESS tools into the root diagram. This may benefit development where different behaviour can be
engaged and disengaged readily with little effort, for example to engage and evaluate the use of different behaviour
descriptions of one functionality.

For each domain there is a specific CRESS graphical configuration diagram which is used to define the deploy-
ment details for services. Service configuration for web services specifies the exact services to be generated and
their deployment options, service namespaces, prefixes, and deployment addresses. The service configuration is
also where features can be specified for the services that are to be generated.

CRESS was originally and successfully used to compose web services as a domain that is plugged into the
CRESS extensible framework [101]. Formalisation (specification and rigorous validation) and implementation
are automated for composite web services. The CRESS notation for web services supports description of data
and variable definitions, usage of other composed web services described in CRESS, constants, service ports and
operations, requests, service invocations, data value assignments, conditions, fault and event handling, (scoped)
compensation, parallelism, loops, and termination (as described in detail in section 4.2). The CRESS notation was
evaluated to be appropriate for composing grid services as well, due to their similarities to the service-oriented
paradigm and their standards, potentially this also means automated formalisation and implementation. For these
reasons, CRESS was adopted as the foundation of an integrated rigorous environment for creating composed
web/grid services. The notation was extended by the thesis work with the aim of supporting realistic service
composition issues such dynamic partners and use of existing services.

4.2.1 Rule Box
The structure of the web service rule box begins with Uses, followed by the definition of named (variable) struc-
tures and constants, followed by partner services usage. CRESS supports data types for web services which map
straightforwardly to XSD types as listed in table 4.1. Complex data structures are specified within ‘{’ and ‘}’ and
can be nested. Arrays are supported using ‘[’ and ‘]’. For example the following syntax defines a complex type
Parcel that has fields: name as String, address as String, itemlist as an array of items which are of type String:

{String name String address [String item] itemlist} parcel
Named constants can be defined as well simply by using the ‘name <- value’ notation in a rule box, for

the convenience of specification. For example basicRate <- 3.5 means the constant basicRate has 3.5 as its
value. CRESS supports the inclusion of other CRESS diagrams, which allows a nested form of composition,
specified using ‘/’ followed by the names of other CRESS diagrams to be included with the current web service
composition. A brief but typical example is a composed web service diagram A that uses an existing composed
web service B, already described in CRESS, by stating Uses /B in its rule box. Diagram B is then considered a

35

Figure 4.1: CRESS Feature Diagram Example
Boolean Byte Date DateTime
Decimal Double Int Integer
Long Natural NegativeInteger NonNegativeInteger
NonPositiveInteger PositiveInteger Short String
Time UnsignedByte UnsignedInt UnsignedLong
UnsignedShort

Table 4.1: CRESS Supported Data Types For Web Services

partner service to A. These kind of partner services have all information automatically available and included into
the composed service, such as the behaviour specification and service interfaces (WSDL). Partner services that
are not described as CRESS diagrams are not specified in the Uses clause of a Rule Box as such information may
not be readily available and may have to be inferred or manually provided by developer. The WSDL of this type
of partner service can be constructed from their operation signatures invoked by the composed service. For formal
specification, skeleton interface behaviour can be generated for partners based on their use in the composing
CRESS service diagram as it is not known how they behave. Developers will have to manually provide the formal
behaviour, replacing the skeleton one, to be included into the behaviour of the composing service to better exploit
formal analysis.

4.2.2 Service Behaviour Description
The composed web service or ‘business process’ behaviour is described using ellipses, which are activity nodes,
and (labelled) arrowed arcs depicting the process workflow and interaction with other units of the service. Nodes
are uniquely numbered, with labels and parameters defining the process activities such as receiving requests,
invoking services, parallelism, assignments, loops, compensation, etc. These process activities and their syntax
are described in table 4.2. The usual syntax convention applies here: ‘?’ means optional, ‘*’ means zero or more,

36

‘|’ means alternative, ‘(’ and ‘)’ means grouping. Many node labels seem to follow closely the BPEL activity
constructs, but they are not necessarily constrained to BPEL as the CRESS notation is abstract. The names were
adopted as they are appropriate for defining process flow semantics. With BPEL as a widely adopted standard,
this implicitly serves the purpose of convenience with regard to understanding the semantics.

Nodes are joined by arrowed arcs depicting the process flow from one activity to another. Arcs may be labelled
with expression guards, event guards, and assignments. Expression guards are Boolean expressions specified for
path choices in the composed service. An example is loan.amount >= 10000. Boolean operators such as &&
and || along with parentheses can be specified for complex boolean expressions. In general, operators do not
have precedences and should be parenthesised as required. Multiple expression guards on different arcs may be
specified for alternative choices of paths. If more than one expression guard is specified from the source node to
the same target node, then their expressions are combined together with &&. An Else guard from the same source
node represents the negation of all the specified guards.

Event guards (Catch, CatchAll, Compensation) specify the fault handling behaviour for the associated scope
that is conditional upon occurrence of the specified event. Catch has the syntax ‘Catch fault’, to specify handling
for faults thrown. Variations of Catch faults can be specified. If a fault only has a name and no value, it is handled
by a Catch with the matching fault name only. A named fault with value will be handled by the Catch with
matching fault name and value type that corresponds to the value, or by a Catch without a fault name but with
the matching type. CatchAll handles any fault. Catch and CatchAll apply where they are defined, for example
after an Invoke (local scope) or as a global fault handler. If a fault occurs, the current scope (e.g. at the Invoke)
is first considered. If no matching fault handler is found, it escalates to the higher-level scope until a matching
fault handler is found. The process terminates in the absence of a matching fault handler. Compensation defines
a compensation handler to undo work (e.g. when a fault occurs), and applies where it is defined. Compensation
handlers and their scopes, which comprise subsequent activities for undoing work, are only enabled when the
associated activity completes successfully. Only enabled compensation handlers can be invoked, and it is by
means of an explicit Compensate action which is specified in a node. Compensate can be specified with a scope
which will invoke only the compensation handlers for the scope. If no scope is specified, then compensation is
carried out in the reverse order of the activities that have occurred.

Assignments are for data parameter manipulation, and can be specified partially for complex data types. An
assignment expression has the syntax ‘/variable <- expression’. Structured variable access is supported using
the ‘.’ operator. For example /msg <- forecast.description specifies the assignment of the description field of
the forecast variable to the msg variable. Assignments specified within guards mean that the assignments will
be executed if the guards, expressions or events, are satisfied or have occurred. Arcs with only assignments are
considered to have empty guards.

Features

A CRESS feature diagram can also use the service description constructs described above, and overall look similar
graphically. A feature may define a template. The initial node of a template has a numeric label that ends with
‘+’ (append to matching node), ‘-’ (prefix to matching node), ‘=’ (replace matching node). The initial node
defines a single event. Any binding associated with the start is appended to the corresponding original node. The
template must end with a single Finish (or empty) node, though other non-empty leaf nodes are allowed. A node
whose numeric label ends with ‘!’ is not template-expanded. Template event nodes are subject to further template
expansion. Figure 4.1 is an example of a simple feature created for a web service Lender that adds in the behaviour
of logging to an auditing service whenever loan proposal replies are made. The inclusion of features is specified
in the domain configuration diagram, which combines these with the root diagrams for service generation.

4.2.3 Service Configuration
Figure 4.2 is an example of a CRESS web service configuration diagram, where all configuration information is
specified within the rounded rectangle. The first line in the configuration specifies the deployment options, which
are specified as command-line switches, followed by a ‘/’ and the names of services and features to be deployed.
In this figure, the service LENDER is to be deployed. If the feature that was described in figure 4.1 is to be used
in LENDER, then its name is specified. Table 4.3 describes the original switches for web service deployment.
As CRESS is an abstraction for formalisation and implementation, there are options available for both in the web
service domain. The services designated for translation (e.g. LOTOS and BPEL) are specified using the syntax /
services.

37

CRESS supports the notion of ‘phantom’ partners. This is to provide an approach in the formalisation to
describe additional aspects of components which are shared by partners, for example a database behind the scenes
that is shared between two or more services. This is specified by a -m <phantom> option, which generates a
LOTOS process for the phantom partner whose gate is synchronised with all the services thereby establishing a
means of communication for interaction by the services if required.

The lower rectangle specifies implementation-related information for all services, including partners. Each
configuration is space delimited in the order of: service name, namespace prefix, namespace, and deployment
URL. The service name is a (case-insensitive) lookup identifier for the services during translation. The namespace
prefix and namespace are for the generation of BPEL and WSDL files, which will contain relevant imports and
references to files, data types, partner links, bindings, etc. The deployment URL defines the base address of the
deployed service, which will be made public via the WSDL.

Figure 4.2: CRESS Web Service Domain Configuration Diagram

4.2.4 CRESS Diagram Editors
The CRESS framework defines the graphical notation but does not mandate any particular visual editing tool for
describing CRESS diagrams, giving freedom of choice for editors. This is achieved with an extensible approach
having the requirement that the editors support formats that CRESS can parse into an intermediate internal rep-
resentation for use by the CRESS tools, illustrated in figure 4.3. Currently CRESS supports service diagrams
prepared by the following editors: yEd, Diagram!, and CHIVE (CRESS Home-grown Interactive Visual Editor).

Figure 4.3: CRESS Diagram Translation Approach
yEd is a graph editor developed by yWorks as a Java application that supports the popular text-based and

38

portable graph format GML (Graph Modelling Language) that CRESS supports and therefore parses. Diagram!
is a drawing tool from Lighthouse Design that runs under NextStep/OpenStep systems. CHIVE is a Java-based
visual editor specifically developed for CRESS, It is the best alternative amongst the editors as it is well integrated
with the CRESS tools. It provides an integrated visual environment for development of services in the various
CRESS-supported application domains.

CHIVE Graphical Editor

CHIVE is a Java application that is the recommended visual editor and environment for creating composed
web/grid services. Figure 4.4 is a sample CHIVE window, opened with a service diagram describing a com-
posed web service. CHIVE supports the CRESS notation and has been applied across all the CRESS supported
domains including web services and, in this thesis, grid services as well. Conventional graphical editing capa-
bilities are available to conveniently design CRESS diagrams, such as: cut; copy; paste; undo; fonts; snapping
arcs to nodes; arc labelling; grid lines; and arc curve editing. CHIVE provides a visual interface for the CRESS
tools, constituting an integrated visual development environment for the CRESS-supported application domains.
Domains, target languages, and tool options are configured in CHIVE via its File -> Preference menu which sets
the context for the service diagram that is being edited, shown in figure 4.5. These settings have explicit influence
on the CRESS tools; depending on the configured application domain, target language, and tool options, invoking
these supported actions through CHIVE will achieve the appropriate actions in the corresponding CRESS tools for
the specified context.

Figure 4.4: CHIVE Window
Originally, CHIVE’s interfaces for CRESS tools were only Check and Validate in its Tools menu, which corre-

spond to invocation of the CRESS tools cress_check and cress_validate that were described in table 2.3. Results
from these command-line tools are displayed in the visual environment of CHIVE. These meet part of the thesis
goal of an integrated methodology for composing web/grid services. The thesis work extended CHIVE’s existing

39

interface to support the CRESS notation extended by the thesis, and new work in automated verification and imple-
mentation validation in fulfilment of the methodology’s new design-phase analysis and post-deployment testing.
The CHIVE manual and installation guide are found in [102].

Figure 4.5: CHIVE Preferences Domain Configuration (web service)

4.2.5 Checking Service Description
CRESS diagrams can be syntactically checked within the context of their respective domains, using cress_check
or via the CHIVE editor. For example, a web service (WS domain) CRESS diagram will be checked with the
rules, keywords and context of web service composition such as supported base data types (e.g. String), complex
data type syntax, service activities (e.g. Invoke), and service flow (e.g. compensation, and error handling). For
web services the checking of the diagram can detect syntactic errors such as duplicated numbered nodes, invalid
activity keywords, used of reserved names, invalid operation signatures, invalid partner declaration, and incorrect
assignment syntax. The errors are displayed as text which the developer will use to correct the diagrams.

4.3 Extensions To The CRESS Notation
While the CRESS notation and methodology were suitable for the thesis research, it required several extensions
and developments to realise the goals set out, namely: grid service support, dynamic partner services, bottom-
up approach of composition using existing services, and supporting the new WS-BPEL 2.0 standard. The thesis
work developed these extensions which collectively support realistic web/grid compositions as well as a choice of
implementation standard. These extensions are also supported by the formalisation and implementation aspects
of the thesis methodology.

40

CRESS originally supported web services and not grid services. Preliminary investigations demonstrated that
the CRESS notation for web services could be potentially and conveniently applied to grid services, with support
for automated formalisation (LOTOS) and implementation (BPEL4WS) [90, 105]. The investigations showed that,
whilst the BPEL4WS orchestration of grid services developed in Globus Toolkit 4 was possible, the implemen-
tation of composed services was awkward as workarounds were needed due to the standards used by underlying
technologies differing in version, especially the WS-Addressing standard. It was not possible to invoke dynamic
WS-Resources using endpoint references, which ideally could be done by setting the endpoints in BPEL dynam-
ically bound partner links. The workaround without introducing any form of software extension was to have the
endpoints as explicit operation parameters. The target services could then manually infer and marshall the actual
WS-Resources for invocation, which was awkward. This was not a letdown but rather showed the potential of
BPEL for grid services, despite BPEL4WS being developed only for web services. The thesis work anticipated
that the WS-BPEL 2.0 release and the harmonisation effort with grid service standards would address the stan-
dards problem and enable more seamless orchestration of grid services. Indeed it was so when the WS-BPEL 2.0
specification was officially released and the Globus Toolkit 4 was further developed using standards compatible
with WS-BPEL 2.0.

Dynamic partner services may be involved in the composition of services, i.e. partner web services may be
dynamically bound at runtime. This activity is often seen of grid resources (WS-Resources) also. The original
CRESS notation had not previously supported this. This was a worthy and important composition capability, so the
thesis work extended the CRESS notation to define, bind and invoke dynamic partners. As an example, a grid re-
source may be created when required for a specific purpose and then destroyed when no longer required. Therefore
the endpoints to the WS-Resources are dynamic, and the composed service can dynamically set their endpoints
for use. As a web example, a composite service can choose from a set of available partners that implements the
same service interface depending on certain criteria (e.g. supplier service that offers the same functionality at a
cheaper cost or faster performance).

CRESS originally adopted a top-down approach to create composed services, whereby partner services were
also newly developed. Realistically it is very often the case that new composite services are created using already
deployed existing services as partners. Using existing services implies their definitions, especially data types,
messages, and namespaces. The thesis work extended the CRESS notation to allow specification of type ownership,
where data structures may have explicit definitions of service owners and will consequently use the owners’
namespaces.

4.3.1 Service Diagrams
CRESS Notation For Dynamic Partners

There are two main aspects of this capability: their definition and their binding. Firstly, there has to be a means of
expressing a partner service port as dynamically bound. Secondly, there has to be a way to express the binding,
which is required prior to invocation of dynamic partners. The extension introduces two new keyword types
that can be defined in a rule box: Partner and Reference. Partner is the keyword for defining ‘partner.port’ as
dynamic. For example Partner weather.forecast designates that the forecast port of partner service weather is
dynamic. Reference is the keyword for defining endpoint-typed variables which then can be used as the source in
assignments to express binding of dynamic partners where partner.port is the target.

Naturally a designated dynamic partner is initially unbound. Therefore prior to the first invocation by the
composed service, the dynamic partner is bound to a target endpoint. This implies the source of the assignment
naturally has to represent the reference service endpoint. Pragmatically this is how services are bound at runtime
in implementations such as BPEL, where the partner link is assigned the value of type EndpointReference (which
may be a value created and returned by a service). For example, a brokerage service might return the endpoint
to the service that best fits the criteria for the composed service. The composed service will bind its designated
dynamic partner to an endpoint prior to invocation and hence establish the interaction dynamically. The original
CRESS notation had no type definition for service endpoint, and therefore had no means to specify such bind-
ings. The CRESS notation was extended to support such a notion via assignments to Partner types as the target.
Invocation of dynamic partners is the same as invoking a statically defined service partner.

Figure 4.6 shows a simple example of a CRESS service diagram specified to define, bind and invoke dynamic
partners. It describes a simple composed service (market) that uses a broker service for finding a supplier that
best matches the customer’s criteria. The composite market service then uses the supplier recommended by the
broker, and proceeds with the order on behalf of the customer. The partner service supplier with its fruits port is

41

Figure 4.6: Dynamic Partner Example

the dynamically bound port. The expression ‘Partner supplier.fruits’ within the rule box describes this dynamic
nature. The broker service returns the supplier endpoint in node 2 as supplierReference, which is then assigned
to supplier.fruits in its outgoing arc, thereby specifying the binding of the dynamic partner. The invocation of the
specified supplier follows as normal.

Type Ownership

Existing services are often part of a newly composed service, which is a very pragmatic and common develop-
ment flow in service-oriented computing. This implies the data structures and messages of the existing web/grid
services as they are the core elements of the contractual agreement to consume services. The CRESS notation
was extended with type ownership to support such descriptions where data structures defined in a rule box can be
specified explicitly with partner service names indicating ownership. The notation for data definition is extended
to name[:owner] where owner is the name of the service partner. If no owner is specified then the data structure
ownership defaults to the current service diagram.

The CRESS diagram in figure 4.7, modified from figure 4.6, illustrates that the broker and supplier are already
existing services which are then involved in the newly composed market service. This implies that the broker
and supplier services have their service interfaces already defined prior to the development of market service.
This means that the market service has to comply with both partner service definitions in order to consume their
services successfully. The rule box data definitions for order and fruitOrder are specified to be owned by broker
and supplier respectively. However, the market service would like not to expose its business dealings with the
companies that developed broker and supplier service for corporate reasons. In this diagram, the market service
defines an identical structure to order named marketorder but has ownership by market to represent its service
inputs rather than using those of broker. The market service therefore ‘hides’ away the view of broker, particularly
its namespace and data types, from its service consumers as a trade secret. The identical structure allows direct
assignment of the entire complex structure easily, as seen in the assignment arc between node 1 and 2. It is
for a similar reason that invoice of supplier is hidden, with marketinvoice also containing additional information
constructed using values from other data as the return data structure of market.fruits.purchase operation. This
type ownership notion is simple in terms of notation description, but its effects will be seen in Chapter 6 in the
automated implementation with regard to WSDL/BPEL generation, where the namespaces of the data schema
definitions reflect ownership explicitly.

42

Figure 4.7: Type Ownership Example

4.3.2 Service Configuration
Additional options were added to the service configuration diagrams. These new CRESS options are general
switches of CRESS tools which were developed to support the goals of the thesis, specifically automated verifica-
tion and implementation support for WS-BPEL 2.0, applicable to both web and grid services. Table 4.4 describes
the new options and their use. The automated verification aspect of the thesis uses CADP as the verification tech-
nology. This requires pragma-annotated LOTOS specifications. The thesis uses a Perl script cadp_annotate which
will be described in detail in Chapter 5 to automated the annotation.

CRESS was extended to support the grid service domain, which is largely similar to the web service domain.
Grid services or WS-Resources may have state information held in data structures that can be optionally queried
through the WSRF-defined WSDL interfaces. The service configuration for grid services now allows definition of
resource data structures for state and query capabilities. Data structures defined in such a manner are regarded as
the same as normal data types. In addition they will be configured as resource properties of the services. Resource
data types are defined the last column after the location URL of the associated service.

4.4 Extensions To CRESS Framework
The thesis work has made new developments to extend the CRESS framework which corresponds to the require-
ments described earlier in figure 2.3. These new developments involve the extension of existing CRESS tools,
and development of new tools which were added to the CRESS framework. Their technical details are presented
according to their respective impact area: formalisation and analysis (validation and verification) in Chapter 5, im-
plementation and analysis (validation) in Chapter 6. A new application domain was added in CRESS for creating
composed grid services. The grid service domain reused and adapted the web service application domain due to
similarities in paradigm and standards. As the CRESS notation was extended to support realistic service compo-
sitions, the existing CRESS tools were also extended (especially cress_vocab.pm, cress_parser.pm, cress_check,
cress_lotos.pm, and cress_bpel.pm) to reflect the new developments. cress_vocab.pm and cress_parser.pm were
extended to support the new keywords (Partner and Reference) and label constructs (type ownership and dy-
namic partner assignment). cress_check was extended to support the checking of these new notations, allowing
Partner and Reference types, etc. cress_lotos and cress_lotos.pm were extended to support the new extensions
to the notation in the automated generation of LOTOS specification code. cress_bpel and cress_bpel.pm were
extended for to support the new extensions for the automated generation of implementation code, and in addition

43

were significantly developed to support the WS-BPEL 2.0 standard as a target for automated implementation.
The support for formal verification was added into the framework via the new CRESS tool cress_verify that

was developed during the thesis work. cress_verify integrates the verification language and tool CLOVE (CRESS
Language Oriented Verification Environment), which was developed by the thesis work as a high-level approach
to automate formal verification of composed services, independent from the underlying verification techniques.
cress_validate was extended to support the capability of validating partner services, and integrated with the thesis
newly developed tool MINT (MUSTARD Interpreter) which automates validation of an implementation.

4.5 Evaluation
Composed web and grid services can be created using CRESS using a notation that provides a high-level abstract
graphical description. The notation underpinned by the tools framework has resulted in a rigorous and highly
automated development methodology comprising high-level design, formalisation, design-time analysis, imple-
mentation, and testing.

The original CRESS notation for composing web services supported the main constructs commonly used in
service development. During the thesis work, the notation for web services was adapted to the grid service do-
main, and therefore to the development of composed grid services. The CRESS notation was extended to support
dynamic partners and type ownership for describing composed web/grid services, extending the notation for re-
alistic compositions. Service configuration was extended with new options to support automated formalisation
and implementation of grid services. Grid partner services can employ resource data structures through service
configuration. The extended notation therefore supports typical description of composed web/grid services and
partner services, along with the capability to define resource data structures.

The CRESS notation could certainly be improved. The following are explicit and pragmatic suggestions as
future work on various aspects of the notation. The first suggestion is in security which is an aspect that is
potentially crucial and also critical in service-oriented computing. This enables owners to protect their service
resources by security mechanisms. Therefore it is possible that a composed service might involved a partner
service that implements security for authorised access, and that the composed service itself requires security.
The CRESS notation for service description and/or configuration may be improved with the capability to describe
security mechanisms. The second suggestion for improvement is directed at supporting the collection of WSRF
specifications as first class citizen for the grid service domain. A plausible approach would be the support of ports
and operations as keywords in the notation. For example ‘wsrp’ as a port keyword could explicitly indicate that
the associated grid service implements the ResourceProperties (WSDL specification) port and operations. The
third suggestion is directed at the composed service itself: to have the notation support correlation which may be
required in the composed service. Lastly, the web and grid service domain could be merged as one. This would
be a realistic move due to their converging definitions and specifications, and that a combination of web and grid
services may be involved in a composed service. Certainly these improvements in the approach should also be
reflected in the later phases of the methodology.

44

Activity Syntax Description
Invoke opera-
tion output (input
faults*)?

An asynchronous (one-way) invocation sends only an output to the tar-
get service operation. A synchronous (two-way) invocation exchanges
an output and an input with a partner web service where the input is the
result from the operation invocation. CRESS requires potential faults to
be declared statically, though their occurrence is dynamic. The faults
that may arise in a business process are implied by Invoke, Reply and
Throw.

Receive operation in-
put

Typically this is used at the start of a business process to receive a re-
quest for service. An initial Receive creates a new instance of the pro-
cess. Each such Receive is matched by a Reply for the same operation.
Receive also accepts an asynchronous response to an earlier one-way
Invoke.

Reply operation out-
put | fault

Typically this is used at the end of a business process to provide a re-
sponse, representing the output to the client. Alternatively, a fault may
be signalled.

Fork strictness? This is used to introduce parallel paths; further forks may be nested to
any depth. Normally, failure to complete parallel paths is expected to
lead to a fault. This is strict parallelism, and may be indicated explicitly
as ‘strict’ (the default). If this is too stringent, ‘loose’ may be used
instead.

Join condition? Each Fork is matched by Join. By default, only one of the parallel paths
leading to Join must terminate successfully. However, an explicit join
condition may be defined over the termination status of parallel activi-
ties. In CRESS, the expression uses the node numbers of immediately
prior activities. For example, 1 && (2 || 3) means that activity 1 and
either activity 2 or 3 must terminate successfully. In turn, this means
that activities prior to 1, 2 and 3 must also succeed.

Throw fault This reports a fault as an event to be caught elsewhere by a fault handler.
Compensate scope? This is called after a fault to undo previous work. An explicit scope

(CRESS node number) indicates which compensation to perform. In the
absence of this, compensation handlers are called in reverse order of
completion.

While condition The while is associated with the specified condition. The While node
should have two outgoing arcs labelled True and False. The True arc
is traversed to the activities performed if the condition is satisfied, and
repeats until the condition is not satifisfied - thereby following the False
arc.

Terminate Ends the process behaviour
Empty A void node used to link others

Table 4.2: CRESS Node Activity Syntax

45

Option Usage
-a annotation of LOTOS specification
-b mode BPEL specification version (1 - BPEL4WS, 2 WS-BPEL 2.0)
-c generate comments in code
-e error report level (3 – internal errors, 2 – also with user errors, 1

(default) – also with informative notes, 0 Ű- also with diagnos-
tics)

-m partners merge partners as a comma-separated list; this is needed only if
one partner is shared by several business processes, the merged
processes being extracted to the top level of the specification

-n number of top-level call instances (formalisation, default 3)
-o seconds generate of configuration for implementation validation, with

service timeout specified in seconds
-r repeat behaviour (formalisation, default is stop at a leaf node)
-l levels of code shown by indenting (default is no level indenting)

Table 4.3: CRESS Deployment Options

Option Purpose
-a Automated annotation of LOTOS specification. Potentially appli-

cable to support formalisation for other CRESS domains that use
LOTOS as target specification language

-b <version> BPEL translation target. 1 for BPEL4WS, 2 for WS-BPEL 2.0
-o <timeout> Timeout setting in number of seconds. This is used for the imple-

mentation testing (see section 6.3.2), where a timeout is imposed
upon the invocation of a service operation if the response is expected
to be within the threshold. Default no timeout.

Table 4.4: CRESS Service Configuration

46

Chapter 5

Formalising Composed Web/Grid Services

5.1 Introduction
The next stage following the description of composed web/grid services is design-time analysis. Applying design-
time analysis in the development lifecycle of composed web/grid services has the advantage of early error detec-
tion, thereby reducing the cost to remedy problems at later stages especially after implementation. Formalising
services can achieve this effect, whereby their behaviour can be rigorously analysed prior to actual implementa-
tion.

Conventionally the stages in formalisation involve specifying behaviour, defining the required analysis, and
performing and evaluating the analysis. Specification creates an abstract model to describe the behaviour of the
system at the desired level of detail. A high-level model can be analysed quickly. Analyses can be more detailed
as finer behaviour is captured in the model. Validation and verification are key techniques frequently applied in
the analysis of a formal model. Validation uses scenario simulation which can analyse behaviour on specific test
cases. Verification can check general properties exhibited by the behaviour such as deadlock freedom, liveness,
and safety from undesired actions. Verification can also check specific properties. Validation can be completed
very quickly as scenarios are usually small and finite parts of the behaviour. Verification is usually used to check
the entire behaviour for properties and usually takes much longer to complete. Their purposes and analysis orien-
tation are complementary. For example an exhaustive set of validation scenarios may be equivalent to full finite
state verification. However it is tedious to specify the exhaustive set of scenarios, and each scenario is simulated
separately, so there is a need to consolidate their results back into the same evaluation context. Some analyses
such as deadlock freedom are simple to evaluate through verification but are more difficult with validation. Con-
versely, validation may be applied to an infinite state space if the available verification techniques cannot be used.
Therefore exploiting validation and verification together is thorough and beneficial to the development. Validation
and verification can be performed in either order as they are independent from each other. Both forms of analysis
can produce feedback that identifies problematic behaviour that analysts can use to correct the model, therefore
reducing the possibility of errors and the costs of correction at later stages. These stages are iterated till the user is
satisfied and confident of the service quality. The task of formalisation may require a very significant amount of
time and effort especially in cases where engineers are not well-educated in the techniques [1, 74].

This thesis has developed an automated, integrated approach to formalisation of web/grid services, which have
practical benefits for both formal methods trained and untrained developers. Formal specification is automatically
obtained, which enables both types of developers to arrive at the actual intent of analysis immediately. This
approach supports abstraction and automation of the underlying techniques, thereby enabling service developers
(who are usually not formalists [1]) to perform analysis. The approach has combined design-time analysis support
with service implementation, resulting in a single integrated environment with a systematic development lifecycle.

This chapter discusses how the automated formalisation of composite web/grid services was achieved, in
particular: the strategy extensions, the extended capabilities for formal validation, and entirely new work on
formal verification. These were developed by the author to underpin the automated formalisation aspect of the
integrated methodology.

47

5.2 Automatic Formalisation
Obtaining the formal model is the basis of formal analysis. This also applies to composite web/grid service
behaviour with regard to formalisation. As the model can be readily created, the effort on design-time analysis
is reduced. LOTOS (Language of Temporal Ordering Specification) is an ISO standard specification language
designed for specifying formal behaviour of distributed processes, and so is appropriate for web/grid services
[100]. The Full LOTOS language [50] can specify behaviour as well as data types and values, which can model and
analyse web/grid service compositions and data. Tools that support formal validation and verification techniques
for LOTOS are available and are still being maintained by their developers, thus assuring tool stability. For these
reasons LOTOS was evaluated to be well suited for formalising web/grid service compositions and was therefore
used as the foundation for the formal aspects of this thesis.

The work of CRESS prior to this thesis demonstrated the automatic formalisation of composed web services
[100] whereby their descriptions as CRESS diagrams are translated into LOTOS specifications. The following
LOTOS code illustrates the translated high-level LOTOS specification structure for a web/grid service.

Specification NAME [SERVICE] : Exit(States)

Library (* library *)
...
Behaviour

SERVICE [SERVICE] (* call main process *)

Where
(* local definitions *)

definition of types such as events, operations, ports, user data types

Process (* partner processes *)
...
Process SERVICE [service] : Exit(States) : (* main service *)

Hide ... In (* hide internal gates *)
(

interleaved partners
)
|[partner gates]| (* synchronised with partners *)

SERVICE_ 1 [gates] (* call main service process *)

Where (* local definitions *)

local definitions of main service process behaviour
...

CRESS predefines a set of LOTOS library data types which are automatically included during translation for
the specification of composed web services. These formal data types are used to abstract the data primitives, and
also to support the formal specification of complex data types defined in CRESS diagram descriptions in a rule
box. CRESS also generates the LOTOS high-level behaviour describing a composed web/grid service. This is
viewed as the only service by the external world, hiding away (Hide ... In) all partner services and their gates
from the clients of the composed service. The behaviour of all partner services are interleaved, and synchronise
at their respective gates with the composed service behaviour which is the main behaviour, resulting in the entire
LOTOS specification of the composed service.

Formal analysis can then be applied to the LOTOS specification using high-level analysis descriptions that can
be easily defined, with analysis being automated. Automated validation of a composed web service was the only
form of formal analysis supported by the original CRESS approach. There was no support for validation of partner
services and no support for verification. Grid service analysis was also rudimentary for the same reasons. The
automated LOTOS translation also needed to incorporate the requirement for realistic composition added during
the thesis work. The thesis work used the original CRESS automated formalisation approach as the basis, and
added new developments to realise the following objectives:

• formalisation of composed grid services

• extending automated validation to composed web/grid services and their partner services

48

Figure 5.1: CRESS Translation Strategy

• supporting automated verification of composed service behaviour

• integrating these design-time analysis features into the development environment for creating composed
web/grid services.

Composite web and grid services can involve dynamic partners, especially in grid computing. Composed
services usually interact with existing partners, implying the use of existing data type definitions. The thesis work
has extended the CRESS notation to support dynamic partners and type ownership when composing web/grid
services, requiring the corresponding extensions for automated formal specification. This section discuss how
automatic formalisation is achieved for composed web/grid services, also dealing with the new extensions. The
automated formalisation approach of CRESS prior to the thesis work is presented first, followed by the extended
work developed by the thesis.

5.2.1 Original Translation Strategy
CRESS had an existing strategy developed by Prof. Kenneth J. Turner (figure 5.1) to generate LOTOS specifications
that model composed web services [100]. The LOTOS specification includes abstract data type definitions and
process behaviour, underpinned by predefined library data types. The CRESS-to-LOTOS translation tool parses the
CRESS diagram into an internal intermediate textual format. The information obtained from the parsing comprises
data type definitions, partner usage, ports, and operations. These determine the resultant LOTOS specification
framework, overall behaviour, and data types. Parsing of nodes and their associated (labelled) arcs produces the
detailed behavioural part of the LOTOS specification such as assignments, invocation, event handling, loops, and
parallelism. Static semantic errors are also detected as part of the process, and fed back to the developer for
correction. If a service partner is a root CRESS diagram, the behaviour will be fully specified by CRESS. If a
service partner is not a CRESS diagram (i.e. is external), then its formal behaviour will be included if it has been
specified in LOTOS. Otherwise a basic interface will be generated by CRESS for the service partner specification.

Data Type Translation

There is a strategy for translating into abstract data types the variables declared in the rule box of a CRESS diagram.
CRESS has a library of abstract data types defined for the data primitives it supports. The strategy also supports
generalised type definitions for complex structures (arrays and records). Table 5.1 shows the abstract data type
names that correspond to the supported primitive types intended for the composed web/grid service domain. Many
of the abstract data types are used in other domains such as IN (Intelligent Networks), but are not covered in the
thesis here. This explains the differences in the names of Integer and String with their associated abstract data
type name, as more harmonised names were chosen. This does not affect the formal model in any way. All these
formal types are defined in the ‘stir’ (Stirling) LOTOS library specification in a form easily included by LOTOS
analysis tools such as Lola.

49

CRESS Data Primitive LOTOS Data Type Name
Boolean Boolean
Char Char
Double Number
Float Number
Int Number
Integer Number
Long Number
Natural Natural
NegativeInteger Number
NonNegativeInteger Number
NonPositiveInteger Number
Partner Natural
PositiveInteger Number
Short Number
String Text
UnsignedByte Number
UnsignedInt Number
UnsignedLong Number
UnsignedShort Number
arrays Array (instantiated definition) and

LimitedArray (with limited capac-
ity)

Table 5.1: CRESS Data Types

Records (which may be nested) are structures defined through the combination of primitive types. CRESS has
a simple strategy for automatically describing record types. A LOTOS type is created with the name of the record.
This also applies recursively for inner record definitions. Each record element has “accessor” (get/set) operations
defined. Each record has a constructor operation with an identical name to the type for the purpose of creating its
data value. A comparator operation is also defined for the record, which recursively uses the comparator operations
of its elements. These operations naturally model a complex type implementation as they are also generated in
a similar (‘Java bean-like’) fashion from their XSD complex types. Array types have ‘getIndex’ and ‘setIndex’
operations to access array elements via a numerical index.

Below is an example of a record definition Proposal type comprising String name, String address, and Integer
amount. This proposal type is defined in CRESS as ‘{String name String address Integer amount} proposal’. The
automated translation is as follows.

Type Proposal Is BaseTypes (* proposal record *)
Sorts Proposal (* proposal sort *)
Opns (* proposal operations *)

AnyProposal: -> Proposal
eq,_ne_: Proposal,Proposal -> Bool
proposal: Text,Text,Number -> Proposal
getName: Proposal -> Text
setName: Proposal,Text -> Proposal
getAddress: Proposal -> Text
setAddress: Proposal,Text -> Proposal
getAmount: Proposal -> Number
setAmount: Proposal,Number -> Proposal

Eqns (* equations *)
ForAll (* equation variables *)
proposalA,proposalB: Proposal,
nameA,nameB: Text,
addressA,addressB: Text,
amountA,amountB: Number

50

OfSort Bool
proposal(nameA,addressA,amountA) eq
proposal(nameB,addressB,amountB) =
(nameA eq nameB) and
(addressA eq addressB) and
(amountA eq amountB);

proposalA ne proposalB = not(proposalA eq proposalB);

OfSort Text
getName(Proposal(nameA,addressA,amountA)) = nameA;

OfSort Text
getAddress(Proposal(nameA,addressA,amountA)) = addressA;

OfSort Number
getAmount(Proposal(nameA,addressA,amountA)) = amountA;

OfSort Proposal
AnyProposal = Proposal(AnyText,AnyText,AnyNumber);
setName(Proposal(nameB,addressB,amountB),nameA) =
Proposal(nameA,addressB,amountB);

setAddress(Proposal(nameB,addressB,amountB),addressA) =
Proposal(nameB,addressA,amountB);

setAmount(Proposal(nameB,addressB,amountB),amountA) =
Proposal(nameB,addressB,amountA);

EndType (* end Proposal *)

Partner, Port and Operation Translation

Actual interactions, for example invocations with web/grid service partners, are in the form of message exchanges
at specific communication endpoints. These communications are specified using gate synchronisation with event
offers and value passing. For every service, a gate with the identical name is used in the LOTOS specification as
an abstraction of the service endpoint where communications will take place.

There is no explicit definition of the ports and operations required when composing with CRESS. Their use
directly implies the ports and operations. In the parsing of a CRESS diagram, all the ports and operations are
recorded and translated respectively as LOTOS data values of the Port and Operation types, which are types
specifically generated for the web/grid services domain. These data values are used in the behavioural part of the
LOTOS specification, as described in section 5.2.1.

As an example, suppose there are Invoke nodes of two partner services providing language translations: good-
english and fluentchinese. For simplicity, both define the ‘language’ port and ‘translate’ operation. LOTOS gates
named ‘goodenglish’ and ‘fluentchinese’ are LOTOS gates. CRESS creates a LOTOS type named Port that defines
the values of the port(s) used, and a type Operations representing the operation values, listed in the following
LOTOS data specification. These values will be used in the LOTOS behaviour expression to model the interaction
with the specific service, port and operation.

Type Port Is (* port name *)
Sorts Port (* port name sort *)
Opns (* port name operations *)
...
language: -> Port (* port name constants *)
....

EndType (* end Port *)

Type Operation Is (* operation name *)
Sorts Operation (* operation name sort *)
Opns (* operation name operations *)
translate: -> Operation (* operation name constants *)

EndType (* end Operation *)

51

Behavioural Translation

The CRESS description of the process behaviour is denoted by the semantics of the flow across (labelled) arcs and
nodes. Generally a node in CRESS approximates to one LOTOS process with the name SERVICE_NODE where
‘SERVICE’ is the composed service name, and ‘NODE’ is the node number.

A port and an operation value are used as value offers gate synchronisation with a service gate. This nor-
mally specifies a request or response for the partner’s specified port and operation, where the actual operation
parameter data is appended as a negotiation offer or match. Note that LOTOS event synchronisation is essentially
directionless.

The LOTOS translation of the major constructs are illustrated in Appendix A. A Receive is translated as value
passing in LOTOS partner !port !operation ?var:type, where it represents the reception of the value into a variable
‘var’ of ‘type’ for the partner’s port and operation. Multiple Receive nodes originating from a Start node are
translated as choices. An Invoke is translated as value offer of the data to the target partner using partner !port
!operation !value. If the Invoke is synchronous, meaning a blocking return, it is immediately followed by a value
offer like a Receive where the returned result of the invocation is captured by var. This also applies to fault
responses. A Reply by the composed service is translated as an event offer.

The order of LOTOS events follow the flow of (labelled) arcs and nodes depicted in the CRESS diagram. An
activity sequence in a CRESS diagram becomes a sequential composition in LOTOS. Parts of a CRESS diagram
may be translated as separate LOTOS processes when part of a diagram is reached by different paths or is invoked
as an event handler [100]. The LOTOS processes can exit with state true or false to specify the outcome of a BPEL
activity as these processes have a state (States exit parameter) for successful completion or failure. These states
are also used in concurrency and event handling, when they carry a state.

Guarded arcs are translated as LOTOS guarded choices. Assignments are specified using the LOTOS Let
keyword, binding variables of the specified names. Guarded assignments are specified within the scope of the
associated guarded choice.

A Fork is represented using the LOTOS interleave operator ‘|||’ with the behaviour expressions of the Fork
branches as operands. A Join condition is specified using Boolean operators, combining the status of each branch
that is returned during its exit, as found in the States parameter of a LOTOS process exit. This join expression is
translated as a pair of LOTOS guarded choices, with the negated form indicating a join failure.

CRESS generates an event dispatcher LOTOS process to deal with event handlers and their scopes. The event
dispatcher maintains a list of parameters describing the state of the service, variables, event, faults and messages,
and current scope (associated node activity). For example, if the event is Compensate and the scope is 2 then the
appropriate compensation behaviour is invoked. If a fault handler does not exist for the current scope, then the
global handler will be tried. Faults are handled in the following order as in BPEL: Catch with a matching fault
name, Catch with a matching fault name and type, Catch with a matching fault type, CatchAll. As faults mean
unsuccessful termination, event handlers always exit with a False status.

The event dispatcher LOTOS process may be invoked by Compensate or faults, where information about the
scope, fault name and fault value type are provided. In BPEL the fault name and fault type are used to distinguish
the appropriate fault handler in a variety of Catch statements. For example there might be a two Catch statements,
both with the same name but dealing with different types. This is captured in the LOTOS specification by matching
the correct fault handler using the fault name and fault value type, where the latter (a pre-defined CRESS Value
type) corresponds to the fault value type name.

Compensation handling is more complex. In BPEL, an activity is considered “compensatable” if it terminates
successfully, for example an Invoke returning instead of faulting. Compensation handlers are stacked into the
States parameter according to the order of activity completion, carrying the compensation scope and parameter
information in the flow between LOTOS processes. When compensation is called, the stack is popped and the
scope is obtained. A Compensate action for a given scope invokes the event dispatcher. This searches the stored
states for a matching compensation state; if found, the corresponding handler for the state is invoked. If not found,
or the Compensate had not specified a scope, then by default all the compensation handlers are invoked in reverse
order of activity completion, thus ensuring roll-back.

All CRESS diagrams are automatically and fully specified with this translation strategy. Following the service-
oriented paradigm, both composite and non-composite services can be service partners. Service partners described
in CRESS are of course compositions and their formal behaviour can be included into any higher-level composi-
tions specified in CRESS.

52

Partner Service And Phantom Partner Specification

For non-CRESS specified services, their behaviour is not known except for their interface, i.e. operation signatures.
CRESS provides a framework with automated support to specify partner service behaviour. There are two manners
in which their formal model are specified for the overall composite specification: default interface behaviour gen-
eration, and inclusion of manually specified behaviour. If a manual specification of the service partner behaviour
exists, then this specification will be included as part of the composite behaviour. Its behaviour is defined as a
LOTOS process with the process name and gate using the name of the service partner.

If the manual specification does not exist, then an outline interface behaviour is automatically generated within
the overall specification of the composite service. This readily supports a basic form of formal analysis. Be-
havioural details can be handcrafted upon this interface behaviour, contributing to a more solid model and thor-
ough analysis as more information is captured. This also saves some effort from specifying the behaviour from
scratch. The outline behaviour is inferred from the composing CRESS diagram where the service is used, con-
solidating its ports, operations, inputs, outputs, and faults to formulate the default behaviour. Suppose a partner
service C was used in part of the composing CRESS diagram in node(s) describing: ‘Invoke c.example.cal cal-
Par result calfault.error’, where calPar is a user-defined type CalPar, result is an Integer, error is a String. This
means the invocation of the ‘cal’ operation with input type CalPar either returns an Integer result or a fault with
String value. The default behaviour is generated as the following LOTOS code. Generally the possible paths of the
behaviour inferred from this analysis are specified.

Process C [c] : Exit(States) :
c !example !cal ?calPar:CalPar;
(

c !example !cal !AnyNumber;
C [c]

c !example !cal !CalFault !AnyText;
C [c]

)
EndProc

5.2.2 Extended Translation Strategy
The thesis work extended the translation strategy to support the specification of the thesis extensions to the CRESS
notation. The specific extensions were the Reference type (endpoint reference), Partner type, dynamic partner
assignment, dynamic partner invocation, and type ownership.

Dynamic Partners and Endpoints

A CRESS Reference type declares an endpoint variable. In a web service implementation, an EPR (endpint
reference) contains a variety information representing a unique binding to a service (resource) with which there
is communication. The information usually has a service location (e.g. URL) and possibly a resource identifier
in the case of WS-Resource. An EPR is abstracted using the Natural type in LOTOS. The rationale for using
Natural is its existing simple definition and it can uniquely represent a binding of the actual EPR, even though in
practice it may use a combination of types and values. Reference variables are carried throughout the specification
behaviour as a Natural typed value in LOTOS process parameters.

A CRESS Partner type declares a service partner and its port to be dynamic (defined at run time). It is dynam-
ically assigned a binding through use of a Reference in a dynamic partner assignment. This corresponds to the
BPEL use of partner links where it is necessary to define the partner role and a port pair as a partner link type in the
WSDL. As a Partner is analogous to a Reference it can also be represented using the Natural type. An internal
variable with the naming convention<partnerPort>EPR of type Natural is created as a placeholder for storing the
currently assigned value of the dynamic partner and port. The CRESS assignment expression ‘/ partner.port <-
referenceVar’ assigns the value of referenceVar to partnerPortEPR using the LOTOS Let partnerPortEPR:Nat =
referenceVar.

Invoking a dynamic service partner requires a LOTOS behaviour expression that synchronises with the be-
haviour of the partner process uniquely identified by the EPR. As an example, there may be several potential stock
price forecast services that implement identical service interfaces, and can be invoked at runtime by a composite
brokerage service. As different entities, they have unique endpoints. In the LOTOS translation, a synchronisation

53

with the endpoint is made prior to invocation. In this example, after the dynamic partner EPR is set, its invoca-
tion uses the following two LOTOS events which first synchronises only with the stock service check port that is
identified by the stockCheckEPR, then the invocation.

stock !check !stockCheckEPR;
stock !check !forecast !stockName;

The strategy for generating interface behaviour for partners is also extended to capture this notion. If a Partner
is declared, then the interface behaviour generated will have an extra event specifying the synchronisation of the
dynamic endpoint prior to its operation invocation events.

Type Ownership

Type ownership does not have a separate LOTOS translation as the original strategy for data structures can be used.
Identically typed data structures but with distinguished owners are flattened into a single type specification by the
CRESS translator. Assignments are then straightforward in LOTOS, even for the complex types. This is reasonable
as the implementation (BPEL specification) implements this same capability whereby assignments between data
types of identical structures with different namespaces are possible, resulting in a more compact specification as
there is no need to express an assignment for each individual element for the target.

5.2.3 Automatic Specification
There are two ways to automatically create specifications: explicit and implicit. The explicit approach gives
control – developers and analysts may want to obtain just the specification, study it, and then apply their analysis,
or to follow activities that formal methods experts can engage in with their expertise. The explicit approach is
used to realise a complete formal behaviour for rigorous analysis, through generating a specification in particular
for partner services where outline behaviour is automatically generated and adding handcrafted behaviour. This
generation is performed by executing cress_expand tool.

The implicit approach gives immediate focus to analysis where obtaining the specification is an automated
and intermediate procedure, allowing analysts to focus on validation scenarios and verification properties to be
automatically evaluated. Both approaches can be used in combination within the thesis methodology. The im-
plicit approach is initiated by performing the methodology’s automated formal analysis directly. This implies
that the generation of the specification is an automated and intermediate procedure in the automated validation
(section 5.3.3) and verification (section 5.4.4). This approach is used when a CRESS description is determined by
developers/analysts as mature enough to be analysed, sometimes in a progressive and iterative way.

5.3 Rigorous Validation using MUSTARD

5.3.1 Original MUSTARD Overview
MUSTARD was originally developed by Prof. Kenneth J. Turner. MUSTARD is a domain and language-independent
notation and tool for specifying and validating test scenarios. Its approach allows high-level use on actual vali-
dating techniques. Interpreting test results in the high-level MUSTARD notation avoids having to be familiar with
the target languages and technologies. The notation is success/failure assertion-oriented with a concise and rich
syntax for complex expressions such as parallelism, deterministic and non-deterministic choices. MUSTARD has
three validation outcome definitions: Pass, Inconclusive, and Fail. Pass means that all aspects of the validation
have passed. Inconclusive means there is a mixture of successful and unsuccessful paths. Fail means that the
validation is completely unsuccessful. MUSTARD has been used to validate CRESS descriptions in several do-
mains including web services [100]. MUSTARD has achieved this through an abstract notation, and through a tool
interface to the underlying validation tools. The abstract notation gives a direct focus to test scenario specification.
This is translated to the designated target language where the technical requirements are automatically fulfilled.
The automation interacts with the target underlying validation technology on behalf of analysts. Execution di-
rectives are coordinated, and results are interpreted into a high-level presentation. Diagnostics are automatically
collected through this process and presented back in MUSTARD notation. MUSTARD uses Lola as the underlying
tool for validating LOTOS specifications, abstracting much technical knowledge of the validation technique and
so appealing to non-specialists. These characteristics and approach suits well to the thesis objective of achieving
automated formal validation for composed web/grid services and partner services.

54

MUSTARD Description
% text Explanatory comment
decide(behaviour) Non-deterministic (scenario-decided) choice of alternative be-

haviours
interleave(behaviour) Concurrent execution of behaviours
offer(behaviour) Deterministic (system-decided) choice of alternative behaviours
read(partner.port.op [,fault-
name],parameters)

Read from the partner’s port and operation the the expected pa-
rameter value with optional specification of faultname.

refuse(behaviour) Sequential behaviour with abrupt termination if the final be-
haviour occurs, or successful termination if not

send(partner.port.op, pa-
rameters)

Invoke the partner’s port and operation with the parameter values

sequence(behaviour) Sequential behaviour with abrupt termination
succeed(behaviour) Sequential behaviour with successful termination
test(name,behaviour) Defines a test for the given name and behaviour

Table 5.2: Original MUSTARD Notation

Original MUSTARD Notation

The subset of the core MUSTARD notation relevant to web/grid services is covered in table 5.2. A scenario is
specified using the test construct where the behaviour is identified by the test name. The root of the behaviour
is usually a succeed or refuse construct that asserts scenario acceptance or rejection respectively. MUSTARD
has send and read primitives specifying the actual interaction taking place in the form of signal output and
input respectively from the point of view of the environment. For web and grid services, these corresponds to
service request and response. Compact and expressive combinators (sequence, decide/offer, interleave) support
the specification of complex scenarios involving sequence, (non-deterministic) choice, and parallelism. These
combinators can be nested within the behaviour parameters.

Lola Validation Technique

Lola’s validation technique is to synchronise test behaviour specified as a LOTOS process with the entire behaviour,
thereby executing a simulation of the constrained LOTOS specification guided by the test behaviour. Lola uses a
special gate (normally ‘OK’) to assert a successful outcome of a test. A simple example is used to illustrate this
technique. We assume a LOTOS specification whose behaviour is either a then b, or c then d:

a;b [] c;d
To specify a validation scenario that the sequence of event a then b is successful, a LOTOS test process needs

to be defined in the specification, for example:
Process Validation_A_B [a,b,OK] : NoExit :=
a;
b;
OK;
Stop

EndProc

To perform the validation in Lola, commands are manually executed in the Lola environment to specify the
process designated as the test. Simulation is then carried by Lola, whereby the test process is synchronised
with the main behaviour. In this simple example, if the behaviour of Validation_A_B reaches OK, then this
indicates a successful path – OK is the key event Lola uses to denote success. This scenario is possible as
the behaviour is able to synchronise with the event sequence specified by the scenario. Suppose the scenario
specified ‘a;c;OK;stop’, then the test would fail as the behaviour can only synchronise on event ‘a’ and cannot
proceed. Complicated validation may involve choices, non-determinism, and concurrency. All outcomes of the
validation will be displayed by Lola, reporting the number of paths tried, the number of successes, the number
of stops. The Lola interactive interface has options for printing path details, which are useful especially when
contradictory scenarios are found. However achieving these requires knowledge of LOTOS as well as all the
tools underpinning the analysis, and not just Lola. This is rather impractical considering that service developers

55

MUSTARD Description
read(partner.port.op/epr [,
fault], parameter)

Same as original MUSTARD read, with extra option to to spec-
ify the read from an endpoint EPR [120] (variable of type Refer-
ence)

send(partner.port.op/epr,
parameter)

Same as original MUSTARD send, with extra option to specify
the invoke to an endpoint EPR [120] (variable of type Reference)

?type Specify a type for parameter, with arbitrary values
?varname:type Specify a variable of type for parameter, with arbitrary values
!varname Specify the value use of a variable for parameter
[StructImpl/]Struct(...) Specifies complex data values (Struct). The structure actual im-

plementation name can be optionally prefixed with / to specify
the actual data type for implementation validation.

Table 5.3: Extensions to MUSTARD Notation

are usually implementation-inclined; even formally-trained personnel may think twice about the manual effort
involved.

Abstracting and automating these procedures is a more appealing and pragmatic approach. Validation should
be more accessible and convenient for developers, allowing them to focus directly on scenario functionality, hiding
the formal techniques and automating the validation. Abstracting away the technical knowledge is a practical move
as development teams may not have access to formal methods personnel and knowledge, but design-time analysis
is still conveniently possible through automation and easy-to-specify definition of tests. Automation has a direct
and motivating contribution to formal analysis but also supports abstraction in a way that hides the underlying
techniques from the user.

5.3.2 Extended MUSTARD

The original MUSTARD was not adequate for the purposes of the thesis as application to composed grid services
and also to web/grid partner services was required. There was also no support for dynamic partners. The thesis
work extended MUSTARD to meet these requirements. The LOTOS translation for composed grid services is very
similar to web services, so the same MUSTARD validation approach is applicable. The strategy allows inclusion of
a partner service as a LOTOS process, either user-defined or automatically generated. The test techniques of Lola
also support validation of specified processes, and not just the entire behaviour, therefore the validation of partner
services can be readily achieved using the same approach as composed services. The original MUSTARD notation
had no support for dynamic partner validation, where the endpoints are only known during execution. The notation
was extended with the capability to set endpoint variables and use them in invocations. This specific extension was
generalised to support test variables at no additional effort, and yet offering the capability to specify general and
dynamic validation scenarios. It is possible to specify general validation criteria such as: a return result should
be of type String regardless of the value, which is suitable to describe non-deterministic and more generalised
scenarios in a compact manner. In addition, the MUSTARD tool is extended to call for implementation validation
using MINT, which is discussed in section 6.3. Extensions to the MUSTARD notation are listed in table 5.3.

5.3.3 Tool Design Overview
MUSTARD has a simple but extensible architecture illustrated in figure 5.2. The tool is developed in Perl, and the
notation is based on the M4 macro language [57], which was found very suitable to support translations between
languages [97]. The tool is the user interface and coordinates the validation process automatically. Perl is used as
it is portable, easy to develop and execute. M4 macro “modules” are developed for the purpose of translating the
high-level MUSTARD notation into the target validation syntax (e.g. LOTOS test scenarios for Lola) which will be
used in the formal validation.

MUSTARD Translation Strategy to LOTOS

Table 5.4 shows the high-level MUSTARD constructs and their corresponding translated LOTOS structure and
semantics.

56

MUSTARD Translated LOTOS
decide(behaviour, ...) (

I; behaviour
[]
I; ...

)
interleave(behaviour, ...) (

behaviour
|[OK]| ...

)
offer(behaviour, ...) (

behaviour; Exit
[] ...

)
read(partner.port.op, value) partner !port !op !value;
(see type translations below)
read(partner.port.op, fault, value) partner !port !op !fault !value;
read(partner.port.op/epr, value) partner !port !epr; partner !port !op !value;
(epr is Reference variable)
refuse(behaviour) (

translated behaviour; Stop
[]
I; OK; Stop

)
send(partner.port.op, value) partner !port !op !value

send(partner.port.op/epr, value) partner !port !epr; partner !port !op !value;
succeed(behaviour) behaviour; OK; Stop

OR if behaviour contains Exit then
(behaviour) >> OK; Stop

test(test_name, behaviour) Process SERVICE_test_name [service,OK] : NoExit :=
behaviour

EndProc (* SERVICE_test_name *)
?type ?type:type
?varname:type ?varname:type
!varname !varname
’string value t(s)∼t∼r∼ii∼n∼g∼ˆ∼v∼a∼l∼u∼e

ii is used as i is LOTOS internal event, ˆ represents space
7 7 of Nat
-7. Number(-,t(7),<>)

Number comprises of sign character,
textual (t(n)) whole and fraction, <> represents empty

1234.5 Number(+,t(1)∼2∼3∼4,t(5))
StructImpl/Struct(...) Struct(...)

Table 5.4: MUSTARD Translation Strategy for LOTOS

57

Figure 5.2: MUSTARD Architecture

Diagnostic Support

MUSTARD provides path traces that leads to failure points. As an example, Simple_Result is a straightforward
MUSTARD scenario, describing success if the invocation to maths.calc.add with the complex Pars object returns
the value 7. The LOTOS behaviour is as simple, which specifies that if these two events synchronise, then OK
(Lola success event) will be offered to indicate to Lola that this is a successful path.

test(Simple_Result,
succeed(
send(maths.calc.add, Pars(4, 3)),
read(maths.calc.add, 7)))

translates into

Process MATHS_ Simple_ Result [lender,maths,OK] : NoExit :
maths !calc !add !pars(4 Of Nat,3 Of Nat);
maths !calc !add !7 Of Nat;
OK;
Stop

EndProc (* MATHS_ Simple_ Result *)

Suppose the above scenario cannot go beyond the first action (meaning that the read cannot be performed),
then this validation fails as it cannot reach the OK event which Lola uses to assert a pass. The diagnostic, which
may vary in the completion time, will be printed as follows:

Test MATHS Simple Result ... Fail 0 succ 1 fail 1.3 secs
send(maths.calc.add, Pars(4, 3))
<failure point>

Tool Integration

The MUSTARD tool was integrated with CRESS as part of the thesis work, so that validation can be performed
using the cress_validate tool. This implies that graphical editor CHIVE can be used also to validate diagrams
directly. There are therefore three ways to initiate the automated validation. Figure 5.3 shows the integration of
the tools with respect to their programmatic flow of control, which also illustrates the level of user interface and
automation. A box with dashes denotes a task unit of the tool. A box with a bold outline represents a tool that
the user interfaces with. The arcs represent tool interactions. The straight lines represent the outputs from the
originating box.

Analysts can start the automated formal validation with: validation via CHIVE, cress_validate command-
line tool, or using the MUSTARD tool directly. The first two methods are identical functionally but activated by
different means. Validation can be executed via the CHIVE visual development environment, which invokes the
cress_validate tool with parameters and tool options configured in the editor’s preferences. Invoking validation
by cress_validate will generate the LOTOS specification for the services prior to performing validation (which is
actually carried out by MUSTARD). Finally, MUSTARD can be invoked directly at the command-line. This has
the same effect, but omitting the generation of a LOTOS specification, implying that the specification is already
present. Validation results are returned along the chain of command to where the validation was initiated.

58

Figure 5.3: Levels of Automated Validation Procedure

5.3.4 Examples
Double_Booking_Refusal is a MUSTARD refusal scenario that a double booking of the same badminton courts
should not happen. The first invocation receives a booking confirmation with the price 9.5. If the second booking
of the court regardless of its value (?Booking) happens, then this indicates a refusal. The LOTOS code has the
last event as a choice with the event negotiation ‘sports !badminton !book ?booking:Booking’ not followed by
the OK event, and the alternative as an internal event ‘I’ leading to OK event. If ‘sports !badminton !book
?booking:Booking’ is able to synchronise, the outcome will be Inconclusive as there is a failure path and a success
path (the internal event will always proceed). Otherwise, the outcome is Pass if all the paths (only one here) are
successful.

test(Double_Booking_Refusal,
refuse(
send(sports.badminton.book, ’CourtA),
read(sports.badminton.book, Booking(’CourtA,9.5)),
send(sports.badminton.book, ’CourtA),
read(sports.badminton.book, ?Booking)))

translates into
Process SPORTS_ Double_ Booking_ Refusal [lender,sports,OK] : NoExit :

sports !badminton !book !t(C)∼o∼u∼r∼t∼A;
sports !badminton !book !booking(t(C)∼o∼u∼r∼t∼A,Number(+,t(9),t(5)));
sports !badminton !book !t(C)∼o∼u∼r∼t∼A;
(

sports !badminton !book ?booking:Booking;
Stop

I;
OK;
Stop

59

)
EndProc (* SPORTS_ Double_ Booking_ Refusal *)

Either_Greeting describes a scenario that has a deterministic choice of responses, where any of the defined
responses is valid. In its translated LOTOS, if either of these two events can synchronise, then the behaviour exits
and thereby enables (>> operator) the OK event.

test(Either_Greeting,
succeed(
send(chatter.chat.login, ’John),
offer(
read(chatter.chat.login, Greeting(’Hi John)),
read(chatter.chat.login, Greeting(’Good Day)))))

translates into
Process CHATTER_ Either_ Greeting [lender,chatter,OK] : NoExit :

chatter !chat !login !t(J)∼o∼h∼n;
(

chatter !chat !login !greeting(t(H)∼ii∼ ˆ ∼J∼o∼h∼n);
Exit

chatter !chat !login !greeting(t(G)∼o∼o∼d∼ ˆ ∼D∼a∼y);
Exit

)
>>

OK;
Stop

EndProc (* CHATTER_ Either_ Greeting *)
Class_Parallel describes a success scenario with concurrency that has two simple invoke-response sequences.

Each sequence is simply to validate the return code for a job. These two sequences are interleaved in LOTOS (Exit
is implicitly synchronised in |[OK]|). When these two sequences complete and can exit, then the OK event can be
enabled and thereby be reached in this case.

test(Class_Parallel,
succeed(
interleave(
sequence(
send(classify.job.code, Job(’Cab Driver)),
read(classify.job.code, ’8214)),

sequence(
send(classify.job.code, Job(’Private Detective)),
read(classify.job.code, ’9241)))))

translates into
Process CLASSIFY_ Class_ Parallel [lender,classify,OK] : NoExit :

(
classify !job !code !job(t(C)∼a∼b∼ ˆ ∼D∼r∼ii∼v∼e∼r);
classify !job !code !t(8)∼2∼1∼4;
Exit
|[OK]|

classify !job !code !job(t(P)∼r∼ii∼v∼a∼t∼e∼ ˆ ∼D∼e∼t∼e∼c∼t∼ii∼v∼e);
classify !job !code !t(9)∼2∼4∼1;
Exit

)
>>

OK;
Stop

EndProc (* CLASSIFY_ Class_ Parallel *)
Dynamic_Resource scenario is a demonstration of using dynamic endpoints as well as endpoint variables. This

scenario describes grid factory service resource creation that returns an endpoint to the resource, which is stored
as a variable named ‘resourceEPR’. The variable is used to interact with the instance service which will work on
the resource associated. In the LOTOS specification, the event has a prior synchronisation with the endpoint which
models in abstraction the establishment of communication to the service or resource, then the actual interaction
(invocation or reply) happens.

60

test(Dynamic_Resource,
succeed(
send(factory.create.createResource, CreateResource(’SOC2000)),
read(factory.create.createResource, ?resourceEPR:Reference),
send(instance.job.translate/resourceEPR, Job(’Nurse)),
read(instance.job.translate/resourceEPR, ’3211)))

translates into

Process FACTORY_ Dynamic_ Resource [lender,factory,instance,OK] : NoExit :
factory !create !createResource !createResource(t(S)∼O∼C∼2∼0∼0∼0);
factory !create !createResource ?resourceEPR:Nat;
instance !job !resourceEPR;
instance !job !translate !job(t(N)∼u∼r∼s∼e);
instance !job !resourceEPR;
instance !job !translate !t(3)∼2∼1∼1;
OK;
Stop

EndProc (* FACTORY_ Dynamic_ Resource *)

Variable_Use demonstrates the use of variables in a more flexible way which is suitable in some non-deterministic
cases, such as in this example. This scenario validates a car rental service, where the rent operation returns a Rent-
Confirm complex data structure (suppose it has been defined in CRESS diagram) that contains reference number
(refNo) which is an arbitrary value. The cancel operation requires the reference number which can be obtained
from the RentConfirm value returned. This is specified by using a named variable (rentConf) of type RentCon-
firm, then using the access to its refNo in the cancel operation. The LOTOS specification of this test reflects this
identically.

test(Variable_Use,
succeed(
send(car.loan.rent, Rental(’BMW 320,’3Days)),
read(car.loan.rent, ?rentConf:RentConfirm),
send(car.loan.cancel, !rentConf.refNo),
read(car.loan.cancel, ’Rental Cancelled)))

translates into

Process CAR_ Variable_ Use [lender,car,OK] : NoExit :
car !loan !rent !rental(t(B)∼M∼W∼ ˆ ∼3∼2∼0,t(3)∼D∼a∼y∼s);
car !loan !rent ?rentConf:RentConfirm;
car !loan !cancel !getRefNo(rentConf);
car !loan !cancel !t(R)∼e∼n∼t∼a∼l∼ ˆ ∼C∼a∼n∼c∼e∼l∼l∼e∼d;
OK;
Stop

EndProc (* CAR_ Variable_ Use *)

5.4 Formal Verification using CLOVE

CADP is well-known tool for the verification of LOTOS specifications. CADP implements enumerative verifica-
tion (also known as explicit state verification) to enable automatic detection of errors in complex systems. CADP
has been widely used in the design of hardware architecture and protocols [34]. CADP (Construction and Anal-
ysis of Distributed Processes) comprises many well-developed tools supporting a range of analyses, especially
CAESAR, CAESAR.ADT, BCG (Binary Coded Graph) tools, PROJECTOR, EVALUATOR, and SVL (Script
Verification Language), which were used in the thesis work. CAESAR and CAESAR.ADT are used to generate
the explicit state space of the behaviour (using BCG format). The BCG tools provide command-like interfaces to
manipulate the graphs, such as obtaining label information and state space reduction. PROJECTOR computes ab-
stractions of behaviour which are applied in compositional verification. EVALUATOR [65] checks the state space
to evaluate properties specified in µ-calculus and to generate diagnostics. Verification scripts in SVL notation [35]
define a batch of verification procedures; this is very handy as it can access all the CADP tools in one file with
a convenient syntax. The CADP tool suite is still being maintained by the development team and therefore has

61

assurance in its stability and sustainability. For these reasons, CADP was the chosen as the tool for the formal
verification work reported in this thesis.

Even using SVL scripts, operational and conceptual knowledge is required in order to use the tools of CADP.
Preparation usually has to be made prior to the actual verification of properties, and can be the bulk of effort
in the entire verification work. CADP uses C to implement and execute specifications. Typical groundwork
involves annotating the LOTOS specification, possibly implementing data types (in the C language according to
CAESAR.ADT specification), and also constraining their value ranges as finite if required. These steps are not
required for LOTOS specifications without data types, but this is rarely the case as data is often important and is
hence often specified – especially in web/grid services. These tools may be difficult, particularly if developers do
not have formal expertise [110].

Technical abstraction and automation of verification is the thesis approach to motivate, automate, and sim-
plify the verification process from the developer’s perspective for creating composed web/grid services. Technical
interfaces to CADP tools and languages are abstracted and automated as much as possible. Annotation of the
CRESS-specified LOTOS is automated. The thesis work has developed the CLOVE notation and tool to support
verification of property specifications using automated verification. Through CLOVE, high-level verification prop-
erties can be specified independent of actual languages and tools. CLOVE properties are translated to the desired
target languages to exploit the advantages of the supporting tools. Common verification properties are available
as parameterised templates for quick specification. At present, CLOVE properties are translated into µ-calculus
for verification in CADP, but the generic framework can be potentially applied to other temporal logic languages.
CLOVE supports the high-level specification of data ranges and automatically translates them into a C imple-
mentation specified by CAESAR.ADT, therefore minimising the technical and possibly intensive effort. Finally
CLOVE automates the verification process where the explicit state space is automatically generated, evaluation
of properties is carried out, followed by diagnostics if any properties do not hold. Various reduction techniques
supported by CADP for generated models are automatically available as CLOVE options. CLOVE also supports
automated compositional verification for CRESS-translated LOTOS specifications, which is a useful technique to
minimise state space explosion.

5.4.1 CLOVE Notation
CLOVE Property Verification Syntax

The CLOVE property verification syntax draws inspiration largely from the temporal verification language seman-
tics of RAFMC (Regular Alternation-Free µ-Calculus), but defining as an abstract syntax intended for non-expert
use. CLOVE can also be translated into other (temporal) verification languages. RAFMC has a range of operators
to construct action, regular and state formulae as part of the verification property. The CLOVE notation adapts and
abstracts from RAFMC its boolean operators, modal logic operators, and part of the action/regular/state formulae.
Table 5.5 list the CLOVE constructs.

A CLOVE property is specified using the property keyword labelled with a user-selected identifier for the
verification property. As will be seen in the syntax, a CLOVE verification expression is oriented towards temporal
logic, having modal logic operators, sequences, and combinations of signals using boolean binary operators. It
also supports multiplicity, one or more ‘+’, zero or more ‘*’, by appending the appropriate multiplicity operator.

A signal denotes an action in the behaviour of the service with a specific port and operation and data value.
The signal may represent a fault behaviour. The data value may be specified as a regular expression for matching
a range of actions. Any signal satisfies “true”, and never “false”. The boolean binary operators for signals are
used to express filters over behaviour. Sequences of signals express consecutive behaviour. Signals, sequences,
and boolean operators may be repeated using multiplicity operators.

CLOVE Verification Patterns

Service developers are more likely to be interested in pragmatic implementation than formal aspects [74]. A high-
level approach to specifying verification properties for composed web/grid services may not provide adequate
abstraction to motivate use. Though the ‘how to’ is simplified, the ‘what’ to specify remains a conceptual chal-
lenge. Having templates for common properties and ones useful for for web/grid services can help verification
without the need to understand in detail complex technical concepts (e.g. temporal logic). Verification templates,
in addition to the high-level CLOVE approach, are provided for commonly specified properties.

62

CLOVE Description
property(name, Define a property with given name and behaviour
behaviour)
forall(behaviour) The necessity modal operator that specifies all transition se-

quences starting at the state satisfy the defined behaviour that
is the property

signal(partner.port.op
[,fault], value)

Definition of a single action behaviour

or(behaviour) Binary alternative in the behaviour
and(behaviour) Binary combination of the behaviour
choice_any(behaviour) Shorthand for multiple alternatives
any_signal Match any one signal behaviour
sequence(behaviour) Defines a sequential behaviour
exists(behaviour) The possibility modal operator – specifies there is (at least) one

transition sequence starting at the state satisfying the defined be-
haviour

not(behaviour) Not matching the behaviour
true Asserting the truth of the property if the specification satisfies

the behaviour specified earlier in the property
false Asserting that the property is false if the specification satisfies

the behaviour specified earlier in the property

Table 5.5: CLOVE Verification Constructs

Several properties are common and applicable even across different domains. This was the finding of the
Patterns project [66], which to a large extent is applicable also to web and grid services. The Patterns project
published categorised sets of the most frequently specified verification properties as pattern references, which
formal analysts can readily adopt and adapt to verify their specifications. The RAFMC patterns [64] are µ-
calculus template formulae, based on these sets of pattern references, which can be used to perform verification via
the CADP toolkit. The RAFMC formulae templates are based on single predicates (individual transition labels).
CLOVE adapts these formulae as abstract notation and support multiple predicates. The pattern references fall into
many categories. Amongst these CLOVE adapts the response, universality, absence, precedence, and existence
categories as they were found by the Patterns project to be useful 92% of the time. They are also applicable to the
web/grid service domain.

Response is usually for describing a cause-effect relationship between a pair of actions. It sometimes may
conceived as a safety property as it is similar to the converse of Precedence though not equivalent. Universality
is used for describing a property that always (or henceforth) holds for a part of the system’s execution. Absence
employs safety reasoning where “things should not happen”. Precedence is also a form of safety specification
where it enforces the precedence of specified actions prior to the given predicates. Existence is the reachability
of actions, which is a form of liveness property. There are five scopes for all patterns: global, before a specific
behaviour, after a specific behaviour, between two specific behaviour, and after a specific behaviour until another
specific behaviour. The adaptation primarily uses single predicates as placeholders, made available via macro
calls as parameters. Table 5.6 show CLOVE’s adaptation of the five selected patterns of RAFMC and their scopes.
Of these five scopes the global scope plays a major role, with the other scopes being less commonly used.

Each category has its required number of predicates. Response has two (S responds to P); Absence has one
(P is false); Existence has one (P occurs), Universality has one (P is true); and Precedence has two (S precedes
P). Each scope has its required number of predicates. The global scope requires no predicates; before has one,
after has one, between has two, after until has two. Therefore the number of parameters (predicates) required
in a pattern is the total of the parameters needed by the category and specified scope. For example, the CLOVE
Response pattern (S respond to P) using the before scope (before R) requires three parameters.

The translation strategy for these CLOVE pattern templates is described in section 5.4.2, specifically in tables
5.10, 5.11, 5.12, 5.13, and 5.14 which are adaptations for CLOVE based on the RAFMC patterns.

63

CLOVE Pattern Description
initials(signal(...), ...) A specific safety property for verifying the permitted ini-

tials of the specification, meaning that the behaviour only
starts with the signals specified in initials.

response(scope, behaviour, ...) The Response Pattern: behaviour S responds to behaviour
P. The first two parameters after the scope are for S and
P; thereafter the parameters are as required by the scope.

absence(scope, behaviour, ...) The Absence (safety) Pattern: P is false where P is a be-
haviour. The first parameter after scope is for P, thereafter
the parameters as required by the scope.

existence(scope, behaviour, ...) The Existence Pattern: behaviour P occurs. The first pa-
rameter after scope is is for P, thereafter the parameters
are as required by the scope.

universality(scope, behaviour, ...) The Universality Pattern: behaviour P is true. The first
parameter after scope is for P, thereafter the parameters
are as required by the scope.

precedence(scope, behaviour, ...) The Precedence Pattern: behaviour S precedes P. The first
two parameters after scope are for S and P, thereafter the
parameters are as required by the scope.

Table 5.6: CLOVE Supported Patterns

Syntax Description
enum_complex(...) Complex type enumeration
enum_naturals(...) Natural enumeration
enum_numbers(...) Floating point number enumeration
enum_strings(...) String enumeration

Table 5.7: CLOVE Data Enumeration Syntax

CLOVE Data Type Range Syntax

CLOVE allows specification of data values. Considering CADP, which uses a finite state space model checking
technique, this feature plays a major part in the automated verification of composed web/grid services where their
formal behaviour is generated in LOTOS. As every (composed) web/grid service will define data structures and
values to describe their information exchange, the support data in the formal model enables the analysis which is
possible with LOTOS and CADP.

CADP (specifically its CAESAR tools) will generate the state space of the behaviour, incorporating data val-
ues. The CAESAR tools have the capability to use user-defined data values that are implemented in C code in
adherence to its framework, thereby generating the corresponding state space as directed by user inputs. Manual
coding of data values is possible, but the effort required may be significant and prone to errors. CLOVE abstracts
the technical details of the framework and C code, allowing users to focus on specifying data values which are
automatically translated for verification. There are CLOVE constructs for specifying data values for base and com-
plex types. There are also built-in functions to automatically capture and use data values in specified properties.
Table 5.7 describes the CLOVE syntax to define data values.

Literal values and regular expressions can be specified for the entire range for a particular type, for example
the CLOVE syntax below specifies three literal floating point values (1, 3 and 7) and the range of values defined in
the regular expression such as 10, 12, 14, etc.:

enum_numbers(1,3,7, [1-9][02468])

With regard to CAESAR, CLOVE-specified data values are translated into a C implementation (value construc-
tion and iteration functions) which CAESAR includes in its verification framework. It is not always necessary to
specify values for complex types; by default their values are based on the range of base types provided by CLOVE.

CLOVE provides a way to pick up literal data values of base types within specified properties. This is done via
a simple “record” functionality whereby data values are stored if the functionality is on turned on while parsing

64

Figure 5.4: CLOVE’s Generic Framework

the CLOVE file in a top-down manner. This functionality can start and stop multiple times between each property,
giving the user more control over the inclusion of values. These recorded values are consolidated with the literal
values and those generated from patterns as a duplicate-free set for the type.

5.4.2 Tool Support
Tool Design Overview

Figure 5.4 shows the components in the CLOVE architecture and how they collectively automate verification
and abstract CADP as the underlying toolset. CADP’s enumerative verification is achieved by generating C
code from an annotated LOTOS specification. The execution of the code simulates the behaviour, generating
the state space for model checking as the means of analysis. This is achieved by the CAESAR/CAESAR.ADT
tools. CAESAR.ADT generates an implementation of the data types as a C header file, and provides hooks to
include external implementations (such as values and iteration functions) by including ‘.f’ and ‘.t’ files which are
respectively for functions and types. Verification can then be performed on the generated state space; for example
the evaluation of µ-calculus properties.

CLOVE makes use of the the CRESS cadp_annotate tool to automate the annotation of a LOTOS specification
to achieve a compatible specification for CADP. A suite of C implementations of the CRESS base types and enu-
meration functions were developed as C headers files to underpin the complex types implementation. They are
implemented in such a way that user-defined enumeration values for base types can be loaded in, achieved by
inserting base type values into a ‘.custom’ file which will be read in by the base type C implementations to use the
specified values for iteration. These are consolidated under the ‘.t’ file which will be generated by CLOVE. This
is then automatically included into the C implementation generated by CAESAR.ADT. The framework supports
the enumeration of data values even for complex data types. CLOVE enumeration constructs for complex types
are generated with C iteration functions and enumeration values in the ‘.f’ file. These enable the simulation of the
behaviour by CADP, specifically CAESAR, which will generate the state space representing the behaviour based
on the implementation of the data types and enumeration values. The thesis work developed a translation strategy
for CLOVE properties into µ-calculus properties, which is the target property verification specification language
for web and grid service LOTOS specifications. CLOVE invokes the various tools in CADP to execute verification:
invoking CAESAR.ADT to generate a C implementation; invoking CAESAR to simulate the specification; invok-
ing EVALUATOR to verify the translated µ-calculus properties; and extracting counter-examples for diagnostics.
In addition, a strategy was developed and implemented to support compositional verification automatically for the
generated LOTOS specifications.

Many of these components are potentially useful even for formal methods personnel, which can significantly

65

reduce the preparation work for verification such as annotating a specification, handcrafting C enumeration code
for each data type, and even performing compositional verification.

Although CLOVE currently supports web/grid services, LOTOS (target specification language), CADP (target
underlying tool), and µ-calculus (property language). Its tool design is extensible, allowing addition of languages,
techniques and technologies, to achieve abstraction and automation of verification.

Annotation Strategy for LOTOS Specification

There are two types of annotation: sort, and constructor operation. Sort annotation comprises C macro names for
implementation, comparison, iteration (first and next value), and printing, annotated on the LOTOS Sort. Con-
structor operation annotation deals with the type’s constructor operations such as ‘proposal: Text,Text,Number ->
Proposal’ for the Proposal sort described in section 5.2.1. The CADP pragmas annotation syntax is described in ta-
ble 5.8. In dealing with data types, a mandatory requirement of CAESAR.ADT is the identification of constructor
operations. Constructors in LOTOS are data type operations that are basic to constructing values. The non-basic
expressions or equations in LOTOS are reduced/rewritten into canonical form when reasoning. CAESAR.ADT re-
quires these constructors to be annotated in order to generate a C program that correctly handles data values. Sorts
are annotated if there is a need to implement data value handling functions. Another mandatory requirement is that
data type definitions must not be in generalised or parameterised form, which are template definitions for actual
type instantiation in LOTOS. This further requires that type definitions be already instantiated from generalised
types. The solution is to instantiate formal types as actual types.

Manually adapting LOTOS specifications can take time and effort, especially when a specification is large,
contains generalised data types, and has a lot of constructor operations to be annotated. The cadp_annotate tool
performs automated annotation of a LOTOS specification. cadp_annotate performs the task of instantiating type
definitions as normal types using a flattening tool, and then applies the annotations. The flattening tool takes the
generated LOTOS specification, which may contain generalised LOTOS types, and collapses these into actualised
definitions. The cadp_annotate tool contains pre-defined signatures with associated annotation information. This
pre-defined information contains the annotation details for CRESS library types. The cadp_annotate tool accepts
user-defined types in the same signature format to annotate user-defined data structures. The annotation is then
automatically applied to the flattened LOTOS specification using these two sets of information.

The thesis work has developed support for user-defined annotation information to be automatically generated
in a separate file during the translation of the CRESS diagram. This is feasible as the CRESS translation strategy
for a data structure in LOTOS is known.

Abstract Base Type Implementation for CADP

The CAESAR tools offer the flexibility of user external implementation, which gives total control over the types,
such as their value range, iteration algorithm, value comparison, and label printing as described in table 5.8.
These implementations are specified in C header files where the functions correspond to annotations in the LOTOS
specification. CAESAR.ADT can infer implementations of complex types that are based on existing types. By
default, CADP uses natural numbers as abstract values for all types. Though this form of abstraction is very
simple, it can be difficult to specify readable properties – especially if complex data values equations are involved.
Having external implementations can help in the effort of readable property specification and control of analysis,
for example simplify data value printing in BCG.

An overview of the CAESAR.ADT framework for data implementation is first described to establish how it
underpins CADP’s enumerative verification. The transition labels in a generated labelled transition system (BCG)
denote the gate events with the values offered. All possible values of an event will be enumerated, for example
‘gate ?var:Nat’ will exhaust all possible values that the Nat type may be represented in its C implementation.
CAESAR.ADT defines an API for the implementation of sorts: functions for first (returns first value), next (returns
next value), printed (printing of the data value in a transition), and compare (comparing two values). The data
type and function names follow what has been defined in the CADP pragmas during annotation. For example,
if a sort Proposal is annotated with implementedby PROPOSAL_SORT iteratedby PROPOSAL_FIRST and
PROPOSAL_NEXT, then the C data type is PROPOSAL_SORT with first function as PROPOSAL_FIRST and
the next function PROPOSAL_NEXT. The print function provides the analyst with a way to print the values
as desired. By default, values are printed as defined by the equations. For example, using the LOTOS library
definition of natural number, the value 3 is printed as succ(succ(succ(0))). The print function could be used to

66

Pragmas Description
implementedby The value of implementedby specifies the name of the sort or

operation that will be found in the C code. If also annotated ex-
ternal, then CADP expects an implementation to be provided.
Otherwise CAESAR.ADT will generate the C code and asso-
ciate the name of the sort or operation using the value specified.

comparedby For sort annotation only. The value specifies the name of the C
function/macro used to perform comparisons between two val-
ues of the sort.

iteratedby ... and ... For sort annotation only. The values specify the names of the C
functions/macros used to calculate respectively the first and the
next data value of the sort.

printedby For sort annotation only. The value specifies the name of the C
function/macro used to print the value of the sort.

external Applicable to both sort and operation annotations. If used, CAE-
SAR will expect to be provided with an external implementation
instead of generating one automatically.

constructor For constructor operation annotation only. If specified, CAE-
SAR will expect the operation not to have equations (rewriting
rules) defined for it.

Table 5.8: CADP Pragmas Description

improve readability by printing this as “3”. This potentially can improve readability when defining a property
involving data values.

The thesis work developed C implementations for CRESS-defined LOTOS types: Boolean, Natural, Char,
String, and Integer. These LOTOS base types are annotated ‘external’ by cadp_a-nnotate so that CAESAR.ADT
will not generate their C code and will expect the implementation to be linked via C #include directives. Complex
types are built using these base types, implying that the external implementations of the base types will be invoked
by the generated implementation that represents the LOTOS equations of the operations. These C implementations
are used by CAESAR to generate a simulation of the model, creating the BCG.

Figure 5.4 shows how the developed C implementations for CRESS base types are included into the verification
procedure. CAESAR.ADT produces the C implementation of the LOTOS data types as a C header file that has the
same name as the LOTOS specification file but with a “.h” extension. This file contains a #include directive for a
file with the same name but a “.t” extension. This is a feature that allows the inclusion of user-defined type imple-
mentations, especially those annotated “external” (which is the case for the CRESS base types). Conventionally
a formal analyst would have to manually specify the #include directives for external implementation. The thesis
work has automated this process, specifying the #include directives of the five base types in the “.t” file.

Approach to Constraining Infinite Types

The CAESAR and CAESAR.ADT tools in CADP support finite state model checking. This implies finite data
values in the LOTOS abstract data types. It is very common for types to have an infinite range. Basic types such as
(natural) numbers and strings are obvious examples. By default, CAESAR.ADT generates the the value iteration
functions of a complex type based on the enumeration of its attributes. The CRESS-defined and generated C
implementation of data types must be constrained for model checking with CADP. This is achieved by intervening
in the C implementation code, implying a good understanding of CAESAR and LOTOS. The range of the data
types should be easily specified and achieved by an analyst at a high level.

The approach (figure 5.4) allows specification of enumeration values for base types via a specialised “.custom”
file that is included framework. The approach automates modification of the complex type iteration functions by
overwriting the functions defined in the “.h” file, via the “.f” file. The reason for the “.custom” file for base type
iteration is that all the operations have been fully predefined externally, with their iteration having the ability to
incorporate user-defined enumeration values via designated macro names. Therefore there is no need to overwrite
these functions, since they already are “external” by definition. The “.custom” file will contain macros with

67

CLOVE Construct Represented µ-calculus
forall(behaviour) [behaviour]
exists(behaviour) <behaviour>
sequence(behaviour, ...) (behaviour)
and(behaviour1, behaviour2) ((behaviour1) and (behaviour2))
or(behaviour1, behaviour2) ((behaviour1) or (behaviour2))
choice_any(behaviour ...) ((behaviour1) or ...)
not(behaviour) not((behaviour))

Table 5.9: CLOVE Translation to µ-calculus

predefined names recognised by the base types C implementation.
These mechanisms form the basis for automation and abstraction of user-defined enumeration in a convenient

manner. This is achieved through CLOVE’s data type range notation syntax. Data value ranges are automatically
translated as C code in the “.custom” and “.f” files.

Automated Implementation of Data Enumeration

Complex data types can have user-specified enumeration implemented. Their required data enumeration and C
value implementation are obtained from the CLOVE file, specifically from the data values description (notation
described in section 5.4.1).

For each data type, the implementation of first its and next enumeration function is automatically generated.
Both functions act upon a specific enumeration macro which is an array of unique data values translated from the
CLOVE sybtax. The first function simply returns the first value in the array. The next function simply looks up the
array index of the current value and, if it is not the last element, then returns the value of the next element in the
array.

Three styles of data value expressions (explicit, recorded, patterns using regular expressions) may be used in
CLOVE. Explicit and recorded values are simpler as they are actually explicit data values. Data values expressed
as patterns using regular expression usually represent a range of values. The range is fully generated using an
external tool ‘regldg’ [20] which can generate the entire range of specified regular expression resulting in static
individual values. All the data values are then consolidated as a set with no duplicates, resulting in the enumeration
array.

Translation Strategy for CLOVE Properties to µ-calculus

CLOVE high-level properties are translated into µ-calculus to verify the generated LOTOS specifications. Table
5.9 illustrates the corresponding µ-calculus translations of CLOVE constructs.

CLOVE property templates/patterns are translated based on the adaptation of the RAFMC patterns as illustrated
in tables 5.10, 5.11, 5.12, 5.13, and 5.14. The parameters S, P, Q, and R are placeholders representing predicates.

Compositional Verification

The CADP tool supports compositional verification, a technique which uses abstract interfaces and process con-
straints in conjunction, resulting in possible speed-up of verification. The LOTOS specification is divided into
smaller behavioural units (in BCG form) and then re-composed. By doing so, the entire state space is not gener-
ated from scratch, but is built from the synchronisation of the generated state space of each constrained behavioural
unit.

An abstract interface is usually a process whose interactions with others constrain their behaviour, often
through data values. For example process A interacts with process B, passing a Natural number. Process B
would normally generate a state with all possible Natural numbers at the point of interaction with A, for example
0 to 255 in a finite context. This may not be the case, e.g. process A only sends even natural numbers between 1
and 24, which is far fewer than the possibilities offered by process B in this situation. It is possible to generate only
the necessary states for process B’s behaviour when used in conjunction with A, thereby increasing the efficiency
of state space generation. This is achieved by having an abstract interface to Process A for Process B, as a state

68

Scope CLOVE Macro RAFMC Pattern [64]
globally response(global, P, S) [true*. P] mu X. <true> true and [not

S] X
S responds to P

before R response(before, P, S, R) [(not R)*. P. (not (S or R))*. R] false
S responds to P before R

after Q response(after, P, S, Q) [(not Q)*. Q. true*. P] mu X. <true>
true and [not S] X

S responds to P after Q
between Q
and R

response(between, P, S, Q, R) [true*. Q. (not R)*. P. (not (S or R))*.
R] false

S responds to P between Q and R
after Q un-
til R

response(afteruntil, P, S, Q, R) [true*. Q. (not R)*. P] mu X. <true>
true and [R] false and [not S] X

S responds to P after Q until R

Table 5.10: CLOVE’s Adaptation of RAFMC Response Pattern ‘S responds to P’

Scope CLOVE Macro RAFMC Pattern [64]
globally universality(global, P) [true*. not P] false
before R universality(before, P, R) [(not R)*. not (P or R). (not R)*. R]

false
P is true before R

after Q universality(after, P, Q) [(not Q)*. Q. true*. not P] false
P is true after Q

between Q
and R

universality(between, P, Q, R) [true*. Q. (not R)*. not (P or R). (not
R)*. R] false

P is true between Q and R
after Q un-
til R

universality(afteruntil, P, Q, R) [true*. Q. (not R)*. not (P or R)] false

P is true after Q until R

Table 5.11: CLOVE’s Adaption of RAFMC Universality Pattern ‘P is true’

Scope CLOVE Macro RAFMC Pattern [64]
globally absence(global, P) [true*. P] false
before R absence(before, P, R) [(not R)*. P. (not R)*. R] false

P false before R
after Q absence(after, P, Q) [(not Q)*. Q. true*. P] false

P is false after Q
between Q
and R

absence(between, P, Q, R) [true*. Q. (not R)*. P. (not R)*. R]
false

P is false between Q and R
after Q un-
til R

absence(afteruntil, P, Q, R) [true*. Q. (not R)*. P] false

P is false after Q until R

Table 5.12: CLOVE’s Adaption of RAFMC Absence Pattern ‘P is false’

69

Scope CLOVE Macro RAFMC Pattern [64]
globally precedence(global, P, S) [(not S)*. P] false

where S precedes P globally
before R precedence(before, P, S, R) [(not (S or R))*. P. (not R)*. R] false

S precedes P before R
after Q precedence(after, P, S, Q) [(not Q)*. Q. (not S)*. P] false

S precedes P after Q
between Q
and R

precedence(between, P, S, Q, R) [true*. Q. (not (S or R))*. P. (not R)*.
R] false

S precedes P between Q and R
after Q un-
til R

precedence(afteruntil, P, S, Q, R) [true*. Q. (not (S or R))*. P] false

S precedes P after Q until R

Table 5.13: CLOVE’s Adaption of RAFMC Precedence Pattern ‘S precedes P’

Scope CLOVE Macro RAFMC Pattern [64]
globally existence(global, P) mu X. <true> true and [not P] X
before R existence(before, P, R) [(not P)*. R] false

P occurs before R
after Q existence(after, P, Q) [(not Q)*. Q] mu X. <true> true and

[not P] X
P occurs after Q

between Q
and R

existence(between, P, Q, R) [true*. Q. (not (P or R))*. R] false

P occurs between Q and R
after Q un-
til R

existence(afteruntil, P, Q, R) [true*. Q] mu X. <true> true and [R]
false and [not P] X

P occurs after Q until R

Table 5.14: CLOVE’s Adaption of RAFMC Existence Pattern ‘P occurs’

space with all transition labels used for synchronising with B’s behaviour. Process B is then constrained, only
generating the state space based on the synchronisation with the labels of Process A’s abstraction.

This technique is very useful for specifications with several process interactions and a very large state space.
The strategy for LOTOS specification of composed web/grid services is a natural fit to CADP’s compositional
verification, and also a demonstration of how CLOVE’s abstraction approach takes advantage of the underlying
tool capability. Services themselves are distributed and specified by CRESS as processes having interactions
through synchronisation.

CLOVE’s strategy for applying compositional verification to composed web/grid services is an automated
approach that systematically break the LOTOS specification behaviour for all CRESS-specified services recursively
into units. Partner services that are not composite (not a CRESS diagram) will not be broken down further as
there is no information to determine if they are compositions themselves. Process abstraction and constraints are
therefore recursive until non-CRESS partners are found. The composition of these state spaces constitute the entire
state space of the whole LOTOS specification. This state space (BCG) is then subjected to property verification.
This work is automatically carried out by CLOVE, through a combination of automatically adapting the LOTOS
specification and generating an SVL script describing the compositional state space.

Compositional verification works best in the case of multiply-nested compositions and large data value ranges,
and potentially can have verification to execute sooner. As it may not always be the case that compositional veri-
fication works efficiently, it is an option in CLOVE. This allows the user to have a choice between compositional
and conventional state space generation methods.

70

Diagnostic Support

CLOVE coordinates the verification process with the underlying verification tool on behalf of the user. CLOVE
automatically obtain diagnostics for analysis, using CADP with regard to LOTOS as the target language. The thesis
work specifically used CADP’s EVALUATOR to verify properties. EVALUATOR returns a TRUE or FALSE
outcome from the verification process, with diagnostics available in BCG format. CLOVE enters into a diagnostic
procedure should it read FALSE for a verification outcome.

CLOVE invokes CADP to extract the textual form of the diagnostic BCG as pseudo-LOTOS. The pseudo-
LOTOS output usually contain LOTOS event labels, processes, internal events (as the LOTOS i keyword) and
invocations of processes. CLOVE formats the pseudo-LOTOS into a textual label-oriented form prior to display.
The LOTOS process definitions are formatted as labels. LOTOS i events are displayed more meaningfully as
“internal event”. As an example, the pseudo-LOTOS may look like the following. This is a counterexample
describing a cyclic behaviour of event A, followed by two i events, then event B.

A;
P_1

where
process P_1 :=
i;

i;
B;

A;
P_1

endproc

CLOVE formats it as:
A;

jump to label P_1
label: P_1

internal event;
internal event;

B;
A;

jump to label P_1
end of label: P_1

5.4.3 Examples
CLOVE Data Value Enumeration

The following is a CLOVE example that specifies data values for base types (String, Natural, etc.) and complex
types using static values and regular expressions.

enum_ numbers(3.5, 3.7, 4.1, 4.4)

enum_ strings(’loan unacceptable,’low,’medium,’high)
enum_complex(
proposal("(KEN TURNER|LARRY TAN)","UK",[5|7]0000.0),
proposal("(KEN TURNER|LARRY TAN)","UK",[5|7]000.0))

The enum_numbers, and enum_strings constructs are used to define the values for integers and strings. These
values are used translated into C code in the ‘.custom’ file for use by the String, and Number C implementations.
The ‘.custom’ file may look like the following.

#define CRESS_TEXT_ENUM ”HIGH”,”LOAN UNACCEPTABLE”,”LOW”,”MEDIUM”

#define CRESS_ENUM_NUMBER_PERMUTATIONS 3.5,3.7,4.1 ...
The Proposal complex type’s enumeration values are defined using patterns, which will be expanded by the

‘regldg’ (regular expression grammar language dictionary generator [20]). The first pattern generates Proposal
(”KEN TURNER”, ”UK”,50000.0), Proposal (”KEN TURNER”,”UK”,70000.0) etc. The generated values are
consolidated, and translated as the C macro PROPOSAL_ENUM. This will be used by the iteration C code for
Proposal that is generated by CLOVE in the ‘.f’ file.

71

CLOVE Properties

The following response pattern specifies the property that “throughout the entire system behaviour any proposal
is replied to with a numerical value or a refusal with a loan unacceptable fault”. The first parameter is ‘global’
which indicates the scope of the property applies throughout the entire behaviour. A response pattern using global
scope requires two parameters. The first is the predicate that is responded to, the second specifies the response.
This verification property can produce counter-examples for responses that are not numerical or faults that are not
loan unacceptable refusal.

property(General_Response,
response(global,

signal(lender.loan.quote,?proposal),
choice_any(signal (lender.loan.quote,?number),

signal(lender.loan.quote,refusal,’loan unacceptable))))This CLOVE property is automatically translated into µ-calculus syntax:

(* Property name : GENERAL RESPONSE *)

[true* . ("LENDER !LOAN !QUOTE" # " !" # ’PROPOSAL (.*)’)]
mu X. (<true> true and [not(("LENDER !
LOAN !QUOTE" # " !" # ’[0−9][0−9]*[.][0−9]*’) or
("LENDER !LOAN !QUOTE" # " !" # "REFUSAL" # " !" # "\"LOAN
UNACCEPTABLE\""))] X)The same pattern template could be adjusted with specific values to refine the property objective, such as the

following property for which a response of 1.0 as loan rate would be a counterexample.

property(Specific_Response,
response(global,

signal(lender.loan.quote,?proposal),
choice_any(signal(lender.loan.quote,3.5),

signal(lender.loan.quote,3.7),
signal(lender.loan.quote,4.1),
signal(lender.loan.quote,4.4),
signal(lender.loan.quote,refusal,’loan unacceptable))))The following is the translated µ-calculus:

(* Property name : SPECIFIC RESPONSE *)

[true* . "LENDER !LOAN !QUOTE" # " !" # ’PROPOSAL (.*)’]
mu X. (<true> true and [not(("LENDER !
LOAN !QUOTE" # " !" # "3.5") or
("LENDER !LOAN !QUOTE" # " !" # "3.7") or
("LENDER !LOAN !QUOTE" # " !" # "4.1") or
("LENDER !LOAN !QUOTE" # " !" # "4.4") or
("LENDER !LOAN !QUOTE" # " !" # "REFUSAL" #
" !" # "\"LOAN UNACCEPTABLE\""))] X)CLOVE has made the initials safety property into a convenient shorthand, using the initials macro where all

permitted initial signals are specified. The above could be specified as the following and executed automatically
using CLOVE’s -i option.

initials(signal(lender.loan.quote,?proposal))
The initials definition is translated to the following µ-calculus syntax:

(* Property name : INITIALS SAFETY *)

[not("LENDER !LOAN !QUOTE" # " !" # ’PROPOSAL (.*)’)] false

Two other well-known and used properties are the deadlock and livelock freedom. Though they are not pat-
terns, they are so general that they are specified in most analyses, and are provided by verification tools including
CADP for ready use. A system is deadlocked when it cannot proceed further. A system enters into a livelock when
it can be indefinitely doing something without responding (e.g. an internal event cycle). Deadlock and livelock
freedom are properties very applicable to web/grid services. It is undesirable for services to make no progress
in execution and therefore unable to render further service (deadlock). It is also undesirable that the service is
indefinitely in execution, for example unable to terminate from loops, and therefore be unable to respond (live-
lock). Given that these are likely to be specified for analysis, CLOVE will check for deadlock and livelock freedom
without even requiring to specify a property or use a pattern macro.

72

Figure 5.5: Levels of Automated Verification Procedure

5.4.4 Tool Integration
Verification is an entirely new CRESS feature for composed web/grid services, realised by CLOVE with tool
support for the LOTOS specification. CLOVE was integrated into CRESS to realise the objective of an integrated
rigorous development environment as defined by the thesis methodology. The thesis work extended the CHIVE
editor graphical interface to call for verification. A new command-line tool cress_verify, which is analogous to
cress_validate for validation, was developed as the verification interface in the CRESS environment; this can be
invoked from the CHIVE editor.

Figure 5.5 illustrates the different levels of integration of CLOVE, which is identical to the integration for
validation concerning the level of tool interaction and control. It also demonstrates the various approaches to
automated verification, including the activities carried out and the chain of command. A box with dashes denotes
a task unit of the tool. A box with a bold outline represents a tool that the user interfaces with. The arcs represent
tool interactions. The straight lines represent the outputs from the originating box.

A “Verify” menu item was added to the CHIVE editor Tool menu as a graphical callout to cress_verify.
cress_verify options are specified through the CHIVE Preferences ‘tool options’ dialogue box. The outputs from
cress_verify will be captured by CHIVE as a results window. This provides push-button verification via a graphical
development environment.

cress_verify interfaces CLOVE, invoking its verification procedure where the actual verification then will then
be carried out by the CADP toolset. Within the scope of cress_verify there is the annotation of the LOTOS
specification (performed by cadp_annotate), and generation of C header directives (by cress_lotos.pm) for the
inclusion of the base data types implementation and provision for hooking in base data type enumeration values.
This prepares the LOTOS and data implementation as required by CADP. The CLOVE tool is invoked to coordinate
verification. The results gathered by CLOVE are returned to cress_verify.

The CLOVE tool translates CLOVE data enumeration and property definitions respectively into C enumeration
code, values, and µ-calculus properties. An SVL script will be generated if compositional verification is required,
or when manual mode is specified. CLOVE automatically invokes the appropriate CADP tools using the annotated
specification, C implementation, µ-calculus properties, and SVL script (if necessary) as inputs to verification.
Results and diagnostics returned by the CADP tools are interpreted at a high-level. If CLOVE is used directly, then
the annotated specification and C headers are presumed to be present.

All three approaches support a manual mode whereby there is automatic generation of the required verification
inputs (µ-calculus properties, C data enumeration and values, SVL script), but automated verification is not carried

73

out. This is useful especially for the formal methods personnel who can make refinements and perform verification
analysis by hand. The tool options for cress_verify (applies to CHIVE) and CLOVE can be found in manuals
of CRESS [103] and CLOVE [104]. Although CLOVE was developed for the verification of web/grid service
specifications using LOTOS and associated tools, this approach can be generalised and applied to other domains
and support other formal techniques.

5.5 Evaluation
The formal analysis of composed web/grid service specification has been extended to cover automated validation
and automated verification, respectively achieved by MUSTARD and CLOVE. Both aspects are complementary
to one another. Although validation is formally based, testing is necessarily limited. Its main advantage is that
validation is practical: automated validation of even a complex service is performed in seconds or minutes. The
practicality applies even more so now with the extended MUSTARD validation of service partners, dynamic re-
sources, and dynamic specification supported by variables. Through CLOVE’s automation of formal verification
using CADP tools, it is easy and quick to prove properties in general for classes of tests for “system” level con-
fidence. Technical challenges of the underlying technologies have been abstracted and automated, lowering the
barrier to entry for maximum exploitation. Verification property specification is aided with parameterised pat-
tern/template macros for frequently specified properties. Although in this case the formal verification deals with a
finite state space, validation can be used to check cases beyond this. Their combined use supports practical formal
analysis.

Automated verification with CADP currently has a limitation that specifications containing compensation
activities cannot be readily handled, though for validation it is entirely accomplished with the same generated
LOTOS specification. This is not a limitation of the LOTOS language, but rather a restriction mandated by the
CADP tool: there cannot be unguarded recursive process instantiation. CADP imposes this constraint as it cannot
guarantee finite state generation with such a specification. This is reasonable as CADP uses explicit enumerative
verification. Subsequent to completion of the thesis work, this restriction has now been removed.

There are future plans for improvement and new developments to the formalisation and analysis. Specification
for partner services could be simplified further with support for graphical design. This could be supported with
automated bisimulation, for example with the generated interface behaviour, to ensure that these partner specifica-
tions implement the expected behaviour. The specification generation strategy can be extended with the capability
to adapt the specification readily for verification with CADP tool. Information produced (e.g. outcomes, statistics,
and diagnostics) from analysis could be elaborated and depicted graphically for easier comprehension.

74

Chapter 6

Implementing Composed Web/Grid
Services

The implementation of composed services is the ultimate outcome of development, where service functionality
and performance are subjected to actual evaluation and experience by real users who are probably not aware of or
have concerns about any prior design activities involved – although they are important and have major influence on
the implementation. The design phase in development has moved on from being a traditionally separate activity to
being more integrated with the lifecycle. For example, high-level graphical notations are now common to depict
the functionality and relationship of components, even generating entire code or code skeletons. Such an approach
can be used for implementing composed web/grid services in practice. For example some BPEL standard vendors
provide visual design tools in addition to their enactment engines to develop and deploy orchestrated services.

CRESS supports the development of composed web services where implementation code is automatically
generated from the CRESS graphical service description. Using the same service description for formalisation and
implementation has the advantages of being simple, consistent and integrated. Changes in service description are
automatically reflected in the formal behaviour and the actual implementation code.

Originally CRESS supported BPEL4WS (version 1.1) as the target implementation standard for composed web
services, obtaining the BPEL code from translating CRESS diagrams. The thesis work has adapted the original
translation strategy for web services to composed grid services. The thesis work developed the translation strategy
for the successor WS-BPEL 2.0 standard which is applicable to both web and grid service domains. The CRESS
notation was extended as described in Chapter 4, so these automatic implementation translation strategies have
also been extended to support the CRESS semantics correspondingly.

The original CRESS did not have an integrated and automated approach for testing implemented services as
a counterpart to MUSTARD for specification validation. Hence developers had to deal with the task of testing
composed services and partner services. The thesis work developed tool support for implementation validation
in the methodology to increase the productivity and quality of service development, especially in terms of time
and effort. There are advantages in having an approach to easily specify tests cases, and to automatically test
and evaluate the performance of implemented composed and partner web/grid services. It gives focus to test
specification unlike test tools such as JUnit where much programming unrelated to an actual test is required.
Improved productivity is needed so that low-level technical details are automated such as translating WSDL to
actual program code and compiling this, which by itself may be considered as a specific form of validation.
Diagnostics for validation and performance evaluation are supported.

This chapter discusses the implementation aspect of composite web/grid services. In particular, the chapter
presents extensions and new work on the CRESS translation strategy for implementation, harmonising compati-
bility issues, and achieving implementation validation.

6.1 Automatic Implementation
Automatic implementation was achieved for web services by CRESS with its original strategy [100]. This in-
cluded full code generation for services, with a framework that is capable of incorporating manually-provided
implementations for partner services, and of compiling service implementations into readily deployable archives.
The thesis work has adapted the approach and applied it to the grid service domain. The extensions also had the

75

Figure 6.1: Web Service Deployment Plan

goal to support the latest BPEL standard (WS-BPEL 2.0). In addition to the development for web services to sup-
port WS-BPEL 2.0, there was also a parallel development to support both standards for grid services, including
support of implementation for the extended CRESS notation. Collectively these realised the thesis objective of
automatic implementation for web/grid services.

6.1.1 Original Translation Strategy
The original strategy followed a service deployment plan that coordinates code generation, compilation and de-
ployment of (partner/composed) services, using information given in and inferred from the CRESS service and
configuration diagrams. The generated code consists of data types (XSD), service interfaces (WSDL), process
behaviour (BPEL), and deployment configuration (e.g. PDD for ActiveBPEL). This subsection describes in detail
the original strategy that achieved automated implementation of composed web services [101].

Web Service Deployment Plan

Figure 6.1 illustrates the plan for how a composed web service described as a CRESS diagram is automatically
translated into a significant amount of XML code that developers do not have to write; this code comprises WSDL,
BPEL and configuration files. A WSDL file is created to describe a business process interface as it is also a web
service. Partner web services also have their respective service interfaces created as WSDL files. Another WSDL
file is also created for message and data type definitions that are shared by the composite service and its partner
services. This WSDL is used by the services interface WSDL files. A BPEL file describing the process behaviour
is created. Finally these files are packaged into a deployable archive for the composed service. Composed services
are then automatically deployed in ActiveBPEL.

A partner web service will require a one-off implementation by the developer if the service is new. CRESS will
create the partner’s WSDD (Web Service Deployment Descriptor) automatically. The WSDL service interface is
translated into a Java service skeleton using the AXIS wsdl2Java tool. The developer can then manually implement
the service using the skeleton. If a Java implementation was already provided, that code is used instead of the
skeleton in automatic deployment. Partner web services are deployed using ActiveBPEL.

If a partner service already exists, meaning that it is already a deployed and running service, then there is no
need for the one-off implementation. The generated WSDL can be used directly by the composed process as there
is an existing implementation for service interface. It is likely that only certain ports and operations of the partner
will appear in CRESS diagrams. The WSDL generated for the partner web service may a subset of its actual
WSDL, containing only the necessary information required for the composite service deployment. This subset
WSDL does not affect the actual partner service in any manner, but rather reflects the CRESS perspective on the
partner service interfaces visible to the composite service.

76

Service Interfaces (WSDL)

For each service, CRESS generates the service interface WSDL which syntactically defines the ports, operations
and their corresponding message parameters and service bindings. These services share the common definitions,
therefore their WSDL will have import directive for these common definition which are also WSDL files.

The service port is defined in the WSDL <portType> specification. Within the <operation> specification its
elements (input, output, faults) are given. The definitions are derived from the consolidation of their use in the
CRESS diagram which captures all ports, operations, and corresponding parameters and faults for the particular
service, including partner services. The port type name follows the convention <port>Port. For example, the
consolidation of a service use in a CRESS diagram may have the signatures for a composed service supplier:
‘dealer1.car.quote need offer’ and ‘dealer1.car.cancel offer’. The <portType> is generated as the following WSDL
<portType> code. The ‘message’ attribute values refer to the <message> definitions that are based on the data
types definitions, as described in section 6.1.1.

<portType name=′′carPort′′>
<operation name=′′cancel′′>
<input message=′′defs:offerMessage′′/>

</operation>
<operation name=′′quote′′ >
<input message=′′defs:needMessage′′/>
<output message=′′defs:offerMessage′′/>

</operation>
</portType>The service binding defines the use of transport protocol, SOAP parameters, and namespace for the port’s

operations and parameters; these establish the protocol contract for service communication. The XML prefix and
the value of the namespace attribute are obtained from the service’s definition in the CRESS configuration diagram
where the prefix and namespace are defined, in this case ‘deal1’ and ‘urn:BigDeal’. The following is an example
of <bindings> for the above portType definitions:

<binding name=′′carBinding′′ type=′′deal1:carPort′′>
<soap:binding style=′′rpc′′

transport=′′http://schemas.xmlsoap.org/soap/http′′/>
<operation name=′′cancel′′>
<soap:operation
soapAction=′′http://www.cs.stir.ac.uk/schemas/Dealer1Service/cancel′′/>
<input>
<soap:body use=′′encoded′′ namespace=′′urn:BigDeal′′

encodingStyle=′′http://schemas.xmlsoap.org/soap/encoding/′′/>
</input>

</operation>
<operation name=′′quote′′ >
<soap:operation
soapAction=′′http://www.cs.stir.ac.uk/schemas/Dealer1Service/quote′′/>
<input>
<soap:body use=′′encoded′′ namespace=′′urn:BigDeal′′

encodingStyle=′′http://schemas.xmlsoap.org/soap/encoding/′′/>
</input>
<output>
<soap:body use=′′encoded′′ namespace=′′urn:BigDeal′′

encodingStyle=′′http://schemas.xmlsoap.org/soap/encoding/′′/>
</output>

</operation>
</binding>

For a composed service described in CRESS, it is natural that the description specifies all its ports and op-
erations. This is not necessarily so for a partner service whose behaviour is not described in CRESS, where the
generation of the WSDL takes the view of the composed service which may be a subset of what the partner service
supports. The generated WSDL is sufficient for use by the composed service which is implemented in BPEL.

77

Also for a composed service, its WSDL service interface will contain definitions of partner links, including
itself, which are referenced by the BPEL process when interacting with the partners. A BPEL service considers
itself as a partner to its client and therefore has a partner link describing itself. A partner link is a named association
to a partner’s role which is defined with its port types. The name for a partner link follows the convention
<partner><Port>Link. As an example, the code below gives the partner link for the above ‘dealer1’ service with
‘car’ port.

<plnk:partnerLinkType name=′′dealer1CarLink′′>
<plnk:role name=′′dealer1′′>
<plnk:portType name=′′deal1:carPort′′/>

</plnk:role>
</plnk:partnerLinkType>

All services will have a <service> definition which declares its port name and the <binding> it uses, along
with the default service address location. The naming convention for the service name is <Partner>Service, and
the port name <Partner><Port>. The port name is used in the generation of code stubs. There is, for example,
a getDealer1Car accessor method for obtaining an instance of the port for invocation in programming languages
such as Java. As an example, the <service> definition for the ‘dealer1’ example illustrated above is:

<service name=′′Dealer1Service′′>
<port name=′′Dealer1Car′′ binding=′′deal1:carBinding′′>
<soap:address
location=′′http://localhost:8080/active-bpel/services/Dealer1Car′′/>

</port>
</service>

Common Definitions

Composed services and their partner services may share some data type definitions. As it happens, a composed
service typically uses partner service operations, thereby implying the latter’s binding via the service interface,
especially the messages and data structures for information exchange. This information is specified as a WSDL
document and then shared by the service interfaces (WSDL files) via imports. Data structures are defined in XSD
schema elements under the WSDL <types> element.

CRESS-supported web service basic types are translated directly into XSD primitive types, mostly using iden-
tical names, such as Float translated to xsd:float, Natural to xsd:nonNegative-Integer. Data structures in CRESS
are translated into XSD complex structures using XSD’s complexType tag, with each element representing the
fields which can be nested. Fields that have structured definitions will have their own complexType definitions.
Multiple variables of identical type will share the same type definition, where the name of the first variable found
of that type is used to define the complex type name. For example the following data definition in CRESS:
{String name String address [{String description Natural quantity} item] contents} parcel, parcel2
will be translated into various complexType(s) definitions as shown below.

<complexType name=′′item′′ >
<sequence>

<element name=′′description′′ type=′′xsd:string′′/>
<element name=′′quantity′′ type=′′xsd:nonNegativeInteger′′/>

</sequence>
</complexType>

<complexType name=′′contents′′ >
<sequence>

<element name=′′item′′ type=′′defs:item′′

minOccurs=′′0′′ maxOccurs=′′unbounded′′/>
</sequence>

</complexType>

<complexType name=′′parcel′′ >
<sequence>

<element name=′′name′′ type=′′xsd:string′′/>

78

<element name=′′address′′ type=′′xsd:string′′/>
<element name=′′contents′′ type=′′defs:contents′′/>

</sequence>
</complexType>

The parcel is defined as a data structure that has fields name, address and contents, of which contents is an
array of item which by itself is a data structure consisting of fields description and quantity. The complexType
definitions for contents and item are under the same namespace and are instantiated by the elements of parcel.
Here ‘defs’ is used as the prefix for this namespace in the XML document, pointing to the namespace configured
in the CRESS configuration diagram. The variable parcel2 shares the same type as parcel, therefore the type
definition parcel is used.

These data structures are used in the specification of interactions with the service operations. A WSDL <mes-
sage> is used for this, where the message elements define the parameter order, names and types. These message
elements are then used in the service portType and operation definition thereby establishing the operation sig-
nature. These message elements are also used by the BPEL process specification to instantiate variables. The
definitions of message elements are inferred from the service operation signatures described in the CRESS di-
agram which contain the input/output/fault variables, and their types are then used. For example, consider the
invocation ‘postal.post.quote parcel price’ where the output to the service is parcel which is given above and the
input from the service invocation is price which is of Float type. The message element definitions related to the
service interface are as follows.

<message name=′′floatMessage′′ >
<part name=′′float′′ type=′′xsd:float′′/>

</message>

<message name=′′parcelMessage′′ >
<part name=′′parcel′′ type=′′defs:parcel′′/>

</message>
As seen above, messages that represent primitive typed variables use the type names with ‘Message’ appended

to the name, and simply use the type name again for the part names. Messages with parts that refer to complex
types (such as parcel) are defined in a similar fashion, with the exception that the type refers to the complex type.
The quote operation definition of post <portType> will have <input> and <output> message attributes referring to
parcelMessage and floatMessage respectively.

These common definitions are specified using the naming convention service_defs.wsdl where service is the
name of the CRESS diagram where the types are initially defined. These common definition WSDL files are
imported by the service interface WSDL files.

Process Behaviour

The process behaviour is generated according to the BPEL4WS specification. The nature of the CRESS notation
for describing the composite web services closely matches that in BPEL. The following XML code illustrates
the high-level structure of an executable BPEL4WS process. Typically there is the declaration of partner links,
variables, then the flow of behaviour including definitions of links. Partner links associate the roles and ports of
partners which are used by the BPEL process for interaction. Variables contain the instantiation of named bindings
to data structures used in the behaviour. There is usually a <flow> which describe the activities within the process
(e.g. invoke, reply, assign etc.). The flow between activities is described by <links> which contains definitions of
named labels attached to source and target activities, indicating the direction of the process flow.

<process name=′′name′′ ...>
<partnerLinks>
...
<variables>
...
<flow>
<links>
...
... process behaviour contructs ...

</process>

79

The partner links are translated according to the following template, where partner, port, and composed-
service_prefix respectively correspond to the partner service name, its port, and the configured prefix for the
composed services.

<partnerLink name=′′<partner>Port′′

partnerLinkType=′′<composedservice_ prefix>:<partner><Port>Link′′

partnerRole=′′<partner>′′/>

Variables are translated from the CRESS service diagram rule box where data structures and variables are
defined. The variable names are taken from the rule box, and normally instantiated as typeMessage which
is the name of the <message> defined in the common definitions, for example, ‘<variable name=“need” mes-
sageType=“defs:needMessage”/>’.

The links are created with names corresponding to the nodes associated by the arcs in CRESS service diagram.
For an arc from node 1 to node 2 in a ‘supplier’ CRESS service diagram, the link will be named SUPPLIER.1-
SUPPLIER.2. This link is then designated as the source in the BPEL activity described with node 1, and as the
target for node 2.

The CRESS notation for web service diagrams is translated quite straightforwardly into BPEL activities along
with their required attributes, as the syntax and parameters map directly to the corresponding BPEL constructs.
Details of the translation for the major constructs are listed in Appendix B. The Compensate, Empty, Invoke,
Reply, Terminate, and While CRESS node activities are directly translated into the BPEL construct of the same
name, configured with the source and target links to establish the flow. If the CRESS service specifies only one
Receive activity, then it is translated to the <receive> BPEL construct. If there is more than one Receive from
the Start node, each Receive is translated to the <onMessage> BPEL construct. Event (Catch, CatchAll) and
compensation handlers (Compensation) are specified within the corresponding BPEL construct (e.g. Invoke).
Event handlers can be in the global scope for the process and not associated with any activity. Conditional guards
are translated as an expression in the ‘transitionCondition’ attribute of the <source> link of the activity. The Else
guard comprises the negation of all the conditional guards combined from the same originating node. The Fork
activity that describes concurrent activities is simply translated as an <empty> activity linked to the respective
activities to be executed in parallel, which means they have more than one source link defined. The Join condition
activity is translated as an <empty> activity with the joinCondition attribute that is translated from condition,
describing the (composite) condition of the completion of the links that converge into the Join.

As a concrete example of translation, assume there is a node 2 of a CRESS lender service diagram with ‘Invoke
approver.loan.quote proposal rate refusal.error’. Node 2 is linked from node 1 and 6. It has a Catch refusal.error
event handler associated with it leading to node 3, which will Reply ‘refusal.error’ followed by Terminate at node
4. Node 2 leads to node 5 if the Catch event has not occurred. This is translated to the BPEL <invoke> activity as
the following BPEL code snippet.

<invoke name=′′LENDER.2′′

partnerLink=′′approverLoan′′ portType=′′app:loanPort′′

operation=′′approve′′ inputVariable=′′proposal′′ outputVariable=′′rate′′ >

<target linkName=′′LENDER.1-LENDER.2′′/>
<target linkName=′′LENDER.6-LENDER.2′′/>
<source linkName=′′LENDER.2-LENDER.5′′/>

<catch faultName=′′app:refusal′′ faultVariable=′′error′′ >
<flow>
<reply name=′′LENDER.3′′

partnerLink=′′lenderLoan′′ portType=′′lend:loanPort′′

operation=′′quote′′ variable=′′error′′ faultName=′′lend:refusal′′ >
<source linkName=′′LENDER.3-LENDER.4′′/>

</reply>
<terminate name=′′LENDER.4′′ >
<target linkName=′′LENDER.3-LENDER.4′′/>

</terminate>
</flow>

</catch>
</invoke>

80

Figure 6.2: Include Partner Service Implementation

Inclusion of Web Service Partner Implementation

Figure 6.2 shows the flow of how the the one-off implementation for a web service partner is included into the
process of automated implementation. The ‘cress_expand’ command executes the automated implementation
process for the composed and partner web services. The automated translation of the CRESS diagram produce
the service interfaces and definitions as WSDL files, translates them into Java service stubs, and compiles them
for use. As a concrete example, assume ‘dealer1’ service with a ‘car’ port is a supplier partner and is not a
CRESS diagram. The developer will provide Java code for dealer1. The source file for the partner is named
dealer1.java in the supplier directory under the composed diagram’s path. Its Java class definition overwrites the
implementation stub class that was produced in the translation, as seen in the Java code below. This dealer1.java
file replaces the generated implementation skeleton, and is compiled into a Java binary class file together with
all other Java sources in the dealer1 directory. Deployment meta files are also created using AXIS (WSDD files)
under the service package directory; a META-INF directory is also created. Together the compiled class files
and WSDD files are packaged in a WSR archive for deployment. If the deployment option is set in the service
configuration diagram, then the WSR file is deployed into the ActiveBPEL container whose path is determined
by the environment variable CATALINA_HOME, which is the location of the Apache Tomcat servlet container
where ActiveBPEL is installed.

package namespace;
... other imports ...

class PortBindingImpl implements PortPort {
// italics represent the actual name of the port, e.g. Car
... operation signatures and implementation ...

6.1.2 Extended Translation Strategy
The thesis work has made several extensions to the CRESS notation to support realistic web/grid service compo-
sition, namely: dynamic partner definition, dynamic partner binding and invocation, and ownership of types. The
extended strategy supports these extensions in the automated implementation strategy, and supports the WS-BPEL
2.0 specification.

Dynamic Partner Definition

In a CRESS Rule Box the new Partner keyword with the specified partner.port introduces a dynamic partner.
The BPEL standard supports specification of dynamic partners, implying runtime binding and invocation. The
configuration of dynamic partners is in a separate specification from the BPEL behaviour in ActiveBPEL, which
is where the translation comes into effect. A dynamic partner is configured in the ActiveBPEL PDD (Process
Deployment Descriptor) of the composite service in the following manner. In its partnerRole element the value

81

endpointReference attribute is set to “dynamic”, and the invokeHandler value is set to “default:Address” as shown
below. This is less detailed in comparison to a static partner configuration. In this example, Partner mapper.job
is specified in the CRESS Rule Box, resulting in the code generation for PDD file being:

<partnerLink name=′′mapperJob′′ >
<partnerRole endpointReference=′′dynamic′′

invokeHandler=′′default:Address′′/>
</partnerLink>

In addition, an intermediate EndpointReference variable is also created for facilitating bindings to the partner
using the naming convention dynamic<Partner><Port>EPR. This is a mechanism for implicit validation and
compatibility harmonisation. The reason and workaround are contextually described in the following subsection
where the binding of dynamic partner is covered.

Dynamic Partner Binding

The endpoint of a dynamic partner is initially not bound. An assignment to the Partner in the CRESS diagram
defines its binding in the composition at the point of specification. This implies that the source of assignment is of
CRESS-type Reference, which will be an EndpointReference when implemented. The thesis work has developed
a straightforward translation into BPEL code that specifies an assignment from the source EndpointReference
variable to the target partner link. The CRESS assignment expression ‘mapper.job <- epr’ is translated into BPEL
as illustrated in the BPEL code below. As will be seen, an assignment from a variable of EndpointReference
to the intermediate dynamicMapperJobEPR variable is made prior to binding the endpoint of a partner. It was
found that an assignment made directly to a partner link resulted in an error: the ActiveBPEL container reported
unsuccessful schema validation when assigning directly from the source. It was observed that assignments of
returned EndpointReference values directly into partner links is accepted, but fail at invocation. It was found that
the addressing headers were sent as part of the SOAP body rather than as headers and therefore could not be
resolved at the destination. Furthermore, the assigned value retained the structural information of the reference
part (e.g. name of <part> in WSDL <message>) that was returned; this is incompatible with partner link types
but was not validated. An empirical solution was found. The workaround is an assignment to the intermediate
variable of EndpointReference which is then used to set the partner link. This results in addressing information
now within SOAP headers, and therefore the endpoints can be invoked.

<copy>
<from variable=′′mapperReference′′ part=′′reference′′/>
<to variable=′′dynamicMapperJobEPR′′/>

</copy>
<copy>
<from variable=′′dynamicMapperJobEPR′′/>
<to partnerLink=′′mapperJob′′/>

</copy>

Type Ownership

The original strategy’s translation of data variables applies by default (i.e. a variable is owned by its defining
diagram). If variables are explicitly declared in association with the owning partner service via the CRESS diagram
Rule Box, then the type ownership translation rule applies. Variables expressed with ownership have their type
definitions translated within the XSD schema under the namespace of the specified owner. This namespace is
defined by the CRESS domain (WS or GS) configuration diagram. The corresponding WSDL message definitions
will be generated accordingly, pointing to the right schema and namespace. These definitions are written to
the WSDL file that contains the common data type and definitions. In the generated BPEL specification, these
variables are declared with the corresponding message elements.

Translation Strategy for WS-BPEL 2.0

CRESS had an existing translation strategy for BPEL4WS, the major constructs being listed in Appendix B. The
thesis work has extended this strategy for translation into WS-BPEL 2.0. The WS-BPEL 2.0 standard is an update
of its predecessor BPEL4WS in several respects, with significant improvements and refactoring in the language
constructs and use of standards compatible with that of WSRF, ensuring compatibility with grid services. The

82

Figure 6.3: Grid Service Partner Deployment Plan

extended translation strategy does not support all the new BPEL updates, but maintains compatibility between
BPEL4WS and WS-BPEL 2.0.

One of the main improvements in WS-BPEL 2.0 is variable access. In BPEL4WS the access to a (part of a)
variable is via the function call ‘bpws:getVariableData’ with the variable and XPath query as parameters. WS-
BPEL 2.0 simplifies XPath expressions by introducing the ‘$’ and ‘.’ notation, where the former denotes the
use of a variable of a given name and the latter is used for access, using the format $variable[.part]/location.
The WS-BPEL 2.0 variable access notation, in comparison to BPEL4WS, is an improvement in conciseness and
simpler syntax. For example the BPEL4WS syntax for an expression ‘offer.price != 100000’ is expressed as
‘bpws:getVariableData(’offer’,’offer’,’/offer/price’) != 1000000’, whilst the WS-BPEL 2.0 is simpler with ‘$of-
fer.offer/price != 1000000’. Despite the differences in the actual implementation syntax, variable access expres-
sions in CRESS diagrams are not affected at all, as they are semantically the same at a high-level. This the CRESS
syntax is more alike to WS-BPEL 2.0 in this respect.

Some constructs in WS-BPEL 2.0 are refactored (mostly renamed) from BPEL4WS, such as switch/case to
if/else, and terminate to exit. This means that the extended translation to BPEL4WS (Appendix B) could be used
as a guideline for translating CRESS diagrams to WS-BPEL 2.0 syntax. As the majority of other constructs are
similar, the existing translation strategy to BPEL code needed only small changes to support WS-BPEL 2.0. The
source and target links in WS-BPEL 2.0 are defined within <sources> and <targets> elements.

Several BPEL-related namespaces are also different in WS-BPEL 2.0, and these are reflected in the translation
strategy. WS-BPEL 2.0 added <import> functionality to support WSDL and XSD formally in the BPEL speci-
fication. This gives a direct description of how WSDL and XSD are explicitly used in BPEL. These <import>
statements are also automatically and directly generated by the translation strategy as it has information about the
WSDL definitions and namespaces.

The WS-BPEL 2.0 standard uses a later version of the WS-Addressing specification. The use of its names-
pace and its import specification details have been incorporated into the new translation, with the gain of being
more compatible with the WSRF specification. This helps to realise the interoperability with grid services more
seamlessly, as anticipated by the preliminary investigations with BPEL4WS [90].

Inclusion of Grid Partner Service Implementation

Grid partner services are implemented and deployed rather similarly to that of web partner services, illustrated
in figure 6.3. The WSDL service interface and common definitions are automatically generated, along with their
service stubs. There are however no implementation skeleton and deployment descriptors generated, as the grid
service implementation follows the Globus Toolkit development framework which is different from that of web
services. The developer fully provides the one-off implementation for each grid partner service, along with the
JNDI (Java Naming and Directory Interface) and WSDD descriptors which are required by GT4. Once completed,
the CRESS implementation framework was able to automatically compile and package a provided implementation
as a grid service archive (.gar) using the Globus Toolkit packages.

The CRESS tools, specifically cress_expand and cress_create were extended by my supervisor Prof. Kenneth J.
Turner with the capability to execute this service deployment plan for composed services and grid service partners

83

in the grid service domain. The composed services in the grid service domain are implemented as BPEL archives,
which follows the service deployment plan for composed web services. The grid service partners are compiled
and deployed as grid service archives as described here.

6.2 Compatibility
The standards used by ActiveBPEL and GT4 have evolved to a mostly harmonised state; however, there is an
compatibility that results in an interaction failure between ActiveBPEL and GT4. This has been addressed as
described in the following subsection for GT4.

6.2.1 Interworking of ActiveBPEL and GT4
The first interworking issue revolves around the need for ActiveBPEL version 3, which just supported WS-BPEL
2.0, to interact with dynamic resources deployed in GT4 [106]. To illustrate this, a BPEL service and some
dynamically created resources are assumed in ActiveBPEL and GT4 respectively. The endpoint reference of the
target service is set during the execution of the BPEL process and prior to the target service invocation. This
implies dynamic service binding in the BPEL description of the composite service. As part of the invocation,
ActiveBPEL will send a SOAP message to the target service (dynamic resource) that is hosted in GT4. ActiveBPEL
sends information (the service actor is empty) that results in GT4 not being able to identify the service resource
and throws “No Action Header” AXIS faults, even though the required information is present. Even though the
information complies with the standards, GT4 is unable to extract the correct WS-Addressing information. GT4
sets the ‘addressing.required’ property to true in its message context, which originally disallowed this format of
SOAP messages sent by ActiveBPEL. A solution was to relax this requirement by setting it to not mandatory,
which does not affect other services and the container behaviour. This problem was resolved in ActiveBPEL
version 5.0.2 which sends the headers correctly, and is therefore recommended for use.

The second issue is another SOAP-level incompatibility, but from GT4 to ActiveBPEL. A BPEL service and
a grid service are assumed in ActiveBPEL and GT4 respectively. Under circumstances where a complex type
value is returned by the grid service as a response to the invocation by the BPEL service, an empty namespace in
the form of xmlns=”” is found in the structure operation response when its contents are empty. This is incorrect
according to the validation of SOAP messages which the ActiveBPEL container implements. As a result, although
invocation is successful from the perspective of getting a response, the BPEL process will fault due to invalidation
of the SOAP response.

6.2.2 SOAP-Level Message Harmonisation
The thesis work has implemented solutions to address these two incompatibilities, driven by factors of minimal
development and interference, and maximum impact. This was possible because of the configurable deployment
flexibility offered by AXIS and GT4.

The first issue was addressed by plugging handlers into the AXIS request handler chain of GT4, which is a
WSDD file. A handler named CressAddressingHandler was implemented and configured at the top of the existing
request handler chain of the GT4 container. This handler simply sets ‘addressing.required’ to false for the context
of requests. As the first handler, the effect of CressAddressingHandler is naturally propagated to the successive
handlers configured in the container, and deals with the first addressing incompatibility. A permanent fix in GT4
(version 4.0.1) is viable; however, considering the amount of effort to understand the existing code, to rebuild
the container, and the impact of the change on existing deployments, the solution implemented in this work fares
better. The solution implemented in the thesis can also be tried out immediately in a more deterministic manner
as there is only a single point of change and this configuration can be easily withdrawn when desired.

The solution to the second incompatibility involves creation of a Java class (named CressGlobusAxisR-
PCProvider) that is to be configured into grid service WSDD files. The purpose of this class is to eliminate
the empty namespace problem by filling in the correct namespace obtainable from the namespace of response
objects. CressGlobusAxisRPCProvider extends the existing default provider, overriding the existing code that is
responsible for creating the SOAP body part, filling in the namespace if it is found to be empty, it then passes mes-
sage validation. This is also a configurable solution which can be easily withdrawn without other code changes
and redeployment.

84

6.3 Validation using MINT

6.3.1 MINT Notation
An important objective with regard to automated validation was to be able to share the same set of test scenarios in
both the formalisation and implementation of service compositions, which is achieved by translating MUSTARD
scenarios into MINT. The syntax description below describes the list of MINT keywords which are largely based
on MUSTARD notation. The test keyword creates a test specified behaviour. Primitive constructs are send and
read. INT and OK are actual actions executed in a test. Combinator constructs are sequence, interleave, and
offer that provide powerful composite expressions for sequence, parallelism and choice respectively to describe a
test. Combinators may also be nested for describing complex tests. Additional syntax expressing variable usage
and endpoints is used to support specification of versatile tests.

send(partner.port.op[/epr], value) Invokes the target service partner at an optional endpoint (see /epr_name),
the port, operation and the specified parameter. The type of parameter depends on the operation require-
ments. The response from an invocation will be stored. The value parameter can be a static expression, e.g.
send(smartmaths.calc.pow, Pow(7, 5)) invokes the power operation of partner smartmaths via the calc port
using a complex type Pow which is instantiated with 7 and 5 as parameters (i.e. 75, The value parameter
can use a variable (see !name).

read(partner.port.op[/epr], [fault,] value) Read from the stored response returned by a specified partner at the
optional endpoint (see /epr_name), for the given port and operation. Fault responses are read with the fault
name. A read implies there should have been an invocation to the specified partner, port and operation. The
stored response should then match what is specified in the value parameter, indicating a successful read.
The value parameter can be a static expression, e.g. read(smartmaths.calc.pow, 16807) means the stored
response should match 16807 returned by partner smathmaths via the calc port for the operation pow. The
value parameter can be an arbitrary value of some type (see ?type). The value parameter can be instantiated
as a typed variable (see ?name:type). The value parameter can use a variable (see !name).

INT Represents an event internal to the MINT tool which is always a successful action. Used in conjunction with
offer to describe MUSTARD decide semantics.

OK Indicates a path succeeds.

sequence Child constructs occur in sequence.

interleave Child constructs occur with interleaving parallelism, all possible sequences being traversed exhaus-
tively.

offer A choice of child constructs where one branch occurring suffices for a successful path.

test(name, specification) Creates a test with a given name and test specification described as a composition of
primitive and (nested) combinator constructs.

?name:type This syntax is only used in a read primitive to instantiate a named variable bounded to a type,
matching any value of the given type in the read. This implies that the type of the read value is the same as
the type of the variable.

read(smartmaths.calc.pow, ?answer:natural) will be successful iff the read value is from smartmaths.calc.pow
and the type is Natural. The variable answer will then be instantiated with the value read.

?type This syntax is usually used in a read primitive, occasionally in send. This is like ?name:type with the
exception that it does not instantiate a variable. This is often used for a one-off read accepting arbitrary
values of a specified type.

!name[.field]... This syntax expresses the use of (part of) a variable. !name means a variable that was instantiated.
The ‘.’ operator accesses the fields within the associated type structure in succession. Suppose variable cust
has type structure {{Natural hse String street}contact Integer balance} customer, then: !cust returns the
entire cust record; !cust.balance returns the value of field balance in cust; !cust.contact.street returns the
value of street in contact that is in cust; !cust.contact returns the entire contact of cust.

85

MUSTARD Construct MINT Description
succeed OK appended as leaf node, i.e. the sequence of behaviour must

succeed,

e.g. succeed(send(params), read(params))
is specified in MINT as
sequence(send(params),read(params),OK)

refuse A sequence where last action is replaced with an offer containing
the last action and a branch of OK,

e.g. refuse(send(param1), read(param2))
is specified in MINT as
sequence(send(param1),

offer(read(param2), OK))

decide An offer with all the branches beginning with INT (internal
event)

e.g. decide(sequence(send(param1), read(param1)),
sequence(send(param2), read(param2)))

is specified in MINT as
offer(sequence(INT, send(param1), read(param1)),

sequence(INT, send(param2), read(param2)))

Table 6.1: Representation of MUSTARD Combinators in MINT

/epr_name This syntax is useful for dynamically binding endpoints to target service partners specified just after
partner.port.op. epr_name is a variable name that must be of type EndpointReference, implying a prior
instantiation via ?epr_name:EndpointReference When used as part of a send primitive, the endpoint of the
service partner is set with the value of the specified EPR variable prior to invocation. When used as part of
a read primitive, the endpoint serves as a part of the match for a response.

There are three MUSTARD constructs that are not part of the MINT constructs described above: succeed,
refuse, and decide. This is because their semantics can be described in a more fundamental form using MINT
constructs and keywords, described in table 6.1. The user does not have to manually adapt existing MUSTARD val-
idation specifications in order use MINT to execute the implementation validation. A macro script was developed,
using M4, in conjunction with the thesis supervisor to translate MUSTARD tests into MINT notation automatically.
This facilitates the flow of automated validation, with an intermediate step of translating MUSTARD test scenarios
into MINT notation with the macro script prior to MINT interpreting and executing the tests.

6.3.2 Tool Support
MINT is also a tool that interprets and executes test scenarios automatically. This section describes the design of
the tool and its capabilities for implementation validation of the composite web/grid services and service partners
that are developed and deployed. A guide to MINT is available on its web page [89].

Tool Design

The approach towards automating implementation validation with the MINT tool is shown in figure 6.4. The MINT
tool requires the following inputs: service configuration files, and MINT notation test files. A service configuration
is a properties file that contains information that relates to the actual implementation: service location, timeouts,
and abstract mappings to actual implementation classes. The MINT tool uses this information to set up and
execute the tests automatically. Service interfaces are downloaded from actual implementations, and service stubs

86

Figure 6.4: MINT Approach to Automated Implementation Validation

are generated and compiled. The scenarios are interpreted by MINT, where the execution is underpinned by the
actual implementation of the stubs. The parameters of a service configuration file are described in table 6.2,
written in Java properties format name=value.

Configuration Property Purpose
target.url The (remote) location of the service which will be

subjected to implementation validation. This is also
the root location where MINT will download the
WSDL service interface from, thereafter translating
it into the client stubs with AXIS or GT4 wsdl2java
for actual use.

service.timeout This is the timeout in milliseconds which will be set
into the client stub prior to invocation. The AXIS-
generated client stubs contain operations to set the
timeout parameter. The default value is 0 meaning
no timeout.

service.package.partner Specifies the Java package name in which the service
stubs reside. E.g. service.package.lender=LoanStar
if Lender WSDL service interface will generate stubs
into the LoanStar package.

class.partner.port.operation
.fault.faultname

Specifies the fault class that is associ-
ated with a fault used in MINT. E.g.
class.lender.loan.quote.fault.refusal =
LoanStarDefs.StringMessage refers to a ‘refusal’
fault used in a MINT scenario with the StringMessage
class.

Table 6.2: MINT Service Configuration File Properties

A deployed web/grid service is validated as follows. MINT downloads and generates services stubs for all
the service interfaces from the locations specified in the service configuration property files. MINT delegates
this activity to the AXIS WSDL2Java class which exists for the purpose of generating Java service stubs for
communicating with target services. These stubs are immediately compiled by MINT (using the Java compiler)
for actual use. These two steps set up the necessary technical framework for executing the tests.

MINT then interprets the test files and parses the results. MINT executes each test on-the-fly using the recursive
algorithm described in table 6.3. The MINT algorithm uses initials, potentials and (success, complete, failure) path
trace results for execution, achieving the same interpretation as validation of a specification with MUSTARD.

An initial is a MINT primitive action (INT, send, or read) representing the first possible step at the current
point in test execution. Progressing from an initial results in post-initial behaviour. This represents contextually

87

the state of the test description considering actions already performed, determining the actual visibility of the
following initials. The following description illustrates the initials and post-effect of progressing an initial (post-
initial) of a MINT combinator construct.

sequence: Union of all initials of the first child construct. If the first child is a primitive then the child is the only
initial.

initials:
sequence(A, B) -> A
sequence(offer(A, B), C) -> A, B
sequence(interleave(A, B), C) -> A, B

Post-initials:
sequence(A, B) -> sequence(B)
sequence(offer(A ,B), C) -> sequence(C) having done A or B
sequence(interleave(A, B), C) -> sequence(interleave(B), C) having done A or
sequence(interleave(A), C) having done B.

offer: Union of all immediate child primitive constructs and the initials of each child combinator construct.

initials:
offer(A,B) -> A, B
offer(sequence(A, B), sequence(C, D)) -> A, C
offer(interleave(A,B), sequence(X, Y)) -> A, B, X

Post-initials:
offer(A,B) -> empty
offer(sequence(A, B), sequence(C, D)) -> sequence(B) having done A OR sequence(D) having done C

offer(interleave(A,B), sequence(X, Y)) -> interleave(B) having done A OR interleave(A) having done
B OR sequence(Y) having done X

interleave: Union of all immediate child primitive constructs and the initials of all child combinator constructs.

Initials:
interleave(A, B, C, D) -> A, B, C, D
interleave(sequence(A,B), sequence(C,D)) -> A, C
interleave(offer(A,B), sequence(C,D)) -> A, B, C

Post-initials:
interleave(A, B, C, D) -> interleave(B, C, D) having done A or
interleave(A, C, D) having done B or
interleave(A,B, D) having done C or
interleave(A,B,C) having done D

interleave(sequence(A,B), sequence(C,D)) ->
interleave(sequence(B), sequence(C,D)) having done A or
interleave(sequence(A,B), sequence(D)) having done C

interleave(offer(A,B), sequence(C,D)) ->
interleave(B, sequence(C,D)) having done A or
interleave(A, sequence(C,D)) having done B or
interleave(offer(A,B), sequence(D)) having done C

88

Potentials are initials that can indeed be actualised at the current point in behaviour, indicating possible paths
that can be followed during execution. For example, a read is not possible if there are no prior replies to read.
When a potential action is performed successfully, it is considered actualised. If the action does not actualise, then
it is appended to the path trace which is considered a failure path. For example a send has always potential to
execute but the actual invocation might result in exceptions such as service not found, therefore it cannot actualise.

If a path trace leads to the special OK event it is added to the set of successful paths. Otherwise, a path trace
that has no following initials but also does not end with OK is considered complete, which is distinct from being
a successful path. Complete paths offer diagnostics that inform about possible test paths but with no assertion of
success or failure. The algorithm recurses for an actualised pathway with the current path trace and the post-initial
behaviour, until it is concluded with one of the three categories of path traces (success, failure, or complete).

Actualised actions can be reversed via an operation name prefixed with ‘reset’, if such an operation exist. This
is a function specifically for potentially backtracking the state of an implementation system during test execution.
The reset function is discussed in section 6.3.2.

MINT maintains a buffer storing responses from performing sends (service operation invocations). The buffer
is read by read actions that match the next immediate response value in the buffer. MINT also maintains a space
where named variables are instantiated with their associated values. A variable is instantiated on a read with the
given name, as defined by the MINT notation.

The criteria for considering if an action can be actualised is the following. INT (internal event) will always
actualise successfully as it emulates an internal event typically used for directing a path definitely tried, for exam-
ple in the case of specifying a mandatory attempt on all branches of a given path (e.g. decide which is simplified
into offer with INT). A potential send representing a service operation invocation is actualised iff the service
invocation succeeds. A potential read will always actualise, as the criteria for a determining if a read is potential
is that there is a match in the next element of the response buffer.

Reset Feature

The reset feature is a specialised capability of MINT which aims to backtrack the state of a service. Though
some services are stateless, some services maintain state either explicitly or implicitly via other components.
Transactions on databases are an example, even though the using service might indeed be considered stateless.
This may result in unexpected false interference and inconsistency between tests and their order of occurrence
if unperceived by the test specifiers. Suppose a car rental service has an early bird discount for the first three
customers. The first three invocations (sends) to the rental service get the early bird response, and subsequently
the service stop offering the discount. The following test specification, if executed several times (e.g. for a load
test) results in inconsistency:

test(Test1,
succeed(send(car.rental.book, Car(’John Smith, ’BMW, ’3 days)),

read(car.rental.book, Booking(’Discount, 210.75))))

If the service is working correctly, the test will not pass from the fourth time onwards. If the service is
implemented wrongly in that it contradicts the requirement of only three early bird offers, the test is consistent but
is a false positive. Similar situations can also happen when several tests are executed in sequence.

MINT provides a simple reset feature demonstrating the benefit of state rollback if possible, which can ensure
test independence as previous state changes are removed to avoid future interference. The reset feature only needs
to be applied to send constructs as they are invocations that influence services directly. To reverse a send, MINT
searches the same service partner port for the operation name used in the send but prefixed with a ‘reset’; this
takes the same parameter as the send. An invocation is then made to the reset operation using the value specified
in the send as a parameter. By doing this, the execution of a test is then made independent of other tests.

Is it possible to specify reset operations during composition in a pluggable manner? The idea of the reset
feature also inspired another part of the thesis technique to readily pluggable reset operations when specifying
composite services in CRESS. Usually a service would have specified explicit compensating operations, for ex-
ample a ‘cancel’ operation to void a reservation already made. However the reset technique provides flexibility in
terms of development and validation in the absence of these operations.

CRESS supports templates whereby features can be defined and added to specifications when necessary. The
development of templates was initially intended for modelling telephony features. The thesis work has used
CRESS templates as a novel way for flexible addition of functionality in composing web/grid services, whereby

89

execute (path_ trace, test)
initialise results
get <initial_ action, post_ initial_ test> tuples from test
potential_ tuples = filter(tuples)
foreach potential_ tuple

if actualise(potential_ tuple.initial_ action)
if initial_ action is OK

results.success_ paths.add(path_ trace + initial_ action)
else

if post_ initial_ test of potential_ tuple is null
results.complete_ paths.add(path_ trace + initial_ action)

else
child_ results = execute(path_ trace + initial_ action,

potential_ tuple.post_ initial_ test)
if child_ results is empty

results.failure_ paths.add(path_ trace + initial_ action)
else

results.success_ paths.add(child_ results.success_ paths)
results.complete_ paths.add(child_ results.complete_ paths)
results.failure_ paths.add(child_ results.failure_ paths)

end-if
end-if

reset(initial_ action)
end-if

else
results.failure_ paths.add(path_ trace + initial_ action)

end-if
end-foreach
return results

end execute

Table 6.3: MINT Pseudo-Algorithm

features can be added as required. Corresponding reset operations for operations specified in CRESS diagrams can
be defined using a CRESS feature diagram which is a separate diagram from the main behaviour. The feature is
specified in the CRESS configuration diagram, indicating that the feature behaviour to be included in the automatic
translation. This way the reset operation features are defined separately from the main specification, and can be
easily pulled out by reconfiguration.

Diagnostics

Diagnostic test execution is similar to that of formal validation with MUSTARD. All possible paths in a scenario
are considered and tried. The outcomes of the path results are consolidated as a final outcome of the scenario: fail,
inconclusive, or pass. A consolidated outcome is accompanied by test execution time. A fail outcome indicates
that all paths have failed for the specified scenario. An inconclusive outcome indicates a mixture of path failures
and path successes. A pass indicates all the paths are successful. In the event of a scenario not achieving a pass
outcome, path traces are produced for analysis.

Path traces that compromise test intentions are printed textually, showing the paths until the point of failure.
These are similar to the formal validation path traces. The diagnostics help to narrow down the points of failure,
giving feedback to developers who can readily address them. MINT provides additional diagnostic output in
view of engaging with implementations where operation timeouts are potential failure points. This gives useful
feedback in terms of service status and system configuration. For example, the following are diagnostics of
a validation –reported ConnectException, which indicates that the invocation failed because it was not able to
establish a connection to the service.

Test APPROVER High Rate ...

90

Execution error of
send(approver.loan.approve,Proposal2("Nancy Turner","Manchester England",14999.))

caused by java.net.ConnectException: Connection refused: connect
Cause is java.net.ConnectException: Connection refused: connect
Fail 0 succ1 fail2.0 secs

Warning:Cause is java.net.ConnectException: Connection refused: connect

send(approver.loan.approve,Proposal2("Nancy Turner","Manchester England",14999.))
<failure point (Cannot connect to service)>

Performance Evaluation

Load tests provide another level of evaluation of an actual service deployment. MINT was also developed with the
intent to run many test scenarios on a target service, using the same MUSTARD test specifications to evaluate per-
formance. MINT supports two modes of load or performance testing: sequential and concurrent. Both modes are
defined by a positive number that indicates the number of times for test scenario execution. A test can performed
successively for the specified number of times in sequential mode, or simultaneously in the case of concurrent
mode. Each test run is instantiated as a Java thread. The final outcome of each test run belongs to the same test
specification (fail/inconclusive/pass). These results are aggregated into the performance diagnostics, comprising
average completion time, fastest and slowest completion time, number of different outcomes, and finally a consis-
tency flag indicating identical outcomes throughout. The performance diagnostics provide insight into the service
deployment such as settings for supporting the desired simultaneous requests. The following is an example of a
successful performance evaluation with a concurrent load of 150 runs, of which all runs of the same scenario are
successful (no inconclusives or failures), with an average completion time of 4.5 seconds, the fastest completion
time at 3.6 second, and the slowest at 4.8 seconds.

Test APPROVER Low Rate ... Pass 150 succ 0 fail 4.5 secs
Concurrent 0 inco true cons 3.6 secs .. 4.8 secs

The following diagnostic reports inconsistency in the performance mode in that some runs of the same scenario
passed and some failed. The captured errors are given (ConnectException and SocketTimeoutException) reported
by some of the failures.

Test LENDER Little Low Risk ...
Execution error of
send(lender.loan.quote,Proposal("Nancy Turner","Manchester England",9999.))
caused by java.net.SocketTimeoutException: Read timed out
...ConnectException: Connection refused: connect ...
Inconclusive 129 succ 21 fail 8.1 secs

Concurrent 0 inco false cons 3.5 secs .. 8.9 secs

6.3.3 Examples
Acceptance Test

As a deterministic example, a maths service providing a natural number power operation should always return
the right calculation. The pow operation takes in a complex type PowParam that contains the natural and the
power. The first test description is a MUSTARD test specification that asserts success if the natural number 16807
is received as a response to the pow invocation using a PowParam containing fields 7 and 5 (i.e. 75). This is
followed by the translated MINT description which is executed in sequence.

test(SEVEN_FIVE,
succeed(send(math.calc.pow, PowParam(7,5)),

read(math.calc.pow, 16807)))

translates to

test(MATH_SEVEN_FIVE,
sequence(send(math.calc.pow,PowParam(7,5)),

read(math.calc.pow,16807),OK))

91

As a deterministic example, a weather service provides an operation that returns a simple textual forecast
(sunny, cloudy, showers) for the given hour of the current day at the specific location. The test scenario will be
successful iff the forecast on 20091225 returns either sunny, cloudy, showers or a metFault with “sensor faulty”
message as an offer response. The MUSTARD description is first listed, followed by the MINT description.

test(FORECAST_OUTPUTS,
succeed(send(met.weather.forecast,’20091225),

offer(read(met.weather.forecast,’sunny),
read(met.weather.forecast,’cloudy),
read(met.weather.forecast,’showers),
read(met.weather.forecast,metError,’sensor faulty))))

translates to

test(MET_FORECAST_OUTPUTS,
sequence(send(met.weather.forecast,"20091225"),

offer(read(met.weather.forecast,"sunny"),
read(met.weather.forecast,"cloudy"),
read(met.weather.forecast,"showers"),
read(met.weather.forecast,metError,"sensor faulty")),
OK))

Refusal Test

The example refusal test specifies that a client from Stirling should not get an outright rejection for a loan appli-
cation regardless of the rejection message; rather, the loan application must be successful. Should a response be a
reject fault with arbitrary message (the use of ?String matches any String value), then the test will not pass. The
translation follows the semantics of the MUSTARD refuse construct, where the last action becomes a child of an
offer with OK as an alternative. If the read actualises, it becomes a complete path but is not successful. If it does
not actualise, the only initial that can be offered is OK which then asserts that the read did not actualise.

test(STIRLING_CLIENT_NO_REJECT,
refuse(send(bank.personal.credit, Loan(’John,’Stirling Scotland, 1000.)),

read(bank.personal.credit, reject, ?String)))

translates to

test(BANK_STIRLING_CLIENT_NO_REJECT,
sequence(send(bank.personal.credit,Loan("John","Stirling Scotland",1000.)),

offer(read(bank.personal.credit,reject,?String),
OK)))

6.3.4 Tool Integration
The integration of MINT is similar to MUSTARD and CLOVE, which are according to the CRESS methodology.
The existing CRESS and CHIVE integration of formal validation, that is MUSTARD, can be reused but for imple-
mentation validation instead. Figure 6.5 illustrates the integration as well as the control flow of the four approaches
to execute implementation validation and performance evaluation.

By integrating MINT into MUSTARD, the validation feature was broadened to both formal and implemen-
tation with reduced effort. The interface to MINT through MUSTARD is analogous to Lola’s interface through
MUSTARD. The MUSTARD tool was modified to switch between formal validation and testing with MINT. The
MUSTARD command-line criterion to perform implementation validation is the presence of the diagram file name
with the ‘.bpel’ suffix. MUSTARD will translate the .mstd test specification files into MINT-compatible form prior
to invoking MINT to execute the actual implementation validation. The cress_validate tool was given a minor
extension with the capability to direct MUSTARD to formal or implementation validation based on the respective
specified target languages LOTOS or BPEL. If the target language in CHIVE’s Preference is LOTOS then formal
validation will be carried out, cress_validate will invoke MUSTARD. If BPEL, then MUSTARD will invoke MINT.

92

Figure 6.5: Integration of Implementation Validation Tools and Execution Approaches

No extensions were required in CHIVE to use the implementation validation feature as the existing integration in-
vokes cress_validate with the target language that was set in CHIVE’s Preferences. By setting the target language
in CHIVE to BPEL, the same Validate menu item will invoke cress_validate. This will perform implementation
validation by directing MUSTARD to invoke MINT; the results of validation will be displayed in a dialogue box.

6.4 Evaluation
The thesis developed an approach to meet the objective of automated implementation. The seamless orchestration
of composite web and grid services is possible, including the capability for implementation validation, within an
integrated development methodology. Implementation is fully automated for composed web/grid services, and
now supports the BPEL4WS and WS-BPEL 2.0 standards. The development methodology provides a framework
with a service deployment plan whereby implementation of partner web/grid services is automated as much as
possible.

The grid service domain added to the CRESS framework to support the creation of composed and partner grid
services. The web and grid service domain support automated implementation for composed and partner services,
underpinned by translation strategies and service deployment plans, resulting in readily deployable services for
their respective hosting environments (ActiveBPEL and GT4). The thesis work has developed and implemented
a translation strategy for latest WS-BPEL standard for composed web/grid services whereby code is fully and
automatically generated from CRESS diagrams, supporting also the CRESS notation that was extended by the
thesis for realistic service compositions such as dynamic partners and type ownership.

The compatibility issues between ActiveBPEL and GT4 have been addressed effectively, leading to seamless
service interoperability in their respective hosting environments. The thesis work developed solutions for both
issues which were implemented in GT4. These solutions that do not interfere directly at the implementation code
of the hosting environment but at the configuration level, which is neater than providing an adapted container; and
the solutions give developers configuration control. The solutions are general and simple, involving only two Java
classes with only a few lines of code which are packaged as Java archives (JAR files) for immediate use apart of
the integrated methodology developed by the thesis.

The thesis work has also led to MINT which automates functional and performance evaluation for (composite)
web/grid services, providing support for post-development evaluation. The aspect of automated implementation
testing and performance evaluation has advantages as part of an integrated development methodology for creating
composed web/grid services. Firstly, it shares the definitions for validation with the formalisation aspect, meaning

93

that the same set of analysis performed for the design phase is performed at the post-deployment phase. This
enables developers to ensure the same confidence level in the functionality. Secondly, validation specification is
abstract using MUSTARD and MINT notation. Analysts can focus on specifying scenarios and support choices,
non-determinism, interleaving parallelism, dynamic partners, and variables. these require low-level programming
in testing tools such as JUnit. Diagnostics are automatically generated, narrowing down the potential areas of
errors. Performance evaluation provides insight into better resource configuration when services undergo stress
tests. This can reveal feedback on service functional consistency and response times (fastest, slowest, average).

The integrated methodology, specifically in the implementation aspect, provides an environment where an
implementation is automatically obtained with support for post-deployment analysis. This offers a thorough de-
velopment lifecycle for creating composed web/grid services. Certainly there is room for improvement and several
practical and interrelated suggestions can be made, namely in: security, reset capability, implementation validation
technique, and support for more service orchestration engines.

Security is an important aspect in distributed computing, protecting resource owners and communication by
facilitating access at various levels (such as authentication, authorisation, trust federation, etc.) and encrypting
modes. Security is used in realistic development of (composed) web and grid services. Supporting security
within this integrated methodology extending to automated implementation and testing will support more realistic
applications.

The ‘reset’ feature used for backtracking service states is quite rigid in that the corresponding reset operations
are only bound to names starting with ‘reset’ followed by the name of the operation used in the send, and also
using the same parameters. This aspect can be improved with flexibility by having support to allow analysts to
configure reset operation names and the construction of parameter types and values. This could be totally different
from the operation signature that initially influenced service state.

Automated implementation validation using MINT can be improved in several aspects. Currently evaluations
of tests are provided after the execution. This can be improved with real-time response and detailed feedback, for
example by showing the progress during execution: the part of the behaviour currently being executed; time taken
for each single part of a test; graphical visualisation of test execution. The performance evaluation is currently
carried out from a single point which may not be suitable to carry out stress tests on a large scale, especially with
concurrent testing which incurs more resources with more executions. This can be improved with a distributed
approach where the test executions are remotely coordinated across different machines, and the test statistics are
then consolidated for analysts.

There are many orchestration engines or workflow enactors available, varying in their capabilities and advan-
tages. Automated support for more target implementations enables developers to test and choose the deployment
environments that will suit the service requirements. A constructive support strategy should be considered, favour-
ing implementation environments that use open standards and are widely used by developers, for example OMII-
BPEL and Oracle BPEL Process Manager. These two are potential candidates for the reason that they already
support the widely adopted BPEL standard and are highly used, respectively in research and commercial activi-
ties. OMII-BPEL provides a BPEL workflow enacting environment to support scientific research that may involve
large magnitudes of processes, enabling large scale research collaboration enabled with WS-Security mechanisms.
Oracle BPEL Process Manager provides commercial infrastructure support to users, ensuring stability and perfor-
mance which is one key business-critical requirements highly sought after in the commercial arena. Extending
support for automated implementation to a variety of service orchestration engines in the integrated methodology
will enable developers to readily exploit their respective benefits, and the benefits of the methodology such as
automated implementation validation. Other environments, standards and approaches such REST services will be
considered in future developments.

94

Chapter 7

Case Studies

7.1 Introduction
Web and grid service compositions are used in combination in two case studies to demonstrate each individual
aspect of the integrated methodology from the perspective of the development lifecycle. The case studies here
are a subset of those developed during the thesis work. The case studies have been realised using the Apache
Tomcat servlet container for the deployment of web partners (AXIS) and BPEL services (ActiveBPEL), and using
the GT4 container for grid partner services. A more detailed explanation of these case studies are available in
[88], which includes their automatically generated LOTOS specifications, implementations (BPEL, WSDL, and
deployment descriptors), translated validation scenarios (LOTOS) and verification properties (µ-calculus), and
SVL verification scripts.

7.2 Development Of Composed Web Services
LoanStar is a lender service that is similar to the classic loan approval process used as an example in the BPEL4WS
standard [4]. LoanStar is a business process that combines two individual partner services FirstRate and RiskTaker
as part of its behaviour.

FirstRate is the approver that evaluates loans and returns a loan rate when a loan is approved. FirstRate
operates as follows (purely as a hypothetical example):

• if the applicant’s name starts with Ken, the loan rate is 3.7%

• otherwise, the loan rate of 4.1% is given if the applicant’s address includes Scotland

• otherwise, the loan rate of 4.4% is given if the proposal amount is less than 15000

• otherwise the loan is refused with “loan unacceptable” as the reason.

RiskTaker is an assessor that assesses the risk of a proposal request, and returns the risk as a string. RiskTaker
operates as follows (purely as a hypothetical example):

• if the applicant’s name ends with Turner, the risk is low

• otherwise, if the applicant’s address is a UK address, the risk is medium

• otherwise, the risk is high.

LoanStar combines FirstRate and RiskTaker in the following business logic. Loan approval evaluation is
assumed to be costly, therefore an approval request is only made to FirstRate for proposals having an amount
greater than or equal to 10000. For proposals seeking loans of 10000 or less, a risk assessment is made through
the RiskTaker. If RiskTaker evaluates a low risk, then LoanStar immediately approves the loan proposal with a
rate of 3.5%. All other risk levels will direct the proposal request to FirstRate for approval.

DoubleQuote is a supplier service that involves two car dealer partners: BigDeal (dealer1) and WheelerDealer
(dealer2). All three services are to be developed under the assumption that there is no specific service ownership.

95

Both dealers have a variety of offers for cars, giving the price and the delivery as quotes for car needs. The
DoubleQuote business process starts with a car need request which comprises the customer’s name, address, and
the car model. Upon receiving the need for a car, DoubleQuote will seek quotations from both dealers. A quote
offer contains a reference number, dealer identifier, price and delivery (in days). The returned quotes are compared
by price, favouring the cheaper. If the prices are identical, then the quote offering faster delivery is favoured. The
dealer for the chosen quote is then invoked with an order by DoubleQuote. The offer is returned to DoubleQuote’s
customer as a reference. The DoubleQuote service allows its customers to cancel the car order, which leads to
arranging the car order cancellation with the associated dealer.

BigDeal (dealer1) has the following offers for cars (purely as a hypothetical example):

• Mondeo: price 20000, 15-day delivery

• A5: price 33000, 30-day delivery

• Megane: price 11000, 5-day delivery

• Others: price 1000000, 0 day delivery (indicates no offer)

WheelerDealer (dealer2) operates as follows (purely as a hypothetical example):

• Mondeo: price 20000, 10-day delivery

• A5: price 35000, 20-day delivery

• Astra: price 18000, 30-day delivery

• Others: price 1000000, 0-day delivery (indicates no offer).

CarMen is a broker service that combines DoubleQuote and LoanStar services to offer a car purchase complete
with a financing solution. CarMen organises the car order with DoubleQuote followed by requesting a loan at
LoanStar. A loan request to the nearest rounded figure to LoanStar will only proceed should the desired car be
ordered. If the loan is refused by LoanStar, then the car order made with DoubleQuote is cancelled. A successful
coordinated car-finance purchase then returns schedule information to the customer. The schedule contains the
order reference, car dealer, price of car, delivery period, and the loan rate. These are all obtained from the
information returned by DoubleQuote and LoanStar.

Figure 7.1 shows the process of the service development for the web services case studies. The development
activities are labelled with corresponding section numbers (in round brackets) for the methodology given in section
3.3. The developer first describes the composed behaviour in CRESS, provides the partner specification and
implementation for Approver (FirstRate) and Assessor (RiskTaker), and specifies the MUSTARD scenarios and
CLOVE properties. The specification is then automatically generated for analysis. The developer executes the
automated validation and verification, analyses the results, and addresses any issues identified by the analyses.
Once satisfied with the analyses, the developer starts the automated implementation. The developer provides the
actual implementation for the code skeletons generated for partner services Approver and Assessor. The developer
now performs automated implementation validation and performance evaluation for the deployed services using
the same MUSTARD scenarios as for the specification, addressing implementation and resource configuration
issues that are discovered. This development methodology applies similarly to Supplier (DoubleQuote), where
Dealer1 (BigDeal) and Dealer2 (WheelerDealer) are the partner services. As partner services of Broker (CarMen)
are CRESS-described services, there is no need for their manual specification and implementation.

7.2.1 Service Diagrams
The LoanStar, DoubleQuote and CarMen composed service behaviours use the diagram names lender, supplier,
and broker in their CRESS root service diagrams illustrated in figures 7.2, 7.3 and 7.4 respectively. FirstRate,
RiskTaker, BigDeal and WheelerDealer use the diagram names approver, assessor, dealer1 and dealer2. These
service names are also used in the web service configuration diagram.

96

Figure 7.1: Composite Web Service Development

Lender

The Lender service behaviour (figure 7.2) is described as follows. In its rule box definition, the data type and
variable proposal2 are declared with Approver as owner, implying Approver’s namespace, using the syntax ‘pro-
posal2:approver’. This is the input data structure for the approver.loan.approve operation. Lender also defines its
own Proposal type with identical structure but using the Lender namespace, the syntax omitting ‘:owner’, which
defaults to Lender as the current diagram. By doing so, Lender has ‘re-packaged’ the entire service representation
for its client, hiding away information about partners for the reason of trade secrets. Lender makes the ‘proposal2’
variable assignment from its ‘proposal’ data type in order to invoke the Approver quote operation. The Assessor
service has the same (LoanStar) owner and is developed with the Lender’s namespace. Following these defini-
tions are three variables named risk, rate and error, which are of the CRESS primitive types String and Float. A
constant/macro basicRate is defined with the float value 3.5.

The process behaviour starts from node 1, where Lender receives a loan quote request through the lender.loan.quote
operation with a proposal data value. The value guard from node 1 to node 2 is followed if the proposal amount
is 10000 and above, and an assignment is made to set the value of the ‘proposal’ variable to ‘proposal2’, which is
used in the invocation of ‘approver‘ at node 2. If the invocation at node 2 throws a fault with name ‘refusal’ and a
String type value, the arc labelled with ‘Catch refusal.error’ is followed, leading to node 3. In this arc, the fault
value of the String is set into variable error. The lender.loan.quote Reply returns the fault (node 3) and the process
terminates (node 4). The arc to node 5 is followed if the invocation at node 2 is successful – the lender.loan.quote
Reply returns the loan rate. At node 6, the Assessor is invoked for risk evaluation. A “low” risk satisfies the risk
= “low” guarded arc, with an associated assignment of 3.5 to the rate: node 4 then returns. Otherwise the ‘Else’
is followed, with an assignment made to ‘proposal2’ for the invocation to Approver at node 2.

Supplier

The Supplier service behaviour (figure 7.3) is described as follows. The rule box specifies two user-defined data
types need and offer, which are also named variables used in the service. The need is a complex data structure
comprising name, address, and model, all of String type. The offer is also a complex data structure comprising:
Natural reference as order reference number; String dealer which is the name of the dealer who offers the car
deal; Float price as the cost of the car; and Natural delivery which is the number of days to deliver the car. The
variable offer2 also uses the same data type as offer.

Supplier has a car port with two operations named order and cancel, which are for executing the process
of car ordering and order cancellation respectively. Both dealers have a car port which has three operations
named quote, order, and cancel, respectively for obtaining car quotations, ordering cars, and cancelling car orders.
The Supplier’s order operation and both dealer’s quote operations are synchronous. All other operations are
asynchronous, having only input and no output. The use of the data definitions in these service operations is
described in the nodes of the service behaviour description.

Nodes 1 and 10 are the entry points of the Supplier’s service behaviour, which are for its clients to order
cars and cancel orders respectively. As there is more a one starting point, these nodes are therefore specified as
branches from the Start node. Upon receiving a need for the car at node 1, simultaneous requests are made to both

97

Figure 7.2: Lender CRESS Diagram

dealers for quotes described from nodes 2 to 5. Node 2 explicitly defines a Fork with parallel branches outgoing to
nodes 3 and 4, indicating the simultaneous invocation of dealer1.car.quote and dealer2.car.quote operations. These
return offer-typed data values as variables offer and offer2 respectively. The parallel invocations are synchronised
back to the Supplier’s business process as successful execution at this point, with the Join condition ‘3&&4’ at
node 5 thereby completing join (i.e. nodes 3 and 4 must complete successfully). The guarded arc from node 5
to node 6 compares the two offers from the dealers, stating that offers are selected in the order of lower price
followed by faster delivery. If the prices and delivery are the same then an order is placed with dealer2. This
expression is specified from the perspective of the offer by dealer1. If satisfied, the Supplier process will place an
order with dealer1 using the offer information (node 6), followed by replying to its customer at node 7. Otherwise
the offer of dealer2 is chosen (Else branch), with Supplier placing an order at node 8, and replying to the customer
at node 9.

The cancel operation receives cancel requests at node 10, where the guarded expression is satisfied if the
dealer of the offer parameter is dealer1 (an implicit macro which refers to String value BigDeal) therefore leading
to invoking its ‘cancel’ operation at node 11 using the same offer parameter. Otherwise the ‘cancel’ operation of
dealer2 is invoked at node 12.

Broker

The Broker service behaviour (figure 7.4) is described as follows. The rule box contains one data structure and
variable definition, partner use declaration, and a definition of a constant. The complex data structure schedule is

98

Figure 7.3: Supplier CRESS Diagram

made up of: Natural reference which is the car order number; String dealer which identifies the dealer who
organises the car; Float price that is the cost of the car; Natural delivery as the number of days to deliver
the car; and Float rate as the loan rate of the car finance. The Broker diagram uses the syntax ‘/ LENDER
SUPPLIER’ which means it uses the Lender and Supplier CRESS diagram descriptions, implying the definitions
in their rule boxes. Therefore the Broker diagram will have access to data types such as proposal and need. The
macro/constant unpriced is defined with the value 1000000 to represent no offer of a car. The Broker service has
only one operation broker.car.arrange which is synchronous, having need as the input and schedule as the output.

Broker receives the car need through broker.car.arrange in node 1. The car order is made with Supplier at
node 2 invocation with the need, which returns the car offer as variable offer. A successful car order will have a
price that is not of value unpriced (node 2 to 3) and the value for proposal variable is constructed. The fields in
proposal are assigned the corresponding fields from need, with amount being the rounded value of price. Lender
is invoked at node 3 with the proposal variable. If the invocation is successful, the schedule fields are set with
the corresponding values from offer and rate, and broker.car.arrange replies with schedule at node 4. If the car
order is unsuccessful (meaning offer.price is unpriced), error is assigned ‘car unavailable’ (Else branch). Broker
then returns from broker.car.arrange operation with a fault named refusal and the value of error. Node 2 also
specifies a Compensation handler (Compensation arc to node 6) which invokes supplier.car.cancel with the
offer. The compensation behaviour at node 6 is enabled only if the Invoke at node 2 is successful. Only enabled
compensation handlers can be invoked, via the Compensate activity (e.g. node 7).

The entire process has a global fault handler for fault name refusal of String type, specified by the Catch
refusal.error from the Start node, which sets the String value of the fault to the variable error (which is defined
in Lender). This fault handler is specified for any potential fault that could be thrown by the Lender process in the
case of rejected loans. If the fault arises, the global fault handler is enabled and the Broker process will be directed

99

Figure 7.4: Broker CRESS Diagram

to node 7. This explicitly calls the Compensate action which means all Compensation handlers that are enabled
are executed in reverse order of completion. In this case, the only compensation handler (at node 2) will be called
as it is already enabled after successful invocation at node 2. After compensation completes, Broker returns the
fault for its operation and the process terminates (nodes 8 and 9).

Web Service Configuration

The developer configures the composite web services and partners services for formal specification and analysis.
This is illustrated in the configuration diagram of figure 7.5. One instance of the services is sufficient for formal
validation analysis, specified with ‘-n 1’ (number of instances: 1). As web services, these services should be
always ongoing; the -r repeated option specifies that behaviour will repeat after the leaf node actions in the CRESS
diagram. Comments will be generated in the specification, indicated by the ‘-c’ comment option. The services to
‘deploy’ are the Lender, Supplier and Broker, which implies their partner services (Approver, Assessor, Dealer1,
Dealer2). Following the Deploys clause are each service’s parameters comprising the service name, namespace
prefix, namespace, and deployment location.

7.2.2 Partner Specification
The specifications of Approver, Assessor, Dealer1 and Dealer2 are provided by the developer. Their specifications
can be extended from interface behaviour in the automated specification of Lender and Supplier. For illustrative
purposes, the Approver interface behaviour and complete LOTOS specification are presented here.

100

Figure 7.5: Web Service Configuration Diagram

The following will be the generated interface behaviour for Approver if there is no existing behaviour manually
specified.

Process APPROVER [approver] : Exit(States) : (* APPROVER partner *) 1
approver !loan !approve ?proposal2:Proposal; (* ‘approve’ input *) 2
(3

approver !loan !approve !AnyNumber; (* ‘approve’ output *) 4
APPROVER [approver] (* repeat behaviour *) 5

(* or *) 6
approver !loan !approve !Refusal !AnyText; (* ‘Refusal’ fault *) 7
APPROVER [approver] (* repeat behaviour *) 8

) 9
EndProc (* end APPROVER *) 10

The following is the complete LOTOS specification for Approver. The specification uses CRESS-defined LO-
TOS abstract data types and operations which are defined in the ‘stir’ (Stirling) library, and also the Proposal type
which was automatically generated. These library and user-defined types are automatically declared and defined
in the overall specification, i.e. Lender. The FirstRate service approves loans based on specified conditions de-
scribed in the requirements. For example, lines 4-5 specifies that a client whose name starts with “Ken” will be
offered a rate of 3.7%.

Process APPROVER [approver] : Exit(States) : (* start APPROVER *) 1
approver !loan !approve ?proposal:Proposal; (* proposal request *) 2
(3

[starts(getName(proposal),t(K)∼e∼n)] > (* Ken? *) 4
approver !loan !approve !number(+,t(3),t(7)); (* rate 3.7% *) 5
APPROVER [approver] (* repeat *) 6

7
[not(starts(getName(proposal),t(K)∼e∼n))] > (* else *) 8

(9
[contains(getAddress(proposal),t(S)∼c∼o∼t∼l∼a∼n∼d)] > (* Scotland? *) 10

approver !loan !approve !number(+,t(4),t(1));(* rate 4.1% *) 11
APPROVER [approver] (* repeat *) 12

13
[not(contains(getAddress(proposal),t(S)∼c∼o∼t∼l∼a∼n∼d))] > (* else *) 14

(15
[getAmount(proposal) lt number(+,t(1)∼5∼0∼0∼0,<>)] > (* < 15000? *) 16

approver !loan !approve !number(+,t(4),t(4)); (* rate 4.4% *) 17
APPROVER [approver] (* repeat *) 18

19
[getAmount(proposal) ge number(+,t(1)∼5∼0∼0∼0,<>)] > (* else *) 20

approver !loan !approve !refusal (* refuse *) 21
!t(L)∼o∼a∼n∼ ˆ ∼u∼n∼a∼c∼c∼e∼p∼t∼a∼b∼l∼e; 22

APPROVER [approver] (* repeat *) 23
) 24
) 25

) 26
EndProc (* end APPROVER *) 27

101

7.2.3 Partner Implementation
The implementation of Approver, Assessor, Dealer1 and Dealer2 are provided by the developer. These implemen-
tation can be extended from the code skeletons generated in the implementation of the services. For illustration
the Approver partner skeleton and implementation code are provided here. The following is the code skeleton
generated for Approver, which can be extended to complete the implementation described above.

package FirstRate;
...
public class LoanBindingImpl implements LoanPort{

public float approve(Proposal2 proposal2)
throws RemoteException, StringMessage {
return -3;

}
}

The following is the Approver completed Java code extended from the above code skeleton.

package FirstRate; 1
... 2
class LoanBindingImpl implements LoanPort { // loan port binding 3

... 4
5

public float approve(Proposal2 proposal) throws RemoteException { 6
String name = proposal.getName(); // get proposal name 7
String address = proposal.getAddress(); // get proposal address 8
int amount = proposal.getAmount().intValue(); // get proposal amount 9

10
float rate = 0.0f; // declare loan rate 11
if (name.startsWith("Ken")) // name starts "Ken"? 12

rate = 3.7f; 13
else if (address.indexOf("Scotland") != −1) // address has "Scotland"? 14

rate = 4.1f; 15
else if (amount <= 15000) // amount less than 15000? 16

rate = 4.4f; 17
else { // otherwise 18

... throw fault loan unacceptable 19
return (rate); // return loan rate 20

} 21
} 22

7.2.4 MUSTARD Scenarios
Approver Scenarios

• A client named ‘Ken Smith’ from ‘Liverpool UK’ seeking a loan amount of 6000 should receive a rate 3.7%

• A client named ‘Angus Og’ from ‘Airth Scotland’ seeking a loan amount of 20000 should receive a rate
4.1%

• A client named ‘Nancy Turner’ from ‘Manchester England’ seeking a loan amount of 14999 should receive
a rate 4.4%

• A client named ‘Ian Carey’ from ‘Croydon England’ seeking a loan amount of 15000 should be rejected
with a refusal fault containing a string message ‘loan acceptable’.

The following are its MUSTARD scenarios.

test(Low_ Rate,
succeed(

send(approver.loan.approve,Proposal2/Proposal(’Ken Smith,’Liverpool UK,6000.)),
read(approver.loan.approve,3.7)))

test(Medium_ Rate,

102

succeed(
send(approver.loan.approve,Proposal2/Proposal(’Angus Og,’Airth Scotland,20000.)),
read(approver.loan.approve,4.1)))

test(High_ Rate,
succeed(

send(approver.loan.approve,
Proposal2/Proposal(’Nancy Turner,’Manchester England,14999.)),

read(approver.loan.approve,4.4)))

test(Loan_ Unacceptable,
succeed(

send(approver.loan.approve,
Proposal2/Proposal(’Ian Carey,’Croydon England,15000.)),

read(approver.loan.approve,refusal,’loan unacceptable)))

The above MUSTARD scenarios each comprise a send and read primitive. The service name (approver),
port (loan), operation (approve), data types (proposal, string, float), and fault name (refusal) correspond to those
defined in the Lender CRESS diagram. The Proposal2/Proposal syntax was specified as the data type definition
for Proposal (i.e. type ‘Proposal2’ constructs ‘Proposal’). As Proposal and Proposal2 have the same structure,
the abstract data type was collapsed during translation to one data type using Proposal, even for the Approver
service, which simplifies the specification (e.g. assignment) but does not affect the behaviour from the perspective
of validation. ‘Proposal2/’ is still specified as the MUSTARD scenarios are reused in the validation of Approver’s
implementation, where the actual data type has to be used in the web service interaction.

Assessor Scenarios

The following are the MUSTARD scenarios specified for Assessor. They are similar apart from values which
validate the three possible responses of Assessor.

test(Low_ Risk,
succeed(

send(assessor.loan.assess,Proposal(’Mike Turner,’Carlisle UK,20000.)),
read(assessor.loan.assess,’low)))

test(Medium_ Risk,
succeed(

send(assessor.loan.assess,Proposal(’Fred Hoyle,’UK,5000.)),
read(assessor.loan.assess,’medium)))

test(High_ Risk,
succeed(

send(assessor.loan.assess,Proposal(’Patrice Touvet,’Paris France,1000.)),
read(assessor.loan.assess,’high)))

Lender Scenarios

The following MUSTARD scenarios are defined for Lender.

test(Little_ Low_ Risk,
succeed(

send(lender.loan.quote,Proposal(’Nancy Turner,’Manchester England,9999.)),
read(lender.loan.quote,3.5)))

test(No_ Risk_ Assess_ Low,
refuse(

send(lender.loan.quote,Proposal(’Nancy Turner,’Manchester England,10000.)),
read(lender.loan.quote,3.5)))

test(Lots_ Ken,
succeed(

103

send(lender.loan.quote,Proposal(’Ken Boyle,’Dublin Ireland,10000.)),
read(lender.loan.quote,3.7)))

test(Lots_ Scotland,
succeed(

send(lender.loan.quote,Proposal(’Mary Duncan,’Wick Scotland,20000.)),
read(lender.loan.quote,4.1)))

test(Lots_ Under_ 15000,
succeed(

send(lender.loan.quote,Proposal(’Sally Dean,’Cardiff Wales,14999.)),
read(lender.loan.quote,4.4)))

test(Lots_ Exceeds_ 15000,
succeed(

send(lender.loan.quote,Proposal(’Ian Carey,’Croydon England,15000.)),
read(lender.loan.quote,refusal,’loan unacceptable)))

The definition of the No_Risk_Assess_Low scenario is particularly different, and therefore is discussed in
detail using the LOTOS specification automatically translated from the MUSTARD scenario. The scenario uses the
refuse construct. This indicates that the last event, which is read(lender.loan.quote,3.5), should not happen as the
Lender behaviour logic should not lead to any risk assessment for amounts greater or equal to 10000. The refuse
is translated in the Lola test process as a choice behaviour. If the event ‘lender !loan !quote !Number(+,t(3),t(5))’
should synchronise, then the behaviour will stop without an OK event, implying the validation did not pass.
Otherwise the alternative behaviour path is followed which asserts the OK event, indicating the scenario passes.

Process LENDER_ No_ Risk_ Assess_ Low [lender,OK] : NoExit : 1
lender !loan !quote !proposal(t(N)∼a∼n∼c∼y∼ ˆ ∼T∼u∼r∼n∼e∼r, 2
t(M)∼a∼n∼c∼h∼e∼s∼t∼e∼r∼ ˆ ∼E∼n∼g∼l∼a∼n∼d, 3
Number(+,t(1)∼0∼0∼0∼0,<>)); 4
(5

lender !loan !quote !Number(+,t(3),t(5)); 6
Stop 7

8
I; 9
OK; 10
Stop 11

) 12
EndProc (* LENDER_ No_ Risk_ Assess_ Low *) 13

Dealer1 Scenarios

Dealer1’s MUSTARD scenarios are defined below and are straightforward. Scenarios for Dealer2 are similar and
hence not shown. The use of ?Natural in the read indicates that it accepts any value of Natural as the reference
number in the Offer data type. In this situation, the reference number of the Offer returned by Dealer1 is dynamic,
which is reasonable in a business quotation. Therefore the use of the variable notation is convenient to describe
such scenarios in a compact way. It also supports a general form of validation in addition to specific scenarios.
For example, the Mondeo test specifies: an invocation of the Need should receive an Offer of 20000 in value and
15 days from BigDeal, regardless of the reference number as long as it is a Natural.

test(Mondeo,
succeed(

send(dealer1.car.quote,Need(’Mark Flowers,’Uist Scotland,’Mondeo)),
read(dealer1.car.quote,Offer(?Natural,’BigDeal,20000.,15))))

test(A5,
succeed(

send(dealer1.car.quote,Need(’Peter Gough,’Congleton UK,’A5)),
read(dealer1.car.quote,Offer(?Natural,’BigDeal,33000.,30))))

test(Megane,

104

succeed(
send(dealer1.car.quote,Need(’Jan Hiddink,’Hengelo Netherlands,’Megane)),
read(dealer1.car.quote,Offer(?Natural,’BigDeal,11000.,5))))

test(XJ6,
succeed(

send(dealer1.car.quote,Need(’Iain MacKay,’Throsk Scotland,’XJ6)),
read(dealer1.car.quote,Offer(?Natural,’BigDeal,1000000.,0))))

Supplier Scenarios
test(Mondeo,

succeed(
send(supplier.car.order,Need(’Mark Flowers,’Uist Scotland,’Mondeo)),
read(supplier.car.order,Offer(?Natural,’WheelerDealer,20000.,10))))

test(A5,
succeed(

send(supplier.car.order,Need(’Peter Gough,’Congleton UK,’A5)),
read(supplier.car.order,Offer(?Natural,’BigDeal,33000.,30))))

test(Megane,
succeed(

send(supplier.car.order,Need(’Jan Hiddink,’Hengelo Netherlands,’Megane)),
read(supplier.car.order,Offer(?Natural,’BigDeal,11000.,5))))

test(Astra,
succeed(

send(supplier.car.order,Need(’Hywel Thomas,’Swansea Wales,’Astra)),
read(supplier.car.order,Offer(?Natural,’WheelerDealer,18000.,30))))

test(XJ6,
succeed(

send(supplier.car.order,Need(’Iain MacKay,’Throsk Scotland,’XJ6)),
read(supplier.car.order,Offer(?Natural,’WheelerDealer,1000000.,0))))

Broker Scenarios
test(Mondeo_ Ken,

succeed(
send(broker.car.arrange,Need(’Ken Boyle,’Dublin Ireland,’Mondeo)),
read(broker.car.arrange,Schedule(?Natural,’WheelerDealer,20000.,10,3.7))))

test(A5_ Scotland,
succeed(

send(broker.car.arrange,Need(’Mary Duncan,’Wick Scotland,’A5)),
read(broker.car.arrange,Schedule(?Natural,’BigDeal,33000.,30,4.1))))

test(Megane,
succeed(

send(broker.car.arrange,Need(’Sally Dean,’Cardiff Wales,’Megane)),
read(broker.car.arrange,Schedule(?Natural,’BigDeal,11000.,5,4.4))))

test(Astra,
succeed(

send(broker.car.arrange,Need(’Ian Carey,’Croydon England,’Astra)),
read(broker.car.arrange,refusal,’loan unacceptable)))

test(XJ6,
succeed(

send(broker.car.arrange,Need(’Iain MacKay,’Throsk Scotland,’XJ6)),

105

read(broker.car.arrange,refusal,’car unavailable)))

7.2.5 CLOVE Properties
Lender Properties

• The service should be free from deadlock.

• The service should be free from livelock.

• The service should start only with the signal lender.loan.quote accepting only Proposal values.

• All Proposal requests should receive either a reply of a rate (any number) or a refusal fault with message
“loan unacceptable”.

• A more specific response property is that valid responses for any Proposal values are either the rates 3.5,
3.7, 4.1, 4.4, or the refusal fault of message “loan unacceptable”.

The following are the CLOVE value enumerations and properties defined by the developer. The initials define
the permitted signals during the start of the service, which will be used by the initial safety property that is built
into CLOVE. The other explicitly specified properties were constructed using the global response verification
template. Deadlock and livelock freedom are checked by default in CLOVE.

initials(signal(lender.loan.quote,?proposal))

enum_complex(
proposal("(KEN TURNER|LARRY TAN)","UK",[5|7]0000.0),
proposal("(KEN TURNER|LARRY TAN)","UK",[5|7]000.0)

...
)

property(General_ Response,
response(global,

signal(lender.loan.quote,?proposal),
choice_ any(signal(lender.loan.quote,?number),

signal(lender.loan.quote,refusal,’loan unacceptable))))

property(Specific_ Response,
response(global,

signal(lender.loan.quote,?proposal),
choice_ any(signal(lender.loan.quote,3.5),

signal(lender.loan.quote,3.7),
signal(lender.loan.quote,4.1),
signal(lender.loan.quote,4.4),
signal(lender.loan.quote,refusal,’loan unacceptable))))

Supplier Properties

The following is the informal description of properties specified for Supplier.

• Freedom from deadlock.

• Freedom from livelock.

• All car orders must be responded to with offers.

The CLOVE file is specified with the data enumeration, and properties which explicitly specify the latter two
properties described above.

106

enum_complex(
need("KEN TURNER","SCOTLAND","MONDEO"),
need("LARRY TAN","UK","MONDEO"),
offer([0−9], "BIGDEAL", 20000.0, 15),
offer([0−9], "WHEELERDEALER", 20000.0, 10),

...
)

property(General_ Response,
response(global,

signal(supplier.car.order,?need),
signal(supplier.car.order,?offer)))

Broker Properties

The following is the informal description of properties specified for Broker.

• Freedom from deadlock

• Freedom from livelock

• The Broker service should only have the ‘arrange’ operation.

• All ‘need’ requests should be responded to with, either success schedules or faults (loan unacceptable or car
unavailable)

Broker is a composite service comprising composed services, i.e. Lender and Supplier, that are all specified
in CRESS. Compositional verification should therefore be used to achieve effective analysis. Below is the CLOVE
file specified by the developer, comprising the enumerations and properties only for the last two properties, as
deadlock and livelock freedom will be checked by default. These properties are general and difficult to check with
validation, but verification is well-suited for this purpose.

initials(signal(broker.car.arrange,?need))

enum_ numbers(3.7,3.7,4.1,4.4)
enum_ strings(’loan unacceptable,’car unavailable,’low,’medium,’high)

enum_complex(
need("KEN TURNER","SCOTLAND","MONDEO"),

...
proposal("LARRY TAN", "UK", 20000.0), ...
offer([0−9], "BIGDEAL", 20000.0, 15),

...
schedule([0−9], "BIGDEAL", 20000.0, 15),

...
)

property(General_ Response,
response(global,

signal(broker.car.arrange,?need),
choice_ any(signal(broker.car.arrange,?schedule),

signal(broker.car.arrange,refusal,’loan unacceptable),
signal(broker.car.arrange,refusal,’car unavailable))))

7.2.6 Formal Specification
The following show the high-level LOTOS behaviour specification generated for the Lender composite service.
The specification of the behaviour is centred on the Lender’s composed behaviour as described in its CRESS
diagram and service configuration that Deploys the Lender service. Therefore the specification has one gate (end-
point) which is ‘lender’ that is externally visible, with Approver and Assessor hidden from the view of Lender’s
clients. The specification includes CRESS-defined LOTOS library data types (e.g. String), ports (e.g. loan), opera-
tions (e.g. assess), fault events (e.g. refusal), and user-defined complex data types (e.g. proposal).

107

Behaviour
LENDER [lender] (* call LENDER process *)

...

Type Proposal Is BaseTypes (* proposal record *)
...

Process APPROVER [approver] : Exit(States) : (* APPROVER partner *)
...

Process ASSESSOR [assessor] : Exit(States) : (* ASSESSOR partner *)
...

Process LENDER [lender] : Exit(States) : (* LENDER service *)
Hide approver,assessor In (* hide internal gates *)

(
APPROVER [approver] (* call APPROVER partner *)
||| (* interleaved with *)

ASSESSOR [assessor] (* call ASSESSOR partner *)
)
|[approver,assessor]| (* synchronised with partners *)

LENDER_ 1 [approver,assessor,lender] (* call main process *)
...

Where (* local definitions *)
...

Process LENDER_ 1 [approver,assessor,lender] ...
lender !loan !quote ?proposal:Proposal; (* LENDER receive 1 *)

...

For the overall behaviour expression, the ‘LENDER [lender]’ process defines the behaviour of Approver and
Assessor synchronised with the behaviour of Lender. These are respectively specified as APPROVER, ASSES-
SOR and LENDER_1 (i.e. Lender from node 1) processes. The services and their behaviour are autonomous and
therefore independent from one another. Through the behaviour synchronisation via gates ‘|[approver, assessor]|’,
service communication is established whereby LENDER_1 (the main entry to Lender behaviour) can communi-
cate with APPROVER and ASSESSOR. The partners Approver and Assessor do not communicate with each other
and therefore they are interleaved using the ‘|||’ operator.

Apart from manual specification of partner services, the formal specification is fully automated such that all
data types and behaviour are specified. Even the partner specification itself can be extended from the interface
behaviour that is automatically generated. Using this specification, formal validation and verification can be
performed. Table 7.1 lists the code summary in terms of lines of code generated and manually provided.

Automated Manual Automated Manual Automated
(Lender) (Approver & Assessor) (Supplier) (Dealer1 & Dealer2) Broker
412 47 775 366 1349

Table 7.1: Specification of Web Services (no. of lines)

7.2.7 Formal Analysis
Formal Validation

Validation is performed on the composed and partner services, which corresponds to the methodology described
in section 3.3.3. There is no strict order of validation; however, given the relationship of the services, it is logical
to validate the partner services first before the composed service. For the Lender composed service, the order of
validation was Approver, Assessor and then Lender. The order is similar for Supplier – validate Dealer1, Dealer2,

108

then Supplier. Broker us the last to be validated, its partners Lender and Supplier having been validated. The
following are the validation results, which may differ in terms of time completion.

Test APPROVER Low Rate ... Pass 1 succ 0 fail 1.7 secs
...
Test ASSESSOR Low Risk ... Pass 1 succ 0 fail 0.6 secs
...
Test LENDER Little Low Risk ... Pass 1 succ 0 fail 0.5 secs
...
Test DEALER1 Mondeo ... Pass 1 succ 0 fail 0.6 secs
...
Test DEALER2 Mondeo ... Pass 1 succ 0 fail 0.5 secs
...
Test SUPPLIER Mondeo ... Pass 1 succ 0 fail 0.7 secs
...
Test BROKER Mondeo Ken ... Pass 1 succ 0 fail 0.6 secs
...

The automated formal validation translates the MUSTARD scenarios into 220 lines of LOTOS tests (distribution
listed in table 7.2), and executes with results in a few seconds, which is very effective for analysing the specifica-
tion and detecting errors contradicting the scenarios specified. Achieving passes in the validation means that the
service behaviours have demonstrated that they are doing the right thing with regard to these specified scenarios.
If there are any failures or inconclusive outcomes in the validation, then the diagnostic traces are used to trace and
address the problem, i.e. partner specification or CRESS diagram.

Lender Approver Assessor Supplier Dealer1 Dealer2 Broker
47 28 20 35 28 28 35

Table 7.2: Generated LOTOS Tests (no. of lines)

Suppose that the the Low_Rate scenario did not pass the validation, and there is a diagnostic trace of the
following:

Test APPROVER Low Rate ... Fail 0 succ 1 fail 1.3 secs

send(approver.loan.approve,Proposal2/Proposal(’Ken Smith, ’Liverpool UK, 6000.))
<failure point>This demonstrates that the scenario is unable proceed after the first action that is send (approver.loan.approve,

Proposal2/Proposal(’Ken Smith, ’Liverpool UK, 6000.)). The next action is read(approver.loan.approve, 3.7).
This is unsuccessful, indicating that the value returned is not 3.7. As the validation is targeted at Approver, its
specification is to be inspected and corrected (or perhaps the test is wrong). The validation should be executed
again and all the Approver MUSTARD scenarios passed.

Although the validation of a composite service may imply validation of its partner services, it may not directly
validate their behaviour, which is why they should have their own validation scenarios. The following is an exam-
ple to emphasis the need for partner service validation. Suppose Assessor returns another risk assessment outcome
instead of “medium” (e.g. mid), the behaviour of Lender is not affected and passes its validation scenarios. This
is because the Lender’s behaviour does not deal directly with any other risk assessments apart from “low”. If
Assessor does not have its own validation scenarios (e.g. Medium_Rate), then this error may not detected in its
specification. Suppose that the condition arc from node 1 to node 2 is specified incorrectly (e.g. ‘proposal.amount
> 10000’), the validation of No_Risk_Assess_Low scenario does not pass, and the diagnostic trace is as follows:

Test LENDER No Risk Assess Low ... Inconclusive 1 succ 1 fail 0.4 secs

send(lender.loan.quote,Proposal(Nancy Turner,Manchester England,10000.))
read(lender.loan.quote,3.5)
<failure point>The validation outcome for No_Risk_Assess_Low is Inconclusive, with one success path and one failure path.

The diagnostic trace shows the failure path which indicated that the rate 3.5% returned by the Lender behaviour
was unexpected. As a result the path behaves as ‘stop’ (line 7 of its translated LOTOS scenario described in section
7.2.4). The reason for the one success path is due to the non-determinism specified in the internal event ‘i’ as one
of the first events in the choice operator. This event will be tried since all possible paths in the validation behaviour

109

are tried. As ‘i’ events are always successful, this path leads to OK indicating a success. Should the read for rate
3.5% fail to synchronise, then this is the only path that is successful, therefore the validation scenario will pass.

The failure of No_Risk_Assess_Low indicates that the behaviour of Lender is not doing the right thing. Given
the context of the problem, rate 3.5% is returned by Lender only if a “low” risk assessment is made by Assessor, as
there is no such rate returned by the Approver specification. The Lender CRESS diagram is inspected as Assessor
was invoked as part of its logical behaviour. There are only two guards from node 1 in the Lender diagram where
there is a condition leading to node 2; otherwise it follows the Else guard leading to node 6 that invokes Assessor.
Therefore the condition arc from node 1 to node 2 is specified incorrectly (e.g. ‘proposal.amount > 10000’) and
therefore fails this specified validation, and should corrected.

Formal Verification

The same LOTOS specifications are used for formal verification of the composed services in the methodology,
as described in section 3.3.3; however, the specifications has to be automatically annotated for CADP. This is
achieved in the web service configuration with the ‘-a’ annotation option for specifications to be generated with
annotations.

The composed services are verified separately for the following reason. Lender has the simplest behaviour and
does not require the compositional mode of verification. Supplier uses array data types to maintain the list of cars,
quotations and orders, therefore these data types require constraints on their sizes (e.g. specifying bounded size
of 3 for arrays), with data operations adapted to these constraints. Compositional mode is used in the verification
of Supplier and Broker. The web service configuration for Lender is configured as:

Deploys -a -c -n 1 -r / LENDER
The above configuration is similar for Supplier and Broker, only changing to the deployed service (e.g. SUP-

PLIER).
The following shows the results of verifying the Lender properties.

Verifying LENDER GENERAL RESPONSE ... TRUE
Verifying LENDER SPECIFIC RESPONSE ... TRUE
Verifying LENDER ALL KEN NO RISK APPROVE ... TRUE
Verifying DEADLOCK FREEDOM ... TRUE
Verifying LIVELOCK FREEDOM ... TRUE
Verifying INITIALS SAFETY ... TRUE

The following shows the results of verifying the Supplier properties.

Verifying SUPPLIER GENERAL RESPONSE ... TRUE
Verifying SUPPLIER REQUEST LIVENESS ... TRUE
Verifying DEADLOCK FREEDOM ... TRUE
Verifying LIVELOCK FREEDOM ... TRUE

Prior to verifying Broker, its behavioural specification has to be adapted to be free from the semantics of
recursive process instantiation, which is not compatible with CADP requirements – this is not a limitation of
the LOTOS language but the CADP tool. The manual mode in cress_verify is first used, where there is a high
degree of automated support in the LOTOS specification annotation, and CLOVE is invoked for: generation of the
C implementation of data enumeration; translation of properties into µ-calculus; and generation of the SVL script
which describes all the tasks in the compositional verification.

In the Broker LOTOS behaviour specification, there are uses of the enabling operator ‘>>’ which specify
compensation behaviour in a way that the processes are being called but through recursive process instantiation
that CADP does not allow. The specification was manually adapted to be compatible with CADP, as given in [88].
An automated solution has been implemented in later work. The analyst executes the generated SVL script. The
summary of the verification outcome is:

... compositional generation of state space ...

"broker_ general_ response.bcg" = verify "broker_ general_ response.mcl" in "ws.bcg"
TRUE
"_ deadlock_ freedom.bcg" = verify "_ deadlock_ freedom.mcl" in "ws.bcg"
TRUE
"_ livelock_ freedom.bcg" = verify "_ livelock_ freedom.mcl" in "ws.bcg"
TRUE
"_ initials_ safety.bcg" = verify "_ initials_ safety.mcl" in "ws.bcg"
TRUE

110

where verification outcomes assert that the four specified properties are exhibited by the service behaviour. These
are the CLOVE properties individually translated into .mcl (µ-calculus) files. In particular the ‘general response’
property demonstrates that the service will always reply with only the specified responses.

Table 7.3 describes the effect of automated verification in the methodology with regards to the lines of code
that are automatically generated.

Service Annotated LOTOS µ-calculus C Implementation SVL
Lender 1721 5 files (15 lines) 64 –
Supplier 2055 4 files (9 lines) 98 32
Broker 2514 4 files (12 lines) 184 48

Table 7.3: Generated Verification Code (no. of lines) for Lender, Supplier and Broker

The following is an illustration of verification complementing validation. Suppose the behaviour of Approver
stops after returning the first refusal (“loan unacceptable”) fault. The model checking of the Lender behaviour
will produce a counter-example for freedom from deadlock:

Verifying DEADLOCK FREEDOM ... FALSE
"LENDER !LOAN !QUOTE !PROPOSAL ("LARRY TAN", "UK", 50000.0)"
internal event
internal event
"LENDER !LOAN !QUOTE !REFUSAL !"LOAN UNACCEPTABLE""
"LENDER !LOAN !QUOTE !PROPOSAL ("LARRY TAN", "UK", 70000.0)"
DEADLOCK

The path trace above shows that the first loan request results in a response, but a subsequent request which is
denoted by ‘LENDER !LOAN !QUOTE !PROPOSAL ("LARRY TAN", "UK", 70000.0)’ can proceed no further,
nor even any internal events. From the CRESS diagram, all loan requests value greater than or equals to 10000
will not be directed to the Assessor at all, which narrows down the behaviour to check. A MUSTARD scenario can
be quickly defined to represent the same value as the subsequent request. The following scenario is expected to
pass the validation.

test(Lots_ Larry,
succeed(

send(lender.loan.quote,Proposal(’Larry Tan,’UK,70000.)),
read(lender.loan.quote,refusal,’loan unacceptable)))

Test LENDER Lots Larry ... Pass 1 succ 0 fail 0.5 secs

This result narrows down to the behaviour handling of a second request, where there is no way to proceed
further, in this case with Approver. The scenario above could have appended a second pair of send and read
with the same values, which will detect the same deadlock path found through verification, confirming the same
problem. The Approver specification will have to be inspected and corrected, in this case by repeating its behaviour
instead of stop. It may be argued that validation sufficed for this deadlock example; however, such problems
are usually generalised. For example in this case deadlock does not happen at the second request onwards but
hypothetically after any arbitrary number, therefore it is impractical to use validation. Validation may be used as in
this example to quickly confirm a counter-example if required, although the verification results are adequate. The
generalised properties such as General_ Response(s) and livelock freedom are practical and concise in verification,
where they would be impossible using validation.

7.2.8 Implementation
This step corresponds to the implementation aspect of the methodology in section 3.3.4 where there is automated
generation of code and deployment. As the implementation for the partner services has been provided, they can
be immediately compiled for deployment. The implementation of the composed services is fully automated.

To engage the implementation phase, the developer configures the service configuration diagram with the
following parameters:

Deploys -c -b 2 -o 5 / LENDER SUPPLIER BROKER

111

This configuration Deploys the three CRESS composed services which implies their partner services as they
are used in the composed behaviour. The BPEL implementations of all composed services are in the WS-BPEL
2.0 standard (-b 2). As there is intent to perform implementation validation, the timeout threshold is set to five
seconds (-o 5), which generates the appropriate MINT validation configuration with service timeout of 5 seconds
for all the services to be deployed. The code will be generated with comments (-c). Partner services (e.g. approver,
dealer1, etc.) and composed services (e.g. lender, supplier and broker) are compiled for AXIS and ActiveBPEL
deployment respectively.

Figure 7.6: Automated Implementation Process for Lender, Approver and Assessor
Table 7.4 shows the number of lines of code and files that are automatically produced in the implementation

phase. The implementation for the services is highly automated apart from the manual implementations of part-
ners, which are added into the generated code skeletons. The automation of the implementation took less than a
minute to produce the deployable service archives.

Service WSDL Java Deployment BPEL
(incl. partners)

Approver 2 files (136 lines) 8 files (738 lines) 34 lines –
Assessor 2 files (129 lines) 8 files (657 lines) 34 lines –
Lender 4 files (284 lines) – 2 files (66 lines) 192 lines
Dealer1 2 files (140 lines) 8 files (997 lines) 42 lines –
Dealer2 2 files (140 lines) 8 files (997 lines) 42 lines –
Supplier 4 files (314 lines) – 2 files (67 lines) 222 lines
Broker 6 files (420 lines) – 2 files (73 lines) 292 lines

Table 7.4: Code Generation Summary of Implemented Web Services

7.2.9 Implementation Validation
Functionality Validation

The implementation of the web services can be validated/tested after deployment in the AXIS and ActiveBPEL
container; this activity corresponds to the description discussed section 3.3.5. Implementation validation requires
the MINT configuration properties and scenarios. The MINT validation configuration properties were generated
as part of the implementation process (-o option in the configuration diagram). The MUSTARD scenarios for these
web services were already defined in the formal validation; these are automatically translated into MINT scenarios
for implementation.

The following is an example of what the validation outcomes may be:

112

Test APPROVER Low Rate ... Pass 1 succ 0 fail 1.1 secs
Test APPROVER Medium Rate ... Pass 1 succ 0 fail 1.1 secs
Test APPROVER High Rate ... Pass 1 succ 0 fail 1.1 secs
Test APPROVER Loan Unacceptable ...Pass 1 succ 0 fail 1.0 secs
Test ASSESSOR Low Risk ...
...
Test LENDER Lots Exceeds 15000 ... Pass 1 succ 0 fail 1.2 secs

Lender & partners MINT Supplier & partners MINT Broker MINT
Properties Scenario Properties Scenario Properties Scenario
3 files (59 lines) 68 3 files (57 lines) 81 20 33

Table 7.5: Code Generation Summary for Implementation Validation (no. of lines)

The results from implementation validation should agree with formal validation – the scenarios should pass.
This will confirm that the service implementation is behaving as expected, considering these scenarios. Otherwise
there will be diagnostics provided to trace the problem. For example, suppose the Assessor is expected return a
“low” risk but does not, then its implementation is to be investigated. Although formal validation may correct
the composed service diagram, this does not imply that the implementation validation will achieve the same
validation results. This is because the partner service implementations may not behave as expected, such as the
previous example. This has a direct impact on Lender behaviour and therefore some of its scenarios may not pass.
Implementation validation also tests (black-box) the availability of the services which can gain insight into the
deployment of the targeted service, e.g. Lender is not deployed successfully and therefore WSDL download by
MINT fails. In addition, there is testing for the service response within the timeout threshold.

Performance Evaluation

After the functional validation is satisfied, the performance evaluation can be carried out to inspect the deploy-
ment configuration of the service environment and consistency of service behaviour under load. The sequential
performance evaluation may be carried out first to establish consistency in a series of invocations, followed by
concurrent execution.

The following is one result obtained from actual concurrent performance evaluation. This scenario passes the
concurrent performance evaluation of 150 runs: all are successful, none failed, and none were inconclusive (inco),
with an average scenario completion approximately in 4.5 seconds. The results are consistent (cons), the fastest
scenario completion time is approximately 3.6 seconds, and the slowest is 4.8 seconds.

Test APPROVER Low Rate ... Pass 150 succ 0 fail 4.5 secs
Concurrent 0 inco true cons 3.6 secs .. 4.8 secsResource configuration issues may also arise during performance evaluation, particularly concurrent mode,

which may be the cause for the service’s inconsistent behaviour. The following is an example that was actually
found. The concurrent performance evaluation with a load of 150 of a particular scenario for Lender has reported
results of:

Test LENDER Little Low Risk ...
Execution error of
send(lender.loan.quote,Proposal("Nancy Turner","Manchester England",9999.))
caused by java.net.SocketTimeoutException: Read timed out
...ConnectException: Connection refused: connect ...

Inconclusive 129 succ 21 fail 8.1 secs
Concurrent 0 inco false cons 3.5 secs .. 8.9 secswhich is Inconclusive, meaning inconsistency of behaviour, with a mix of successes and fails, and reported Java

exceptions of “java.net.SocketTimeoutException: Read timed out” and “java. net.ConnectException: Connec-
tion refused: connect”. The former means invocation timeout and the latter means unable to connect at all.
Overall, the results indicate that under the specified concurrent load of 150 the Lender service is not able to
function consistently. The hosting server (Apache Tomcat) was observed to report “All threads are busy, wait-
ing. Please increase maxThreads or check the servlet status” and “java.lang.OutOfMemoryError: Java heap
space” errors when concurrent validation was the only activity in progress at the server. This reveals that the
server is not configured with adequate resources to host the web services with the expected performance require-
ments. The java.net.SocketTimeoutException was most likely due to the server not being able to process the

113

request in time within the timeout threshold. Over time, the Java heap space ran out for the engine, which led
to the java.net.ConnectException as the container could not acquire memory resources for processing the load
of tests. The server was then configured with adequate threads and Java heap size by respectively increasing
the maxThreads attribute in Tomcat’s server.xml and Java heap size for the server (e.g. via environment variable
CATALINA_OPTS). The concurrent performance evaluation was executed again, and the configuration monitored
and altered until the service exhibited consistency under this performance load.

7.2.10 Evaluation Compared To Other Approaches
A comparison is made with respect to the thesis goal of an integrated rigorous methodology for development of
composite web/grid services, with automated support for specification, validation, verification, implementation
and evaluation, and with abstraction of the underlying implementation and analysis techniques. Related work
in (WSAT [31], the LOTOS approach by Ferrara [24], PEPA [70], and LTSA-WS [28]) are most relevant with
regard to this comparison. This related work also applies or supports different degrees of rigorous development
using the same Loan Approval Process as discussed above [4, 6]. Other web service composition methodologies,
especially the implementation ones such as JOpera, support many if not most of the compositional constructs,
but they generally do not have a rigorous aspect; there is a degree of systematic testing in ActiveBPEL (BUnit).
The specific characteristics in the comparison are the coverage of BPEL orchestration constructs, support for
interacting processes, automated formalism, automated support for validation and verification, automated support
for implementation and deployment, automated support for testing, and the abstraction framework.

Supported Composition Activities

BPEL constructs are categorised into basic, structured, data handling, scopes, and correlation [4, 6]. The coverage
of constructs is based on that stated by authors of the related work. A tick indicates an aspect is fully supported;
a minus sign indicates partial support. Basic activities include receive, invoke and reply. Structured activities
includes alternative (switch, if-else), iteration, sequence, pick and flow. Data handling refers to the notion of data
types, variables, assignment, and expressions. Error, event and compensation handling are scope activities, which
in some cases are generally referred to as event handling [77]. In addition there is data structure definition in
WSDL which BPEL processes will use. Table 7.9 gives a comparison showing the coverage of BPEL constructs
of the related approaches. The Loan Approval example [4, 6] does not involve the use of all the BPEL constructs
such as compensation and correlation.

WSAT Ferrara et al. PEPA LTSA-WS Thesis
Basic X X X X X
Structured X X X X X
Scope – – – –
Correlation
Data Structure X X X
Dynamic Partners X
BPEL4WS X X X X X
WS-BPEL 2.0 X
Interacting BPEL X X X

Table 7.6: Support of BPEL Constructs

Analysis and Tool Support

Table 7.7 shows the comparison with regard to the automated and abstract support for specification, implementa-
tion, analysis of web service compositions. The thesis shares similarities in the type analysis that can be performed
with the related work as they are also process algebra based, except for PEPA (performance-focused). The auto-
mated support and strength of analysis differs.

• WSAT only has automated support for the translation of BPEL implementation to specification into Promela.
This was applied in the formalisation of the Loan Approval composition. Two temporal logic LTL proper-

114

WSAT Ferrara et. al. PEPA LTSA-WS Thesis
Specification X X X X X
Abstraction X X
Verification X X X
Validation X X
Implementation X X X
Testing X

Table 7.7: Automated Tool Support of Web Service Composition Approaches

ties are handcrafted and manually verify the model using SPIN: a loan request will eventually get an output
or fault message; if the request amount is greater than 2, it will eventually get rejected (a false property).
The authors limit the integer domain to 4 for the (seven) integer variables generated in the specification. The
manual analysis includes the notion of data values, as seen from the second property. The tradeoff for this
analysis is the state space explosion. Verification of the first property completes in about 2 minutes, while
the second property takes 0.2 seconds.

• Ferrara’s approach automates translation between a LOTOS specification and a BPEL implementation. The
approach demonstrates translation of a Loan Approval specification into BPEL4WS. The approach does not
provide any (automated or abstracted) tool support or guidelines for analysis, implying a requirement for
expertise (e.g. CADP) that developers may not have [74]. It provides only general suggestions for formal
analysis such as bisimulation for service redundancy, request-response property verification, and black box
testing, which could be manually applied to the Loan Approval composition.

• LTSA-WS abstracts underlying techniques and tools in an effort to simplify and make analysis more accessi-
ble. This was achieved by using high-level notations, automated specification and analysis. LTSA-WS uses
UML in design and analysis (validation and verification) diagnostics. Validation is performed interactively
in LTSA-WS by animating the model. Deadlock freedom property can also be checked on the LTS trans-
lated from BPEL4WS code. Trace equivalence is automatically checked between the LTS models generated
from MSCs and BPEL4WS; the latter implies code is already implemented. Other properties are specified
in FSP for verification, such as request-response and safety properties. Although not demonstrated for Loan
Approval, the automated analysis of trace equivalence verification can be performed in LTSA-WS if the
MSCs of the composition (designer role) are specified, which can detect errors such as interface incompat-
ibility in the LTS translated from BPEL4WS. The LTS models can be animated for validation through the
LTSA-WS tool. The supported analysis, however, does not include data semantics like WSAT which can
detect errors in the composition specific to data values. There is no support for implementation validation.

• The PEPA approach automates annotated BPEL/WSDL translation to PEPA. Analysis is directed at perfor-
mance evaluation in consideration of latency and operating timing. This was applied to the Loan Approval
composition to demonstrate the automated translation and analysis. However, the analysis does not demon-
strate how this automated analysis benefited the development of this service composition.

• The thesis uses CRESS, CLOVE with verification patterns, MUSTARD, and MINT for design and automated
support of specification, implementation, deployment and analysis. The methodology was applied on the
Loan Approval composition (lender service), including its partner services. The thesis approach enables
verification of properties similar to WSAT, but the thesis approach can be more specific such as with data
values. In addition, there is support for abstract property specification and tool automation which WSAT
does not provide. Verification templates are provided for well-known property patterns [66] (e.g. Lender
request-response properties), abstracting the temporal logic syntax and supporting data values. By default a
specification is checked for freedom from deadlock and livelock. The verification shares the same tradeoff
as WSAT in model checking; depending on the domain data values, the time and state space of verifica-
tion varies. The verification of similar response properties to WSAT, for Loan Approval composition is
completed in several minutes. This is achieved with data range of 2000 distinct numbers and five distinct
enumerations of strings which are used in the complex Proposal type, generating a state space comprising
∼104 thousand states, ∼204 thousand transitions and ∼50 thousand labels. Validation is automated for the
specified scenarios; these can include data values. The approach has demonstrated that it can detect errors

115

in in specification and implementation. The latter uses black box testing with a degree of load testing which
is not supported or integrated in the other compared approaches. Formal performance analysis is not sup-
ported, although it is possible as performance analysis can be undertaken on a LOTOS specification using
CADP, this could be investigated in future work.

7.3 Development of Allocator Composed Grid Service
The Allocator service brings together two resource-related grid services, Factory and Mapper, that perform oc-
cupational matching of survey datasets. The Factory grid service coordinates the allocation of resources to map
occupations. The Mapper grid service performs the task of mapping occupational information using the selected
resource. The Factory and Mapper services are developed according to the WS-Resource factory pattern whereby
the former is the factory that creates resources and the latter is the ‘instance’ service that performs operations.
Factory and Mapper therefore share the same resource context.

The Allocator service combines the two services within its process behaviour to provide a complete service
for mapping an occupation, which includes the coordination of resource allocation, data mapping, resource deal-
location, and event handling. The Allocator has a ‘translate’ operation that maps an occupational title to a specific
classification code. The process flow is to have the Factory service allocate a mapping resource that is accessible
via an endpoint. This addresses a particular Mapper service resource to perform the mapping. Upon successful
mapping by the Mapper, the Allocator then returns the result to its client. Otherwise, if the invocation of Mapper
results in a fault, then the resource is deallocated through the Factory, and Allocator returns a fault to its client.

The developer describes the composed behaviour in CRESS, partner specifications and implementations, MUS-
TARD scenarios, and CLOVE properties. The composite service specification is then automatically generated for
analysis. The developer executes the automated validation and verification, analyses the respective results, and
addresses the issues identified by the analyses. Once satisfied with the analyses, the developer starts the auto-
mated implementation. This is followed by the automated implementation validation and performance evaluation
on the deployed services using the same MUSTARD scenarios used for specification, addressing implementation
and resource configuration issues that are discovered.

7.3.1 Service Diagrams
Allocator

The developer describes the Allocator service behaviour in CRESS, as illustrated in figure 7.7. This is a represen-
tation of the requirements given in the informal description. The rule box declares the user-defined data types and
variables used by Allocator and its partner services, similar to those in the previous case studies. In particular,
there is a declaration of dynamic partner Mapper at its port job. There is a Reference type variable named map-
perReference which is used to hold the endpoint reference to the resource created by Factory. This is associated
with Mapper’s job port after Factory invocation.

The Allocator has one operation, translate, that is described in node 1 – Receive with the complex type
mapping. The variable scheme is assigned the field scheme in mapping, followed by invoking factory.job.allocate
(node 2) which allocates a resource according to the value in scheme. The reference to the created resource is
returned and held in variable mapperReference. This reference is assigned to mapper.job which binds to the WS-
Resource. The variable job2 is assigned the value of the field mapping.job which is used in the Invoke activity
in node 3. This asks the Mapper to perform the occupational translation of job2 according to the classification
indicated by scheme2. The translated result mappedJob is returned by Allocator in node 4. The allocation by
Factory in node 2 may throw a fault, which is handled by the Catch factoryError.reason arc leading to node 5.
The translation in node 3 may throw a fault, which is handled by a Catch .reason matching any fault name and
leading to node 6. If this event occurs, then an invocation of Factory is made to deallocate the resource, followed
by returning the fault value with allocatorError fault name at node 7 before terminating at node 8.

Service Configuration

The developer defines the service configuration illustrated in figure 7.8. Most of the Deploys options should now
be familiar, with the exception of the ‘-m RESOURCE’ parameterised option for ‘merge partners’, which will
generate a behaviour specification for a phantom partner RESOURCE. This is used to describe the interaction of
the shared resource context between Factory and Mapper.

116

Figure 7.7: Allocator CRESS Diagram

The deployment location of Factory and Mapper is the Globus Toolkit container, distinguished by the base
URL at port 8880 as the operating port used in this example.

Figure 7.8: Grid Service Configuration

7.3.2 Partner Specification
The Resource, Factory and Mapper partner specifications are manually provided by the developer. The complete
Factory specification is illustrated below:

Process FACTORY [factory,resource] : Exit(States) : (* FACTORY partner *) 1
factory !job !allocate ?scheme:Text; (* get scheme name *) 2
resource !scheme; (* send scheme name *) 3
(4

resource !True ?epr:Nat; (* get EPR *) 5
factory !job !allocate !epr; (* return mapping EPR *) 6
FACTORY [factory,resource] (* repeat behaviour *) 7

(* or *) 8
resource !False ?reason:Text; (* get fault *) 9
factory !job !allocate !factoryError !reason; (* return factory fault *) 10

117

FACTORY [factory,resource] (* repeat behaviour *) 11
) 12

13
factory !job !deallocate ?epr:Nat; 14
FACTORY [factory,resource] (* repeat behaviour *) 15

EndProc (* end FACTORY *) 16

Assuming the above specification is not provided, executing automated formal specification will generate the
following interface behaviour.

Process FACTORY [factory,resource] : Exit(States) : (* FACTORY partner *) 1
factory !job !allocate ?scheme2:Text; (* ‘allocate’ input *) 2
(3

factory !job !allocate !AnyNat; (* ‘allocate’ output *) 4
FACTORY [factory,resource] (* repeat behaviour *) 5

(* or *) 6
factory !job !allocate !FactoryError !AnyText; (* ‘FactoryError’ fault *) 7
FACTORY [factory,resource] (* repeat behaviour *) 8

) 9
(* or *) 10

factory !job !deallocate ?mapperReference:Nat; (* ‘deallocate’ input *) 11
FACTORY [factory,resource] (* repeat behaviour *) 12

EndProc (* end FACTORY *) 13

7.3.3 Partner Implementation
This section presents the implementation provided for Factory and Mapper. Resource is actually implemented as
the AllocatorResource WS-Resource in the Factory implementation and configured to be shared with Mapper.

Factory Service

The Factory service implements the operations ‘allocate’ and ‘deallocate’. There is also the need to implement
the ‘resource home’ and ‘resource’ that the Factory uses to manage resources. This follows the GT4 resource
context framework, where the former creates the resource in the container and the latter is the resource itself
which contains the allocated scheme information to return mapped values. These are respectively implemented as
AllocatorResourceHome and AllocatorResource Java classes. The implementation uses the code stubs generated
from its WSDL service interface, along with common definitions which were also automatically generated. These
are packaged into the grid service archive for deployment, together with the developer’s specified WSDD (Web
Service Deployment Descriptor) and JNDI (Java Naming and Directory Interface) resource configuration. The
WSDD is a basic one for GT4, with values configured only for the Factory service name and service WSDL
location. The JNDI configures the namespace and resource class implementation that the Factory uses.

The ‘allocate’ operation takes a String which contains the occupational scheme to be allocated, and invokes
AllocatorResourceHome to create an instance of AllocatorResource hosting the scheme for mapping use. Upon
successful resource creation, the operation returns an endpoint to the WS-Resource which the Mapper service
can use. The ‘deallocate’ operation takes the endpoint to the WS-Resource, and uses AllocatorResourceHome to
remove the identified resource. The Factory code snippet is shown in the Java code below. The Factory’s grid
service archive is deployed into the GT4 container.

package uk.ac.stir.cs.factory;

... imports ...

public class FactoryService {

public EndpointReferenceType allocate(String scheme)
throws RemoteException, StringMessage {

...
home = (AllocatorResourceHome) ctx.getResourceHome();
key = home.create(scheme);

118

...

EndpointReferenceType epr = null;

... create the value of epr ...

return(epr);
}

public void deallocate(EndpointReferenceType reference)
throws java.rmi.RemoteException {

ResourceContext context = ResourceContext.getResourceContext();
AllocatorResourceHome home =

(AllocatorResourceHome) context.getResourceHome();
ResourceKey resourceKey = this.getAsResourceKey(reference);
if (resourceKey != null) {

AllocatorResource resource = (AllocatorResource) home.find(resourceKey);
home.remove(resourceKey);
...

}

private ResourceKey getAsResourceKey(EndpointReferenceType epr)
throws Exception {

...
}

}

Mapper Service

The Mapper service implements the ‘translate’ operation which associates resources dynamically. This is done by
Allocator setting mapper.job dynamically with the endpoint value returned by Factory. The ‘translate’ operation
uses the associated resource to obtain the mapped value as a String and returns it. This is just the few lines of code
shown below. Mapper uses the resource implementation already developed within the Factory service. Its gen-
erated WSDL service interface and common definitions are packaged into a grid service archive for deployment,
together with the developer’s specified WSDD and JNDI resource configuration. The WSDD is mostly similar to
that of Factory apart from values pertaining to the Mapper service and its WSDL location. Its JNDI file is simply
configured as a reference to the resource configured in Factory, establishing sharing of the resource context. The
Mapper’s grid service archive is deployed into the GT4 container.

AllocatorResourceHome home = (AllocatorResourceHome) context.getResourceHome();
AllocatorResource allocatorResource = (AllocatorResource) context.getResource();
return allocatorResource.mapValue(string.value);

7.3.4 CLOVE Properties
The informal description of the properties desired of the service is as follows:

• Allocator’s translation request should result in either a successful translation, or faults of unknown job or
scheme.

• Allocator should begin its service with no other operations apart from the ‘translate’ operation that takes a
Mapping request.

• Freedom from deadlock.

• Freedom from livelock.

The developer specifies the value enumerations and properties in the following CLOVE syntax. There is
a specification of the enumeration of strings. Note that there is no explicit definition of the Mapping values;
however, these string values will be used in the construction of the value of Mapping, enumerating the two string
fields in the structure to a total combination of 36 different Mapping values (6 × 6) where there are both valid

119

and invalid values. These are sufficient to verify all of Allocator’s key behaviour. In executing the verification,
there is automated annotation of the LOTOS specification, property translation to µ-calculus, and generation of a
C implementation for data enumeration. There is use of a regular expression in the General_ Response property
to match the string values for successful job mapping translations returned by Allocator, instead of using ‘?string’
which only caters for spaces and alphanumeric characters. This expression is specified verbatim in µ-calculus
syntax instead of using the signal construct. The C data enumeration is only one of line code; it is effectively a
macro that lists the values of the six strings specified.

enum_ strings(’SOC2000,’SIC92,’bookbinder,
’cab driver,’nurse,’private detective)

initials(signal(allocator.job.translate,?mapping))

property(General_ Response,
response(global,

signal(allocator.job.translate,?mapping),
choice_ any(signal(allocator.job.translate, ’"[./a−zA−Z0−9]*"’),

signal(allocator.job.translate,allocatorError,’unknown scheme),
signal(allocator.job.translate,allocatorError,’unknown job))))

7.3.5 MUSTARD Scenarios
Validation of grid partner services is not performed as the composed service is rather straightforward and will defi-
nitely test both the partner services indirectly with a variety of Mapping values to Allocator. The Unknown_ Nurse
test is a specific safety validation, where a possible mapping of a nurse must be unsuccessful.

test(SOC2_ Nurse,
succeed(

send(allocator.job.translate, Mapping(’Nurse,’SOC2000)),
read(allocator.job.translate, ’3211)))

test(SIC_ Nurse,
succeed(

send(allocator.job.translate, Mapping(’Nurse,’SIC92)),
read(allocator.job.translate, ’95.14)))

test(SOC2_ Unknown,
succeed(

send(allocator.job.translate, Mapping(’Sailor,’SOC2000)),
read(allocator.job.translate, allocatorError, ’Unknown job)))

test(Unknown_ Nurse,
refuse(

send(allocator.job.translate, Mapping(’Nurse,’Unknown)),
read(allocator.job.translate, ’3211)))

test(SOC2_ Unknown_ Scheme,
succeed(

send(allocator.job.translate, Mapping(’Sailor,’SOC20000)),
read(allocator.job.translate, allocatorError, ’Unknown scheme)))

7.3.6 Formal Specification
The developer executes the automated formal specification. The behaviour for Allocator is fully specified, and
includes the manually specified behaviour of all the partners. For the overall behaviour listed in the LOTOS
code below, the ALLOCATOR process is synchronised with the RESOURCE process at its gate. The actual
behaviour of the Allocator begins from the ALLOCATOR_1 process call, and does not interact with RESOURCE.
FACTORY and MAPPER are exposed to the ‘resource’ gate in the behaviour expression of the ALLOCATOR
process, which allows them to synchronise.

120

Specification GSSystem [allocator] : Exit(States) (* GS system *)

Library (* library *)
...
Behaviour
Hide resource In (* hide internal gates *)

RESOURCE [resource] (* call RESOURCE process *)
|[resource]| (* synchronised with services *)

ALLOCATOR [allocator,resource] (* call ALLOCATOR process *)

Where (* local definitions *)
Type Mapping Is BaseTypes (* mapping record *)

Sorts Mapping (* mapping sort *)
Opns (* mapping operations *)

AnyMapping: >Mapping
_ eq_ ,_ ne_ : Mapping,Mapping > Bool
mapping: Text,Text >Mapping
getJob: Mapping > Text
setJob: Mapping,Text >Mapping
getScheme: Mapping > Text
setScheme: Mapping,Text >Mapping

...
Process ALLOCATOR [allocator,resource] : Exit(States) : (* ALLOCATOR service *)

Hide factory,mapper In (* hide internal gates *)
(

FACTORY [factory,resource] (* call FACTORY partner *)
||| (* interleaved with *)

MAPPER [mapper,resource] (* call MAPPER partner *)
)
|[factory,mapper]| (* synchronised with partners *)

ALLOCATOR_ 1 [allocator,factory,mapper] (* call main process *)
(AnyText,AnyText,AnyNat,AnyNat,AnyMapping,AnyText,AnyText)

Where (* local definitions *)
Process FACTORY [factory,resource] : Exit(States) : (* FACTORY partner *)
...
Process MAPPER [mapper,resource] : Exit(States) : (* MAPPER partner *)
...
Process RESOURCE [resource] : Exit(States) : (* RESOURCE phantom *)
...Apart from manual specification of partners Factory, Mapper, and Resource, the formal specification is fully

automated with all data types and behaviour specified. Even the manual specification itself is added to the interface
behaviour that is automatically generated. Using this specification, formal validation and verification can be
performed. Table 7.8 lists the specification summary in terms of lines of code generated and manually provided.

Automated Manual Manual Manual
(Allocator) Factory Mapper Resource
479 24 22 91

Table 7.8: Specification Summary of Allocator, Factory, Mapper, and Resource

7.3.7 Formal Analysis
For illustration the Allocator composed service is subject to verification followed by validation, as analysis can be
performed in any order.

Formal Verification

Verification is performed in non-compositional mode with the following results:

121

Verifying ALLOCATOR GENERAL RESPONSE ... TRUE
Verifying ALLOCATOR SOC2000 SAFETY ... TRUE
Verifying DEADLOCK FREEDOM ... TRUE
Verifying LIVELOCK FREEDOM ... TRUE
Verifying INITIALS SAFETY ... TRUE

Formal Validation

Validation is executed for the specified scenarios with the results listed below. These validation results, along with
the verification outcomes, establish a level of confidence in the behaviour of the services, where specified prop-
erties are satisfied and the tests demonstrate correct functionality. As a complement to verification, the validation
checks for scenarios beyond the finite state space of the Allocator, using values such as “Sailor”and “SOC20000”
not found in the enumeration for verification – this gives confidence that the behaviour is still correct.

Test ALLOCATOR SOC2 Nurse ... Pass 1 succ 0 fail 0.6 secs
Test ALLOCATOR SIC Nurse ... Pass 1 succ 0 fail 0.5 secs
Test ALLOCATOR SOC2 Unknown ... Pass 1 succ 0 fail 0.4 secs
Test ALLOCATOR Unknown Nurse ... Pass 1 succ 0 fail 0.4 secs
Test ALLOCATOR SOC2 Unknown Scheme ... Pass 1 succ 0 fail 0.4 secs

7.3.8 Implementation
Implementation of the Allocator service is fully automated. It compiles the developer-provided implementation
for the Factory and Mapper grid service partners which are deployed to the GT4 framework. This is illustrated in
figure 7.9.

The grid service implementations provided by the developer for Factory and Mapper are automatically com-
piled and built using GT4, and packaged as grid service archives (.gar) for deployment in GT4 container. For the
Allocator service, its WSDL service interface, deployment descriptors (PDD and WSDL catalogue), and BPEL
code are automatically generated, compiled into a BPEL archive, and deployed in ActiveBPEL. The PDD (Process
Deployment Description) code specifies the Mapper partner as dynamic, where its endpoint (WS-Addressing) for
the WS-Resource is bound during Allocator’s execution in order to invoke it.

Figure 7.9: Implementation of Factory and Mapper

7.3.9 Implementation Validation
Allocator Implementation Validation

The deployed service can be validated much as for the formal validation. This requires the MINT properties that
were also generated previously in the automated implementation, and translation of the MUSTARD scenarios into
MINT scenarios for test interpretation by MINT. The Allocator’s service is expected to respond within 5 seconds.

122

The results below show that validation passes, which agrees with specification validation, confirming that the
implementation behaviour is functioning the same as the specification with regard to these scenarios. Otherwise,
the Allocator service diagram and the partner service implementations should be inspected and corrected using
the diagnostic traces provided as feedback.

Test ALLOCATOR SOC2 Nurse ... Pass 1 succ 0 fail 1.8 secs
Test ALLOCATOR SIC Nurse ... Pass 1 succ 0 fail 1.3 secs
Test ALLOCATOR SOC2 Unknown ... Pass 1 succ 0 fail 1.3 secs
Test ALLOCATOR Unknown Nurse ... Pass 1 succ 0 fail 1.2 secs
Test ALLOCATOR SOC2 Unknown Scheme ... Pass 1 succ 0 fail 1.2 secs

Performance Evaluation

Suppose the service is expected to handle up to 200 mappings simultaneously. The developer first evaluates the
consistency of behaviour by sequential performance testing, where the results reported below show that behaviour
is consistent.

Test ALLOCATOR SOC2 Nurse ... Pass 200 succ 0 fail 0.1 secs
Sequential 0 inco true cons 0.1 secs .. 1.1 secs

Test ALLOCATOR SIC Nurse ... Pass 200 succ 0 fail 0.1 secs
Sequential 0 inco true cons 0.1 secs .. 1.1 secs

Test ALLOCATOR SOC2 Unknown ... Pass 200 succ 0 fail 0.1 secs
Sequential 0 inco true cons 0.1 secs .. 1.2 secs

Test ALLOCATOR Unknown Nurse ... Pass 200 succ 0 fail 0.3 secs
Sequential 0 inco true cons 0.2 secs .. 1.1 secs

Test ALLOCATOR SOC2 Unknown Scheme ... Pass 200 succ 0 fail 0.4 secs
Sequential 0 inco true cons 0.2 secs .. 1.1 secs

The concurrent performance evaluation with a load of 200 requests also passes, but with a much slower com-
pletion time than the sequential evaluation (which is reasonable). The grid partner services were also indirectly
tested through invocations from the Allocator BPEL service, which implies that the grid partner services and their
environment (GT4 container) can handle this load.

Test ALLOCATOR SOC2 Nurse ... Pass 200 succ 0 fail 8.6 secs
Concurrent 0 inco true cons 7.5 secs .. 9.2 secs

Test ALLOCATOR SIC Nurse ... Pass 200 succ 0 fail 6.2 secs
Concurrent 0 inco true cons 5.0 secs .. 7.7 secs

Test ALLOCATOR SOC2 Unknown ... Pass 200 succ 0 fail 5.3 secs
Concurrent 0 inco true cons 4.7 secs .. 6.4 secs

Test ALLOCATOR Unknown Nurse ... Pass 200 succ 0 fail 7.8 secs
Concurrent 0 inco true cons 4.6 secs .. 9.5 secs

Test ALLOCATOR SOC2 Unknown Scheme ... Pass 200 succ 0 fail 6.8 secs
Concurrent 0 inco true cons 4.2 secs .. 8.4 secs

7.3.10 Evaluation Compared To Other Approaches
There has been more work on realising grid service composition in contrast to the limited related work that
supports their rigorous development [42, 126]. Considering automated support for specification, validation, ver-
ification, and implementation (particularly BPEL), evaluation, and abstraction of the underlying implementation
and analysis techniques, the PGSCV [42] and CPi-calculus [126] approaches are relevant to the formal aspects.
However these approaches focus on formalising grid service compositions in general, and do not involve imple-
mentation (WSDL/BPEL) of a specification. Their support of composition constructs are not clearly stated and
demonstrated. For example, event, compensation and fault handling are not explicitly presented; only the con-
structs similar to BPEL basic and structured activities are explicit. JOpera, OMII-BPEL, and ActiveBPEL are
methodologies supporting the implementation of grid service compositions in addition to web services, the latter
two implementing the BPEL standard.

Supported Composition Activities

The comparison of support compositions is made with regard to the BPEL constructs. The PGSVC and CPi-
calculus do not explicitly support BPEL, but their semantics are related in the compared categories. A tick indi-
cates an aspect is fully supported; a minus sign indicates partial support.

123

PGSCV CPi- JOpera OMII-BPEL ActiveBPEL Thesis
calculus

Basic X X X X X X
Structured X X X X X X
Scope X X X –
Correlation X X X
Data Structure X X X X
Dynamic X X X X X
Partners
Interacting X X X X X X
Processes
BPEL X X X

Table 7.9: Support of Composition Constructs

Analysis and Tool Support

Table 7.10 shows the comparison with regard to the automated and abstract support for specification, implemen-
tation, and analysis of grid service composition.

PGSCV CPi- JOpera OMII- ActiveBPEL Thesis
calculus BPEL

Specification – X
Abstraction (F/I) – – – X
Verification X X
Validation X
Implementation X X X X
Testing X X

Table 7.10: Automated Tool Support of Grid Service Composition Approaches

• PGSCV has automated support for specification of the interaction patterns; individual behaviour has to
be manually specified. Verification is automatically performed to see if the grid service composition is
correct, meaning the interaction or coordination can be smoothly performed among grid services. This
could (in principle) be applied to the Allocator composition, where an analyst specifies the interaction
patterns and executes the PGSCV tool to analyse these for coordination correctness. PGSCV does not cover
implementation, deployment, and implementation analysis (testing), as the focus is on formal aspects; these
aspects are thus not applicable to the Allocator composition and its partners.

• CPi-calculus work not implement automated tool support for compositions as it only proposes the founda-
tion framework and semantics for modelling. It could be applied to formalisation of Allocator only on a
manual basis. The analyst would specify the Allocator composition based on the proposed semantics.

• JOpera, OMII-BPEL and ActiveBPEL Designer are focused on implementation. They have graphical ab-
straction to the underlying composition languages SCUFL (for JOpera) and BPEL, and automated support
for their implementation and deployment. In addition, they provide the composition execution/enactment
environment and over runtime support such as monitoring. These approaches could fully describe and im-
plement the Allocator composite service, only requiring implementation of the partner services (Mapper
and Factory) separately. ActiveBPEL Designer supports a degree of testing within its development environ-
ment through its BUnit module. This enables invocation of services with configured ranges of data, which
would be applicable to the Allocator composition and partner services. There is overlap in the approach
to abstraction and automated implementation of composed services, but these three approaches are by no
means compete with the thesis approach. They complement it as potential candidates for target service
deployment environments of the thesis approach, and could benefit from its rigorous development features.

124

• BPEL4WS has been demonstrated to be applicable for grid service composition [125] and the WS-BPEL 2.0
has a more harmonised compatibility with WSRF specification. Approaches such as WSAT and Ferrara’s
approach as well as others [77, 81] that support these BPEL standards could potentially be applied to a
rigorous development of the Allocator case study to some extent, notably in the formal aspects.

7.4 Evaluation
Two case studies have been used to illustrate the methodology in action from the developer’s perspective. There are
other service composition case studies produced earlier in [90, 91, 105, 106, 107] to demonstrate the methodology
in practice. Service compositions are described in the CRESS high-level graphical notation. Formal specifica-
tions and implementations are automatically generated, enabling service prototyping and development. Partner
service specifications and implementations are semi-automated, generating code when possible to reduce the de-
veloper’s effort. Formal validation and verification are supported with high-level analysis descriptions (scenarios
and properties). Formal analyses are automatically executed and interpreted on behalf of users, which simpli-
fies the technical interface to underlying tools yet supports rigorous service development. Post-implementation
analysis is available as implementation validation where functionality testing and performance can be evaluated,
supported by a high-level notation and automated tool support. The integration into a methodology enables rigor-
ous development of composed services.

125

Chapter 8

Conclusions

8.1 Thesis Summary
The thesis has presented an integrated methodology for the rigorous development of composed web and grid
services. The overall approach is based on the high-level and domain-independent CRESS methodology, which
originally supported automated specification, validation, deployment and implementation of composite web ser-
vices. The thesis work has extended the methodology to support extended descriptions, extended standard support,
grid services, formal verification, implementation validation and performance evaluation, which together offer a
more rounded development methodology. Chapter 3 illustrated how the integrated methodology is used, covering
the development lifecycle of web and grid service compositions.

Chapter 4 showed how CRESS is used for describing composite web services, the approach that underpins
translations to actual languages, the thesis extensions to the notation and framework to support grid services, and
the integration of the new tools developed by the thesis.

Chapter 5 discussed the approach to the automated specification of composed services, the exploitation of
formal validation which was extended to partner services, and the approach and development of CLOVE that acts
as an automated verification tool. Rigorous analysis is automated and abstracts the underlying techniques. It can
help the effort of analysis as specification and analysis are automated. Integration of the tools into the methodology
was also outlined.

The strategy of automated implementation, and extensions to support WS-BPEL 2.0, were covered in Chapter
6. This also discussed in detail the MINT tool which was developed to automate implementation validation and
also performance evaluation that were integrated into the methodology. This was supplemented by case studies
demonstrating the methodology in Chapter 7.

8.2 Evaluation

8.2.1 Strengths and Weaknesses
The methodology automatically generates the formal specification and executable implementation for compos-
ite and partner services by translating the graphical, language-independent CRESS service descriptions. This
approach is extensible to other target languages and their technologies, e.g. the support of WS-BPEL 2.0. For-
mal specifications in LOTOS are automatically generated which can be readily analysed by tools (MUSTARD and
CLOVE) integrated into the methodology. This automation helps in the effort to support developers in formal
analysis, and also to help formal experts who can apply their own analyses apart from those supported by the
methodology. Likewise the high-level and automated approach to formal validation and verification enable effec-
tive and productive analysis of the generated specifications, contributing to service quality. In addition, MUSTARD
and CLOVE can be used independently from the methodology to translate high-level and easy-to-define scenarios
and properties into actual analysis syntax, which can be hard to read and write without the automated help.

Validation is carried out on the basis of specific scenarios which may not catch some errors; however, it pro-
vides opportunities to do so with an automated approach to quickly analyse and understand the model. Verification
complements validation where general analysis such as deadlock freedom and property checking across the scope

126

of the system can be easily verified. There is also support for frequently used verification properties, made avail-
able as templates. Verification using CADP has a limitation of not being able to analyse behaviour in large state
spaces as it is a enumerative technique. This technique is pragmatic, cost effective, and has the potential to dis-
cover errors using finite state systems [18]. Verification is currently available for composed service behaviour but
not partner services.

Service development is possible since implementation of composed services is fully automated. The method-
ology automates code generation to a high degree (WSDL, code stubs, skeletons), and supports the deployment
of partner services. The CRESS notation for web and grid service composition does not support the entire BPEL
specification, however the major constructs are supported and are sufficient to create realistic services. Imple-
mentation of services currently supports deployment in AXIS (partner web services), ActiveBPEL (composed
services), and GT4 (partner grid services). The methodology is extensible and can be further developed to support
other implementation languages and environments. There is post-deployment support in the methodology, where
the integrated MINT tool can be used to execute implementation validation on the deployed services including
partners, reusing the MUSTARD scenarios from the specification stage. Performance evaluation is supported by
MINT, which automates load testing using scenarios from the implementation validation. This helps in gaining
insight into the resource configuration that supports the target services. The black-box validation approach is lim-
ited to external analysis as it cannot inspect the target’s internal behaviour, such as monitoring components within
hosting environments [8] . The tradeoff is that the approach is lightweight, portable, and not constrained to any
particular implementation or environment.

8.2.2 Future Work
The CRESS notation could be further extended to support the description of more realistic service compositions,
such as timing (onAlarm) constructs and correlation in BPEL. This implies that the translation into formal spec-
ifications and implementations would also need extensions. Formal semantics will have to be defined for new
constructs, and approaches that support timing semantics such as time extended LOTOS [59] might be used. The
automated analysis could be improved such as interactive system simulation and graphical feedback (e.g. CRESS
notation) on the analyses and their results. It is possible to address the constraints of manually adapting gener-
ated specifications in the case of recursive process instantiation (as has now been done). Symbolic verification
[15, 67] could be applied to increase efficiency with regard to time and resources (memory) as they are techniques
to address state space explosion. Automated test generation [95] for LOTOS specifications can be used to assist
the effort in validation, for example automatically specifying a set scenarios for the developer. Performance eval-
uation of LOTOS specification is supported in CADP [34]. If it could be automated, it would expand the range of
verification such as deadlock freedom in context of probabilistic load. The CRESS notation could be extended to
specify stochastic parameters which could be translated into the specification and analysed through CADP. Imple-
mentation performance evaluation could be improved by a means to distribute and coordinate performance tests
across a network of machines instead of being limited to one machine as at present with MINT. Another aspect
is looking at the analysis of service compositions in consideration of the environment, such as resource allocation
[27]. There has been development of automatic synthesis for composable web service where automata modeling
behaviour protocols can be derived from its WSDL [9]. This technique can be investigated for the automated
formalism of existing auxiliary and externally owned partners services but with no formal specification, deriving
information about their behaviour which is then used for service composition.

8.2.3 Concluding Remarks
There is increasing acknowledgement that formal methods are applicable to service-oriented computing such as
web service composition [25], as is evident in the various research efforts that are trying to encourage the use
of formal methods. It is hoped that the methodology and tools developed in this thesis will contribute to the
development of web and grid service composition in a rigorous manner.

127

References

[1] J.-R. Abrial. Formal methods in industry: achievements, problems, future. Software Engineering, Interna-
tional Conference on, 0:761–768, 2006.

[2] Active Endpoints. ActiveVOS BPMS from Active Endpoints. http://www.activevos.com/ , 2009.

[3] Active Endpoints. BPEL open source engine. http://www.activevos.com/community-open-source.php,
2009.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana, editors. Business Process Execution Language for Web Ser-
vices. Version 1.1. BEA, IBM, Microsoft, SAP, Siebel, May 2003.

[5] Apache. Axis web page. http://ws.apache.org/axis/ , 2009.

[6] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Lie, S. Thatte, P. Yendluri, and
A. Yiu, editors. Web Services Business Process Execution Language. Version 2.0. Organization for The
Advancement of Structured Information Standards, Billerica, Massachusetts, USA, Apr. 2007.

[7] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. Validation of web service compositions.
IET Software, 2007.

[8] L. Baresi, D. Bianculli, S. Guinea, and P. Spoletini. Keep it small, keep it real: Efficient run-time verification
of web service compositions. In FMOODS ’09/FORTE ’09: Proceedings of the Joint 11th IFIP WG 6.1
International Conference FMOODS ’09 and 29th IFIP WG 6.1 International Conference FORTE ’09 on
Formal Techniques for Distributed Systems, pages 26–40, Berlin, Heidelberg, 2009. Springer-Verlag.

[9] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli. Automatic synthesis of behavior protocols for
composable web-services. In ESEC/SIGSOFT FSE, pages 141–150, 2009.

[10] J. Billington and et. al. The petri net markup language: Concepts, technology, and tools. In W. van der
Aalst and E. Best, editors, Applications and Theory of Petri Nets 2003, number 2679 in Lecture Notes in
Computer Science, pages 483–505. Springer, 2003.

[11] B. W. Boehm. Verifying and validating software requirements and design specification. IEEE Transactions
on Software Engineering, 1(1):75–88, Jan. 1984.

[12] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods: Dispelling industrial prejudices.
In M. Naftalin, T. Denvir, and M. Bertran, editors, FME’94: Industrial Benefit of Formal Methods, volume
873 of Lecture Notes in Computer Science, pages 105–117, Berlin, Germany, 1994. Springer.

[13] bpelpeople.com. BPEL Comparison - comparison between bpel-g and other BPEL engines. http://code.
google.com/p/bpel-g/wiki/BPELComparison, Oct. 2009.

[14] BPMI. Business Process Modeling Notation. Version 1.0. Business Process Management Initiative, May
2004.

[15] M. Calder and C. E. Shankland. A symbolic semantics and bisimulation for full LOTOS. In M. Kim,
B. Chin, S. Kang, and D. Lee, editors, Proc. Formal Techniques for Networked and Distributed Systems
(FORTE XIV), pages 184–200. Kluwer Academic Publishers, London, UK, Sept. 2001.

128

[16] S.-C. Cheung and J. Kramer. Checking safety properties using compositional reachability analysis. In ACM
Transactions on Software Engineering and Methodology. 1999.

[17] A. Chirichiello and G. Salaün. Encoding abstract descriptions into executable web services: Towards A
formal development. In Proc. Web Intelligence 2005. Institution of Electrical and Electronic Engineers
Press, New York, USA, Dec. 2005.

[18] E. M. Clark, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

[19] J. Coutaz, L. Balme, X. Alvaro, G. Valvary, A. Demeure, and J.-S. Sottet. An MDE-SOA approach to
support plastic user interfaces in ambient spaces. In C. Stephanidis, editor, Proc. 12th Universal Access in
Human-Computer Interaction, number 4555 in Lecture Notes in Computer Science, pages 63–72. Springer,
Berlin, Germany, 2007.

[20] P. Cronin. A regular expression grammar language dictionary generator. http:// regldg.com/ , Feb. 2009.

[21] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer, Berlin, Germany, 1985.

[22] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid service orchestration using the
business process execution language (BPEL). Grid Computing, 3(3-4):283–304, Sept. 2005.

[23] Eviware. The web service, SOA and SOAP testing tool. http://www.soapui.org/ , Dec. 2009.

[24] A. Ferrara. Web services: A process algebra approach (technical report). available from author’s web page.

[25] A. Ferrara. Web services: A process algebra approach. In Proc. 2nd. International Conference on Service-
Oriented Computing, pages 242–251. ACM Press, New York, USA, Nov. 2004.

[26] C. Fidge. A comparative introduction to CSP, CCS and LOTOS. Technical Report 93-24, Department of
Computer Science, University of Queensland, Brisbane, Australia, Apr. 1994.

[27] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosenblum, and S. Uchitel. Model checking service
compositions under resource constraints. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 225–234, New York, NY, USA, 2007. ACM.

[28] H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility verification for web service choreography. In
M. Aiello, editor, Proc. 2nd. International Conference on Service-Oriented Computing, New York, USA,
Nov. 2004. ACM Press.

[29] I. Foster and C. Kesselman. The Grid. Blueprint for a New Computing Infrastructure.: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[30] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the grid: An open grid services
architecture for distributed systems integration. Technical report, Global Grid Forum, Lemont, Illinois,
USA, June 2002. http://www.globus.org/research/papers/ogsa.pdf.

[31] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc. 13th. International World
Wide Web Conference, pages 621–630. ACM Press, New York, USA, May 2004.

[32] H. Garavel. Compilation of LOTOS abstract data types. In S. T. Vuong, editor, Proc. Formal Description
Techniques II. North-Holland, Amsterdam, Netherlands, Dec. 1989.

[33] H. Garavel. An overview of the Eucalyptus toolbox. In Z. Brezocnik and T. Kapus, editors, Applied Formal
Methods in System Design, pages 76–88, Maribor, Slovenia, June 1996. Action COST 247.

[34] H. Garavel and H. Hermanns. On combining functional verification and performance evaluation using
CADP. In FME ’02: Proceedings of the International Symposium of Formal Methods Europe on Formal
Methods - Getting IT Right, pages 410–429, London, UK, 2002. Springer-Verlag.

129

[35] H. Garavel and F. Lang. SVL: a scripting language for compositional verification. In Proc. of the 21st
IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems,
FORTE’2001. August 2001.

[36] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. In European Association for Software
Science and Technology (EASST) Newsletter, volume 4, pages 13–24. August 2002.

[37] H. Garavel and W. Serwe. State space reduction for process algebra specifications. In C. Rattray, S. Maharaj,
and C. E. Shankland, editors, Proc. 10th Int. Conf. on Algebraic Methodology and Software Technology,
number 3116 in Lecture Notes in Computer Science, pages 164–180. Springer, Berlin, Germany, June 2004.

[38] H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications. In L. M. S. Logrippo,
R. L. Probert, and H. Ural, editors, Proc. Protocol Specification, Testing and Verification X. North-Holland,
Amsterdam, Netherlands, June 1990.

[39] S. Graham, A. Marmakar, J. Mischinsky, I. Robinson, and I. Sedukhin, editors. Web Services Resource. Ver-
sion 1.2. Organization for The Advancement of Structured Information Standards, Billerica, Massachusetts,
USA, Apr. 2006.

[40] C. Grimm, R. Groeper, S. Makedanz, H. Pfeiffenberger, P. Gietz, M. Haase, M. Schiffers, and W. Ziegler.
Trust issues in Shibboleth-enabled federated grid authentication and authorization infrastructures support-
ing multiple grid middleware. volume 0, pages 569–576, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[41] O. M. Group. OMG Unified Modeling Language (OMG UML), Superstructure. Open Management Group,
Feb 2009.

[42] W. Guo and C. Lin. A formal approach to verify grid service composition based on interaction pattern.
In APSCC ’08: Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference, pages 69–74,
Washington, DC, USA, 2008. IEEE Computer Society.

[43] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, Sept. 1990.

[44] R. Hamadi and B. Benatallah. A petri net-based model for web service composition. In Proc. 13th.
International World Wide Web Conference, pages 621–630. ACM Press, New York, USA, May 2004.

[45] S. Hinz, K. Schmidt, and C. Stahl. Transforming bpel to petri nets. In F. C. W. M. P. van der Aalst, B. Be-
natallah and F. Curbera, editors, Proceedings of the 3rd Int’l Conference on Business Process Management
(BPM 2005), pages 220–235. Springer-Verlag, 2005.

[46] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–677, Aug.
1978.

[47] G. J. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley Professional,
September 2003.

[48] P. Inverardi and S. Scriboni. Connectors synthesis for deadlock-free component-based architectures. In
16th IEEE International Conference on Automated Software Engineering (ASE 2001), Coronado Island,
San Diego, CA, USA, Nov. 2001. IEEE Computer Society.

[49] P. Inverardi and M. Tivoli. Deadlock-free software architectures for com/dcom applications. Journal of
Systems and Software, 65(3):173–183, 2003.

[50] ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A Formal Descrip-
tion Technique based on the Temporal Ordering of Observational Behaviour. ISO/IEC 8807. International
Organization for Standardization, Geneva, Switzerland, 1989.

[51] ITU. Message Sequence Chart (MSC). ITU-T Z.120. International Telecommunications Union, Geneva,
Switzerland, 2000.

[52] ITU. SDL Combined with UML. ITU-T Z.109. International Telecommunications Union, Geneva, Switzer-
land, 2000.

130

[53] ITU. Specification and Description Language. ITU-T Z.100. International Telecommunications Union,
Geneva, Switzerland, Aug. 2002.

[54] JUnit.org. JUnit home page. http://www.junit.org/ , 2009.

[55] N. Kaveh and W. Emmerich. Deadlock detection in distributed object systems. In V. Gruhn, editor, Joint
Proc. of the 8th European Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 44–51. ACM Press, Vienna, Austria, 2001.

[56] N. Kaveh and W. Emmerich. Validating distributed object and component designs. In M. Bernardo and
P. Inverardi, editors, Formal Methods for Software Architecture, number 2804 in Lecture Notes in Computer
Science, pages 63–91. Springer, Berlin, Germany, 2003.

[57] B. W. Kernighan and D. M. Ritchie. The m4 macro processor. Technical report, Bell Laboratories, Murray
Hill, New Jersey, USA, 1977.

[58] P. S. Lambert, K. L. L. Tan, K. J. Turner, V. Gayle, K. Prandy, and R. O. Sinnott. Development of a
grid enabled occupational data environment. In R. Procter, editor, Proc. 2nd. International Conference on
e-Social Science, pages 1–12, Manchester, UK, June 2006. National Centre for e-Social Science.

[59] L. Léonard and G. Leduc. A formal definition of time in LOTOS. Formal Aspects of Computing, 10:248–
266, 1998.

[60] F. Leymann. Web Services Flow Language (WSFL). 1.0. IBM Software Group, May 2001.

[61] P. A. Lindsay, R. C. Moore, and B. Ritchie. Review of existing theorem provers. Technical Report UMCS-
87-8-2, Department of Computer Science, University of Manchester, Manchester, UK, Dec. 1986.

[62] R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel. In Journal of Logic and Algebraic
Programming, page 2006. Elsevier press, 2005.

[63] B. Margolis and J. L. Sharpe. SOA for The Business Developer. MC Press, Woodland, Texas, USA, 2007.

[64] R. Mateescu. Property pattern mappings for RAFMC. http://www.inrialpes.fr/vasy/cadp/resources/
evaluator/rafmc.html, May 2009.

[65] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular alternation-free mu-
calculus. In Proc. of the 5th International Workshop on Formal Methods for Industrial Critical Systems
FMICS’2000, Berlin, Germany, Apr. 2000.

[66] G. S. A. Matthew B. Dwyer and J. C. Corbett. Patterns in property specifications for finite-state verification.
In Proc. of the 21st International Conference on Software Engineering. May 1999.

[67] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, London, UK, 1993.

[68] A. J. R. G. Milner. A calculus of communicating systems. Number 92 in Lecture Notes in Computer
Science. Springer, Berlin, Germany, 1980.

[69] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes – Parts I and II. Information and
Computation, 100:1–77, 1992.

[70] B. Mitchell and J. Hillston. Analysing web service composition with pepa. In J. Bradley, editor, Proceedings
of the Third Workshop on Process Algebras and Stochastically Timed Activities, pages 33–44, Edinburgh,
Scotland, June 2004.

[71] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, editors. Web Services Security. Version 1.1.
Organization for The Advancement of Structured Information Standards, Billerica, Massachusetts, USA,
Feb. 2006.

[72] S. Nakajima. Model-checking behavioral specification of BPEL applications. In Proc. WLFM’05, 2005.

[73] OASIS. Universal Description, Discovery and Integration. Version 2.0. Organization for The Advancement
of Structured Information Standards, Billerica, Massachusetts, USA, July 2002.

131

[74] OASIS. WS BPEL issues list. http://www.oasis-open.org, 2004.

[75] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: A tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045–3054, 2004.

[76] Oracle. Oracle BPEL process manager. http://www.oracle.com/ technology/products/ ias/bpel/ index.html,
2008.

[77] C. Ouyang, W. van der Aalst, S. Breutel, M. Dumas, A. ter Hofstede, and H. Verbeek. Formal semantics
and analysis of control flow in WS-BPEL. In Report BPM-05-15, BPM Center, 2005.

[78] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas, and A. ter Hofstede. WofBPEL: A
tool for automated analysis of BPEL processes. In P. T. Boualem Benatallah, Fabio Casati, editor, Service-
Oriented Computing - ICSOC 2005: Third International Conference, volume 3826 of Lecture Notes in
Computer Science, pages 484–489. Springer-Verlag, Nov. 2005.

[79] C. Pautasso. JOpera: An agile environment for web service composition with visual unit testing and
refactoring. In Proc. IEEE Symposium on Visual Languages and Human Centric Computing. Institution of
Electrical and Electronic Engineers Press, New York, USA, Nov. 2005.

[80] S. Pavón Gomez, D. Larrabeiti, and G. Rabay Filho. LOLA user manual (version 3R6). Technical report,
Department of Telematic Systems Engineering, Polytechnic University of Madrid, Spain, Feb. 1995.

[81] Y. F. PengCheng Xiong and M. Zhou. A petri net approach to analysis and composition of web services.

[82] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn,
FRG, 1962.

[83] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services using process algebra.
In Proc. International Conference on Web Services, pages 43–51. Institution of Electrical and Electronic
Engineers Press, New York, USA, June 2004.

[84] G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation among web services using LOTOS/CADP. In Proc.
European Conference on Web Services 2004, volume 3250 of Lecture Notes in Computer Science, pages
198–212. Springer, Berlin, Germany, 2004.

[85] A. Slomiski. On using BPEL extensibility to implement OGSI and WSRF grid workflows. In Proc. Global
Grid Forum 10, Berlin, Germany, Mar. 2005. Humboldt University.

[86] B. Sotomayor and L. Childers. Globus Toolkit 4: Programming Java Services. Morgan Kaufmann, San
Francisco, USA, Mar. 2006.

[87] C. Stahl. A petri net semantics for bpel. Technical report, Humboldt-Universitat zu Berlin.

[88] K. L. L. Tan. Case studies using CRESS to develop web and grid services. Technical Report CSM-183,
Department of Computing Science and Mathematics, University of Stirling, UK, Dec. 2009.

[89] K. L. L. Tan and K. J. Turner. MINT interpreter web page. http://www.cs.stir.ac.uk/~kjt/ software/ lotos/
mint.html.

[90] K. L. L. Tan and K. J. Turner. Orchestrating grid services using BPEL and Globus Toolkit 4. In M. Merabti,
R. Pereira, C. Oliver, and O. Abuelma’atti, editors, Proc. 7th PGNet Symposium, pages 31–36. School of
Computing, Liverpool John Moores University, Liverpool, UK, June 2006.

[91] K. L. L. Tan and K. J. Turner. Automated analysis and implementation of composed grid services. In
D. Dranidis and I. Sakellariou, editors, Proc. 3rd South-East European Workshop on Formal Methods,
pages 51–64. South-East European Reseach Centre, Thessaloniki, Greece, Nov. 2007.

[92] S. Thatte. XLANG - Web Services For Business Process Design. Microsoft Corporation, 2001.

[93] The Apache Software Foundation. Apache ODE (Orchestration Director Engine). http://ode.apache.org/ ,
May 2008.

132

[94] The OGSi Alliance. OSGi Service Platform Core Specification, relase 4, version 4.2. http://www.osgi.org/
Main/HomePage, June 2009.

[95] P. Tripathy and B. Sarikaya. Test generation from LOTOS specifications. IEEE Transactions on Computers,
40(4):543–552, Apr. 1991.

[96] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sandholm,
D. Snelling, and P. Vanderbilt. Open grid services infrastructre (ogsi) version 1.0. Gwd-r, Global Grid
Forum, 2003.

[97] K. J. Turner. Exploiting the m4 macro language. Technical Report CSM-126, Department of Computing
Science and Mathematics, University of Stirling, UK, Sept. 1994.

[98] K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H. Magill, editors, Proc. 6th
Feature Interactions in Telecommunications and Software Systems, pages 241–256. IOS Press, Amsterdam,
Netherlands, May 2000.

[99] K. J. Turner. Formalising graphical behaviour descriptions. In C. Rattray, S. Maharaj, and C. E. Shankland,
editors, Proc. 10th Int. Conf. on Algebraic Methodology and Software Technology, number 3116 in Lecture
Notes in Computer Science, pages 537–552. Springer, Berlin, Germany, June 2004.

[100] K. J. Turner. Formalising web services. In F. Wang, editor, Proc. Formal Techniques for Networked and
Distributed Systems (FORTE XVIII), number 3731 in Lecture Notes in Computer Science, pages 473–488.
Springer, Berlin, Germany, Oct. 2005.

[101] K. J. Turner. Representing and analysing composed web services using CRESS. Network and Computer
Applications, 30(2):541–562, Apr. 2007.

[102] K. J. Turner. CHIVE (CRESS Home-grown Interactive Visual Editor). Technical report, Apr. 2009.

[103] K. J. Turner. CRESS reference manual version 4.3. Technical report, University of Stirling, Nov. 2009.

[104] K. J. Turner and K. L. L. Tan. CLOVE project web page. http://www.cs.stir.ac.uk/~kjt/ research/clove.html.

[105] K. J. Turner and K. L. L. Tan. Graphical composition of grid services. In D. Buchs and N. Guelfi, edi-
tors, Rapid Introduction of Software Engineering Techniques, number 4401 in Lecture Notes in Computer
Science, pages 1–17, Berlin, Germany, May 2007. Springer.

[106] K. J. Turner and K. L. L. Tan. A rigorous approach to orchestrating grid services. Computer Networks,
51(15):4421–4441, Oct. 2007.

[107] K. J. Turner and K. L. L. Tan. A rigorous methodology for composing services. In M. Alpuente, B. Cook,
and C. Joubert, editors, Proc. 14th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS 2009), number 5825 in Lecture Notes in Computer Science, Eindhoven, The Netherlands,
Nov. 2009.

[108] W. M. P. van der Aalst. Pi calculus versus petri nets: Let us eat humble pie rather than further inflate the pi
hype. In BPTrends, pages 1–11, May 2005.

[109] VASY. Case studies achieved using the CADP toolset. http://www.inrialpes.fr/vasy/pub/cadp/
case-studies/ , June 2009.

[110] C. A. Vissers. What makes industries believe in formal methods. In A. A. S. Danthine, G. Leduc, and
P. Wolper, editors, Proc. Protocol Specification, Testing and Verification XIII, pages 3–26. North-Holland,
Amsterdam, Netherlands, May 1993.

[111] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and J. Patel. Sedna: A BPEL-based
environment for visual scientific workflow modelling. In I. J. Taylor, E. Deelman, D. B. Gannon, and
M. Shields, editors, Workflows for e-Science, pages 428–449. Springer, 2007.

[112] M. Weiss and B. Esfandari. On feature interactions in web services. In Proc. IEEE International Conference
on Web Services, pages 88–95, San Diego, California, July 2004.

133

[113] P. Y. H. Wong and J. Gibbons. A process-algebraic approach to workflow specification and refinement.
In SC’07: Proceedings of the 6th international conference on Software composition, pages 51–65, Berlin,
Heidelberg, 2007. Springer-Verlag.

[114] World Wide Web Consortium. Document Type Definition (DTD). Version 1.2. World Wide Web Consor-
tium, Geneva, Switzerland, 1998.

[115] World Wide Web Consortium. XML Path Language (XPATH). Version 1.0. World Wide Web Consortium,
Geneva, Switzerland, Nov. 1999.

[116] World Wide Web Consortium. XSL Transformations. Version 1.0. World Wide Web Consortium, Geneva,
Switzerland, Nov. 1999.

[117] World Wide Web Consortium. Web Services Description Language (WSDL). Version 1.1. World Wide Web
Consortium, Geneva, Switzerland, Mar. 2001.

[118] World Wide Web Consortium. Simple Object Access Protocol (SOAP). Version 1.2. World Wide Web
Consortium, Geneva, Switzerland, June 2003.

[119] World Wide Web Consortium. Web Ontology Language (OWL) – Semantics and Abstract Syntax. Version
1.0. World Wide Web Consortium, Geneva, Switzerland, Feb. 2004.

[120] World Wide Web Consortium. Web Services Addressing (WS-Addressing). World Wide Web Consortium,
Geneva, Switzerland, Aug. 2004.

[121] World Wide Web Consortium. XML Schema Definition (XSD). Version 1.0. World Wide Web Consortium,
Geneva, Switzerland, Oct. 2004.

[122] World Wide Web Consortium. Web Services Choreography Description Language. Candidate Version 1.0.
World Wide Web Consortium, Geneva, Switzerland, Nov. 2005.

[123] World Wide Web Consortium. Web Services Description Language (WSDL). Version 2.0 (Draft). World
Wide Web Consortium, Geneva, Switzerland, Aug. 2005.

[124] H. yun Long and J. shi Li. A process algebra approach of bpel4ws. Journal of Information and Computing
Science, 4(2):93–98, Dec. 2008.

[125] M. Zager. SOA/Web Services - Business Process Orchestration with BPEL. http://webservices.sys-con.
com/read/155631_1.htm, Dec. 2005.

[126] J. Zhou and G. Zeng. Describing and reasoning on the composition of grid services using pi-calculus. In
S. An and D. Wei, editors, Proc. 6th. International Conference on Computer and Information Technology.
Institution of Electrical and Electronic Engineers Press, New York, USA, Sept. 2006.

134

Appendix A

CRESS to LOTOS Translation

CRESS Syntax LOTOS Translation
Text, e.g. “high” t(h) ∼ii ∼g ∼h

operation ‘t’ creates a Text value from a character
and ‘∼’ concatenates characters with text
resulting new text
the letter ‘i’ is represented as ‘ii’ in LOTOS as ‘i’ is a reserved
keyword representing an internal event

Number, e.g. 3.5 number(+,t(3),t(5))
Operation ‘number’ creates a number value (CRESS base type)
with parameters comprising a sign character (+ or -),
text for whole number, and text for fraction

Assignment simple
/rate <- 3.5 Let rate:Number = number(+,t(3),t(5)) In
Assignment complex
/contact <- contact2 Let contact:Contact = contact2 In
Assignment partial
complex
/contact.address <- ‘UK’ Let contact:Contact = setAddress(contact,t(U)∼K) In
loan.amount >= 10000 [getAmount(loan) ge number(+,t(1)∼0∼0∼0∼0, <>)] ->
Else [not(conjunction of all guards)] ->

Table A.1: CRESS Assignment and Guards in LOTOS

135

CRESS Syntax LOTOS Translation
Compensate scope SERVICE_EVENT [...] (...,scope,Compensation,...)

calls event dispatcher process with specified scope
and Compensation as event parameter

Fork [strict | loose] for strict
(PROCESS_3[...]

(e.g. nodes 3 and 4) >> Accept xstates:States
Exit(xstates, Any States))
|||
(PROCESS_4[...]
>> Accept xstates:States
Exit(Any States, xstates))
for loose, join conditions are ignored (see join)

Invoke partner.port.op input
output fault

partner !port !op !input;

(partner !port !op ?output:Type; ...
[]
partner !port !op !fault; ...)

Join condition if fork was strict then
>> Accept xstates0,xstates1:States

(e.g. 3&&4) ... get state information from returned xstates ...
xstatus represents the success value of the node
[not(xstatus0 and xstatus1)]->
... join failure flow
[xstatus0 and xstatus1]->
... join success flow
if loose, then the conditions are ignored

Receive partner.port.op in-
put

partner !port !op ?input:Type;

Reply partner.port.op output partner !port !op !output;

Reply partner.port.op fault-
name.fault

partner !port !op !faultname !fault;

Terminate with -r repeat option, then process repeats
otherwise behaviour Exit

While condition [condition]-> ... PROCESS_Node_Number (* repeat while *)
[]
[not(condition)]-> ...

Table A.2: CRESS Activities in LOTOS

136

CRESS Syntax LOTOS Translation
Catch fault.message For Catch in a diagram:

service !port !op !fault ?message:Type;
where the service, port and op are specified in the
associated node
For Catch in an event handler,
[match(xevent,xkind,fault,messageKind)]->
... behaviour
where xevent should match the fault name,
and xkind (type) should match the message type

CatchAll For an event handler:
[match(xevent,CatchAll)]->

...behaviour
Compensation For an event handler:

Let xstates:States = state(service,True,node,variables...)
∼ xstates In
saves the compensation scope (node),
along with the current state of variables inserted into an
existing list of states (xstates) for the service behaviour

Table A.3: CRESS Event and Compensation in LOTOS

137

Appendix B

CRESS to WS-BPEL 2.0 Translation

CRESS Syntax WS-BPEL 2.0 Translation
Assignment simple <assign>
/rate <- 3.5 <copy>

<from expression=′′3.5′′/>
<to variable=′′rate′′ part=′′float′′/>

...
Assignment complex <assign>
/contact <- contact2 <copy>

<from variable=′′contact2′′/>
<to variable=′′contact′′/>

...
Assignment parts <assign>
/contact.address <- ‘UK’ <copy>

<from expression=′′ ′UK′ ′′/>
<to variable=′′contact′′ part=′′contact′′

query=′′/contact/address′′/>
...

Assignments <assign>
each assignment has a <copy> construct
</assign>

proposal.amount >= 10000 <if>
<condition> $proposal.proposal/amount >= 10000
</condition>
...

Else <else> ... </else>

Table B.1: CRESS Assignment and Guards in WS-BPEL 2.0

138

CRESS Syntax WS-BPEL 2.0 Translation
Compensate scope <compensate>...</compensate> OR

<compensateScope target=′′scope′′/>
Fork [strict|loose] <empty name=′′SERVICE.NODE′′>

<target linkName=′′...′′/>
<source linkName=′′...′′/>
<source ... other parallel activities

</empty>
strict (default) and loose apply in the Join

Invoke partner.port.op <invoke name=′′SERVICE.NODE′′

input output fault partnerLink=′′partnerPort′′ portType=′′prefix:portPort′′

operation=′′op′′ inputVariable=′′input′′

outputVariable=′′output′′> ...
</invoke>

Join condition <empty name=′′SERVICE.NODE′′

joinCondition=′′boolean condition of the link status ′′>
...
</empty>
if join is loose, then <empty> has suppressJoinFailure="yes"

Receive partner.port.op <receive name=′′SERVICE.NODE′′

input partnerLink=′′servicePort′′ portType=′′prefix:portPort′′

operation=′′op′′ variable=′′input′′ createInstance=′′yes′′>
...
</receive>
if there are multiple Receives, then as <onMessage>
nested within <pick>
<onMessage

partnerLink=′′servicePort′′ portType=′′prefix:portPort′′

operation=′′op′′ variable=′′input′′>
...
</onMessage>

Reply partner.port.op <reply name=′′SERVICE.NODE′′

output partnerLink=′′servicePort′′ portType=′′prefix:portPort′′

operation=′′op′′ variable=′′output′′>
...
</reply>

Reply partner.port.op <reply name=′′SERVICE.NODE′′ partnerLink=′′servicePort′′

faultname.fault portType=′′prefix:portPort′′ operation=′′op′′

variable=′′fault′′ faultName=′′prefix:faultname′′ >
</reply>

Terminate <terminate name=′′SERVICE.NODE′′ >...</terminate>
While condition <while ...>

<condition>condition</condition>
...
<flow>
...

Table B.2: CRESS Activities in WS-BPEL 2.0

139

CRESS Syntax WS-BPEL 2.0 Translation
Catch fault.variable <catch faultName=′′prefix:fault′′

faultVariable=′′variable′′>
...
</catch>

CatchAll <catchAll>
...

</catchAll>
Compensation <compensationHandler>

...
</compensationHandler>

Table B.3: CRESS Event and Compensation in WS-BPEL 2.0

140

