
Technical Report CSM-123

August 1994

Department of Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

Telephone +44-786-467421, Facsimile +44-786-464551
Email amm@cs.stir.ac.uk

rgc@cs.stir.ac.uk

Technical Report CSM-123

August 1994

Abstract

Aggregation is a kind of abstraction which allows a more complex object, the aggregate,
to be formed from simpler objects, the components. Although there is not yet a standard
definition of aggregation, the two main cases are aggregates with hidden components and
aggregates with shared components. The more interesting case is the former, in which
the aggregate encapsulates its components, making them invisible to the other objects in
the model.

The ROOA (Rigorous Object-Oriented Analysis) method, developed to integrate LO-
TOS within object-oriented analysis, models both kinds of aggregation.

We have developed the Rigorous Object-Oriented Analysis (ROOA) method which integrates

LOTOS with object-oriented analysis [10, 11, 12]. In this document we describe aggregation

within the context of ROOA and show how it can be represented in LOTOS. The description

is therefore within the context of object-oriented analysis although most of the discussion is

also applicable to object-oriented design.

In entity-relationship models, the term aggregation is used to describe the relationship

between an entity and its attributes. Each attribute is a component of an entity, and the entity

is an aggregate of its attributes. We are interested in a broader definition of aggregation which

describes the relationship between objects and allows a more complex object to be formed

from the combination of simpler objects. The complex object is called the aggregate object

and the simpler objects are called object components, or just components. Aggregates are

described by part of, whole part, component of, or consists of relationships.

We have a broader view of aggregation than some other authors. An important charac-

teristic of our aggregates is that they may add behaviour to the behaviour defined in their

components. Moreover, components within the aggregate may communicate between each

other without the aggregate’s ‘knowledge’. The services defined in a component may or may

not be on offer by the aggregate. We classify aggregation according to whether or not the

components are visible to the other objects in the system and also whether or not the number

of components can vary in time.

We make a clear distinction between aggregates and subsystems. While an aggregate is

an object, a subsystem is only a group of objects, without individual identity.

Although, in the past few years, researchers have paid special attention to aggregation,

there is no standard definition of what an aggregate is. This paper reviews the more common

views of aggregation and presents our view, proposing a set of properties that aggregates

should satisfy. Finally, it shows how ROOA uses LOTOS to model aggregates.

Aggregation is a relationship between several objects which allows a more complex object, the

aggregate, to be built from a combination of simpler objects, the components. Both aggregates

and components are objects; they have an identity, they offer services according to a certain

behaviour and they have state information which records the results of their services. The

behaviour and state information of the aggregate is given by a combination of the behaviour

and state information of its components and by extra data and functionality.

1

Aggregation with hidden components is a kind of abstraction. There are other kinds,

generalization being an example. Abstraction is the suppression of detail about an object,

except for that relevant to the immediate purpose. Other kinds of abstraction can be applied

during implementation where a concept is described by parts, but none of these parts is a true

object. Implementation abstraction hides implementation detail from the user. “Real-world”

abstraction, such as aggregation and generalization, is useful when thinking about the real

world. It defines a more abstract (higher level) object which is useful for our understanding

of the problem. This sort of abstraction helps in controlling the size and complexity of large

systems during development and, if a system is developed using levels of abstraction, the

resulting product is less difficult to understand.

It is important to distinguish between the role of an aggregate and and that of a grouping

of objects, such as subsystems. We believe that an aggregate must be a representation of an

entity from the real world and it may have information of its own, for example the number

of components. In the more interesting case, the aggregate manages the interaction between

its components and the rest of the objects in the model. Whereas subsystems may be used

during analysis, and may have no implementation consequences, aggregates are objects which

have first class status in the system and which usually appear in the final implementation.

A subsystem is not an object, it is a grouping of logically related objects. The behaviour

of a subsystem is given by the behaviour of its components. Each component communicates

directly with objects outside the scope of the subsystem, as if the subsystem did not exist.

Wirfs-Brock et al., for example, describe a subsystem as an analysis construct which does not

survive in the implementation [16, p30]:

A subsystem is a set of classes (and possibly other subsystems) collaborating to

fulfill a set of responsibilities. Although subsystems do not exist as the software

executes, they are useful conceptual entities.

These subsystems are groupings of objects useful for understanding a problem, but they

may or may not describe a concept from the real world. Aggregates, on the other hand,

describe complex concepts from the real world and so they are named objects.

The role played by aggregation varies from author to author. Rumbaugh et al. define

it as a stronger form of association (conceptual relationship) [14]; Smith and Smith stress

its importance as a mechanism to introduce abstraction [15]; and Hartmann et al. [5] use

aggregation as a structuring mechanism and define its formal semantics, showing how it is

supported by the specification language TROLL [8].

We see aggregation as a mechanism for structuring a large system into different levels of

abstraction, in which each higher level object is described in terms of simpler objects. As we

will see, it uses abstraction, information hiding and encapsulation as basic techniques.

Although aggregation seems a simple concept, a standard definition does not exist (see e.g. [1,

2, 5, 13]).

As we are interested in modelling aggregation formally, this section discusses the view

supported by Hartmann et al. who define a formal semantics for composite objects [5].

According to them, the combination of objects to form a more complex object (such as an

aggregate) is modelled by structure-preserving mappings between objects, also called object

2

morphisms. A special case of object morphism is the object embedding morphism which

describes a complex object ob 1 encapsulating an object ob 2. The set of life cycles of the

encapsulated object ob 2 must be preserved and events of ob 1 must use events of ob 2 to modify

ob2’s state. This latter requirement is captured by the concept of calling. If an event e 1, in

ob1, calls an event e 2, in ob2, then whenever e 1 occurs, e 2 also occurs.

Hartmann et al. state that an object embedding morphism between objects ob 1 and ob2,

assuming that ob 2 is embedded in ob 1, has to satisfy the two following conditions:

1. The events of ob 2 are included in the set of events of ob 1. For the life cycle of the

(composite) object ob 1, if we constrain a life cycle to the events of the embedded (or

part) object, we have to obtain a valid life cycle of the embedded object.

2. The attributes of ob 2 are included in the attributes of ob 1. For observations of ob 1

projected to the attributes of the part object, we must obtain the same observation as

for applying the observation mapping of part object ob 2 to a life cycle of ob 1 restricted

to the events of ob 2.

An aggregate object that satisfies these two rules is the coproduct of its components. Such

an object does not add any behaviour to the behaviour already defined in its components.

Most OOA (Object-Oriented Analysis) methods argue that the interesting situation appears

when the aggregate has properties of its own together with the properties of its components [3,

4, 14].

Imposing the condition that every event defined in an object component has also to be

defined in the aggregate forbids a component to have services hidden from the aggregate.

Such hidden services would allow, for example, communication between components without

the aggregate’s intervention. Hence, the two rules forbid the communication between object

components defined at the same level of the hierarchy and in the scope of the aggregate.

We want our aggregates to have extra functionality which is unknown to their compo-

nents. Moreover, we want to allow communication between object components without the

aggregate’s knowledge. Therefore we permit services defined in a component, and which are

only needed by another component, not to be on offer by the aggregate. For these reasons

our aggregates are different from those of Hartmann et al.

As a component is an object, it may happen that this object is itself a complex object,

composed of other objects. The object at the top level of the hierarchy need not know that

one or more of its components are aggregates. This leads to the issue of transitivity. While

some authors [4] explicitly say that aggregation is not transitive, other authors [14] define

transitivity as one of the most important properties of aggregates.

Transitivity can be discussed according to the semantics of the aggregation relationship.

Let us suppose that aggregate ob 1 has the component ob 2 which has a component ob 3. It

is the case that if ob 2 is part of the internal structure of ob 1 and ob3 is part of the internal

structure of ob 2, then ob 3 is part of the internal structure of ob 1. However, transitivity is lost

when aggregation relationships with different semantics are involved. For example, I am part

of a research group and my arm is part of me, but my arm is not part of my research group.

Message connections, for example, are not transitive. If ob 1 has a message connection with

ob2 and ob2 has a message connection with ob 3, this does not mean that ob 1 has a message

3

connection with ob 3. If this was not so, information hiding and encapsulation would not

be available. Nevertheless, indirect communication is possible. When the top level object,

object ob 1, requests a service from one of its components, object ob 2, it may well be that

ob2 delegates part of the service to one of its components, object ob 3. However, ob 1 does not

need to know the ob 2-services which correspond to calls of ob 3-services. We can say that, in

general, ob 1-services call ob 2-services which call ob 3-services. This is discussed by Rumbaugh

et al. [14] as propagation of operations and is what Hartmann et al. [5] calls event-calling.

We describe an aggregate in terms of its components. We allow a component to be hidden

(non-shared) from other objects or shared by other objects. We use the term aggregation to

refer to the relationship between the aggregate and its components. As a conceptual relation-

ship, aggregation has cardinality. We show cardinality at the end points of the relationship

with an amount (k) or a range (n,m) 1.

A hidden component is not visible to other objects in the system and so it can only

communicate with the rest of the system through the aggregate, although it can interact

with other components in the same aggregate. An aggregate defines the scope of its hidden

components and encapsulates each of them.

A shared component can be accessed by other objects in the system. For each shared

component, an aggregate has an attribute holding the object identifier of that component.

A component encapsulates its own state and behaviour, in the sense that its state may only

be changed using the services defined in its interface. The interaction between an aggregate

and its components and among components is via communication [11].

So far, we have been talking about aggregates and components as being objects. We

will from here on talk about aggregate classes, component classes, aggregate objects and

component objects. However, in situations where the meaning is understood by the context,

we may use only the terms “aggregate” and “component”.

In the object model of OOA methods the aggregate is represented by the class template

at the top level of the hierarchy and the components are the class templates at the bottom

(see Figure 1).

For our work, we allow aggregates with either a static or dynamic number of components,

but we restrict the number of component classes to be constant. The structure of an aggregate

with a constant number of components is defined at requirements-specification time and its

composition never changes, while the structure of an aggregate with a variable number of

components can have its composition changed during its life time.

Aggregation with a static number of hidden components is called disjoint composition by

Hartmann et al. [5] and ensemble by Champeaux et al. [4]. Hartmann and his colleagues also

distinguish aggregation with a static number of shared components (they call it static non-

disjoint composition) and aggregation with a dynamic number of shared components (they

call it dynamic non-disjoint composition).

Some authors treat other aspects of aggregation. For example, Odell classifies aggregates

according to six kinds [13]. Most of these kinds of composite objects do not seem to us to be

useful in describing software systems.

1We omit cardinality when it is not important for the problem being discussed.

4

Aggregate_A

...

service_A1
service_C1
service_B2

1

1� n

Component_B

...

service_B1
service_B2

Component_C

...

service_C1
service_C2

Figure 1: Aggregation

5.1 Aggregation: Hidden Components

A hidden component is defined internally to its aggregate, and so it is hidden to the other

objects in the system (as defined in [4, 5, 14]). Furthermore, this object exists only while

the aggregate exists. A hidden component may only interact with other components in the

same aggregate or with the aggregate. The aggregate manages any interaction between such

components and the rest of the model. All the services defined within hidden components

which are to be offered to the outside are on offer by the aggregate. When these services are

required from the aggregate by another object, the aggregate routes the message to one of its

components, receives the answer, if any, and then returns the result. Figure 2 shows a simple

object model composed of an aggregate with two hidden components and a client. We have

used a modified version of the Coad and Yourdon notation. Each box in the object model

represents a class template.

(service_C1)

(result)

(result)

(service_C1)Aggregate_B

...

service_B1
service_C1
service_D2

Component_C

...

service_C1
service_C2

Component_D

...

service_D1
service_D2

Client_A

...

service_A1
service_A2
...

Figure 2: Aggregation with two hidden components

There is a problem in representing aggregation with hidden components. The notation

used by object-oriented analysis methods, such as [3, 7, 14] is confusing, since it represents

two different levels of abstraction in the same diagram. The aggregate is represented by the

top box in the diagram and the components are represented by the lower boxes. However, the

5

aggregate is really composed of everything and the lower boxes should be represented inside

the top box.

In Structured Analysis, when drawing Data Flow Diagrams (DFDs), for example, we

use a diagram for each level of abstraction: a DFD at level n+1 replaces a process in the

DFD at level n. This approach is not used to build object models. In a CASE tool, such

as ObjecTool 2, subjects (or modules, or subsystems) can be expanded to show their object

components, even if the resulting final diagram has a flat structure. However, an aggregate

cannot be simply replaced by its components, because it is not just the collection of its

components, as a subsystem is; it has extra functionality. If aggregates are useful to structure

a system into levels of abstraction, we should be able to use them to build object models

accordingly. Figure 3 represents this idea.

Component_C

...

service_C1
service_C2

Aggregate_B

...

service_B1
service_C1
service_D2

Component_D

...

service_D1
service_D2

1

1� n

a) b)

1

Aggregate_B

 Aggregate_B
(extra functionality)

...

service_B1
service_C1
service_D2

Figure 3: a) Higher level of abstraction: aggregate; b) Lower level of abstraction: the com-

ponents and the aggregate’s extra functionality

We want to use existing object-oriented CASE tools, and so we accept the standard OOA

terminology. We propose an alternative interpretation of the diagram, considering, at the

lower level of abstraction, the top box of the diagram to be the interface of the aggregate and

the aggregate, i.e. the whole structure, as the dotted box shown in Figure 4.

At one level of abstraction, Aggregate B represents the complete structure. At a lower

level of abstraction we have Component C, Component D and the extra functionality the

aggregate offers (represented by Aggregate B which is now regarded as the interface to the

components). We choose to name the complete aggregate with the same name as the box at

the top level of the aggregation, since they represent the same concept.

If the number of instances of each component is static, the internal structure of the

aggregate never changes. If the number of object components is dynamic, the aggregate may

create new objects or even remove some of the existing ones, changing its internal structure.

Notice however, that in both situations, the interface of the aggregate never changes and the

components only exist while the aggregate exists. The creation of new component objects is

the exclusive decision of the aggregate.

2ObjecTool is a trademark of Object International, Inc.

6

(service_C1)

(result)
(result)

(service_C1)

Client_A

...

service_A1
service_A2
...

Aggregate_B
 (Interface)

...

service_B1
service_C1
service_D2

Aggregate_B

Component_D

...

service_D1
service_D2

Component_C

...

service_C1
service_C2

Figure 4: Aggregation with hidden components marked as a single object

5.2 Aggregation: Shared Components

A shared component has a life of its own, that is, it can exist independently of the aggregate.

While a non-shared component is encapsulated in the aggregate and hidden from the rest of

the model, a shared component is visible outside the scope of the aggregate and therefore it

can communicate directly with other objects. The aggregate knows its shared components

by having a specific attribute for each one. This attribute holds the object identifier of the

component. Figure 5 shows the example given in Figure 2, but now Component C is visible

outside the aggregate.

(service_C1)

(result_C1)

(Comp_C_Id)
...

Aggregate_B

service_B1
service_C1
service_D2

(service_C1)

(result_C1)
(result_C1)

(service_C1)

(service_B1)

Client_A

...

service_A1
service_A2
...

Component_D

...

service_D1
service_D2

Component_C

...

service_C1
service_C2

Client_E

...

service_E1
service_E2
...

Figure 5: Static aggregation with one shared component and one hidden component

The top box represents the whole aggregate and each lower box its components. As

Component C is shared, it is outside the dotted box. The services offered by the shared

component can also be offered by the aggregate. It is a client’s decision to choose Aggregate B

or Component C for communication. When an object, outside the scope of the aggregate,

7

communicates with the aggregate, it may or may not give the identifier of the shared object

involved.

There are situations which may be relevant in understanding certain problems, but which

are not shown by an object model. When we talk about a shared component, we do not

specify in which terms this component is shared. For example, it may be important to be

able to determine whether or not a given instance of a component class is shared, or if the

sharing concerns different instances.

Let us consider two examples. In the first one, we define an aggregate Car with a com-

ponent Engine. The engine class is shared by another aggregate, Plane. It seems reasonable

to assume that one instance of Engine may not be shared by a car and a plane, at the same

time. Therefore, in Figure 6 we have sharing of a concept, but not a sharing of objects, even

if the concept of relationship is defined between instances and not between classes.

Car Plane

Engine

0,1 0,1

1,m1,1

Figure 6: Sharing the class template, but not the objects

For the relationship between Engine and Car, Engine has optional cardinality, which

means that an engine may or may not have a relation with an object in Car (similarly for

the relationship between Engine and Plane). In such a situation, the object model does not

distinguish between cases where an object component can belong to two aggregate objects at

the same time, belong to only one of them, or to none of them.

The case in Figure 6 can be seen as a mixture of sharing and hiding. The component class

is shared, but the component object is hidden. A component class being shared means that

we can use the definition of the component to build different aggregates. (If the component

class was not shared it would not be visible to other aggregates.) A component object being

hidden, means that the object has to be instantiated within the aggregate and no other objects

know about it.

Now, consider the aggregates Family and Research Group sharing the same component

Person. In this case, an instance of person can be simultaneously shared by an instance of

family and by an instance of research group. As we can see in Figure 7, we cannot show the

difference between this situation and the situation depicted in Figure 6 in an object model.

We can have static aggregation, when the number of components is constant, and dynamic

aggregation, when the number of components is variable. Both cases are dealt with in a

similar way to aggregation with hidden components, except that now, the creation of an

object component may be initiated either by the aggregate or by one of the other objects.

Hartmann et al. allow the creation of a dynamic aggregate with non-existing object

components [5]. Such components, at the moment the aggregate is defined, have an empty

life cycle, but their identifiers have to be pre-determined.

8

Family Research_Group

Person

0,1 0,1

1,m1,m

Figure 7: Sharing the class template and the objects

According to some authors, only aggregation with hiding represents a useful mechanism [7,

14]. Rumbaugh et al., for example, argue that aggregation with sharing should be treated

as an ordinary conceptual relationship [14]. We believe that there are advantages in showing

such a relationship as an aggregation as it can improve our understanding of a system and

may give directions for reusability. (We justify this view in Sections 8.2 and 8.4.) While a

conceptual relationship is likely to change when it is put in a different context, an aggregation

may not change.

With respect to deletion, a shared component can only be removed when no other object

in the system has access to it.

5.3 Catalog Aggregation

Some authors classify aggregation into physical and catalog, according to its cardinality [1].

In physical aggregation, each component object is part of at most one aggregate object of

a given class, while, in catalog aggregation, each component object may be part of many

aggregate objects of the same class. That is, in a physical aggregation, each relationship from

each component to the aggregate has multiplicity one, while in catalog aggregation, each

relationship from each component to the aggregate has the multiplicity many. This is shown

in Figure 8.

Catalog_Component Physical_Component

0,m

0,m 0,1

0,m

Physical_Aggregate��Catalog_Aggregate

Figure 8: Catalog aggregation and physical aggregation

Catalog aggregation describes sharing between instances of the same class: two different

instances of a given aggregate class share the same component object. In Figure 9 the object

Edward is a member of the Neural Networks and Artificial Intelligence research groups.

When we allow catalog aggregation we lose information hiding, since an object component

9

Neural_Networks Artificial_IntelligenceResearch Group

Person

0,m

1,m

Edward

Figure 9: One person belongs to two research groups

has to be known by two aggregate objects. Therefore, we treat this kind of aggregation as

aggregation with shared component classes. Catalog aggregation is helpful when designing

problems where components of the same type are interchangeable.

When discussing the design of relational data bases, Smith forbids catalog aggregation by

imposing the following rule [15]: for a given aggregate class A with the component classes C 1,

..., Cn, two distinct real-world instances of A must not determine the same instances of C i.

That is, a given member of C i must not be shared by two instances of A.

Kim et al., when defining dependent objects, are implicitly defining physical aggregation [9].

Some authors classify the complex object of a physical aggregation into aggregate, if it has

a 1 : 1 relationship with each component, and collection, if it has a 1 : N relationship with

each component [2]. A collection is useful to define homogeneous sets of objects, for example

a Football Team is a collection of objects of the class Athlete. However, we do not consider

this a special kind of aggregation and we use the term aggregate for both cases.

There are many different views of aggregation and in the previous sections we have discussed

some of them. Authors seem not to agree on which specific properties aggregates should

satisfy. However, we can identify one point which they all have in common: interesting

aggregates have hidden components. Aggregates with hidden components are implemented

using encapsulation. This permits an aggregate to be seen as a single object at one level of

abstraction, and so it can be used as a structuring mechanism.

We agree that most advantages come from using aggregates with hidden components.

However, instead of treating and representing aggregation-with-sharing as a regular form of

conceptual relationships, we use the terminology of aggregation. By doing this, we are giving

more information about the composition of an object, improving the understability of the

relationship that connects the two objects.

We propose that aggregates have the following properties:

Aggregates may have extra functionality in addition to the functionality defined in their

components.

Object components at the same level of abstraction (within the same aggregate) can

communicate with each other without having to communicate via their aggregate.

10

There is a mechanism of service delegation (propagation of operations) between objects

at consecutive levels of abstraction.

An aggregate acts as the interface to, or manager of, the aggregate components. It calls

services of the components, but the components do not call services of the aggregate.

In general, aggregation is not transitive if the semantics of the relationships involved

differ. Aggregation is never transitive with respect to message connections. Suppose

that aggregateA has a component B and B has a component C. If A communicates with

B, and B communicates with C, this does not imply that A communicates (directly)

with C.

Aggregation is antisymmetric: if B is a component of A, then A is not a component of

B.

Aggregates with hidden components satisfy the following extra properties:

An aggregate encapsulates its components.

Each component is hidden from the rest of the world, i.e. it is not visible outside the

scope of the aggregate.

The deletion of an aggregate implies the deletion of all its components.

Aggregates with shared components satisfy the extra following properties:

The components cannot be encapsulated as they must be visible to other objects outside

the scope of the aggregate.

If necessary, a component may know about its aggregates. This is the case for catalog

aggregation, where it may be useful for a component to know to which aggregates it

belongs.

The deletion of a component is only possible if there are no other aggregates with

references to it. It may be initiated by other objects in the model.

The deletion of an aggregate does not imply the deletion of its components.

The aggregate can exist after the deletion of its components.

The creation of a component may be initiated by other objects in the model.

Aggregation gives a mechanism for structuring large systems. Such structuring may be ac-

complished either top-down or bottom-up. In a top-down approach, aggregates can show up

early. As the development evolves, these complex objects are refined and their components

identified. Even when we identify aggregates early, we do not have to guarantee their cor-

rect classification into hidden or shared. As we will show in Section 8.4, moving from one

type to the other is very simple and brings no problems. In a bottom-up approach, we may

11

start identifying the lower level objects and then we may group some of them to form aggre-

gates. Object-oriented developments have better results when we use a mixture of these two

approaches.

In some situations, depending on the style of the requirements, it may be difficult to start

with a top-down approach. We can identify two reasons for this. First, if the requirements

are written in a functional way, when dividing a system according to its functional areas it

may be that different areas describe parts of the same object. If each team takes a functional

area, some of the teams may have different views of the same object. For a large project

it is necessary to give names to candidate objects, without spending much time considering

whether or not a given object is important. The analysts can use their knowledge about the

real world. Next, we can make groupings of objects according to their role in the system

and keep interactions between groupings low. Each group of object is then given to different

teams who proceed with the analysis using a mixture of top-down and bottom-up approaches.

Second, the requirements document may describe the problem in a very flat style, without

hierarchical structure. It is also possible that the users describe physical details of the problem

and are unable to abstract concepts. If this happens, the candidate objects we start identifying

are certainly low level objects. As the development proceeds, more complex objects, such as

aggregates, are identified.

Most OOA methods start by identifying objects. Depending on the style used to write the

requirements document, we can identify aggregates sooner rather than later. We believe that

in a large project the objects we start identifying are a mixture of complex and simple objects.

We can identify complex objects in two ways: by analysing relationships and similarities

between objects (bottom-up composition) and, while describing an object we may identify it

as being a complex object (top-down decomposition).

Therefore, by analysing relationships and similarities between objects we can identify more

complex objects (bottom-up composition) and while describing an object we may identify it

as a complex object (top-down decomposition).

We have shown in [11] how to model objects and classes in LOTOS. An object is normally

modelled by a process and one or more ADTs, but when an object in the object model only

plays the role of attribute of another object, it is modelled by a single ADT.

To be useful as an abstraction, an aggregate must play an important role in the system

and so it is modelled as a process and one or more ADTs. If the object only plays the role

of an attribute, although an attribute may have internal structure, we do not regard it as an

aggregate. For example, although we can consider the attribute Address to be composed of

House Number, Street Name, Post Code, City Name and Country Name, Address is modelled

as an ADT which is a combination of sorts (one sort for each component). Also, if the

components of an object only play the role of attributes, the object is modelled as an ordinary

object, not as an aggregate.

This section is concerned with showing how to model aggregates in LOTOS. As many

authors suggest, we model aggregation with shared components as conceptual relationships.

The aggregate and each component are defined by separate processes, and the aggregation (the

relationship) is modelled in the same way as for conceptual relationships. Unless something

different is said in the requirements, the aggregate knows its components, but the components

12

do not know about the aggregate.

An aggregate with hidden components is modelled as a process which encapsulates a pro-

cess for each of its components together with a process manager, or interface. As a rule, we

give the same name to both the process representing the aggregate and the process repre-

senting the interface. The following subsections discuss this in detail. A hybrid aggregate

has hidden and shared components. The hidden components are modelled as processes em-

bedded by the process defining the aggregate, while the shared components are modelled as

separate processes. A reference to each separate process is modelled as an ADT and given as

a parameter of the aggregate’s process.

While a simple object may be regarded as a sequential machine, an aggregate has the

implicit connotation of having internal parallelism [4].

Having a static or a dynamic number of object components does not complicate the

problem, since we can easily define object generators. If we are dealing with aggregation with

hidden components, the object generators for each component are defined inside the aggregate

and therefore they are not visible from the outside. This allows the same set of identifiers

to be used by different object generators defined inside different aggregates. The advantage

of this is its simplicity. However, each component is then only uniquely identified when the

aggregate identifier is given together with the component identifier. We do not see this as a

problem, since the components are not visible to the other objects in the system and so the

aggregate identifier must always be used to access them.

To demonstrate how aggregates can be modelled in LOTOS, we use a simple video player

with four functions: load a tape, play a tape, stop playing and eject a tape. The video has

two components: a motor and an eject mechanism. Its behaviour is given by the finite state

automaton depicted in Figure 10.

Empty;
stopped

Loaded;
stopped

Playing;
loaded

stop

play

eject

load

�eject

load stop

play

stop

eject play

load

remove

create

Figure 10: Behaviour of the video player example defined as a finite state automaton

8.1 Aggregation with Hiding

If the number of components is constant, we can define the internal composition of the

aggregate at specification time. Creation or deletion of the aggregate implies the creation or

13

deletion of its components. Therefore, the deletion of a component is impossible without the

deletion of the aggregate.

Let us suppose that the video player has one motor and one eject mechanism. Figure 11

shows the class templates for Video.

1 1

1

Video

Brand
Type

load
play
stop
eject

Motor

Speed

play
stop

 Eject
Mechanism

State

load
eject

Video

Figure 11: Video player aggregate

As the components are not shared, we draw a dotted box (structure) around the aggregate.

The semantics of this is that the class components Motor and Eject Mechanism are encapsu-

lated within the aggregate Video, and so they are not visible outside Video. By following the

algorithm given in [11] we can build an Object Communication Diagram (OCD) as depicted

in Figure 12. (In this simple example, the rest of the system is the interface scenario.)

Video

Motor

 Eject
Mechanism

Video

v

v

m

e

Interface
Scenario

Figure 12: Object Communication Diagram

In LOTOS, the top level behaviour expression takes the form:

(Video[v](Make˙Video(id1 of Video˙Id, empty of State˙V,

id1 of Motor˙Id, id1 of Eject˙Mechanism˙Id))

—[v]—

Interface˙Scenario[v]

)

where

process Video[v](this˙video: Video˙State): noexit :=

hide m, e in

(Video[v, m, e](this˙video)

—[m,e]—

14

(Motor[m](Make˙Motor(Get˙Motor˙Id(this˙video), rest of State˙M))

———

Eject˙Mechanism[e]

(Make˙Eject˙Mechanism(Get˙Eject˙Mechanism˙Id(this˙video),

empty of State˙E))

)

)

where

process Video[v, m, e] ... endproc (* Video *)

process Motor[m] ... endproc (* Motor *)

process Eject˙Mechanism[e] ... endproc (* Eject˙Mechanism *)

endproc (* Video *)

As we discussed before, we name the complete aggregate with the same name as the box

at the top level of the aggregation. This is shown in LOTOS by having two processes with

the same name, one encapsulating the other. At one level of abstraction the outside process

represents the aggregate (i.e. the box at the top level of the hierarchy) while at a lower level

of abstraction the inner process represents the box at the top level of the hierarchy which is

now regarded as the interface to the component objects.

As gates m and e are hidden in the external process Video, Motor and Eject Mechanism

are encapsulated within Video and defined after the keyword where. The two components

are therefore hidden from Interface Scenario. In this example we are only creating one

instance of each class template Motor and Eject Mechanism, but we could create others by

having more process instantiations in the behaviour expression. The operations Get_Motor_Id

and Get_Eject_Mechanism_Id are defined in the ADT that defines the sort Video_State, as

follows:

type Video˙Type is Video˙Id˙Set˙Type, State˙V˙Type, Motor˙Id˙Set˙Type,

Eject˙Mechanism˙Id˙Set˙Type

sorts Video˙State

opns

Make˙Video : Video˙Id, State˙V, Motor˙Id,

Eject˙Mechanism˙Id -> Video˙State

Change˙State : Video˙State, State˙V -> Video˙State

Get˙Video˙Id : Video˙State -> Video˙Id

Get˙Motor˙Id : Video˙State -> Motor˙Id

Get˙Eject˙Mechanism˙Id : Video˙State -> Eject˙Mechanism˙Id

...

eqns forall v: Video˙State, n: Video˙Id, m: Motor˙Id,

e: Eject˙Mechanism˙Id, s, s1: State˙V

ofsort Video˙Id

Get˙Video˙Id(Make˙Video(n, s, m, e)) = n;

Get˙Video˙Id(Change˙State(v, s)) = Get˙Video˙Id(v);

ofsort Motor˙Id

Get˙Motor˙Id(Make˙Video(n, s, m, e)) = m;

Get˙Motor˙Id(Change˙State(v, s)) = Get˙Motor˙Id(v);

ofsort Eject˙Mechanism˙Id

Get˙Eject˙Mechanism˙Id(Make˙Video(n, s, m, e)) = e;

Get˙Eject˙Mechanism˙Id(Change˙State(v, s)) = Get˙Eject˙Mechanism˙Id(v);

ofsort ...

endtype

15

In LOTOS, defining an aggregate with a dynamic number of components is not difficult,

since we have the facility of defining object generators. An object generator allows us to

create multiple instances of objects. Supposing that the number of components was dynamic,

the external process Video would be defined as:

process Video[v](this˙video: Video˙State): noexit :=

hide m, e in

(Video[v, m, e](this˙video)

—[m, e]—

(Motors[m](–˝ of Motor˙Id˙Set)

———

Eject˙Mechanisms[e](–˝ of Eject˙Mechanism˙Id˙Set)

)

)

where

...

endproc (* Video *)

in which Motors and Eject Mechanisms are object generators, each one initialised with an

empty set of identifiers. As the components are hidden, their process definitions are in the

scope of the external process Video, after the keyword where. As an example, let us consider

the object generator Motors:

process Motors[c](mts: Motor˙Id˙Set): noexit :=

c !create ?id: Motor˙Id [id notin mts];

(Motor[c](Make˙Motor(id of Motor˙Id, rest of State˙M))

———

Motors[c](Insert(id, mts))

)

where

process Motor[c](this˙motor: Motor˙State): noexit :=

([Get˙State(this˙motor) eq rest] ->

(c !play !Get˙Motor˙Id(this˙motor);

exit(Change˙State(this˙motor, run))

)

[]

...

endproc (* Motor *)

endproc (* Motors *)

Motors holds the set of identifiers already created. (Notice that for simplicity we are using

the same gate c to create a motor and to operate the motor, but we could use two different

gates.)

When Interface Scenario requires a service, Video routes the request to the right com-

ponent and then returns the result, if any. When more than one object component is ready to

synchronize, one component will be chosen non-deterministically. The inner Video process,

i.e. the process defining the interface of the aggregate, can be defined as:

process Video[v, m, e](this˙video: Video˙State): noexit :=

(hide create˙motor, create˙eject in

[Get˙State(this˙video) eq loaded] ->

16

(v !play !Get˙Video˙Id(this˙video);

m !play ?m1: Motor˙Id [m1 IsIn Get˙Motor˙Id˙set(this˙video)];

exit(Change˙State(this˙video, playing))

[]

...

)

[]

...

[]

create˙motor;

m !create ?idm: Motor˙Id;

exit(Add˙Motor(this˙video, idm))

[]

create˙eject;

e !create ?ide: Eject˙Mechanism˙Id;

exit(Add˙Eject˙Mechanism(this˙video, ide))

) >> accept upd˙video: Video˙State in Video[v, m, e](upd˙video)

endproc (* Video *)

where create motor and create eject are internal events. The behaviour expression:

m !play ?m1: Motor˙Id [m1 IsIn Get˙Motor˙Id˙set(this˙video)];

may synchronize with any motor which is in the right state and whose identifier is known by

the aggregate.

The creation of new motors is defined in the body of the inner process Video, by using

the internal event create_motor and then synchronizing on event:

m !create ?idm: Motor˙Id;

with the corresponding event defined in the object generator. The Eject Mechanism is dealt

with in a similar way.

The operation Add_Motor and Add_Eject_Mechanism are defined in the ADT Video_Type.

This ADT has to be changed to support sets of motors and sets of eject mechanisms.

When other objects in the system know about the existence of the components, they can

initiate the creation of a new component. However, the components are not visible, and so it

is always the aggregate’s responsibility to select the right component and to create new ones,

by using the object generators.

As a result of having encapsulated components, another instance of Video can use the

same component identifiers. This means that the identifier of a component must be combined

with the identifier of the aggregate to give the full object component identifier.

Although a dynamic number of hidden components can be specified in LOTOS, we be-

lieve that it is not a common case. One situation is when a component breaks down. If a

component is not responding to the services required, the aggregate can substitute it with a

new component. The AT&T ESS5 switch has ‘auditors’ which go around checking invariants

in software modules which have a certain functionality. If a module does not satisfy the

invariant, the auditor shuts them down and reinitialises them, or replaces them with other

instances [6].

17

8.2 Aggregation with Sharing

A shared component exists independently of the aggregate. It is modelled in the usual way,

with a class template and perhaps an object generator, but outside the aggregate. The aggre-

gation relationship will then be modelled as a conceptual relationship in the ADT that defines

the state information. In general, the aggregate has a reference to the shared component,

while the shared component only has a reference to the aggregate if it is explicitly required.

As the components are shared, the deletion of the aggregate does not imply the deletion

of its components, as happened in the previous section. However, the deletion of a component

may imply the deletion of the aggregate.

Let us recall the video player example, where we have two object components, one for each

component class. Figure 13 shows the OCD supposing that Motor and Eject Mechanism can

be directly accessed by Interface Scenario.

Video

Motor

 Eject
Mechanism

v

e
Interface
Scenario e

m

m

Figure 13: Object Communication Diagram

In LOTOS, the top level behaviour expression takes the form:

(Interface˙Scenario[v, m, e]

—[v]—

Video[v, m, e](Make˙Video(id1 of Video˙Id, empty of State˙V,

id1 of Motor˙Id, id1 of Eject˙Mechanism˙Id))

)

—[m, e]—

(Motor[m](Make˙Motor(id1 of Motor˙Id, rest of State˙M))

———

Eject˙Mechanism[e]

(Make˙Eject˙Mechanism(id1 of Eject˙Mechanism˙Id, empty of State˙E))

)

where

...

The difference between this situation and aggregation with hidden components is that the

communication gates m and e are visible from the Interface_Scenario. Process Video

corresponds to the interface in the case of aggregation with hiding, although here we want

to regard it as the whole aggregate. The ADT that specifies the video state information is

unchanged. The information about the relationship between Video and Motor and between

Video and Eject Mechanism is given by the parameters of Make Video. Instead of modelling

these relationships in the ADT, we could model them as extra parameters of the process

Video, as we do for normal conceptual relationships. However, we prefer the first option.

If we had a dynamic number of object components, the parameters of Make Video would

be sets of identifiers, instead of single identifiers, and the LOTOS top level behaviour expres-

sion would instantiate an object generator for each component, instead of instantiating each

component.

18

We can also model catalog aggregation. For example, suppose that two videos could share

a motor and an eject mechanism. This can be represented as:

(Interface˙Scenario[v, m, e]

—[v]—

(Video[v, m, e](Make˙Video(id1 of Video˙Id, empty of State˙V,

id1 of Motor˙Id, id1 of Eject˙Mechanism˙Id))

———

Video[v, m, e](Make˙Video(id2 of Video˙Id, empty of State˙V,

id1 of Motor˙Id, id1 of Eject˙Mechanism˙Id))

)

)

—[m, e]—

(Motor[m](Make˙Motor(id1 of Motor˙Id, rest of State˙M))

———

Eject˙Mechanism[e]

(Make˙Eject˙Mechanism(id1 of Eject˙Mechanism˙Id, empty of State˙E))

)

where

...

When modelling catalog aggregation we may want to change the ADT of the component to

deal with an extra attribute which gives the set of aggregates in which it takes part. In the

example given in Section 5.3, it is desirable that a person knows about his or her research

groups.

While in the case of static aggregation with hiding the aggregate had sole responsibility for

creating its components at specification time, in the case of dynamic aggregation the creation

and deletion of an object component may be initiated by other objects in the system. Also,

if the object requiring the service knows the identifier of the object component which will

be involved in the operation, we can use that information when asking the service to Video,

instead of using value generation:

process Video[v, m, e](this˙video: Video˙State): noexit :=

([Get˙State(this˙video) eq loaded] ->

(v !play !Get˙Video˙Id(this˙video) ?m1: Motor˙Id

[m1 IsIn Get˙Motor˙Id˙set(this˙video)];

m !play !m1;

exit(Change˙State(this˙video, playing))

[]

...

)

[]

...

endproc (* Video *)

8.3 Sharing Concepts but not Objects

In Sections 5.2 and 5.3 we discussed some different views of sharing. When the component

class is shared, the object components may or may not be. The LOTOS behaviour expressions

in Section 8.2 give us both shared component classes and shared object components. A shared

component class and non-shared object component can be obtained by proceeding as we did

19

for hidden components, but now the component classes are defined outside the scope of the

external Video process:

process Video[v](this˙video: Video˙State): noexit :=

hide m, e in

(Video[v, m, e](this˙video)

—[m,e]—

(Motor[m](Make˙Motor(Get˙Motor˙Id(this˙video), rest of State˙M))

———

Eject˙Mechanism[e]

(Make˙Eject˙Mechanism(Get˙Eject˙Mechanism˙Id(this˙video), empty of State˙E))

)

)

where

process Video[v, m, e] ... endproc (* Video *)

endproc (* Video *)

process Motor[g] ... endproc (* Motor *)

process Eject˙Mechanism[g] ... endproc (* Eject˙Mechanism *)

8.4 Hiding and Sharing: Moving Around

Having modelled aggregates with hidden components and aggregates with shared components

in LOTOS, let us discuss the changes necessary to transform one into the other. The basic

difference in modelling these two kinds of aggregates is concerned with encapsulation and

information hiding. While hidden components are encapsulated by the aggregate and hidden

from the other objects in the model, shared components are modelled as separate processes

which are visible from outside the aggregate.

As we have discussed in Section 5.1, in order to encapsulate a hidden component into its

aggregate, we create a higher level structure which we name with the same name as the class

template at the top of the aggregation hierarchy in the object model.

To transform an aggregate with hidden components into an aggregate with shared com-

ponents, we follow the two steps:

1. Replace the process that defines the higher level structure, i.e. the outside process, with

its behaviour expression which joins the inner process with the components. The inner

process now plays the role of the higher level structure.

2. Make all the gates visible outside the aggregate’s scope, removing the hide operator,

and add those gates to any process instances which need them.

The opposite, i.e. transforming an aggregate with shared components into an aggregate

with hidden components, can be accomplished in two steps:

1. Encapsulate the aggregate and components processes within an extra process. Name

this process with the same name as the previous aggregate. (Now, the outside process

represents the aggregate and the inner process represents the interface of the whole

structure with the other objects in the model.)

2. Hide, in the encapsulating process, the gates which are used to communicate with the

aggregate components.

The procedures above can both be applied when dealing with object generators.

20

Aggregation is a useful concept which can be used to control the size and complexity of a

large system. Aggregation with hidden components mainly uses the concepts of abstraction,

encapsulation and information hiding. This helps in providing a top-down approach which

aids the software engineer developing the system and, at the same time, guides the reader to

understand the system.

Aggregation with shared components does not bring as many advantages and many au-

thors advocate that it should be treated as an ordinary conceptual relationship. However, we

believe that there are advantages in showing it in an object model. It will give hints about

the structure of a system, helping us to understand it, and it can also give directions for

reusability. While a conceptual relationship is more likely to change when the system is put

in a different context, an aggregation may not change and so we can see it as reusable in other

contexts. That is why we propose modelling it within the ADT, instead of modelling it as an

extra argument in the process template, as we do with conceptual relationships.

LOTOS can to model aggregation with shared and with hidden components. Encapsula-

tion is dealt with by changing the scope of processes and using the hide operator. By defining

sets and object generators, LOTOS also deals well with the cases of a static and a dynamic

number of object components.

We would like to thank Peter Ladkin, Ken Turner and Pedro Guerreiro for their helpful

comments on an earlier version of this report. Also, we would like to thank Gary Marsden

for discussions about the video example.

This work has been supported by the Junta Nacional de Investigação Cient́ıfica e Tec-

nológica (JNICT), Portugal.

[1] M. Blaha. Aggregation of Parts of Parts of Parts. Journal of Object-Oriented Program-

ming, 6(5):14–20, September 1993.

[2] Franco Civello. Roles for Composite Objects in Object-Oriented Analysis and Design. In

Proceedings OOPSLA’93, ACM SIGPLAN Notices, volume 28, pages 376–393, October

1993.

[3] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon Press, Prentice-Hall, 2nd

edition, 1991.

[4] D. de Champeaux, D. Lea, and P. Faur. Object-Oriented System Development. Addison-

Wesley, 1993.

[5] T. Hartmann, R. Jungclaus, and G. Saake. Aggregation in a Behavior Oriented Object

Model. In ECOOP’92, Lecture Notes in Computer Science, 615, pages 57–77. Springer-

Verlag, June/July 1992.

21

[6] R. Hoare, C.A. How did Software Get so Reliable Without Proof?, March 1994. BCS

Proof Club, Edinburgh.

[7] I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven Approach.

Addison-Wesley, 1992.

[8] R. Jungclaus, G. Saake, R. Hartman, and C. Sernadas. Object-Oriented Specification

of Information Systems: The TROLL Language. Technical Report 91-04, Informatik-

Bericht, TU Braunschweig, 1991.

[9] W. Kim, J. Banerjee, H. Chow, J.F. Garza, and D. Woelk. Composite Object Support

in an Object-Oriented Database System. In OOPSLA’87, volume 22, pages 118–125,

September 1987.

[10] A.M.D. Moreira and R.G. Clark. LOTOS in the Object-Oriented Analysis Process. In

BCS-FACS Workshop on Formal Aspects of Object-Oriented Systems, Imperial College,

London, December 1993. BCS-FACS (British Computer Society – Formal Aspects of

Computing Science).

[11] A.M.D. Moreira and R.G. Clark. ROOA: Rigorous Object-Oriented Analysis. Techni-

cal Report TR 109, Department of Computing Science and Mathematics, University of

Stirling, Scotland, October 1993.

[12] A.M.D. Moreira and R.G. Clark. Combining Object-Oriented Analysis and Formal De-

scription Techniques. In Proceedings of ECOOP’94. Springer Verlag, Lecture Notes in

Computer Science, 1994. To appear.

[13] J. Odell. Six Different Kinds of Composition. Journal of Object-Oriented Programming,

6(8):10–15, January 1994.

[14] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented

Modelling and Design. Prentice-Hall, 1991.

[15] J.M. Smith and D.C.P. Smith. Database Abstractions: Aggregation. Communications

of the ACM, 20(6):405–413, June 1977.

[16] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software.

Prentice-Hall, 1990.

22

