
dit
UPM
dit DEPARTAMENTO DE INGENIERIA TELEMATICA

Universidad Polit�ecnica de Madrid

E�T�S�I� de Telecomunicaci�on

LOtos LAboratory

User Manual �version �R��

Code� LOLA�N��V��
Date� February �� �		�
Authors� S� Pav�on

D� Larrabeiti
G� Rabay

State� Final

Address� E�T�S�I� Telecomunicaci�on� Ciudad Universitaria s�n� ����� Madrid

Telephone� 	
 ��	����� 	
 ��	���� T�elex� ����� LCT E� Fax� 	
 ��������

e�mail� spavon�dit�upm�es dlarra�dit�upm�es

Contents

� LOLA� LOtos LAboratory� �

��� An Overview �

��� Language �

��� Using LOLA �

��
 Example �

� Miscellaneous Operations �

��� HELP �

��� LOAD �

��� PRINT �

��
 MOVE �

��� DATATABLE � 	

��� STATISTICS ��

�� SET ��

��� COMMAND ��

��	 QUIT ��

� Simulation�Debugging ��

��� REWRITE ��

��� STEP ��

� Expansion ��

�� EXPAND �

�� VAREXPAND �	

�� FREEEXPAND ��

�
 INTEREXPAND ��

� Testing ��

��� TESTEXPAND �

����� Basic Procedure �

����� Debugging Options ��

����� Suspending Tests ��

����
 Partial Exploration ��

����� Other considerations ��

��� ONEEXPAND �

A Appendix� Non	LOTOS Operators �

B Appendix� Preprocessing �

C A timed prototype of LOLA ��

C�� The Language �	

C�� Example �	

C�� Restrictions ��

C�
 Compilation Flags ��

� LOLA� LOtos LAboratory�

��� An Overview

LOLA �LOtos LAboratory� �QFM�� QPF�	a� PL	�� is a transformational and state explo�
ration tool� It supports the LOTOS based phases of the design cycle� by transformation�
execution and testing of LOTOS speci�cations�

LOTOS �Language of Temporal Ordering Speci�cation �ISO�	�� is a formal abstract description
language which allows to describe a system in a precise way� abstracting away realization details�
This is specially useful in the design and analysis of protocols and distributed systems� where
the interactions system�environment have often complex interdependencies� LOTOS is based
on several mathematical models� which makes possible to check the validity of the speci�cation�
ensuring the correctness of the design� LOLA provides the user with a set of tools that help
to analyse the behaviour of a system before entering the realization phase�

The functionalities of LOLA are classi�ed in four groups�

Simulation�Debugging� These operations allow to simulate LOTOS behaviours interactively
step by step� or to evaluate data value expressions�

� Step� simulates a behaviour step by step�

� Rewrite� evaluates data value expressions�

Testing� These calculate the response of a system speci�cation to a test �must� may or reject�
according to the Testing Equivalence�

� TestExpand� Passes a test to the speci�cation�

� OneExpand� Analyses a single random execution of the speci�cation�

Expansion� The expansion transformations compute symbolically all the possible executions
of a LOTOS speci�cation� i�e� they obtain its labelled transition system� There exist several
types of expansions�

� Expand� computes the EFSM �Extended Finite State Machine� of a behaviour�

� VarExpand� computes the parameterized EFSM of a behaviour�

� FreeExpand� computes the behaviour tree �without detecting duplicate states��

� InterExpand� compute the interleaved expansion of a behaviour�

Miscellaneous operations� LOLA also has a set of operations to load and print the speci�
�cation� to navigate throughout the behaviours� etc�

� Help� help about commands�

� Load� restore the original speci�cation�

� Print� print the current speci�cation�

� Move� move LOLA�s internal cursor�

� DataTable� show internal identi�ers tables�

� Statistic� display memory and CPU time usage�

� Set� display�change LOLA con�guration�

� Command� execute a LOLA command �le�

� Quit� exit LOLA�

��� Language

LOLA accepts full LOTOS language �IS������

The internal language used in LOLA is �attened LOTOS� This means in outline that the
original speci�cation is automatically transformed into an equivalent speci�cation where the
overloading of identi�ers is resolved and the nesting of processes and types de�nitions is �at�
tened�

LOTOS data types are treated operationally by interpreting equations as rewrite rules from
left to right� These rewrite rules should be con�uent and terminating to achieve proper oper�
ation� Thus some type of Knuth�Bendix completion algorithm is necessary to make the data
type de�nition operational before working with LOLA� Data values or expressions containing
variables are always treated through their canonical forms during the transformations�

��� Using LOLA

To start up the LOLA environment with a speci�cation� just enter�

topo �spec� �lola ��l �lib��

where �spec� is the name of a LOTOS speci�cation and �lib� is the name of a LOTOS types
library �le�

There exists an X�window interface for LOLA� which can be invoked with option �xlola

instead of �lola� This is specially suitable for interactive simulation � eg� selecting transitions
and moving around is easily done by clicking the mouse� etc �� but we strongly recommend the
textual version for batch test execution and expansion�

After invoking LOLA� the syntax and semantics analysis are done �any errors in the speci��
cation or in the library are reported�� and the prompt lola� appears on the screen waiting for
the user to input commands�

LOLA commands are referenced by their names � or their abbreviations � and delimited by a
carriage return� The following keys provide command line edition capabilities � �

Key Action
Ctrl�A move to beginning of line
Ctrl�E move to end of line
Ctrl�F move forward one character
Ctrl�B move back one character
Ctrl�D delete current character or EOF
DEL delete current character
Ctrl�H delete left character
Ctrl�K delete to end of line
Ctrl�P previous history command
Ctrl�N next history command
Ctrl�Q �rst history command
Ctrl�W last history command
Ctrl�L redraw current line
Ctrl�R redraw current line

LOLA has an internal cursor which always points to a sub�behaviour of the LOTOS speci�ca�

�Based on a line editing input package of Chris Thewalt� Copyright �C�
		
�

tions� Commands are applied to this active sub�behaviour� To see the current sub�behaviour
just print it�

��� Example

The following speci�cation will be used to describe the commands of LOLA throughout this
document� This speci�cation contains two processes� Client and Bank� The Client can borrow
money from the Bank with a credit of two units�

SPECIFICATION Credit �bank� work� sleep � � NOEXIT

TYPE Boolean IS

SORTS bool

OPNS true�false � �� bool

not � bool �� bool

EQNS FORALL x�y � bool

OFSORT bool

not�not�x���x	 not�true��false	 not�false��true	

ENDTYPE

TYPE Money IS Boolean

SORTS money

OPNS
 � �� money

inc� dec � money �� money

�eq� � money� money �� bool

noi� nod � money �� bool

EQNS FORALL x�y � money

OFSORT money

inc�dec�x���x	 dec�inc�x���x	

OFSORT bool

nod�
� � true	 nod�inc�x�� � nod�x�	

noi�
� � true	 noi�dec�x�� � noi�x�	

 eq
 � true	

inc�x� eq y � x eq dec�y�	 dec�x� eq y � x eq inc�y�	

nod�x� ��
 eq inc�x� � false	 noi�x� ��
 eq dec�x� � false	

ENDTYPE

TYPE BankOperation IS

SORTS BANKOP

OPNS borrow� pay � �� BankOp

ENDTYPE

BEHAVIOUR

Bank�bank�sleep��inc�inc�
���
� ��bank�� Client�bank�work�

WHERE

PROCESS Client � bank� work � � NOEXIT ��

bank borrow	 Client�bank�work�

�� bank pay 	 Client�bank�work�

�� work 	 Client�bank�work�

ENDPROC

PROCESS Bank � bank� sleep � �Max�debt�Money� � NOEXIT ��

bank borrow �not�debt eq Max��	 Bank�bank�sleep��Max�inc�debt��

�� bank pay �not�debt eq
�� 	 Bank�bank�sleep��Max�dec�debt��

�� sleep 	 Bank�bank�sleep��Max�debt�

ENDPROC

ENDSPEC

� Miscellaneous Operations

The main applications of LOLA are Simulation� Testing and Expansion� There is also a set of
miscellaneous commands such as help� print� etc� which are described in this section�

��� HELP

This command either displays the list of available commands or describes the funcionality of a
speci�ed command and its options�

Syntax�

Help ��command name��

�command name� is the name of a LOLA command� When this argument is present a
detailed description of the command is given� otherwise� the list of available commands is
displayed�

��� LOAD

This command restores the LOTOS speci�cation�

Syntax�

Load

Since most LOLA commands modify the LOTOS speci�cations� it is sometimes necessary to
start again from the initial situation �or to update the changes made with an auxiliary editor�
without quitting� i�e� Load reads the speci�cation �le�

��� PRINT

This command prints the LOTOS behaviour pointed by the internal cursor� up to a speci�ed
depth� into a �le or into the standard output�

Syntax�

Print ��p� ��t� ��a� ��c� ��depth�� ��output file��

	p print de�nitions of the processes instantiated until �depth��
	t print data type de�nitions�
	a print the whole speci�cation� with processes and data type de�nitions�
�depth� printing depth � number of actions visible or invisible printed��

A negative depth means no boundary�
�output le� name of the output �le� Default is standard output�

For example� the command print �p �� prints completely the current behaviour and the pro�
cesses used within into the standard output� Options �depth�� �p or �t can be set as default
and omitted � see command Set �� Initial default value for �depth� is
�

��� MOVE

This command moves the internal cursor to another place in the speci�cacion�

Syntax�

Move ��position�� ��position�� ���

�Position� can be�

Position Movement to
�number� line �number� of the current behaviour�
� the root of the speci�cation�
�process name� the process de�nition called �process name��
�number�d down �number� LOTOS operators�
�number�u up �number� LOTOS operators�
�number�b �number��th operand �branch� of the current operator�

In the XLOLA moving is as easy as clicking� but in the textual interface is a bit di�erent�
There are two ways of moving� Let us illustrate the easiest one with an example� Imagine we
want to move the cursor to the last line of process Client� which is a self�instantiation� The
�rst thing we have to do is telling LOLA that we want to move �

lola� move

� specification credit �bank�work�sleep� � noexit

�

� behaviour

�

� bank �bank�sleep� �inc�inc�
���
�

� ��bank��

� client �bank�work�

�

� where

�
 process bank �bank�sleep� �max���money� debt���money� � noexit

�� process client �bank�work� � noexit

��

�� endspec

LOLA expects you to move to one of the listed lines� Since we want to move to the process
de�nition client� which is at line �� we type�

lola� move ��

Now we are placed in the process de�nition� We could see it by printing it or� as we have not
reached our destination yet� by moving again �

lola� move

� process client �bank�work� � noexit ��

� bank borrow	

� client �bank�work�

� ��

� bank pay	

� client �bank�work�

� ��

� work	

� client �bank�work�

�
 endproc

lola� move �

and we are done� ready to execute any command on this behaviour�

A second way to navigate is using tree�oriented movements� This way is faster but more di�cult�
since the user needs to know about the syntactical structure of his�her speci�cation� This is a
batch�oriented moving mechanism�

For example� to move the internal cursor to the last line of the process de�nition Client in a
tree�oriented way� you type in move client �d �b �d� This causes the cursor to be positioned
in the process de�nition Client and then moved down onto the �rst operator of this process�
The third alternative of the choice operator is selected� and �nally the cursor is placed below
the action pre�x� on the process instantation Client�

PROCESS Client [bank , work] : NOEXIT :=

bank ! borrow

; Client [bank , work]

bank ! pay

work
; Client [bank , work]

; Client [bank , work]

ENDPROC

[]

[]

move client

move 1d

move 3b

move 1d

��� DATATABLE

This command shows the internal tables used in LOLA� Useful only for advanced LOLA
users willing to have a statistical view of the speci�cation �e�g� to know the number of gates�
processes� operations� sorts or variables used � �

Syntax�

DataTable �s�v�o�p�g ��low limit�� ��high limit��

�low limit� and �high limit� are numbers which indicate the �rst and last table positions

to be printed� Options 	s� 	v� 	o� 	p and 	g select the sort� variable� operation� process or gate
table� respectively� If the limits are not speci�ed the entire table is displayed�

For example� to see positions � to �� of the operation table� you should execute the following
command�

lola� datatable �o � �

TABLE OF OPERATIONS�

� �
 � �� money ���

� � inc � money ��� �� money ���

inc�dec�x���� � x�� 	

� � dec � money ��� �� money ���

dec�inc�x���� � x�� 	

� � �eq� � money ���� money ��� �� bool ���

noi�x��� � true ��
 eq dec�x��� � false 	

nod�x��� � true ��
 eq inc�x��� � false 	

 eq
 � true 	

inc�x��� eq y�� � x�� eq dec�y��� 	

dec�x��� eq y�� � x�� eq inc�y��� 	

�
 � noi � money ��� �� bool ���

noi�
� � true 	

noi�dec�x���� � noi�x��� 	

��� STATISTICS

This command reports memory and CPU time used by LOLA�

Syntax�

Statistics

Example �

lola� stat

statistics

Memory and time usage� ��� Kbytes�
��� sec�

The availability of this command depends on the system on which LOLA runs � The value
depends perceptibly on system load for multitask systems�

��� SET

Set assigns a default value for command options and pre�expansion options� These default
options are stored in internal variables�

Syntax�

Set ��variable� ��value���

With no argument� Set displays the values of all these variables� With the �variable� argu�
ment alone� Set resets �variable� to the initial default value�

The following table shows the meaning of each variable and its initial default values�

Initial
Variable Range Value E�ect

divergence�check ON � OFF OFF divergence analysis before �rst
expansion

unguarded�proc�check ON � OFF ON apply unguarded process detection
before �rst expansion

print�depth �integer� � default print command depth
print�types ON � OFF OFF print types
print�proc ON � OFF OFF print process de�nitions of

printed instantiations
verbose ON � OFF OFF verbose mode
expand�i�removal ON � OFF OFF weak bisimulation congruence

in expansion
exploration�depth �integer� �� exploration depth in testing �

expansion commands
success�event �string� success event in testing commands
test�i�removal ON � OFF ON test equivalent reduction

in testexpand
quit�exploration�on�may�response ON � OFF ON abort testing as soon as

the test result is MAY
without further exploration

expected�response MUST�MAY�REJECT abort testing when the test
result does not match this value

quit�lola�on�unexpected�response ON � OFF OFF abort testing and exit LOLA with
value
 when the test result does not
match the expected response

memory�size �natural� size of bu�er in Mbytes devoted
to heuristic exploration�
Turn on partial test expansion�

��� COMMAND

Command executes a LOLA command �le�

Syntax�

Command �command file�

A LOLA command �le is a text �le that contains a succession of commands separated by
� cr �� Command impels LOLA to take this �le as input of commands and execute the
commands just as if they were typed in from the command line�

An example of command �le �

set divergence�check ON

set print�depth ��

set verbose ON

set success�event test�ok

testexpand test�

testexpand test�

testexpand test�

��	 QUIT

This command quits LOLA�

Syntax�

Quit

� Simulation�Debugging

These operations are used to debug and to simulate LOTOS behaviours and data type de�ni�
tions� The user can execute interactively any speci�cation step by step assigning values to the
variables de�ned in the speci�cation� Likewise� the canonical form of any data value expression
can be evaluated according to the rewrite rules de�ned in the speci�cation�

��� REWRITE

Rewrite evaluates data value expressions� i�e� it calculates the normal form of an expression�

Syntax�

Rewrite �expression�

�Expression� is the data value expression to be evaluated according to the rewrite rules
speci�ed in the LOTOS speci�cation� The rewrite rules can be printed using both the print

or the DataTable commands�

For example� to evaluate the expression inc�inc�dec����� eq dec��� �

lola� rewrite inc�inc�dec�
��� eq dec�
�

false

��� STEP

Step executes the current behaviour � or the composition current behaviour � test� if a test
process is provided � interactively step by step�

All the transitions o�ered in the current state are presented in a menu from which the user has
to choose one to be executed� After the user has selected � i�e� executed � one transition� a new
menu is displayed � showing the transitions o�ered at the new state�

The user can assign expressions to the variable parameters of the process de�nitions� to the
variables in sum�expressions and to the variables de�ned in gates or exit statements o�ers�
Whenever a variable value gets unde�ned during the simulation� the user is requested to enter
a value expression to be assigned to that variable� If no expression is provided then the variable
will remain unassigned and treated symbolically in the next states�

Syntax�

Step ��success event� �test process��

If the parameters �success event� and �test proc� are speci�ed� they are taken to re�
build the parallel composition that is created automatically with the commands TestExpand
and OneExpand� The simulation is performed over this composition� See section � for more
information�

When the command Step is invoked� you enter the Step environment and a new prompt appears
below the menu of transitions �

�n�	Undo	Menu	Refused	Sync	Print	Trace	Exit	
�

These are the commands available in Step mode �

Print print the behaviour of the current state�
Syntax� Print ��p� ��t� ��a� ��depth�� ��output�file��

Menu display the menu of transitions o�ered at the current state�

Refused display the menu of unsuccessful synchronizations
�due to data value o�ering mismatch� at the current state�
The numbers printed in parenthesis are the line numbers of
the events involved in the unsuccessful synchronization�
Note that the menu labels are negative numbers�

Sync �n� ��proc�� � for a transition �n� � show the events that produced it�
� for an unsuccessful synchronization �n� � show the events that
could not synchronize�

Each event is diplayed below the stack of processes instantiated
to produce it� If the name �proc� is speci�ed then only the
instantiations of that process are displayed�

�n� execute the transition labelled �n� from the menu of transitions�

Undo undo the last simulation step �back to previous state��

Trace display the sequence of transitions that lead to the current state�

Exit quit simulation mode�

� help�

Step can be applied to any sub�behaviour of a speci�cation by placing the internal cursor on
it previously� see Move command �� Let us see an example of step�by�step simulation with the
speci�cation Credit � The user inputs follow the Step mode prompt�

lola� step

� �� bank � borrow	

�
� sleep	

� �� work	

�n�UndoMenuRefusedSyncPrintTraceExit��

��� sleep	

���

� �� bank � borrow	

�
� sleep	

� �� work	

�n�UndoMenuRefusedSyncPrintTraceExit�� �

��� bank � borrow	

���

� �� bank � borrow	

�
� bank � pay	

� �� sleep	

� �� work	

�n�UndoMenuRefusedSyncPrintTraceExit�� �

��� sleep	

���

� �� bank � borrow	

�
� bank � pay	

� �� sleep	

� �� work	

�n�UndoMenuRefusedSyncPrintTraceExit�� �

��� bank � borrow	

���

� �� bank � pay	

�
� sleep	

� �� work	

�n�UndoMenuRefusedSyncPrintTraceExit�� undo

Last simulation step undone�

We have executed four actions so far� and have undone one� so here is the current event history
and the actions o�ered�

�n�UndoMenuRefusedSyncPrintTraceExit�� trace

�
� � sleep	

� �� � bank � borrow	

� �� � sleep	

�n�UndoMenuRefusedSyncPrintTraceExit�� menu

� �� bank � borrow	

�
� bank � pay	

� �� sleep	

� �� work	

Now we might be wondering why bank � pay is being o�ered �obviously we have borrowed
money once� so we have to return it�� There are two ways to analyse this � �� Sync traces
the history of process instantiations that have occurred in each part of the parallel to produce
bank � pay� �� Print just displays the current behaviour�

�n�UndoMenuRefusedSyncPrintTraceExit�� sync

bank �banksleep� �inc�inc������ �� line �
 ��

bank �banksleep� �inc�inc������ �� line �� ��

bank �banksleep� �inc�inc����inc���� �� line �
 ��

bank �banksleep� �inc�inc����inc���� �� line �� ��

bank � pay �� line �� ��	

��bank��

client �bankwork� �� line �� ��

client �bankwork� �� line �� ��

bank � pay �� line �� ��	

�n�UndoMenuRefusedSyncPrintTraceExit�� print

�Let max���money�inc�inc����debt���money�inc��� in

bank �banksleep� �max�� debt���

�

��bank��

bank � borrow	 ������

�� bank � pay	 ������

�� work	 ������

We may also wish to know what is failing to synchronize due to o�ers mismatch� This is the
menu of refused synchronizations �

�n�UndoMenuRefusedSyncPrintTraceExit�� refused

� ��� bank �at lines �
���

� �
� bank �at lines ����

Again we can analyse any of these synchronizations with Sync�

�n�UndoMenuRefusedSyncPrintTraceExit�� sync �

bank �banksleep� �inc�inc������ �� line �
 ��

bank �banksleep� �inc�inc������ �� line �� ��

bank �banksleep� �inc�inc����inc���� �� line �
 ��

bank �banksleep� �inc�inc����inc���� �� line �� ��

bank � pay �� line �� ��	

��bank��

client �bankwork� �� line �� ��

client �bankwork� �� line �� ��

bank � borrow �� line �� ��	

and we check that everything has evolved as expected and bank �pay and bank �borrowmust
be o�ered in each process but cannot synchronize�

Warning � Line numbers displayed with sync may be lost if any expansion or testing operation
is performed before invoking step�

� Expansion

The expansion transformations produce a compressed version of the transition system generated
by a LOTOS speci�cation� that represents its EFSM �Extended Finite State Machine�� as an
equivalent LOTOS behaviour� These transformations apply a generalized version of the so�
called Expansion Theorem �see IS����� The e�ect of an expansion is the removal of the most
complex LOTOS operators �parallel� disabling� enabling����� from the speci�cation� producing
an equivalent speci�cation in terms of action pre�x� behaviour choice� guards and data value
choice� This transformation can be used for state exploration� deadlock detection� deriving
e�cient implementations� input graph for model checking� etc�

The expansion commands are Expand� VarExpand� FreeExpand and InterExpand� All of them
can be applied to any sub�behaviour of the LOTOS speci�cations�

��� EXPAND

Expand transforms the current behaviour into an equivalent LOTOS behaviour� which contains
only visible and invisible actions� action pre�xes� sum�expressions� choices� exits� stops� guards
and processes� This transformed behaviour is strong�weak� bisimulation equivalent to the
original�

Syntax�

Expand ��depth�� ��v� ��i�

�depth� is an integer number� It limits the maximum depth of the expansion measured in
number of actions �visible or invisible� generated from the root of the expansion� A negative
�depth� means no bound� Default argument is in�nite depth�

This expansion performs reduced state explorations of the state space of the speci�cation be�
cause it looks for duplicate states� so that the exploration backtracks when a duplication is
detected� Two states are detected as duplicate when their behaviours are identical�

The expansion is a tree like exploration of the transition system with backtracks when one of
the following conditions is found� an exit or a stop statements is found� the speci�ed �depth�
is reached� or a duplicate state is found� For the termination of this expansion only �nite sorts
of data values and bounded dynamic creation of processes are allowed� Therefore behaviour
expressions that can produce in�nite transitions can not be expanded completely�

Option 	v is used to work in verbose mode� In this mode� during the expansion� the depth of the
exploration is displayed like a list with the format a�b�c�d� The term a�b�c�d means that there is
a sequence of actions which begins at depth a and ends at depth b� and which has an alternative
sequence of actions beginning at depth c and ending at depth d� The number of states explored
and the number of transitions generated are also displayed during the exploration�

Option 	i causes the removal of some internal actions from the behaviour � preserving the
observational congruence�� so that the number of states to explore is reduced� For instance� the
behaviour a� �i�B�jjjB�� is transformed into a� �B�jjjB��� which has less states and executions
to explore � �

�The type of equivalence is selected in all expansion commands by means of the �i option�
�When weak bisimulation equivalence is selected in an expansion� the information relative to which hidden

gate the internal action comes from � which normally appears inside comment brackets ���� � is deleted from
the resultant speci�cation� The reason for that is to avoid apparent transition gaps due to the removal of

After the expansion some statistics about the transitions� states� deadlocks and duplicate states
generated are printed�

For example� the EFSM of the Credit speci�cation is calculated and printed below�

lola� expand �� �v

Exploration Tree �Transits� States

� �� �� �� �� �� �� �� �� �� � �
� �

�� ��
� ��
� ���

Analysed states � �

Generated transitions � �

Duplicated states � �

Deadlocks �

lola� print �p ��

specification credit �bank�work�sleep� � noexit

behaviour

duplicate� �bank�work�sleep�

where

process duplicate� �bank�work�sleep� � noexit ��

bank borrow	

duplicate
 �bank�work�sleep�

�� sleep	

duplicate� �bank�work�sleep�

�� work	

duplicate� �bank�work�sleep�

endproc

process duplicate
 �bank�work�sleep� � noexit ��

bank borrow	

duplicate� �bank�work�sleep�

�� bank pay	

duplicate� �bank�work�sleep�

�� sleep	

duplicate
 �bank�work�sleep�

�� work	

duplicate
 �bank�work�sleep�

endproc

process duplicate� �bank�work�sleep� � noexit ��

bank pay	

duplicate
 �bank�work�sleep�

�� sleep	

duplicate� �bank�work�sleep�

�� work	

duplicate� �bank�work�sleep�

endproc

endspec

Usually� Expand and VarExpand computation time is shortened by expanding all the process
de�nitions before expanding the main behaviour� in a bottom�up fashion � from the innermost
instantiated to the outermost �� Bottom�up expansions increase expansion performance mainly
in behaviours with very frequently instantiated processes�

internal actions that may confuse the user�

��� VAREXPAND

VarExpand performs the parameterized expansion �QPF�	b�� It expands the behaviours like
Expand� but keeping variables symbolic and detecting parameterized duplicate states �without
evaluation of value expressions�� Hence� it produces a more compressed representation of the
transition system and reduces the state exploration with respect to the Expand transformation
because the value expressions are always handled symbolically� Here� the duplicate states are
detected when behaviours are equal except for some data values� which may be di�erent� The
transformed behaviour is also strong�weak bisimulation equivalent to the original�

Syntax�

VarExpand ��depth�� ��v� ��i�

Options �depth�� �v and �i have the same meaning that in Expand�

With VarExpand the exploration backtracks when an exit or a stop statement is found� the
speci�ed �depth� is reached� or a parameterized duplicate state is found� The conditions for
the termination of the expansion are now di�erent� because in�nite sorts are allowed �data
expressions are treated in a parameterized way�� However� unbounded dynamic creation of
processes can produce divergence� This expansion stops much more quickly than Expand and
produces less states�

The parameterized EFSM of the Credit speci�cation is presented below�

lola� varexpand �� �v

Exploration Tree �Transits�� States

� ��
� ��
� ��
� ���

Analysed states � �

Generated transitions � �

Duplicated states � �

Deadlocks �

lola� print �p ��

specification credit �bank�work�sleep� � noexit

behaviour

duplicate
 �bank�work�sleep� �
� inc�inc�
���

where

process duplicate
 �bank�work�sleep��debt���money� max���money��noexit ��

bank borrow �not�debt�� eq max��� � true�	

duplicate
 �bank�work�sleep� �inc�debt���� max���

�� bank pay �not�debt�� eq
� � true�	

duplicate
 �bank�work�sleep� �dec�debt���� max���

�� sleep	

duplicate
 �bank�work�sleep� �debt��� max���

�� work	

duplicate
 �bank�work�sleep� �debt��� max���

endproc

endspec

��� FREEEXPAND

FreeExpand expands the behaviours like Expand� but it does not detect duplicate states� The
transformed behaviour is also strong�weak bisimulation equivalent to the original�

Syntax�

FreeExpand ��depth�� ��v� ��i�

Options �depth�� �v and �i have the same meaning that in Expand�

The exploration of the transition system only backtracks when an exit or a stop statement is
found� or the speci�ed �depth� is reached� Therefore� behaviours that can produce in�nite
lenght sequences of transitions can not be expanded completely� i�e� unbounded �depths�

should not be given with never terminating behaviours� FreeExpand is faster than Expand and
VarExpand�

For example� to obtain all the transitions produced by Credit until a depth of two actions the
following command must be executed�

lola� free � �v

Exploration Tree �Transits� States

� �� �� �� �� �� �� ��
� �� � �
� �

�� �� �� ��
� �� �� �� �� ���� ��� �

Analysed states � �

Generated transitions � ��

Duplicated states �

Deadlocks �

lola� print �

specification credit �bank�work�sleep� � noexit

behaviour

bank borrow	

� bank borrow	 ������

�� bank pay	 ������

�� sleep	 ������

�� work	 ������

�

�� sleep	

� bank borrow	 ������

�� sleep	 ������

�� work	 ������

�

�� work	

� bank borrow	 ������

�� sleep	 ������

�� work	 ������

�

endspec

��� INTEREXPAND

This command computes the Interleaved Expansion �QLP	�� of the current behaviour �

Syntax�

InterExpand ��depth�� ��d��p� ��v�

Option 	d is used to perform reduced state explorations� looking for duplicate states�
Option 	p forces parameterized duplicate state detection�
Option 	v causes the interleaved expansion to work in verbose mode� Unlike section
�� de�
scription of option 	v� the depth of exploration is given in terms of synchronizations instead of
in number of transitions�

InterExpand produces a non�LOTOS speci�cation� This transformation introduces three new
statements� the IT operator� the termination and the continuation set� These statements
represent the transition system of a LOTOS speci�cation in a di�erent way�
IT �B���c�C � c � Bc�� The intuition of this expression is the following� The IT operator
has a behaviour B� which evolves as any LOTOS behaviour containing action pre�x� inaction�
choice and pure interleaving� B� has especial events tagged by integers� called terminations�
which label some of their states� These terminations are indexes of a set of labelled behaviours
�c�C � c � Bc �the continuation set� such that Bc is enabled when B� is in a state that o�ers
the set of termination labels composing � c �� For instance� the interleaved expansion with
duplicate behaviour detection of the speci�cation of a ��element bu�er �

specification buffer� �input�m�output� � noexit

type data is sorts data endtype

behaviour

hide m in b� �input�m� ��m�� b� �m�output�

where

process b� �input�output� � noexit ��

input �x�data	 output x	 b� �input�output�

endproc

endspec

is the following�

IT� input � x���data	 duplicate
 �input�output� �x���

�

���x��
�data� ��� duplicate
 �input�output� �x��
�

�

where

process duplicate
 �input�output� �x���data� � noexit ��

i	 �� m x�� ��

� input � x��
�data	 ��x��
�

���

output x��	 �

�

endproc

All the synchronizations of the speci�cation are computed and the cardinality of each syn�
chronization is re�ected in the number of terminations that label its continuation� Note that
terminations have parameters like processes do�

� Testing

LOLA follows the de�nition of Testing Equivalence of de Nicola and Hennessy �dNH�
�� Tests
are passed by specifying a test process and obliging it to synchronize with the behaviour under
test� The results of the test are classi�ed into three classes� Reject� Must Pass and May pass �

LOLA implements this testing methodology using only LOTOS�

�� Each test is represented as a LOTOS process which must contain a special termination
event which indicates the successful termination of the test� This termination event
cannot appear in the behaviour under test�

�� Each test is composed in parallel with the behaviour under test� synchronizing in the
union of the gate sets of both �behaviour and test�� except for the termination event�
This composition is represented below in two cases� which need to be di�erentiated due
to the syntactic constraints imposed by the language� Tests with and without the exit
statement will be dealt di�erently because LOTOS does not allow any event to be added
after an exit statement� The second composition is necessary only for the case where the
termination behaviour exit is tested�

� Test does not contain exit�

� BehaviourUnderTest ��events��

���events���

Test ��events�	 SuccessEvent�

� Test contains exit�

� BehaviourUnderTest ��events��

���events���

Test ��events�	 SuccessEvent�

 �� SuccessEvent� STOP

Theses compositions behaviour	test are made by LOLA automatically�

The successful termination of a test in a given execution consists in reaching a state where the
termination event �SuccessEvent� is o�ered� A test does not terminate in a given execution if
it reaches a deadlock situation�

The Testing Equivalence di�erentiates two types of tests� must and may�

De�nition� May test� Given a speci�cation L and a test T � T is a may test of L if
it terminates for at least one execution of the system when applied to L�

De�nition� Must test� Given a speci�cation L and a test T � T is a must test of L if
it terminates for every execution of the system when applied to L�

A reject test is a test which is neither may nor must� i�e� no execution terminates successfully�

LOLA determines the response of a behaviour to a test by a state exploration of the composition
behaviour�test� It analyzes the test terminations for all the possible evolutions� There are two
commands to pass a test� TestExpand and OneExpand� TestExpand makes a complete state
exploration and calculates the type of response� It determines must� may and reject responses�
OneExpand explores only one randomly selected execution of the composition� Thus� it can
be used only for determining may responses� It is specially useful when testing a speci�cation
produces state explosion and an exhaustive exploration with TestExpand might take too long�

Di�erent types of tests may be used� Two of them are the acceptance and the rejection tests�
An acceptance test determines if the speci�cation accepts a given set of interactions �traces��
A rejection test determines if a speci�cation rejects a set of events in a given state� i�e� after a
given trace�

The following example shows an acceptance test� It tests if it is possible to borrow two units
of money from the bank� and return them after working� Success is the termination event that
indicates when the executions of the test are successful� If a must response is obtained� then
all the executions reach the successful termination event� i� e� all the traces in the test are
accepted� A may response indicates that there are executions that do not reach the termination
event� and a reject response indicates that all the executions are unsuccessful�

process accept�test�� �bank�work�success� � noexit ��

bank borrow 	

bank borrow 	

work 	

bank pay 	

bank pay 	

success 	

stop

endproc

If a system is nondeterministic� an acceptance test may have a may response� It is convenient to
insert� in such cases� choices in the states where a nondeterministic behaviour exists� to cover
all variants so that the response becomes must�

The next example is a rejection test� It tests that some events are rejected in a given state�
After the initial sequence of events� the set of events that must be rejected are o�ered in a
choice followed by stop� The last alternative in the choice is an internal action followed by the
successful termination event� If the initial sequence of events can be observed and all the events
in the alternative are rejected� the response will be must� There is only one path which leads to
the successful termination event by executing the internal action� However� if any of the events
in the choice can be observed� then the response will be may� or if the initial sequence cannot
be observed� the response will be reject� Therefore a must termination indicates that the events
are rejected� This example tests that the Client can borrow money consecutively only twice�

process reject�test�� �bank�work�success� � noexit ��

bank borrow 	

bank borrow 	

� bank borrow 	

stop

�� i 	

success 	

stop

�

endproc

Sets of acceptance and rejection tests should be produced to assess what the systemmust accept
and reject�

��� TESTEXPAND

TestExpand analyzes the response of a speci�cation to a given test� TestExpand has been
conceived to perform a state exploration of the composition of the BehaviourUnderTest with
a Test� analyzing only the relevant aspects for test termination� The output of TestExpand is
the type of termination found� must� may or reject�

Syntax�

TestExpand ��depth�� �success event� ��test proc�� ��v ��states���

��a���d���e���s���i���y�

��x �expected response� ��q��

��p �percent� ��seed��� ��b �msize��

����� Basic Procedure

The primary usage of this command is the execution in batch of a series of tests� obtaining the
test reponse as soon as possible� This can be achieved using the following parameters �

�depth� is an integer number� It limits the maximum depth of the exploration measured in
number of actions �visible or invisible� analysed� A negative depth means no bound�

�success event� is the name of the successful termination event� This event can only appear
in the test process and not in the behaviour under test� Otherwise� an error message is displayed
and the test is not passed�

�test proc� is the name of the LOTOS process to be composed in parallel with the behaviour
under test� This parallel composition is made automatically by LOLA as described above� but
the set of test processes to be passed must be in the speci�cation �le itself� When �test proc�
is not speci�ed the analysis is done over the current sub�behaviour� which is supposed to be a
hand�made test composition � in this case LOLA does not compose anything with the current
sub�behaviour��

Option 	v is used to work in verbose mode �see Expand command�� If a number of �states�
is given� then LOLA will display a provisional report about the exploration being carried out
every �states� states explored� Regardless of this option� after the analysis� the test result and
two di�erent blocks of statistics are printed� The �rst block is similar to the other expansion
statistics� The second provides information about the test result� the number of traces that
reach stop� exit� �success event� and �depth� is displayed�

For example� the result of testing the example speci�cation with the test accept test � is�

lola� test �� success accept�test�� �v

Composing behaviour and test �

accept�test�� �bank�work�success�

��bank�work�sleep��

bank �bank�sleep� �inc�inc�
���
�

��bank��

client �bank�work�

Exploration Tree �Transits� States

� ���

Analysed states � �

Generated transitions � �

Duplicated states �

Deadlocks �

Process Test � accept�test��

Test result � MUST PASS�

successes � �

stops �

exits �

cuts by depth �

The result of this test is MUST pass� so that every single execution of our system � test behaviour
goes through a state where success is o�ered� No deadlock was found �stops � � and only
one trace is possible�

����� Debugging Options

Options 	a� 	d� 	e and 	s should be used only to analyse errors �unexpected test responses��
When any of these options is given then the current behaviour is replaced with a new behaviour
where only the selected executions are left�

Option 	a selects traces leading to the success event �the behaviour after the success event is
replaced with stop��
Option 	d selects traces that reach the speci�ed �depth��
Option 	e selects traces leading to exit�
Option 	s selects traces leading to stop�

Note that� since the original behaviour is replaced by the selected traces� after any of this
options has been used it is necessary to load again the speci�cation before applying a new test
or command� On the contrary� if these options are not used� then the behaviour is not modi�ed�
so that successive TestExpand commands can be applied in sequence and you needn�t load
between tests� Another important practical issue is that TestExpand performs test response
analysis with a low �xed memory amount� This feature can be spoilt by debugging options �
	a� 	d� 	e� 	s� that forces LOLA to record the selected exploration traces�

Option 	i is used to preserve all the internal actions on the behaviour under test� Without this
option� TestExpand removes the internal actions that do not alter the result of the exploration
and that reduce the number of states to explore� improving the performance of the analysis�
For instance� the behaviour a� �i�B�jjjB�� is transformed into a� �B�jjjB��� which has less states
and executions to explore� When removing an internal action is not going to improve the
performance of the analysis they are kept� Option 	i disables this feature� so that the internal
actions are NOT removed� This option should be used only to analyse errors in the speci�cation�
combined with options 	a� 	d� 	e or 	s� Moreover� this option enables LOLA to show the
original gate names and o�ers of the internal actions inside comments e�g� i��� g �� ��

TestExpand explores only the executions necessary to determine whether the response to a
test is must� may or reject� So� if a test response is may it is not necessary to explore all the
possible executions� because when at least one successful and one unsuccessful executions have
been explored� the test result will not change� regardless of the termination of the unexplored
executions� Option 	y modi�es that and forces LOLA to explore all the possible executions�
in spite of the fact that the test result might be known without exploring all of them� This
option should be used only to analyse errors in the speci�cation�

����� Suspending Tests

As stated above� LOLA testing features are intended to work in batch� The following options
facilitates the integration of LOLA in testing platforms�

Option 	x forces LOLA to stop the test as soon as the test response is known to be di�erent to
the �expected response �� This parameter can be either MUST� MAY or REJECT� Option
	q makes LOLA exit with a � value if this condition is met�

����� Partial Exploration

For really huge state spaces� it may not be practical to perform exhaustive state explorations�
in spite of LOLA�s facilities to simplify the exploration � testing equivalent minimization� early
test response� ��� �� LOLA provides some facilities to test partially a speci�cation� i�e� not
trying every possible execution of the system� This means that the test coverage is not ��� �
like in previous sections�

The following options enable non�exhaustive test passing�

Option 	p forces LOLA to explore only a percentage of the transitions o�ered in each state�
The selection is made randomly using �seed�� Note that n percent explored does not im�
ply n percent out of the total state space analysed � �percent� ranges from � � one trace
exploration � to ��� � exhaustive exploration ��

Option 	b performs a variant of the bit state hashing algorithm �Hol	��� using �msize�
MBytes� The total memory used is given by the sum of �msize� and the currently used
memory � see ��� Stat command ��

Both options can be used in conjunction�

����� Other considerations

One condition needed to assure that the result of the test expansion is reliable� is that no
variables remain without any value assigned within guards or selection predicates during the
exploration� Note that a potentially �hidden� deadlock may exist if there are unbounded vari�
ables in guards or in selection predicates� Two types of variable de�nition cases may lead to
such a situation� The �rst one is in value acceptances of event denotations� This can be avoided
by using tests which have only value o�erings in their action denotations� The second case is
with choice statements �choice �� x�T �� �� B�� This could be resolved automatically by
exploring the state space of B for all the possible values of type T �this is not supported�� After
the exploration a warning message will be displayed if any guards or selection predicates have
not been resolved during the test exploration�

��� ONEEXPAND

This command is used to execute random traces of the current behaviour� or to compose it in
parallel �like with TestExpand� with a test process to analize only single executions�

Syntax�

OneExpand �depth� ��success event� �test process�� ��seed� �execs�� ��v���i�

When neither the �success event� nor the �test process� are given� LOLA produces any
sequence of events that can be generated by the current behaviour� It they are speci�ed� then
OneExpand works like TestExpand but it only explores one random trace�

�depth� is an integer number� It limits the maximum depth of the exploration measured in
number of actions �visible or invisible� generated� A negative depth means no bound�

�success event� is the name of the termination event� See command TestExpand�

�test process� is the name of the test process to be composed in parallel with the behaviour
under test� See command TestExpand�

�seed� is an integer number used as the initial value for a random number generator� The
analized trace is selected randomly depending on the given �seed�� but it is always �xed for
the same behaviour and �seed��

�execs� is the number of random traces to be executed taking as seed the previous random
number generator status�

Option 	v enables verbose mode �see Expand command��

Option 	i is used to preserve the internal actions on the behaviour under test and show their
original gate names and o�ers� See command TestExpand�

OneExpand �nishes when either stop� exit or the �success event� are found� or the speci�ed
�depth� is reached�

This expansion is recommended for testing speci�cations with a huge number of states in which
TestExpandmay spend a long time even with partial exploration options� After the exploration
some statistics are printed� and the executed trace is classi�ed as Rejected or Successful execu�
tion�

A Appendix� Non�LOTOS Operators

Most LOLA commands transform LOTOS speci�cations into other LOTOS speci�cations �IS�
��� compatible LOTOS�� In order to achieve this� it has been necessary to give a special
treatment to the Relabelling operation and to the composition of premises in selection predi�
cates and guards� The Relabelling operator� which is created when a proccess is instantiated�
is transformed into a choice operator� Nevertheless� a comment with the associated Relabel
operator is kept�

Relabelling �a�b� c�d� in B � choice b in �a�� d in �c� � � B

To solve the problem of the composition of premises in selection predicates and guards� those
premises are printed as a succession of guards with single premises� However� all the commands
treat this sequence of operators as a unique operator� for instace� move cannot place the internal
cursor in the middle of the sequence�

a 	x � t �f�x�
 c�� � stop jj a 	y � t �g�y�
 c� � stop

�
CHOICE 	x � t �� �f�x�
 c��� � �g�x�
 c�� � a �x � stop

B Appendix� Preprocessing

After the semantical analysis phase and before doing any transformation� the LOTOS speci��
cation is preprocessed� All data value expressions are internally rewritten� and the processes
are analized to detect unguarded process instantiations�

The name of the processes are displayed as their value expressions are being rewritten�

Rewriting expressions in the specification�

� � credit

� � bank

� � client

Rewriting done�

Then� the LOTOS speci�cation gets its expandability checked� All the processes within the
speci�cation are submitted to a static analysis to determine if they are not guarded� The
user is warned when any potential recursion problem is detected� and a list with the process
instantiations involved is printed�

Un example of unguarded behaviour is given by the following process�

process ung�a��noexit��

ung�a� ��� a	 stop

endproc

In this case� the divergence analysis step produces the following output �

Analysing unguarded conditions�

� � ung

WARNING � Unguarded behaviour�

See path� ung� ung

Analysis done�

These checkings can be enabled�disabled by means of the Set command�

C A timed prototype of LOLA

A preliminary experimental timed version of LOLA based on a Time Extended LOTOS is
available for trial in this package� This model is in line with the LOTOS timedmodel considered
in ISO within the E�LOTOS work item �Annex A of �LLF�	
��� Some papers that have
contributed to the model are �QF��� �QAF	����Led	��� �LL	����MFV	����QAF	��� The main
features of the model are�

� the use of a time dense domain

� urgency for internal actions

Currently no front end tool supports Time Extended LOTOS� Hence� LOLA accepts only
standard LOTOS syntax as input and therefore a trick is used for the representation of time
attributes which by internal pre�processing translates them into the Timed Extended LOTOS
syntax�

This feature is enabled by compiling LOLA with options �DTIME �DASAP � LOLA is not
distributed with these options by default� The user should be aware that this timed version of
LOLA is still a beta version and we strongly appreciate any feedback or error reports� From
now on when mentioning LOLA we refer to the timed prototype of LOLA�

C�� The Language

Time Extended LOTOS introduces timed constructions to action pre�x and exit and de�nes
a pre�x delay operator as shown in Table �� As mentioned before LOLA accepts as input
standard LOTOS so we have adopted an ad hoc solution to introduce time constraints� It
consists of a three�step procedure�

�� Introduce a special gate named time in all gate lists of the speci�cation �speci�cation and
processes declarations�instantiations��

�� Pre�x every time constrained action with the special gate time and an o�er list that will
be translated into the time constraints of that action� The o�er list may contain � o�ers�
a variable of sort time � the interval lower and upper bound� Part of the o�er list and
even the gate time can be omitted according to the necessity as we will see latter on in
an example�

�� Use the data type time nat as de�ned in the distributed �le time�lot�

After pre�processing the standard LOTOS input speci�cation �with the elements we have de�
scribed above� LOLA generates the equivalent ET�LOTOS one� The user may elaborate scripts
in order to facilitate the generation of the input speci�cation�

C�� Example

In this section we will show how to describe timed LOTOS speci�cations in such a way that
LOLA accepts them�

Let us use a timed version of the Client example process as described before in Section ��
�
This client can pay his debts after � time units and no latter than �� time units after the last
event� No assumption is made about the time units� Let it be� for instance� months�

Name ET�LOTOS syntax LOLA syntax
Internal Action Pre�x ift in t���t�g�B time�t � time�t��t�� i�B

ift���t�g�B time�t��t�� i�B
ift�g�B time�t�� i�B

Observable Action Pre�x gd����dnft in t���t�g�SP ��B time�t � time�t��t�� gd����dn�SP ��B
gd����dnft���t�g�SP ��B time�t��t�� gd����dn�SP ��B
gd����dnft�g�SP ��B time�t�� gd����dn�SP ��B

Wait Wait�t��B not supported
Process Def� P �g�� ��� gn� P �g�� ��� gn� time�

�x� � s�� ��� xn � sn� �� B �x� � s�� ��� xn � sn� �� B

Process Inst� P �g�� ��� gn��y�� ��� yn� P �g�� ��� gn� time��y�� ��� yn�
Termination exit�E�� ���� En�ft���t�g time�t��t�� exit�E�� ���� En�

exit�E�� ���� En�ft�g time�t�� exit�E�� ���� En�

Table �� Timed LOTOS and LOLA equivalent syntax

PROCESS Client � bank� work � � NOEXIT ��

bank borrow �
��inf�	 Client�bank�work�

�� bank pay �����
�	 Client�bank�work�

�� work �
��inf�	 Client�bank�work�

ENDPROC

That is what we get inside LOLA� The corresponding LOTOS speci�cation which should be
input to LOLA is�

PROCESS Client � bank� work�time � � NOEXIT ��

bank borrow 	 Client�bank�work�time�

�� time ��
	

bank pay 	 Client�bank�work�time�

�� work 	 Client�bank�work�time�

ENDPROC

As events bank� borrow and work have no time constraints then the preceding gate time can
be omitted� By default absence of time action pre�x means no time constraint� i�e� ���inf � The
time constraints of bank� pay are described in time ����	�

Now let us complicate our description a bit� In this version we introduce time variables� Now
the instant when the client can borrow money depends on the instant he has payed the bank
last time� The latter that instant �between � and ��� then more time it will take to receive
more credit next time� Time variable current records the instant of time when the client pays
the bank�

PROCESS Client � bank� work ��last�time� � NOEXIT ��

bank borrow �last����inf�	 Client�bank�work��last�

�� bank pay �current in ����
�	 Client�bank�work��current�

�� work �
��inf�	 Client�bank�work��last�

ENDPROC

The corresponding LOTOS speci�cation which should be input to LOLA is�

PROCESS Client � bank� work�time ��last�time� � NOEXIT ��

time last��inf	

bank borrow 	 Client�bank�work�time��last�

�� time �actual�time��
	

bank pay 	 Client�bank�work�time��actual�

�� work 	 Client�bank�work�time� �last�

ENDPROC

C�� Restrictions

The main restriction of LOLA is not accepting ET�LOTOS syntax� Auxiliary time gates have
to be introduced instead� Other restrictions are�

�� The pre�x delay operator Wait is not supported� This is not an important restriction as
far as we have observed that this facility is seldom used in most timed speci�cations and
usually can be translated into the explicit event�interval construction�

�� Dense time description is not supported� The current version works with a discrete time
domain based on the natural numbers as de�ned in the type library �le time�lot with
all the limitations of LOTOS data types� No narrowing is performed with the data types�

�� Interleaved Expansion �see section
�
� is not supported�

C�� Compilation Flags

In order to compile the timed LOLA prototype the �ags TIME and ASAP must be included
in the list of CFLAGS in the make�le

CFLAGS � �DTIME �DASAP �O

References

�dNH�
� R� de Nicola and M� Hennessy� Testing Equivalences for Processes� Theoretical
Computer Science� �
������������� Nov �	�
�

�Hol	�� G�J� Holzmann� Design and Validation of Computer Protocols� Prentice Hall� �		��

�ISO�	� ISO� Information Processing Systems
 Open Systems Interconnection
 LOTOS
� A Formal Description Technique Based on the Temporal Ordering of Observa�
tional Behaviour� IS����� International Standards Organization� �	�	� �published
���feb��	�	��

�PL	�� Santiago Pav�on and Mart��n Llamas� The Testing Functionalities of LOLA� In
Juan Quemada� Jos�e A� Ma nas� and Enrique V�azquez� editors� Formal Descrip�
tion Techniques� III� pages ��	����� Madrid �ES�� �		�� IFIP� Elsevier Science B�V�
�North�Holland�� Proceedings FORTE�	�� ��� November� �		��

�QFM�� Juan Quemada� Angel Fern�andez� and Jos�e A� Ma nas� LOLA� Design and Veri��
cation of Protocols Using LOTOS� In IBERIAN Conference on Data Communica�
tions� Lisbon� May �	�� Also in Computer Communication Systems A� Cerveira
�ed� North�Holland ��	����

�QLP	�� J� Quemada� D� Larrabeiti� and S� Pav�on� Compressed State Space Representation
of LOTOS Speci�cations� In Ken J� Turner� editor� Formal Description Techniques�
VI� pages �	 � �
� Boston� Massachussetts� EEUU� �		�� IFIP� North�Holland� Pro�
ceedings FORTE�	�� ����	 October� �		��

�QPF�	a� Juan Quemada� Santiago Pav�on� and Angel Fern�andez� State Exploration by Trans�
formation with LOLA� In Workshop on Automatic Veri�cation Methods for Finite
State Systems� Grenoble� June �	�	�

�QPF�	b� Juan Quemada� Santiago Pav�on� and Angel Fern�andez� Transforming LOTOS Spec�
i�cations with LOLA� The Parameterized Expansion� In Ken J� Turner� editor�
Formal Description Techniques� I� pages
���
� Stirling� Scotland� UK� �	�	� IFIP�
North�Holland� Proceedings FORTE���� ��	 September� �	���

�DG	�� M� Diaz and R� Groz� editors� Formal Description Techniques V� North�Holland�
�		��

�Led	�� G� Leduc� An Upward Compatible Timed Extension to LOTOS� In K�R� Parker
and G�A� Rose� editors� Formal Description Techniques IV� pages ������� North�
Holland� �		��

�LL	�� G� Leduc and L� L�eonard� A Timed LOTOS Supporting a Dense Time Domain and
Including new Timed Operators � In Diaz and Groz �DG	��� pages ������

�LLF�	
� G� Leduc� L� L�eonard� D�de Frutos� L� Llana� C� Miguel� J� Quemada� and G� Rabay�
Belgian�Spanish Proposal for a Time Extended LOTOS� In J�Quemada� editor�
Working Draft on Enhancements to LOTOS� ISO�IEC JTC��SC���WG�� October
�		
�

�MFV	�� C� Miguel� A� Fernandez� and L� Vidaller� Extending LOTOS Towards Performance
Evaluation� In Diaz and Groz �DG	���

�QAF	�� J� Quemada� A� Azcorra� and D� Frutos� A Timed Calculus for LOTOS� In S� T�
Vuong� editor� Formal Description Techniques II� North�Holland� �		��

�QAF	�� J� Quemada� A� Azcorra� and D� Frutos� TIC� A TImed Calculus� Formal Aspects
of Computing� �����
������ June �		��

�QF�� J� Quemada and A� Fern�andez� Introduction of Quantitative Relative Time into
Lotos� In Workshop on Protocol Speci�cation� Testing and Veri�cation� VII� Zurich�
May �	�� IFIP�

