
Ana M D Moreira ∗ and Robert G Clark
Department of Computing Science and Mathematics,

University Of Stirling,
STIRLING FK9 4LA, Scotland.

Email: amm@uk.ac.stir.cs

Email: rgc@uk.ac.stir.cs

A Portuguese version of this paper is to be presented at the 7th Brazilian Symposium on

Software Engineering on 26-29 October 1993, in Rio de Janeiro, Brazil.

Abstract

The ROOA (Rigorous Object-Oriented Analysis) method introduces formality into the
object-oriented analysis process by providing a set of rules which enables a formal object-
oriented analysis model to be produced systematically from a set of requirements. This model
is expressed in LOTOS and provides a precise and unambiguous specification of system
requirements. As the specification obtained is executable, prototyping is used to support
validation and refinement of the formal model.

∗Supported by the Junta Nacional de Investigação Cientifica e Tecnológica (JNICT), Portugal.

1

1 Introduction 1

2 Formal and Executable Specifications 1

3 Object-Oriented Analysis Methods 2

4 The Rigorous Object-Oriented Analysis Method 3

4.1 Automated Banking System 5

5 LOTOS Overview 5

5.1 Processes 6

5.2 Abstract Data Types 7

6 Using the ROOA Method 7

7 Conclusions 12

i

Developing an efficient, reliable and maintainable software system requires the adoption of a

strategy that helps software engineers to communicate without ambiguity. Designers must be

able to understand the results provided by analysts and give an unambiguous specification to the

implementors. A solution is to provide a rigorous software development process which includes

the development of a formal requirements specification so that the requirements can be stated

precisely and unambiguously.

In this paper we introduce the ROOA (Rigorous Object-Oriented Analysis) method [15] by

means of an example. ROOA takes the static properties captured in an object model produced

by any object-oriented analysis method [5, 12, 16, 18] together with the dynamic and functional

properties given in the original requirements and produces an executable formal object-oriented

requirements specification. Formal Description Techniques, such as [1, 3, 13], are usually applied

after the requirements analysis phase, but here we are using them to help in determining and

understanding a system’s requirements. The formal description technique we have chosen is

LOTOS (Language Of Temporal Ordering Specification) [1] which has a precise formal mathe-

matical semantics and which can be used in an object-oriented style. The resulting formal model

considers the system as a set of concurrent objects where message passing is modelled by objects

synchronizing on an event during which information may be exchanged. The specification gives

an integrated description of the system which deals with both static and dynamic properties.

In other methods these properties are normally described by different techniques which leads to

problems in ensuring that the different descriptions remain consistent as the model is developed.

As the specification obtained is executable, prototyping can be used for validation and to check

the conformance of different specifications produced during a refinement process. By combining

the use of formal description techniques with rapid prototyping during analysis we can discover

inconsistencies, omissions, contradictions and ambiguities early, so that they can be corrected

in the early stages of the development process. The formal requirements specification can sub-

sequently be transformed into a formal design specification. Prototyping with the same set of

interface scenarios can be used to check that the observable behaviour of the design specification

conforms to that of the requirements specification.

Section 2 discusses the need for formal specifications. Section 3 gives a introduction to object-

oriented analysis methods. Section 4 summarizes the ROOA method. Section 5 introduces

LOTOS. Section 6 shows how the ROOA method can be used to derive a formal LOTOS

object-oriented model. Finally, Section 7 gives our conclusions.

The primary benefit of formal techniques is that, as they have a precise and mathematical se-

mantics, the resulting specifications are unambiguous. This is in contrast to informal techniques

which lead to specifications which leave much of their interpretation to the reader. The impreci-

sion of an informal specification can give the implementor a freedom of interpretation which can

lead to errors and omissions in the code, resulting in high costs for support and repair. Moreover,

this imprecision leads to misunderstandings in validating the informal specification against the

requirements (and the implementation against the specification). A formal approach to speci-

fication is therefore required. A formal requirements specification, at least in theory, allows an

implementation to be verified against the specification, although it still leaves the problem of

1

validating the specification against the initial informal requirements document.

Proving that a requirements specification, a design specification and the eventual implementation

all describe exactly the same system is beyond the current state of the art. A practical approach

is to make the specification executable and perform the validation by means of conformance

testing where a series of interface scenarios are used to show that the different specifications and

the final implementation all exhibit the same behaviour.

Not all software engineers agree that specifications should be executable, because a specification

written in a notation that is not directly executable will contain less implementation detail than

an executable one [9]. There is also the danger that executable specifications can overspecify a

problem. Being able to demonstrate that a specification exhibits the expected behaviour can,

however, greatly increase ones confidence in it [8]. The accusation that this is no more than

testing, is partially solved by using symbolic evaluation. The LOTOS SMILE simulator [6]

allows the use of uninstantiated variables within conditions and is able to determine when a

combination of conditions can never be true. Many more behaviours can then be examined with

each simulation than is possible when all data values have to be instantiated.

The main goal of an object-oriented analysis method is to identify objects and classes which

constitute a system, to understand the structure and behaviour of each object, to gather in one

place (localization) all the information relating to a particular object and class and, at the same

time, show how the objects in the system interact statically and dynamically.

In general, object-oriented methods share the following set of common tasks:

1. Understand the user requirements.

2. Identify and classify objects.

3. Define objects.

4. Identify relationships between objects.

5. Construct documentation.

Understanding the user requirements is accomplished by reading the initial requirements docu-

ment and any other source of information where the problem, or part of it, may be described.

The users or clients of the system should also be interviewed.

To identify and classify objects, several methods [5, 18] suggest we look at nouns, pronouns, noun

phrases, adjectival and adverbial phrases in the initial requirements document, while others [16]

suggests that a better way to identify objects is by identifying their behaviour in the system.

An object is defined in terms of its static and its dynamic aspects. The static aspect is given

by a list of its attributes and operations. The dynamic behaviour is usually described by using

state transition diagrams, but it plays a secondary role in most of the methods. The set of state

transition diagrams is called the dynamic model.

Relationships between objects can be static or dynamic. The static relationships are represented

by their names and their cardinality and the dynamic ones are represented by arrows connecting

the calling to the called object and are known as message connections. These relationships are

2

represented in the object model which is supported by a diagram based on Entity-Relationship

diagrams where enhancements have been introduced to support aggregates, inheritance and

message connections. Some methods [18] add message sequence charts to the dynamic model to

show the interactions between objects.

Documentation plays a crucial role when developing software. Several methods have an explicit

step to construct it while others let it be an implicit step.

More recent methods, such as [18, 19], also incorporate a functional model which uses data flow

diagrams to describe the meaning of the operations in the object model and the actions in the

dynamic model.

A major advantage of the object-oriented approach is that, as the concepts used in object-

oriented analysis and design are the same, the transition from analysis to design is not difficult.

Moreover, the techniques used by the object-oriented design methods usually produce designs

which are very close to code. Sometimes they already are outline code, as when Ada or Eiffel is

used as a design language.

The ROOA (Rigorous Object-Oriented Analysis) method involves three main tasks. In the first

task we build an object model. In the second task we refine the object model by normalizing it

and by identifying object hierarchies. In the third task we describe a set of subtasks that should

be followed in building the formal LOTOS object-oriented analysis model.

ROOA follows a parallel/recursive approach which allows us to re-apply the whole (or part)

of the method to the results of a previous iteration. Moreover, we can apply the method to

different parts of the system (subsystems) at the same time (in parallel). In each refinement we

introduce more detail to the formal model.

Task 1: Build the Object Model

Before we start producing the formal model, we have to build an object model by using any of

the standard object-oriented analysis methods [5, 12, 16, 18]. The construction of the initial

object model can be considered as a completely separate task from the following ones and it can

be accomplished by a different team. During the application of our method, the object model

may be modified.

An advantage of starting with an object model produced by any object-oriented analysis method

is that we build on the work which has already been done to identify objects.

Task 2: Refine the Object Model

In this task we normalize the object model, i.e. we guarantee that it has static relationships,

attributes, operations, and message connections. We also identify hierarchies of objects, i.e.

higher level objects, in order to make the system easier to understand and develop. This task

is difficult and so we cannot expect to do it completely and correctly in the first iteration. The

low level objects in the object model often remain almost unchanged during the development,

but the high level structure is less stable. We only identify obvious hierarchies (aggregates and

inheritance) to begin with and then, as the approach is recursive/parallel, come back to it when

our knowledge about each individual object increases.

3

Task 3: Build the LOTOS Formal Model

During this task we create an object communication diagram, specify objects and classes, com-

pose the objects into LOTOS behaviour expressions, prototype and refine the specification.

1. Create an object communication diagram.

This diagram is a graph where, in the first iteration, a node represents an object and each

arc connecting two objects represents a gate of communication between them. In later

iterations the diagram will be generalised to deal with multiple objects of the same class.

In the beginning, some of the objects may not be connected by arcs to the rest of the

diagram. As the method is applied these objects will be connected to the others and new

groupings will appear, refining the diagram.

We can determine, by examining the message connections in the object model, whether

an object acts as a client, server, or a combination of both. If it is a server, then it offers

services to its different clients at one gate.

2. Specify individual objects and classes.

In general, the behaviour of an object is specified as a process and its state information as

one or more Abstract Data Types (ADTs) given as parameters of the process. For each

individual object we:

(a) Start specifying the process by identifying the events it takes part in and their order.

(b) Start specifying symbolic ADTs to describe its attributes.

Inheritance in LOTOS is more of a problem and a theoretical study has been made by

Rudkin [17]. There are two main definitions of inheritance [11]. In behavioural inheritance,

objects of a subclass offer all the services of objects of their superclass and can be used

wherever an object of the superclass is expected. In incremental inheritance, a subclass

inherits the definition of its superclass which it then extends.

We believe that, in a specification, the behavioural and incremental inheritance hierarchies

should be restricted to be the same. Although LOTOS does not directly support inheri-

tance, it is straightforward to represent incremental inheritance and examples are given in

Section 6. Multiple inheritance is not supported.

3. Compose the objects into a behaviour expression.

Following the structure of the object communication diagram we compose the processes

into a LOTOS behaviour expression by using the LOTOS parallel operators.

4. Prototype the specification.

We use interface scenarios and prototyping to check services and message connections.

Any errors, omissions or inconsistencies found will lead us to go back to one or more tasks

and update the object model, the object communication diagram and the specification.

5. Refine the specification.

The specification is refined by performing the whole process in a recursive/parallel ap-

proach. During successive refinements we may identify new higher level objects, define

object generators so that multiple instances of the same class can be created dynamically,

demote an object to be specified only as an ADT, promote an object so that it requires a

process and refine processes and ADTs by introducing more detail.

4

4.1 Automated Banking System

The problem we have chosen to show how to use our method is an automated banking system.

A brief outline of the problem is given here.

Clients may take money from their accounts, deposit money or ask for their current

balance. All these operations are accomplished using either automatic teller machines

or counter tellers. Transactions on an account may be done by cheque, standing

order, or using the teller machine and card. There are two kinds of accounts: savings

accounts and cheque accounts. Saving accounts give interest and cannot be accessed

by the automatic tellers.

We applied the object-oriented analysis methods of OOA [5] and OMT [18] to this problem, but

only the final object model produced by [18] is presented here using the notation of OMT (see

Figure 1). This object model shows the class of objects with attributes and the relationships

between objects.

Card

Number
Code
Expiry_Date

Standing
Order

Amount
Date
Bank_Name
Account_Number

updates
updates

belongs

is accessed

is owned by

receives_
payment

Cheque
Account

Account

Number
Balance
Date

Cheque

Number
Amount
Date
Account_Number
Payable_To

Client

Name
Address
Phone

updates

Entry
Station

Savings
Account

Period
Interest

Automatic
Teller

Other Bank

Name
Address
Phone

updates

1,2

Counter
Teller

initiates

updates

initiates

1,2

Id

Figure 1: Object model produced by the OMT method

LOTOS is a formal description technique developed by ISO [2] for the definition of Open Systems

Interconnection (OSI) standards, although it is also well suited to the specification of a wide

range of systems, including embedded systems [4]. It has two main components:

Process definition: this component describes the behaviour of processes and the interac-

tions between them. The technique used is based on CCS [14] and CSP [10].

Abstract data types: this component describes the data types and value expressions. It is

based on the abstract data type language ACT ONE [7].

5

5.1 Processes

A concurrent distributed system is described in LOTOS as a set of communicating processes. A

process is like a black box and its externally observable behaviour is its interactions with other

processes. Specifying a process is defining the temporal relationships among such interactions.

Process behaviour is described using behaviour expressions that consist of external, observable

actions and internal, external unobservable actions. Interactions between processes are achieved

through synchronization. A synchronization is known as an event. An event is atomic and takes

place at an event gate (or just gate).

As an example, let us consider the object model represented in Figure 1. As was said in the

previous section, an object is specified as a process and one or more ADTs, where the process

describes the dynamic behaviour of the object and the ADTs its state information. Suppose

that the object Account offers the services deposit to credit an account and get balance to

give the current balance of an account. The process could be specified as:

process Account[g](this˙account: Account): noexit :=

(g !deposit !Get˙Account˙Number(this˙Account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

g !get˙balance !Get˙Account˙Number(this˙account) !Get˙Balance(this˙account);

exit(this˙account)

) >> accept updated˙account: Account in Account[g](updated˙account)

endproc

The process is defined recursively and uses gate g for synchronization with other processes. It

communicates with other objects in the system by sending messages which are represented as

events with the following structure:

gate name message name object identifier optional parameters

For example, a Counter Teller can send a message to Account asking for a deposit:

g !deposit !acc number !amount;

and an instance of Account synchronizes with this event by offering:

g !deposit !Get˙Account˙Number(this˙Account) ?m: Money;

The operator “!” is used in the form !v where v is a value expression. The operator “?” is used

in the form ?v: s where v is a variable of the sort s.

There are three kinds of synchronization which we summarise in Table 1.

Process A Process B Condition Interaction Type

g ! 1 g ! 2 value (1) = value (2) value matching

g ! 1 g ? x: s sort (1) = s value passing

g ? y: w g ? x: s w = s value generation

Table 1: Interaction Types

Value matching of acc number and Get Account Number(this account) is used to ensure cor-

rect synchronization. Although a client must know the identity of the server, a server can service

many clients without knowing their identity. Value passing is used to pass the value amount to

the variable m. Value generation allows the introduction of uninstantiated variables.

6

The operator [] is the non-deterministic choice operator and >> is the enable operator. The

behaviour expression A>>B means that on successful completion of process A we start execution

of process B. The operator accept ... in is used to pass values as we exit from one process

and enable another.

The functions Get Account Number, Credit Account and Get Balance are defined in the cor-

responding ADT. The parameter this account represents the object state information and is

updated by the recursive call.

5.2 Abstract Data Types

LOTOS models data as abstract data types using the language ACT ONE. Their definition is

rather lengthy and complex although this can be made easier by the provision of an extensive

library of predefined ADTs.

The following example ADT defines the state of an account:

type Account˙Type is Account˙Number˙Set˙Type, Money˙Type, Balance˙Type

sorts Account

opns Init˙Account : Account˙Number -> Account

Credit˙Account : Account, Money -> Account

Get˙Balance : Account -> Balance

Get˙Account˙Number : Account -> Account˙Number

...

eqns forall a: Account, n: Account˙Number, m: Money, ...

ofsort Account˙Number

Get˙Account˙Number(Init˙Account(n)) = n;

Get˙Account˙Number(Credit˙Account(a,m)) = Get˙Account˙Number(a);

...

ofsort Balance

Get˙Balance(a) = Some˙Balance;

endtype

The list of imported definitions is given after the keyword is. The sorts section gives the name of

the data sorts, the opns section defines the operations by their signature and the eqns section

specifies, in terms of equations, the constraints the operations must satisfy. In section eqns

forall we declare the variables that are going to be used in the equations and in section ofsort

we define the result sort of the equations and then the equations themselves.

In ROOA we use symbolic ADTs. A symbolic ADT defines the necessary equations to allow the

objects to be prototyped with state information and values to be passed during the communi-

cation, but without giving too much detail about how each operation is performed internally.

In this section we show how to use ROOA, by using the automated banking system example

given in Section 4.

Task 1: Build the Object Model

The object model produced by [18] is depicted in Figure 1.

7

Task 2: Refine the Object Model

As the object model only has attributes and static relationships, we have to normalize it by

adding obvious services and message connections. To identify message connections, interface

scenarios can be used. Interface scenarios model the interaction of a system with its environment.

We can follow complete paths of functionality in the system, creating message connections as

we trace the message passing through the object model. For example, as our system has to deal

with accounts which can be credited, debited, etc., deposit and withdraw are events in the

interface scenarios. We then have to guarantee that the system offers these services, by making

them operations of the appropriate objects.

During this task we realized that some of the static relationships in the initial object model were

in reality message connections. The normalized model is shown in Figure 2. The services are

shown in the lowest third of each box, message connections are shown as arrows, and the two

obvious hierarchies are marked by dotted lines. They correspond to the inheritance structures

defined for tellers and accounts.

updates

belongs

is accessed

is owned by

receives_
payment

Account

updates

1,2

1,2

Standing
Order

Amount
Date
Bank_Name
Account_Number

Create
Cancel
Debit

Card

Number
Code
Expiry_Date

Client

Name
Address
PhoneOther Bank

Name
Address
Phone

Receive_Transfer
Send_Transfer
Account_Balance

Cheque
Account

Print_Mini_Stat.

Create
Remove
Withdraw
Deposit
Get_Balance

Savings
Account

Period
Interest

Credit_Interest
Update_date

Cheque

Number
Amount
Date
Account_Number
Payable_To

withdraw
Deposit

Entry
Station

Automatic
Teller

Counter
Teller

Withdraw_Cash

Mini_Statement

Open_Account
Close_Account
Deposit_Cash
Give_Balance
Deposit_Cheque
Set_Stand_Ord
Cancel_Stand_Ord
...

Id

Number
Balance
Date

Teller

Bank_Account

Figure 2: Normalized object model

Task 3: Build the LOTOS Formal Model

Task 3.1: Create an Object Communication Diagram

Each object in the object model is a node in the object communication diagram. The hierarchies

identified in the previous task have to be shown.

8

Teller and Other Bank are the first clients in the system. Cheque and Standing Order embody

the role of servers to Teller and of clients to Bank Account. Bank Account is the final server

and so it can only communicate through gate c (see Figure 3).

Cheque

Standing
Order

Other
Bank

a
c

c

b2

Saving
Account

Chequing
Accountc

c

c

c

s

b1

Client

Card

ob

cAutomatic
Teller

Counter
Teller

t

Teller

t

t

a
s
c

Entry
Station

t c

c Account

Bank Account

Figure 3: Initial object communication diagram

Notice that the objects Card and Client are not connected to the rest of the system. This will

often be the case in a first iteration, but will be corrected as the method is applied. During later

iterations new groupings will appear and the diagram will be modified.

Task 3.2: Specify Individual Objects and Classes

As our goal is to build a formal LOTOS specification, we have to specify objects and classes.

An object definition can be specified in LOTOS as an ADT or as a process with one or more

ADTs. We can start by specifying a process and its ADTs, by specifying a set of processes

before dealing with ADTs, or start with the ADTs.

To specify the behaviour of an object we should place ourselves “inside” that object and act as

if it was the centre of the system. By following this strategy we identify the events the object

takes part in and their order. These events correspond to the operations the object offers to or

requires of its environment and are often shown as the options of a choice expression.

As an example, let us look at the specification of the object Account. Figure 2 shows the services

Account offers, each of which corresponds to an event. Account is, however, a superclass. Its

subclasses, Cheque Account and Savings Account, inherit its properties and we can only specify

inheritance in LOTOS if the superclass has exit functionality. We create a superclass where the

operations offered by any account can be defined:

process Superclass˙Account[c](this˙account: Account): exit(Account) :=

c !deposit !Get˙Account˙Number(this˙Account) ?m: Money;

exit(Credit˙Account(this˙account, m))

[]

c !get˙balance !Get˙Account˙Number(this˙account) !Get˙Balance(this˙account);

exit(this˙account)

[]

...

endproc

The definition of the account ADT is given in Section 5.2. Subclass Cheque Account can now

be defined as:

9

process Cheque˙Account[c](this˙account: Account) : noexit :=

(Superclass˙Account[g](this˙account)

[]

c !print˙mini˙statement !Get˙Account˙Number(this˙account) !this˙account;

exit(this˙account)

) >> accept update˙account: Account in Cheque˙Account[c](update˙account)

endproc

Task 3.3: Compose the Objects into a Behaviour Expression

Once objects have been defined, they can be combined in a LOTOS behaviour expression which

describes the whole or part of the system. We might, for example, initially ignore the Cheque

and Standing Order objects. The top-level behaviour expression would be:

((Teller[t, c] ——— Other˙Bank[ob, c](bk of Bank˙Name)) —[c]— Bank˙Account[c])

—[t, ob]—

Interface˙Scenario[t, ob]

where

process Bank˙Account[c] : noexit :=

Cheque˙Account[c](acc2 of Account˙Number)

———

Savings˙Account[c](acc1 of Account˙Number)

where ...

The interleaving operator ||| indicates that Teller and Other Bank are composed in parallel,

but do not interact with one another. The parallel operator |[c]| means that the behaviour

expression

Teller[t, c] ——— Other˙Bank[ob, c](bk of Bank˙Name)

synchronizes in gate c with Bank_Account[c].

It is often the case, as in this example, that we only require instances of the subclasses, not

of their superclass. That is why Account does not appear in the behaviour expression for

Bank Account.

Task 3.4: Prototype the Specification

At this point we can start prototyping the specification, not only to identify syntactic and seman-

tic errors, but also to validate the specification against the object model and the requirements.

Interface scenarios are used to drive the prototyping.

Task 3.5: Refine the Specification

We have not yet dealt with static relationships. A relationship can be specified as an attribute,

or a set of attributes, in one of the objects involved in the relation (or both if the relationship

is bidirectional) [15]. Let us take the example of Cheque Account. As we can see from the

object model, it has a relationship with Card and another with Standing Order. These two

relationships are defined as ADTs given as parameters of the Cheque Account process. As the

relationships are one-to-many in Standing Order and Card directions, they will be modelled as

sets. This is shown by the parameters cards and sos.

10

process Cheque˙Account[c](this˙account: Account, cards: Card˙Number˙Set,

sos: SO˙Number˙Set) : noexit :=

(Superclass˙Account[g](this˙account)

>> accept new˙account: Account in exit(new˙account, cards, sos)

[]

c !print˙mini˙statement !Get˙Account˙Number(this˙account) !this˙account;

exit(this˙account, cards, sos)

[]

c !perhaps˙deposit !Get˙Account˙Number(this˙account) ?m: Money;

exit(Credit˙Pending(this˙account, m), cards, sos)

[]

c !full˙deposit !Get˙Account˙Number(this˙account) ?m: Money ?valid: Bool;

([valid] -> exit(Add˙Credit˙Pending(this˙account, m), cards, sos)

[]

[not (valid)] -> exit(Sub˙Credit˙Pending(this˙account, m), cards, sos)

)

) >> accept upd˙account: Account, cards: Card˙Number˙Set, sos: SO˙Number˙Set

in Cheque˙Account[c](upd˙account, cards, sos)

endproc

Note that the new version of Cheque Account extends both the state and the services that are

inherited from Superclass Account. Also, that by specifying the relationships as parameters

of the process, instead of specifying them in the Account ADT, we are promoting reusability.

During this task we have to introduce more detail in some of the processes in order to completely

deal with the rest of the objects. That is why perhaps deposit and full deposit have been

added. They are needed to deal with cheques. We also decided that Card and Client should

only be specified as ADTs.

It is often the case that several instances of a class are required and we wish to be able to create

the instances dynamically. This is the case with, for example, Cheque Account and is achieved

by means of an object generator which is defined as:

process Cheque˙Accounts[c](accs: Account˙Number˙Set): noexit :=

c !create !cheque ?acc˙counter: Account˙Number

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

(Cheque˙Account[c](Init˙Account(acc˙counter),

–˝ of Card˙Number˙Set, –˝ of SO˙Number˙Set)

———

Cheque˙Accounts[c](Insert(acc˙counter,accs))

)

endproc

The object generator holds the set of identifiers already allocated and the selection predicate:

[(acc˙counter notin accs) and Is˙Cheque˙Acc(acc˙counter)];

imposes the condition that the new object identifier is different from all existing ones. As both

kinds of account share the same Account Number sort, !cheque specifies the type of account

we want to create and Is Cheque Acc(acc counter) guarantees that the new object identifier

belongs to the correct subrange of Account Number.

The refinements lead us to the object communication diagram depicted in Figure 4.

The top-level behaviour expression is now:

11

Automatic
Tellers

Counter
Tellers

Other
Banks

t

b

c

Cheques

Standing
Orders

Complex Operations

as

as

c

c

c

c

as

as
Savings
Accounts

Cheque
Accounts

Bank_Accounts

c

c

c

c

t

t

Tellers

ob

b

b

Figure 4: Final object communication diagram

(((Tellers[t, as, c] ——— Other˙Banks[ob, b, c])

—[as, b]—

Complex˙Operations[as, b, c]

)

—[c]—

Bank˙Accounts[c]

) —[t, ob]— Interface˙Scenario[t, ob]

The ROOA (Rigorous Object-Oriented Analysis) method integrates in a single formal model the

object, dynamic and functional models usually proposed by the standard object-oriented analysis

methods. As LOTOS has a precise mathematical semantics, the resulting model is formal and

unambiguous. Moreover, as LOTOS is executable, the model is executable, and so prototyping

can be used to give immediate feedback to the clients who can check if the prototype exhibits

the intended behaviour. Prototyping a formal specification enables omissions and inconsistencies

in the original requirements to be readily identified. It also supports a software development

trajectory where the requirements specification is transformed into a design specification with

prototyping being used to ensure that the two specifications conform to one another.

The dynamic behaviour of each object is specified as a LOTOS process and its state information

can be specified by one or more ADTs. The processes are composed, by using the LOTOS

parallel operators, to specify the dynamic behaviour of the complete system. Therefore we can

specify a system as a set of concurrent objects and avoid decisions that can be considered design

or implementation issues, such as protection techniques for the concurrent access of shared data.

Much of the concurrency will be removed in an implementation, but we are performing analysis,

and therefore our goal is to understand the problem, not to propose a solution.

[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language LOTOS.

Computer Networks and ISDN Systems, 14(1):25–59, 1987.

[2] E. Brinksma (ed). Information Processing Systems — Open Systems Interconnection —

LOTOS — A Formal Description Technique on the Temporal Ordering of Observation

Behaviour, ISO 8807, 1988.

12

[3] D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z: An Object-

Oriented Extension to Z. In Son T. Vuong, editor, Formal Description Techniques, II, pages

281–295, North-Holland, December 1989.

[4] R.G. Clark. Using LOTOS in the Object-Based Development of Embedded Systems. In

C.M.I. Rattray and R.G. Clark, editors, Unified Computation Laboratory, pages 307–319.

Oxford University Press, 1992.

[5] P. Coad and E. Yourdon. Object Oriented Analysis. Yourdon Press, Prentice-Hall, 2nd

edition, 1991.

[6] H. Eertink. Executing LOTOS Specifications: The SMILE Tool. In Third LotoSphere

Workshop and Seminar, September 1992.

[7] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications, volume 1. Springer-Verlag,

1985.

[8] N.E. Fuchs. Specifications are (preferably) Executable. Software Engineering Journal,

7(5):323–334, 1992.

[9] I.J. Hayes and C.B. Jones. Specifications are not (Necessarily) Executable. Software Engi-

neering Journal, 4(6):330–338, November 1989.

[10] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[11] ISO/IEC JTC1/SC21/WG7. Basic Reference Model of Open Distributed Processing. Tech-

nical report, 1993.

[12] I. Jacobson. Object-Oriented Software Engineering — A Use Case Driven Approach.

Addison-Wesley, 1992.

[13] C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, 1986.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] A.M.D. Moreira and R.G. Clark. Rigorous Object-Oriented Analysis. Technical Report TR

109, Computing Science Department, University of Stirling, Scotland, 1993.

[16] K.S. Rubin and A. Goldberg. Object Behaviour Analysis. Communications of the ACM,

35(9):48–62, 1992.

[17] S. Rudkin. Inheritance in LOTOS. In K.R. Parker and G.A. Rose, editors, Formal De-

scription Techniques, IV, pages 409–423, North-Holland, 1992.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented

Modelling and Design. Prentice-Hall, 1991.

[19] S. Shlaer and S.J. Mellor. Object Lifecycles — Modeling the World in States. Prentice-Hall,

1992.

13

