
1

Evolution and I ncremental Construction Suppor t
via I ntegrated Programming Environment Mechanisms

Alex Farkas and Alan Dearle

Department of Computing Science
University of Stirling

Stirling FK9 4LA, Scotland

{alex,al}@cs.stir.ac.uk

Abstr act

The mechanisms described in this paper support a software engineering environment
in which the transition from initial design through implementation and into
maintenance is a smooth and continuous process. Two new datatypes, Nodule and
Octopus, are presented. Nodules are templates containing compiled code and labelled
typed locations, and are intended to support the interactive construction and evolution
of applications. The major benefit of the Nodules over other systems is that they
permit application systems to be generated that are complete, internally consistent and
strongly type checked. The Octopus mechanism permits executable application
systems to be evolved in situ. Using this mechanism, the information that was
available to the application developer is accessible to the maintenance programmer. It
also enables components of the application to be evolved or replaced, and reconnected
to live data in a type safe manner. When combined into a single system, the Nodule
and Octopus datatypes enable a rich collection of information about the structure and
state of applications to be maintained and made available to programmers not only
during the construction phase, but during the entire lifetime of applications.

1 Introduction
This paper presents a model to support application systems during their design, implementation
and maintenance. The goal of the model is to allow application systems to be seamlessly
evolved from prototypes into production level systems via direct interaction with the user [4].
This is achieved via the provision of parameterised templates containing compiled code.

The mechanisms described in this paper support a software engineering environment in
which the transition from initial design through implementation and into maintenance is a
smooth and continuous process. As in conventional software engineering environments, the
software engineer designs an application by defining the major components of the application
and their interfaces, and then repeatedly refining each component by defining their sub-
components. However, at any point during the design process, actual code may be associated
with any of the components, and testing performed on those completed parts of the application.
In this way, the design and implementation may be tightly coupled [15]. Components can be
added or removed, their interface or behaviour changed, affecting both the design and
implementation simultaneously. The software engineering system would check the application
under construction for consistency, and provide feedback to the programmer. When the design
has been completed and code associated with all the components, the final application is
produced which is guaranteed to be internally consistent. Later, if the finished application
needs correcting or evolving, a maintenance programmer, or an update program, could break
the application open to operate over the same components used by its designers and
implementors, information normally encapsulated within the application program and therefore
inaccessible. This enables components of the application to be evolved or replaced, and
reconnected to live data.

The paper is structured as follows: Section␣2 describes an abstract model for program
development. Section␣3 specifies in detail an implementation of this model, Section␣4

2

demonstrates its application. Section␣5 describes a mechanism for evolving and maintaining
executable applications, Section␣6 shows how this may be applied.

2 The Abstract Model
The model described here is an extension of the architecture described in [7] in which
applications are constructed that are internally bound using L-value (location) bindings. The
programmer is provided with a method of accessing these locations, enabling the contents of
the locations to be changed, thereby changing the behaviour of the system as a whole. No
dynamic binding or type checking is required when an application is executed since all binding
is performed at the time analogous to link time in traditional programming systems. This
architecture has been used to successfully implement a number of applications including
compilers and database applications. However, these applications were constructed without
any environment support and relied on the application programmers to maintain the locations
manually and to follow programming conventions when establishing bindings.

The primary abstraction used in the model is that of a template; templates contain compiled
code and may be thought of as prototypes for values†. In this respect, templates are similar to
classes found in object oriented languages. Templates contain a distinguished piece of code,
and labelled typed locations. The code provides the interface to instances created from the
template, locations may contain either values, templates, or bindings to other locations. A
template is shown in Figure␣1, it contains three typed locations A, B and C. Locations A and B
contain templates, while location C contains a value which is a procedure. The template stored
in location A contains two locations: X is uninitialised and Y contains a value with a binding to
location C. The template stored in location B also contains two locations: location P contains a
value that contains a binding to location A, Q contains a value with a binding to location P.

Location A
Location B

Locations

Locations

Template

Template
Template

X Y
Q

P

Location C

proc(-> int)
begin

end

Figure␣1: An example template.

The distinguished code contained in a template may make bindings to a location in any of the
templates in which it is resident; for example, the code in Y may bind to the locations X, B and
C. All bindings are L-value bindings; that is bindings are made to locations and not the data
stored in those locations. Using an assignment operator, the data stored in a location may be
updated with any template or value that is type compatible with the type of the location.
Consequently, the behaviour of any code that is bound to an updated location will automatically

† The term value as used in this paper is used to mean any values from the programming language value space. This may
include arbitrary scalars, constructed data structures, procedures, functions, ADTs and objects.

3

reflect the changes. However, sometimes a modification will require that the type of a
component be changed; such a type change may necessitate a change in type of a location which
is bound to other templates and values. For example, the location denoted by C in Figure␣1 is
bound to the value stored in the location denoted by Y. Clearly, some mechanism must be
provided to support the change in the types of bound values and templates.

Consider the binding graph shown in Figure␣2 in which all the values are bound directly or
indirectly to the black location in the centre of the diagram. Should the type of this location
change, the values or templates stored in the locations shaded in grey must be rebound since
any change to the type of the black location will render their specification incorrect. Therefore,
when a type change occurs to a location, any bindings to that location are automatically
dissolved. The values or templates stored in the grey locations must be rebound, perhaps after
modification. The values and templates stored in the white locations bind to the grey locations
rather than the values stored in them. Consequently, they will be unaffected by any changes to
the black location.

Figure␣2: A template binding graph.

Unlike modules in most programming languages [9, 10, 12], templates are not defined in a
single syntactic entity. Instead, templates are created containing nothing, all they possess is
their identity, and are incrementally evolved to the desired level of functionality. This is
achieved by adding typed named locations and (perhaps incomplete) code, by establishing
bindings between code and locations, and by assigning values and (perhaps incomplete)
templates to locations. Thus the incomplete template shown in Figure␣3a may be evolved into
the template shown in Figure␣3b.

Figure␣3a: A template under

const r uct ion.

Figur e␣3b: A complete template.

In order to support the incremental construction of applications, bindings to locations need not
be totally resolved when the code is supplied to the template. However, the name and type of
any unresolved bindings must be specified in order to allow the code to be checked for
correctness. For example, consider the code for a push stack operation shown in Figure␣4
which makes use of two free variables pos and stack. The push procedure may be described in
a template with the code bound to two locations pos and stack with appropriate types. These
locations could be bound later to other locations that are perhaps also bound to templates for

4

other stack operations such as pop and top. Alternatively, the locations could be initialised with
values to allow the push template to be unit tested in isolation of any context. Following this
option would not preclude the use of the former when unit testing was complete.

!* * pos : int
!** stack : array of int

let push = proc(i : int)
begin

pos := pos + 1
stack(pos) := i

end

Figure␣4: The push stack operation.

Throughout the software life-cycle, the engineers working on an application must be aware of
the components from which the application is constructed, and how those components are
interconnected. Therefore, the template mechanism provides a set of query functions over the
templates that allow the template structure to be discovered.

Application programs consist of a distinguished piece of code bound to a directed graph
whose nodes are locations containing arbitrary values. In the model described here, an
application is produced by instantiating a template. This constructs a graph that is isomorphic to
the template binding graph, but with each location containing a value wherever a template exists
in the original graph. In order to instantiate a template, all the bindings contained in the template
must be resolved, bindings to uninitialised locations are not permitted.

The stack example described earlier highlights another requirement of the model, namely
the need for some locations to be dynamically instantiated in the same manner that local
variables are constructed in procedures of algol-like languages. For example, every instance of
a stack package should have its own copy of the variables pos and stack. To facilitate this, the
model allows some locations to be specified to be local to a template. Local locations are
created dynamically when the code associated with the template is executed, whereas ordinary
locations are created when the application is instantiated.

After an application is generated, it may still be subjected to evolutionary pressures. For
example, consider a banking system that has been constructed in an object oriented manner.
Should the account data be encapsulated within a faulty object, it would be desirable to have the
ability to correct the bug and evolve the component without losing the encapsulated bank
accounts. Furthermore, the programmer maintaining the system should be allowed access to
the data that was available during the construction of the component. In the model described in
this paper, the internal structure of an arbitrary value, including an application program, may be
discovered by converting the value into an Octopus [8]. Normally this information is invisible
and encapsulated within the application program. When viewed as an Octopus, components of
the application may be evolved or replaced and reconnected to live data.

The Octopus mechanism provides a dynamic infinite union type with a set of reflective
operations. In essence, Octopus provides a uniform abstract interface to values of any type,
this facilitates a number of higher level activities, namely:

• construction of browsing tools,
• software debugging,
• querying over complex objects,
• evolution of programs and data, and
• distribution of complex object closures.

The essence of the technique is to allow values from the programming language value space to
be hoisted up to the meta level and manipulated in ways which the programming language
would not otherwise permit. When manipulation is complete, values may be dropped back into
the value space, provided that they still conform to the language’s type system.

The Octopus model provides the ability to cut and rewire the bindings within a hoisted
value in much the same way as templates support this activity during the construction phase.
When a value from the value space is hoisted up to the meta level, all of its bindings are treated

5

as hooks from the hoisted value to the bound values. A binding is cut by detaching the hook
from the bound value, and is rewired by attaching the hook to another value of the same type.
It is neither possible to rewire values of an incompatible type nor drop hoisted values back into
the value space whilst cut bindings exist.

Application
Development Application

Template Octopus

Template

Template
Feedback

Maintenance

Application
Instantiation

Figur e␣5: The application l i fecycle.

The lifecycle of an application is shown in Figure␣5. A newly created template is merely an
empty shell, it is enhanced by adding code, locations, other templates and values to it. An
application may be created by instantiating the template. If the application later requires
maintenance, it may be injected into an Octopus which provides a view of the application's
internal state. When viewed as an Octopus, new values, perhaps generated from other
templates, may be assigned to the locations contained in the application and bound to its internal
state. Changes made to the instance may be propagated back to the original template from
which the instance was produced in order that future application instances also contain the
correction. When the application has been modified, it may be dropped back into the value
space of the programming language.

3 The Nodule Datatype
One instance of the above method of program construction is described for the persistent
programming language Napier88 [14]. In this architecture, a program template is realised by an
abstract data type called a Nodule (Napier module). The Nodule operations allow an
application template to be developed which may later be instantiated to produce an executable
application. Nodules contain three abstractions: locations, locals and source code; these
correspond to the locations, locals and distinguished code described above.

Each Nodule contains a set of typed locations which may be added incrementally and are
used for storing values, Nodules and bindings to other locations. The locations are independent
of the data stored in them and may have data assigned to them at any time prior to Nodule
instantiation. Nodules also contain a set of typed locals; these are used to denote values which
are dynamically instantiated whenever an instance produced from a Nodule is executed. The
final component of a Nodule is its source code which may contain references to locations or
locals within the Nodule.

6

type CompResult is var iant(Ok : null ; Fail : List[str ing])

type SourceResult is var iant(Valid,Invalid : str ing ; Unspecified : null)

type NameKind is var iant(Location,Local : str ing)

type BindingResult is structure(SrcName,Destname : NameKind)

type CellInfo is structure(Name : str ing ; Type : TypeRep)

rec type CellResult is var iant(Value : any ; Nodule : Nodule ; Unbound : null)

& Nodule is structure(
mkInterface: proc(Type : TypeRep);
getInterface: proc(→ TypeRep);

mkSource: proc(source : str ing → CompResult);

getSource: proc(→ SourceResult);

mkLocal: proc(key : str ing ; Type : TypeRep → bool);
deleteLocal: proc(key : str ing → bool);
getLocalInfo: proc(→ List[CellInfo]);

getLocal: proc(key : str ing → CellResult);

mkLocation: proc(key : str ing ; Type : TypeRep → bool);
deleteLocation: proc(key : str ing → bool);
getLocationInfo: proc(→ List[CellInfo]);

getLocation: proc(key : str ing → CellResult);

assignNoduleToLocal: proc(key : str ing ; N : Nodule → bool);
assignValueToLocal: proc(key : str ing ; a : any → bool);
assignNoduleToLocation: proc(key : str ing ; N : Nodule → bool);
assignValueToLocation: proc(key : str ing ; a : any → bool);
bind: proc(sourceName, targetName : str ing → bool);
getBindingInfo: proc(→ List[BindingResult]);

newInstance: proc(→ any))

!** Nodule constructor function
newNodule : proc(→ Nodule)

Figur e␣6: Type declar ations and signatur es descr ibing Nodules.

The interface to a Nodule is shown in Figure␣6. The type TypeRep which is not declared in
Figure␣6, is a structured representation of types used by the Napier88 system. The Napier88
system provides a complete set of selector, constructor, equivalence and iterator functions that
operate over type representations [5]. For simplicity we assume that the types package includes
a function called mkTypeRep which constructs a type representation from a string‡. The type
any is an infinite union type; values of any type may be injected into the type any and all
consequent type checking over the injected values is performed dynamically. The semantics of
the Nodule operations are described below.

‡ In practice, the types module contains lower level functions than this. However, such a function may be constructed
using the types module.

7

mkInterface defines the type of instances produced from a Nodule by calling the newInstance
function. If a different interface already exists, and source code has been
specified, then the source code is invalidated.

getInterface returns a representation of the type of the instances produced from a Nodule by
calling the newInstance function.

mkSource compiles the specified source text in the context of the locations and locals
defined in the Nodule. The operation fails if the type of the source is
incompatible with the interface of the Nodule, or if an interface has not been
specified, or if the compilation fails.

getSource returns a copy of the source code (if any) of the Nodule and the state of this
source code.

mkLocal defines a dynamically instantiated local. This operation fails if a local or location
of the same name already exists in the Nodule.

deleteLocal removes a dynamically instantiated local and invalidates any code, locations or
other locals bound to the local. This operation fails if a local with name key
does not exist.

getLocalInfo returns a list of the names and types of each local in the Nodule.

getLocal returns the state of a local with name key. If a value or Nodule is stored in this
local the data is also returned.

mkLocation defines a typed, empty location which may contain a value, a Nodule, or a
binding to another location. This operation fails if an item of name key exists in
the Nodule prior to the call.

deleteLocation
removes the location with name key and invalidates any bindings to that
location. This operation fails if a location with name key does not exist.

getLocationInfo
returns a list of the names and types of each location in the Nodule.

getLocation returns the state of a location with name key. If a value or Nodule is stored in
this location the data is also returned.

assignNoduleToLocal
assigns a copy of the Nodule N to the local called key. This operation fails if
the type of N does not match the type of the local, or if a local with name key
does not exist in the Nodule.

assignValueToLocal
assigns the value injected into a to the local called key. This operation fails if the
type of N does not match the type of the local, or if a local with name key does
not exist in the Nodule.

assignNoduleToLocation
assigns a copy of the Nodule N to the location called key. This operation fails if
the type of N does not match the type of the location, or if a location with name
key does not exist in the Nodule.

assignValueToLocation
assigns the value injected into a to the location called key. This operation fails if
the type of N does not match the type of the location, or if a location with name
key does not exist in the Nodule.

bind Binds the location or local called sourceName to the location or local called
targetName. The name sourceName may be a structured name with dots

8

indicating context. For example, in Figure␣1, the location called Y may be
bound to location C using the operation bind(␣"A.Y" ,"C" ␣). This operation
fails if any of the names do not exist, or if the abstractions have different types.
Locations may not be bound to locals within the same Nodule; consequently, if
this is attempted the operation will also fail.

getBindingInfo
returns a list of all bindings in the Nodule made using the bind operation.

newInstance generates a value using the Nodule as a template. The type of the value
generated is that specified by mkInterface. The operation fails if the Nodule is
internally inconsistent or incomplete.

newNodule returns a new empty Nodule.

4 An Example Application using Nodules
let stackGen = proc(→ structure(push : proc(int)

pop : proc()
top : proc(→ int)

begin
let stack = ar ray 1 to 100 of 0 !** Create a zero filled array of size 100.
let pos := 0 !** Declare an integer to use as the stack index.

let push = proc(i : int)!* * Increment pos and assign value to new stack offset.
begin

pos := pos + 1
stack(pos) := i

end

let pop = proc() !** Decrement the stack index.
begin

pos := pos – 1
end

let top = proc(→ int) !** Return the item at the top of the stack
begin !* * the stack index.

stack(pos)
end

struct(push = push ;!** Construct package of stack operations.
pop = pop ;
top = top)

end

Figure␣7: A program to generate packages of stack operations.

To illustrate how an application is constructed using Nodules, consider the Napier88 stack
package shown in Figure␣7; this example has been chosen for simplicity and brevity. Nodules
are intended for much larger and higher level applications than the stack example since the
benefits of the mechanism are reduced as the complexity of the application decreases. In the
case of the stack package, the structure of the application is readily apparent through inspection
of the entire package. In a larger application, querying tools are required to allow the
programmer to discover the structure of the application under development [2, 3]. In the case
of the stack package, any change to a component could easily be achieved by a single
programmer modifying and recompiling the entire package. Furthermore, the entire package is
so small that unit testing of individual components in isolation makes little sense.

9

The procedure stackGen in Figure␣7 returns a package of operations bound to a stack
implemented as an array of integers. As is common in Napier88 programs, the package is
implemented as a record containing procedures each bound to encapsulated values [1, 6]. New
encapsulated values (stack and pos) and new procedure closures (push, pop and top) are created
upon each invocation of the generator.

let stackGenN = newNodule()

stackGenN(mkInterface)(mkTypeRep("proc(→ structure(push : proc(int);
pop : proc();
top : proc(→ int))"))

stackGenN(mkLocal)("localpos", mkTypeRep("int")))
stackGenN(mkLocal)("localstack", mkTypeRep("array of int")))
stackGenN(mkLocal)("push", mkTypeRep("proc(int)"))
stackGenN(mkLocal)("pop", mkTypeRep("proc()"))
stackGenN(mkLocal)("top", mkTypeRep("proc(→ int)"))

stackGenN(mkSource)("proc(→ structure(push : proc(int) ;
pop : proc() ;
top : proc(→ int))

begin
struct(push = push ; pop = pop ; top = top)

end")

Figure␣8: The history of operations on the stackGenN Nodule.

A log of a typical interaction to construct the stackGen application is shown in Figure␣8. Code
such as this would generally be executed in response to the interaction of the application
designer with an environment tool. The application designer could choose to construct the
application in a different order to yield the same result. First, a Nodule representing the
stackGen application must be created using the newNodule operation. Initially, the Nodule is
empty: it does not contain any locals, locations, or source code, nor does it have a specific
interface. Later the implementation of the stack package is developed by calls to the Nodule
constructor functions, in this case, mkInterface, mkLocal and mkSource. The type of the
values generated from the Nodule is specified using mkInterface. Next, five locals are added
by specifying their name and type in calls to mkLocal. Finally the source code for the package
is specified by a call to mkSource; this source code binds to the, as yet uninitialised, locals
push, pop and top.

stackGen : proc(→ structure(push : proc(int) ; pop : proc() ; top : proc(→ int)))

push : proc(int)

pop : proc()

top : proc(→ int)

localstack : *int

localpos : int

proc(→ structure(
 push : proc(int) ;
 pop : proc() ;
 top : proc(→ int)))
begin
 struct(push = push ;
 pop = pop ;
 top = top)
end

Figure␣9: A view of stackGenN after the fir st stage of construction.

A view of the stackGenN Nodule after the sequence of steps shown in Figure␣8 have been
executed is shown in Figure␣9. The source code is shown on the right side of the Nodule and
the locals are on the left. The locals are shown as empty diamonds indicating that they have not
yet been initialised. The interface to the Nodule appears alongside the Nodule name at the top
of the figure.

10

The next step in constructing the stack generator is to create Nodules for each of push, pop
and top. These three Nodules may be constructed in any order and independently of each other.
Alternatively, predefined templates may already exist in the programming environment which
may be reused. Figures␣10, 11 and 12 show the history of the calls necessary to construct
these Nodules.

let pushN = newNodule()
pushN(mkInterface)(mkTypeRep("proc(int)"))
pushN(mkLocation)("stack", mkTypeRep("array of int"))
pushN(mkLocation)("pos", mkTypeRep("int"))
pushN(mkSource)(" proc(i : int)

begin
pos := pos + 1
stack(pos) := i

end")

Figur e␣10: The pushN Nodule.

let popN = newNodule()
popN(mkInterface)(mkTypeRep("proc()"))
popN(mkLocation)("pos",mkTypeRep("int"))
popN(mkSource)(" proc()

begin
pos := pos – 1

end")

Figur e␣11: The popN Nodule.

let topN = newNodule()
topN(mkInterface)(mkTypeRep("proc(→ int)"))
topN(mkLocation)("stack",mkTypeRep("array of int"))
topN(mkLocation)("pos",mkTypeRep("int"))
topN(mkSource)("proc(→ int) ; stack(pos)")

Figur e␣12: The topN Nodule.

The three Nodules are similar to each other; we shall therefore only discuss the construction of
the pushN Nodule. PushN contains two locations, stack and pos, to which the source code of
the Nodule binds. These are specified to be locations rather than locals since they represent
unbound intermediate free variables which will be later bound to the stackGenN context. The
complete pushN Nodule is shown in Figure␣13 in which the stack and pos locations are shown
as empty, plain boxes indicating that they are uninitialised.

proc(i : int)
begin
 pos := pos + 1
 stack(pos) := i
end

pushN : proc(int)

stack : *int

pos : int

Figur e␣13: The pushN Nodule.

At this point, all of the necessary Nodules have been constructed and may be composed to form
a complete application template as shown in Figure␣14. The first two lines specify the initial
values for the locals localpos and localstack. The next three lines assign copies of the
respective Nodules pushN, popN and topN to the corresponding locals in the stackGenN
Nodule. Since these are locals, the stack generator will construct new procedures from the
Nodules each time it is invoked. This is the correct semantics since these procedures should
bind to local copies of localpos and localstack. Procedures with no bindings to free variables

11

may safely be assigned to locations rather than locals. The final five lines establish bindings
between the Nodule components. For example, the first call to bind indicates that the location
denoted by stack within the pushN Nodule should be bound to localstack in stackGenN. The
completed application template is shown in Figure␣15.

stackGenN(assignValueToLocal)("localpos", any(0))
stackGenN(assignValueToLocal)("localstack", any(ar ray 1 to 100 of 0))

stackGenN(assignNoduleToLocal)("push", pushN)
stackGenN(assignNoduleToLocal)("pop", popN)
stackGenN(assignNoduleToLocal)("top", topN)

stackGenN(bind)("push.stack", "localstack")
stackGenN(bind)("push.pos", "localpos")

stackGenN(bind)("pop.stack", "localstack")

stackGenN(bind)("top.stack", "localstack")
stackGenN(bind)("top.pos", "localpos")

Figure␣14: Composing the Nodules to form a complete stack Nodule.

proc(→ structure(
 push : proc(int) ;
 pop : proc() ;
 top : proc(→ int)))
begin
 struct(push = push ;
 pop = pop ;
 top = top)
end

stackGen : proc(→ structure(push : proc(int) ; pop : proc() ; top : proc(→ int)))

push : proc(int)

pop : proc()

top : proc(→ int)

localstack : *int

localpos : int

pushN

popN

topN

stack

pos

pos

pos

stack

0

0,...

Figur e␣15: The complete stack Nodule.

Once the stack Nodule is complete, a new application program may be produced by calling the
newInstance operation from stackGenN. Provided that the Nodule is complete this will return
the application program injected into any. The value may be obtained as shown in Figure␣16
and applied to produce an instance of a stack package.

type StackPackGen is proc(→ structure(push : proc(int) ; pop : proc() ; top :
proc(→ int))

let anystackGen = stackGenN(newInstance)()
let myStack = project anystackGen as stackGen onto

StackPackGen : stackGen()
defaul t : error(...)

myStack(push)(7)

Figure␣16: An operational Stack package.

5 Evolution using Octopus
During their lifetime, it is inevitable that applications undergo change, this may be to correct
errors or simply to improve their functionality. It is desirable to make such changes with the
minimum of interference to a working application. Furthermore, as discussed earlier, it is
essential to maintain the state of the system prior to evolution. The Octopus mechanism

12

provides this functionality by enabling the internal structure of an application program to be
interrogated and manipulated. Two special operations exist which allow a value to be hoisted
into and dropped from an Octopus. Type declarations for the two operations are shown in
Figure␣17.

coerceToOctopus : proc(any → Octopus)
coerceFromOctopus : proc(Octopus → any)

Figure␣17: The Octopus hoist and drop operations.

The first operation, coerceToOctopus, hoists a value into an Octopus. The other operation,
coerceFromOctopus, first checks to ensure that all bindings in the Octopus are resolved before
extracting the encapsulated value. If any of the bindings are unresolved, the Octopus is
returned unchanged.

An Octopus comprises a set of four operations which allow the bindings within a value to
be examined and manipulated. These operations are implemented as a package of functions as
shown in Figure␣18; the hoisted value is encapsulated in the closure of these functions.

type Octopus is structure(getType : proc(→ TypeRep);
getSource : proc(→ Nodule) ;
getBinding : proc(str ing → Binding) ;
scan : proc(proc(Binding))

Figure␣18: The structure of an Octopus.

The getType operation returns a representation of the type of the value encapsulated in the
Octopus. This representation is a value in the programming language space and may not be
used as a denotation for a type. The getSource operation returns a copy of the Nodule used to
construct the value. The getBinding operation returns the binding associated with the given
name if one exists. A scan procedure is provided to iterate over the bindings contained in an
Octopus; scan takes as its single parameter a programmer specified procedure which is
iteratively applied to each binding in the Octopus. The specified procedure may perform an
arbitrary computation on a binding; for example, the procedure may be used to display a
binding’s value. Bindings are also represented as a package of functions, and are described
below.

5. 1 Bindings

type Binding is structure(cut : pr oc(→ bool);
add : pr oc(any → bool);
get : proc(→ any);
resolved : pr oc(→ bool);
getType : proc(→ TypeRep);
getName : proc(→ str ing))

Figure␣19: The representation of a binding.

Each binding is represented by six operations, as shown by the corresponding type declaration
in Figure␣19. The operations on bindings behave as follows:

cut causes the associated binding to be dissolved; the process of cutting a binding is
simply a meta level indication that the binding is no longer resolved. Cut bindings
may still be accessed via direct bindings to the naked value.

add permits an unresolved binding to be rewired, or resolved, using the given value.
The operation fails if the binding is already resolved or if the supplied value is of
the wrong type.

13

get returns the current value of the binding. If the binding is unresolved, a fail value
is returned.

resolved returns true if the binding is in a resolved state and false otherwise.

getType returns a representation of the type of the corresponding bound value.

getName returns the name of the bound value.

Using the operations described in this section, an application graph may be examined in order
to locate and extract components for replacement or reuse. In particular, the state of an old
component may be obtained and wired into a replacement component in order to maintain the
state of an application. This process is illustrated in the next section.

6 Evolving the Stack Example using Octopus
This section demonstrates how an instance of the stack package may be evolved using Octopus.
Like the earlier example, this is kept simple for clarity of explanation. Octopus is intended to
provide a platform for the construction of higher level maintenance tools rather than to be used
in the manner demonstrated here.

let pos := 7 !** any old value to allow the declaration of newPop.

let newPop = proc(→ int)
begin

if pos > 0 then
pos := pos – 1

el se
error(...)

end

Figure␣20: A cor rect pop pr ocedur e.

The more observant reader will have noticed that the pop operation in Figure␣7 is erroneous – it
does not check to see if the stack is empty before decrementing the stack index. To correct this
problem, we shall construct the new pop procedure shown in Figure␣20 and wire it into an
instance of the stack package whilst retaining the data held in the stack; this is illustrated in
Figure␣21.

The updatePop procedure shown in Figure␣21 updates the pop component of an arbitrary
stack package as follows. Firstly, the pop procedure from the stack package and the newPop
procedure are hoisted into Octopuses using the coerceToOctopus function. Next, the pos
bindings from the old and new pop procedures are retrieved. The pos binding from the pop
procedure is then cut and replaced with the binding to pos from the stack package. Once the
pos value from the stack package is bound into the newPop Octopus, the encapsulated
procedure is dropped back into the value space injected in an any. After projecting this any onto
the correct type, the dropped value is assigned to the pop field of the supplied stack package
completing the update. This final assignment is possible due to the fact that Napier88 supports
first class procedures. In languages in which direct assignment is not possible, such as true
object oriented languages, Octopus operations may be performed on the entire object, in this
case the stack package, rather than on the interface procedure pop, to achieve the same result.

14

type StackPack is structure(push : proc(int) ; pop : proc() ; top : proc(→ int))

!** This procedure replaces the pop component of a stack package
let updatePop = proc(sp : StackPack ; newPop : proc())
begin

!** inject old pop into an Octopus
let oldPopOctopus = coerceToOctopus(sp(pop))

!** inject new pop into an Octopus
let newPopOctopus = coerceToOctopus(newPop)

!** get the pos binding from sp
let spPos = oldPopOctopus(getBinding)("pos")

!* * get the pos binding from newPop
let newPopPos = newPopOctopus(getBinding)("pos")

let ok := newPopPos(cut)() !* * cut pos from newPop
ok := newPopPos(add)(spPos) !* * bind spPos for newPop

let fixedPop = coerceFromOctopus(newPopOctopus)!** the new pop proc. in any
project fixedPop as projFixedPop onto ! ** project from the any

proc() : sp(pop) := projFixedPop !** drop was successful
defaul t : error(...) !** the drop failed

end

Figure␣21: Upgrading a stack package.

7 Conclusions
We have presented a programming model that supports the design, implementation and
maintenance of application systems. A realisation of this model is provided by the Nodule and
Octopus datatypes. Nodules are used to construct and evolve application templates, whilst
Octopus enables evolution and maintenance to take place on executable applications.

In this paper, the Nodule and Octopus mechanisms are presented in their form as
implemented in Napier88. However, it is envisaged that the principles behind the mechanisms
could be applied to other programming paradigms, such as object-oriented or functional
programming languages. For example, implementation of Octopus in an object-oriented system
could be achieved by extending existing classes used by a system with the operations required
to hoist, cut, rewire etc. Indeed, this tailoring could be applied to arbitrary depth in order to
extend or restrict the available operations as required.

Nodules permit application systems to be developed interactively and incrementally with
the same degree of freedom provided by systems such as Lisp [13] and Smalltalk-80 [11]. Like
Lisp and Smalltalk, Nodules allow components to be tested in isolation. However, the major
benefit of the model is that it allows application systems to be generated that are complete,
internally consistent and strongly type checked.

The Octopus mechanism permits executable application systems to be evolved in situ.
Such evolution may be achieved in interpreted, dynamically bound and type checked systems
such as Lisp and Smalltalk. However, Octopus offers a number of advantages over such
systems. Firstly, the Octopus mechanism is type safe; even though it allows encapsulated
values to be discovered and manipulated, the integrity of the encapsulated data, and
consequently the entire application, is never compromised. Secondly, the information that was
available to the application developer is accessible to the maintenance programmer; the
maintenance programmer never has to navigate untyped data structures such as Lisp cons cells
and guess their meaning. Lastly, the Octopus mechanism may manipulate values containing
compiled rather than interpreted code since the abstractions provided are at a high level.

15

When combined into a single system, the Nodule and Octopus datatypes enable a rich
collection of information about the structure and state of applications to be maintained and made
available to programmers not only during the construction phase, but during the entire lifetime
of applications.

Acknowledgements
This paper benefits from discussions with Karen Wyrwas.

References

1. Atkinson, M. and Morrison, R. "Procedures as Persistent Data Objects", ACM TOPLAS,
vol 7, 4, pp. 539-559, 1985.

2. Bachman, C. W. "The Programmer as Navigator", Turing Award Lecture, Addison-
Wesley, ACM Turing Award Lectures: The First Twenty Years 1966-1985, pp. 269-280,
1973.

3. Bachman, C. W. "The Programmer as Navigator, Architect, Communicator, Modeler,
Collaborator and Supervisor", Postscript to 1973 Turing Award Lecture, Addison-Wesley,
ACM Turing Award Lectures: The First Twenty Years 1966-1985, pp. 281-285, 1986.

4. Balzer, R. M. "Living in the Next Generation Operating System", IFIP'86, pp. 283-291,
1986.

5. Connor, R. "The Napier Type-Checking Module", Persistent Programming Research
Report, University of St. Andrews, 58, 1988.

6. Connor, R. C. H., Brown, A. B., Cutts, Q. I., Dearle, A., Morrison, R. and Rosenberg,
J. "Type Equivalence Checking in Persistent Object Systems", Implementing Persistent
Object Bases, Morgan Kaufmann, pp. 151 - 164, 1990.

7. Dearle, A., Cutts, Q. and Connor, R. "Using Persistence to Support Incremental System
Construction", Microprocessors and Microsystems, vol 17, 3, pp. 161-171, 1993.

8. Farkas, A. and Dearle, A. "Octopus: A Reflective Language Mechanism for Object
Manipulation", Proceedings of the Fourth International Workshop on Database
Programming Languages, Springer-Verlag, New York City, 1993.

9. Futatsugi, K., Goguen, J., Meseguer, J. and Okada, K. "Parameterized Programming in
OBJ2", Proceedings of the Ninth International Conference of Software Engineering, pp.
51-60, 1987.

10. Glassman, L. and Nelson, G. "Modula-3 Report", Technical Report 52 DEC SRC,
Palo Alto, November, 1989.

11. Goldberg, A. and Robson, D. "Smalltalk-80: The Language and its Implementation",
Addison-Wesley, Reading, Massachusetts, 1983.

12. Ichbiah, J. D. "The Programming Language Ada Reference Manual", vol 155,
Springer-Verlag, Lecture Notes in Computer Science, 1983.

13. McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P. and Levin, M. I. "The
Lisp Programmers' Manual", Technical Report, M.I.T. Press, Cambridge, Massachusetts,
1962.

16

14. Morrison, R., Brown, A. L., Connor, R. and Dearle, A. "The Napier88 Reference
Manual", University of St. Andrews, PPRR-77-89, 1989.

15. Swartout, W. and Balzer, R. "On the Innevitable Intertwining of Specification and
Implementation", CACM, vol 25, 7, pp. 438-449, 1982.

