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Abstract

Composite web services are defined using the industry-standard language
BPEL (Business Process Execution Logic). There is a strong need for graph-
ical and automated support for this task. It is explained howCRESS(Chisel
Representation Employing Systematic Specification) has been extended to
meet this challenge. CRESSsupports straightforward graphical descriptions
of composite web services. Sample descriptions are presented of these. It
is outlined how they are automatically implemented and systematically anal-
ysed using the target languages BPEL and LOTOS (Language Of Temporal
Ordering Specification).
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1 Introduction

1.1 Background to Web Services

Web services have become a very popular way of providing access to distributed
applications. These may be legacy applications given a web service wrapping,
or they may be new applications designed for the web. Web services are widely
documented online (e.g. seewww.webservices.orgfor a commercial perspective,
www.webservicesarchitect.comfor a technical perspective, andwww.xmethods.net
for public web services).

The interface to a web service is defined in WSDL (Web Services Description
Language [26]). However this is purely syntactic, essentially defining the types of
inputs, outputs and faults for web service operations. WSDL also defines the bind-
ing of operations to a transfer mechanism such as SOAP (Simple Object Access
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Protocol [23]). WSDL does not define the semantics of a web service; formalis-
ing the behaviour of a web service is therefore desirable. Being XML-based and
therefore textual, WSDL can be created and edited manually. However, this is an
intricate and error-prone task. For this reason, most solutions aim to create WSDL

automatically.
WSDL describes an isolated web service. The excitement in web services is

composingthem into what is called abusiness process. Assume (realistically)
the following web services: airlines take flight bookings, hotels take room book-
ings, hire firms take car bookings, and banks accept electronic payments. A travel
agency can then build a business process that arranges all aspects of a trip. Flights,
accommodation and car hire can be arranged and paid for through a single service.

Closely related terms are used to describe the coordinationof web services.
Business process (flow) modelling has an independent existence as a technique for
describing business activities and their interrelationships. This lent itself naturally
to describing flows among web services, e.g. with IBM’s WSFL (Web Services
Flow Language) or Microsoft’s XLANG. Choreography languages such as WS-
CDL (Web Services Choreography Description Language [25]) areused to char-
acterise high-level enterprise collaborations based on web services. Orchestration
languages such as BPEL deal with the combination of web services to create more
complex composite ones.

Unfortunately, many competing standards emerged for composing web ser-
vices [14]. Of these, WSFL and XLANG were leading examples. A significant step
was made with agreement on the industry-wide specification called BPEL4WS
(Business Process Execution Language for Web Services [2]). This is being stan-
dardised as WS-BPEL [3]. For brevity, both are referred to as BPEL in this paper.

WSFL stemmed from work on business process modelling. It therefore em-
phasises flows among activities. In contrast, XLANG had its origins in structured
program design. It therefore emphasises constructs for sequencing, alternation and
iteration. BPEL is a careful fusion of both approaches that gives considerable flex-
ibility to the developer. Both IBM and Microsoft contributed to the development
of BPEL. It is the author’s perception that WSFL and XLANG are now effectively
superseded by it for composing web services. [14] provides adetailed and useful
comparison of various web service flow languages.

BPEL is a recent and evolving language, so tool support is still developing.
BPEL is also XML-based, so it can be difficult to understand a complex flow from a
purely textual description. A graphical view of composed web services is therefore
highly desirable.
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1.2 Overview of The Paper

Section 2 explains the context of CRESS for describing web services. This is ex-
panded in section 3 that gives a brief overview of web serviceconcepts and how
CRESSrepresents these. Three interrelated examples are used to illustrate the ap-
proach. The translation of CRESSinto BPEL and WSDL is outlined in section 4. A
lender service is used as an example of what files are generated. Section 5 discusses
the practical implications of what is achieved through formal analysis of web ser-
vices. Scenario-based validation is introduced as a pragmatic way of validating
both specifications and implementations of web services.

2 The Context of Web Services

This section gives the context of web service modelling and analysis. It introduces
the philosophy of CRESS (Chisel Representation Employing Structured Specifi-
cation). This was developed by the author for describing services, typically in
communications. Although initially used with voice services, the value of CRESS

has now been demonstrated for modelling web services as well.

2.1 Web Service Modelling

Web services are well established and widely supported by commercial tools. Lan-
guages like Java and C# have web service bindings. Web services are supported
by frameworks like Microsoft’s .NET and Sun’s ONE (Open Net Environment).

The Semantic Web, e.g. as supported by RDF (Resource Description Frame-
work), aims to give formal meaning to the content of web pages. The approach
relies on creating ontologies containing properties and interrelationships of the
terms in some domain. Semantic Web Services apply similar techniques. OWL

(Web Ontology Language, e.g. [24]) has been developed as a common standard for
describing ontologies in a web service context. DAML -S (DARPA Agent Markup
Language – Services), now OWL-S, is an expressive elaboration of the ideas in
RDF for use with agent-based systems and web services. WSMF (Web Services
Modeling Framework) is a comparable development, but inspired by WSFL. Purely
ontological approaches focus on the content of what web services provide. Of
greater interest here are approaches that also describe thebehaviour and composi-
tion of web services. OWL-S is therefore particularly relevant.

BPMN (Business Process Modeling Notation [4]) might be viewed asa com-
petitor notation to CRESSfor describing web services. However, BPMN is a very
large notation (the standard is almost 300 pages). It also has a single purpose: de-
scribing business processes. BPMN is essentially a front-end for creating web ser-
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vices. Tools supporting BPMN often have complex interfaces, with simple flow di-
agrams being supplemented by form-based entry of activity parameters. Of course,
BPMN is aimed at large-scale industrial development of web services. It also sup-
ports the entirety of the capabilities found in, for example, BPEL.

In contrast, CRESS is a compact and general-purpose notation that has now
been proven on services from four different domains. Like BPMN, CRESS de-
scribes web services graphically. However as will be seen, CRESSdescriptions are
high-level and can be understood with limited training; this papers explains nearly
everything required to create web services using CRESS. Unlike BPMN and its
associated tools, CRESSoffers automated translation to formal specifications (e.g.
LOTOS, SDL) as well as to implementations (e.g. BPEL, WSDL). This means that
CRESSdescriptions of web services obtain the benefits of automated verification
and validation as well as automated implementation.

CRESS introduces a feature concept that is lacking in other web service ap-
proaches. This allows capabilities to be shared among web services, invisible to
the user and even the developer. Compared to BPMN, the main lack in CRESS is
that it does not support every capability of BPEL – though it is believed that the
most important aspects are covered. If necessary CRESScould be used as a precur-
sor to BPMN, allowing major aspects of web service functionality to be analysed
and demonstrated before committing substantial implementation efforts.

2.2 Web Service Support

The focus of this paper is on composing web services. Due to the relative new-
ness of BPEL, support is only now maturing. Commercial products includeIBM’s
WebSphere, Microsoft’s BizTalk Server and Active Endpoint’s WebFlow. Oracle’s
BPEL Process Manager is made available for prototyping purposes, including a
wide range of examples and extensive tutorials. ActiveBPEL (www.activebpel.org)
is an open-source community development that builds on AXIS (Apache Extensible
Interaction System), an implementation of SOAP for the Tomcat web server.

Both ActiveBPEL and BPEL Process Manager provide BPEL interpreters; Ac-
tiveBPEL has been mainly used in the work of this paper. Of greater interest here
are BPEL design tools. Given the complexity of BPEL, graphical design tools are
highly desirable. Both Active WebFlow and BPEL Process Manager offer graph-
ical design integrated with IBM’s ECLIPSE. BPEL processes can be defined by
drag-and-drop. Activity properties are manually entered in forms, though help is
provided to locate information such as web service partnersand process variables.
A significant difference is that BPEL Process Manager currently shows only a sim-
ple representation of flows; arbitrary graphs are just shownas parallel activities.
Active WebFlow fully displays flows, and also supports visual simulation and de-
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bugging of BPEL processes.
So far, research on formalising web services has been limited. Most approaches

use either finite state methods (e.g. Petri nets or finite state automata) or process
algebras. Since the semantics of a process algebra is often given as an LTS (La-
belled Transition System), the two approaches are not so fundamentally different.
For example, [9] gives a timed semantics for XLANG that allows web services to
be checked for interoperability, and also to be implementedvia transition systems.

As an example of finite state methods, LTSA-WS (Labelled Transition System
Analyzer for Web Services [7, 8]) is also close in aim to CRESS. LTSA-WS allows
composed web services to be described in a BPEL-like manner. Service composi-
tions and workflow descriptions are automatically translated into FSP (Finite State
Processes) to check safety and liveness properties. CRESSdiffers in being a multi-
purpose approach that works with many different kinds of services and with many
different target languages. A CRESSdescription is pitched at a more abstract level.
CRESSmay be used with any analytic technique using the formal languages it sup-
ports, although it offers its own approach based on scenariovalidation.

As an example of process algebraic methods, LOTOShas been used to specify
web services. Plain process algebras often lack the abilityto specify data, which
is often an important characteristic of web services. LOTOS offers the advantage
of specifying both data and behaviour within one language. The work described
in [5, 6] supports automated conversion between BPEL and LOTOS. This has been
used to specify, analyse and implement a stock management system and also nego-
tiation through web services. CRESSdiffers from this work in using more abstract
descriptions that are translated into BPEL and LOTOS; there is no interconversion
among these representations. CRESSdescriptions are language-independent, and
can thus be used to create specifications in other formal languages (e.g. SDL).
CRESS also offers a graphical notation that is more comprehensible to the non-
specialist. This is important since web service development typically involves
business and marketing staff as well as technical experts.

2.3 CRESS for Service Modelling

The author developed CRESS from early work by BellCore on Chisel [1] for de-
scribing voice services. CRESShas been used to specify and analyse voice services
for the IN (Intelligent Network) [15], SIP (Session Initiation Protocol) Internet
Telephony [16], and IVR (Interactive Voice Response) [17].

Service descriptions in CRESSare graphical and accessible to non-specialists.
Yet, CRESS descriptions are automatically translated into formal languages for
analysis, and into implementation languages for execution. CRESSmay in princi-
ple be translated into any constructive specification language. However, the focus
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has been on standardised languages used in communications:LOTOS (Language
Of Temporal Ordering Specification [10]) and SDL (Specification and Description
Language [12]).

CRESS has plug-in code for the application domain and the target language.
This provides direct support for each domain, but makes CRESSreadily extensible
for new purposes. CRESShas explicit support for features, allowing these to extend
a base service in a variety of ways.

Essentially, CRESSdescribes the flow of actions in a service. It was therefore
natural to investigate whether CRESS might be used for describing web service
flows. This has proven to be an appropriate application of CRESS; in fact the
notation has required surprisingly little extension. The main descriptive additions
have been for simultaneous definition of multiple services,structured data types,
and parallel flows. A back-end translator from CRESSto BPEL and WSDL has of
course been a necessary and substantial addition.

Despite being a research tool, CRESSoffers a number of distinctive benefits
when used with web services:

• CRESSdescriptions of composed web services are graphical and therefore
attractive to industrial users. The same notation also applies to a wide variety
of services, and not just to web services.

• CRESS service descriptions are automatically translated into implementa-
tions – BPEL and WSDL for web services. The translated code is neatly
organised with extensive comments. This means that CRESS-generated code
can be readily related to a service description, unlike commercial tools where
the output does not seem to be intended for human use. Even if CRESS is
used to implement web services, the generated code can also be used with
commercial tools.

• Most importantly, thesameCRESS service descriptions are automatically
translated into formal specifications (currently LOTOS for web services, but
SDL is generally supported by CRESS). Commercial tools are limited to
manual simulation and debugging. By formalising web services, CRESS

provides access to rigorous analysis. This may use any technique associated
with the formal language, such as state space exploration ormodel-checking.

• Formal languages are common as a basis for investigating compatibility of
services (called the feature interaction problem in telephony). Compatibility
can be checked with any approach based on the formal languages supported
by CRESS. However, CRESSoffers its own technique based on validation of
use-case scenarios [20]. Interference among web services has so far received
little attention. [21, 22] are two of the few papers on this topic.
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CRESS Service

Description
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BPEL/WSDL

Implementation

automatic

translation

verification/

validation

automatic

translation

Figure 1: Web Service Development with CRESS

• CRESSintroduces a feature concept that is lacking in other web service ap-
proaches. The idea, borrowed from telephony, is to extend services with
features that provide modular and automatic additions of functionality.

CRESS is used to give higher-level descriptions of services that are automat-
ically translated into other languages for other purposes.As an example, its use
for web services is shown in figure 1. A CRESSdescription is initially given of
a service. Since CRESS supports abstract and compact service descriptions, the
effort at this stage is small compared to actual implementation. The CRESSis au-
tomatically translated into a formal specification that is prototyped, verified and
validated. Typically this exposes flaws and weaknesses thatrequire the CRESSde-
scription to be improved. Once the CRESShas been finalised, it is automatically
turned into a real implementation that is deployed in a web server.

Translation into a formal specification gives precise meaning to web services
(and their associated languages). More importantly, it allows automated verifica-
tion of desirable properties such as interoperability and freedom from deadlock.
This allows the description of a service to be checked prior to implementation.
A number of specification languages (including LOTOS and SDL) allow formal
specifications to be animated. This is very useful for demonstrating a service in
prototype form to a customer.

The same CRESS description is also automatically translated into a working
implementation: BPEL and WSDL for web services. The formalisation will have
established confidence in the service description, so the need for testing the service
implementation is significantly reduced. However some factors can really only be
evaluated with the actual implementation, e.g. usability and performance.

[18] discusses the translation and formal analysis of web services using CRESS

supported by LOTOS. The present paper gives the complementary view of practical
web development using CRESSsupported by BPEL and WSDL.
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3 CRESSDescription of Web Services

This section introduces web service concepts and their representation in CRESS.
As concrete illustrations, three interrelated examples are given of web services.

3.1 Basic Web Service Concepts

A composite web service is termed abusiness process. It exchanges messages
with partnerweb services, considered as service providers. A web service may be
invoked synchronously(a request and associated response) orasynchronously(a
request followed by a separate response). A business process is itself a web service
with respect to its users. Web services have communicationportswhereoperations
are invoked. An unsuccessful operation gives rise to afault. Compensationundoes
work following a fault. Correlation links asynchronous messages to the correct
business process instance.

A CRESS diagram is a directed graph. In BPEL terms, this defines an exe-
cutable business process. Someone who knows BPEL will find the CRESSrepre-
sentation familiar, but more compact. Numbered nodes contain actions, termed
activities for web services. Arcs between nodes may be labelled with expression
guards or event guards. Expression guards are used to make alternative choices;
they may be followed by assignments in the form /variable<− expression. Event
guards introduce behaviour conditional on an event. In a CRESSweb service de-
scription, the events are faults, requests for compensation and correlation requests.

For business processes, CRESS is required to offer sophisticated control over
parallelism. Branches in a CRESSdiagram normally reflect alternatives. However
Fork /Join can be used to bracket parallel paths. Although BPEL has different con-
structs for sequence, iteration and graph-like flow of control, CRESSmodels these
all in a uniform way. Each CRESSnode (BPEL activity) is joined by a CRESSarc
(BPEL link). A CRESSexpression guard (BPEL transition condition) determines
whether an arc may be traversed. This requires the prior activity to terminate suc-
cessfully and the guard to hold.

CRESSnames are given in simple or hierarchic form. Operation names have
the formatpartner.port.operation. Fault names have the formatfault.variable, the
fault variable being optional. Simple variables have the types defined by XSD
(XML Schema Definition, e.g.Float f, Integer i, String s). Structured variables
defined in braces{...} are accessed in the formstructure.field.
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3.2 CRESS for Business Processes

The subset of CRESSactivities appearing in this paper is explained below; CRESS

supports more than is described here. As usual, ‘?’ means optional, ‘*’ means zero
or more times, and ‘|’ denotes choice.

Invoke operation output(input faults*)? An asynchronous (one-way) invocation
sends only an output. A synchronous (two-way) invocation exchanges an
output and an input with a partner web service. CRESS requires potential
faults to be declared statically, though their occurrence is dynamic. The
faults that may arise in a business process are implied byInvoke, Reply and
Throw .

Receiveoperation inputTypically this is used at the start of a business process to
receive a request for service. An initialReceivecreates a new instance of
the process. Each suchReceiveis usually matched by aReply for the same
operation.Receivealso accepts an asynchronous response to an earlier one-
way Invoke.

Reply operation(output| fault) Typically this is used at the end of a business pro-
cess to provide some output. Alternatively, a fault may be signalled.

Fork strictness? This is used to introduce parallel paths; further forks maybe
nested to any depth. Normally, failure to complete parallelpaths as expected
leads to a fault. This is strict parallelism, and may be indicated explicitly as
strict (the default). If this is too stringent,loosemay be used instead.

Join condition? EachFork is matched byJoin. By default, only one of the parallel
paths leading toJoin need terminate successfully. However, an explicit join
condition may be defined over termination of parallel activities. In CRESS,
the condition uses the node numbers of immediately prior activities. For
example, 1 && (2|| 3) means that activity 1 and either activity 2 or 3 must
terminate successfully. In turn, this means that the prior activities must also
succeed.

Throw fault This reports a fault as an event to be caught elsewhere by an event
handler.

Compensatescope? This is called after a fault to undo previous work. An explicit
scope (CRESSnode number) indicates which compensation to perform. In
the absence of this, compensation handlers are called in reverse order of
completion.
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The Throw andCompensateactions cause event handlers to be invoked. A
fault is considered by progressively larger scopes within the process until it is han-
dled. Compensation also deals with progressively larger scopes. In BPEL a handler
may be defined in any scope, but in CRESSit is either global or associated with an
Invoke. (This is a small restriction that accords with common practice anyway.)

Catch fault This introduces a separate flow for dealing with the specifiedfault.
If a fault has just a name and no value, it is handled by aCatch with a
matching fault name. A fault with name and value is handled bya Catch
with matching fault name and variable type, or by aCatch without a fault
name but a matching type.

CatchAll This introduces a separate flow that deals with any fault.

Compensation This introduces a separate flow for undoing the work of a process.

3.3 A Lender Web Service

A loan service is a frequent example for business processes;the one here is based
on that in the BPEL standard. LoanStar is alender that offers a loan to an on-
line customer, who makes aproposalcontaining name, address and loan amount.
Deciding whether to make a loan may require time-consuming enquiries. If the
amount is less than 10000, LoanStar asks its business partner RiskTaker to make a
quick assessment via its web service. RiskTaker is anassessorthat evaluates the
risk of the loan. If the risk is low, LoanStar offers to lend ata basic rate of 3.5%.
Otherwise, LoanStar asks its business partner FirstRate todetermine a realistic loan
rate. FirstRate is anapproverthat thoroughly evaluates a loan proposal; its loan
rate is returned by LoanStar to the customer.

This example involves multiple web services: two partner web services (as-
sessor, approver), and the business process itself (lender, see figure 2). The loan
customer (the borrower) acts like a further web service, andmay indeed be one.

Nearly everything needed to understand figure 2 has been explained earlier.
A rounded rectangle contains a CRESS rule box, whereUsesdeclares diagram
variables likeproposalandrisk, and macros likebasicRate.

All the web services happen to communicate via portloan, but the port names
could vary. The borrower operation (nodes 1, 3, 5) is namedquote, the approver
operation (node 2)approve, and the assessor operation (node 6)assess.

In general, a CRESS configuration diagram defines the environment for ser-
vices. For web services, it maps partners to namespace prefixes, namespace URIs
(Uniform Resource Identifiers), and web service URIs. For example, for the lender
service it might say:
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1 Receive

lender.loan.quote

proposal

6 Invoke

assessor.loan.assess

proposal risk

2 Invoke

approver.loan.approve

proposal rate refusal.error

Else

Else

Uses

  {String name String address

    Integer amount} proposal

  String risk

  Float rate

  String error

basicRate <- 3.5

5 Reply

lender.loan.quote

rate

proposal.amount  >=  10000

risk = "low"

/ rate <- basicRate

3 Reply

lender.loan.quote

refusal.error

Catch refusal.error

4 Terminate

Figure 2: Lender Business Process

approver app urn:FirstRate http://localhost:8080/services/Approver
assessor ass urn:RiskTaker http://localhost:8080/services/Assessor
lender lend urn:LoanStar http://localhost:8080/services/Lender

For the work reported here, web services were given simple URNs (Uniform Re-
source Names) and were deployed using ActiveBPEL on the local host. In prac-
tice, actual URIs would be used (e.g.http://www.firstrate.com:8080/axis/services/
Approverfor FirstRate). The definitions common to a service and its partners use
namespacedefs.

3.4 A Car Supplier Web Service

As a further example, DoubleQuote is asupplierthat offers its online customers a
good deal on car orders. A customer (the buyer) provides aneedcontaining name,
address and car model. This is passed to two dealers, each of which responds
with an offer giving the dealer reference, name, car price, and days for delivery.
DoubleQuote works with two business partners: BigDeal (acting asdealer1) and
WheelerDealer (acting asdealer2). The better quote (i.e. lower price, or earlier
delivery date if equal) is turned into a definite order. The offer is also returned to
the buyer. A dealer indicates it cannot supply a car by replying with infinite price.
(It would also have been possible to indicate this by throwing a fault.)
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1 Receive

supplier.car.order

need

Uses

{String name String address String model} need

{Natural reference String dealer Float price

    Natural delivery} offer, offer2

2 Fork

3 Invoke

dealer1.car.quote

need offer

4 Invoke

dealer2.car.quote

need offer2

5 Join

3 && 4

6 Invoke

dealer1.car.order

offer

8 Invoke

dealer2.car.order

offer2

(offer.price < offer2.price) ||

((offer.price = offer2.price) &&

(offer.delivery < offer2.delivery))

Else

Start

11 Invoke

dealer1.car.cancel

offer

12 Invoke

dealer2.car.cancel

offer

10 Receive

supplier.car.cancel

offer

offer.dealer = dealer1 Else

7 Reply

supplier.car.order

offer

9 Reply

supplier.car.order

offer2

Figure 3: Car Supplier Business Process

Again, multiple web services are involved: the dealers (dealer1, dealer2) and
the business process itself (supplier, see figure 3). All partners happen to use
the same portcar. The buyer operations areorder (nodes 1, 7, 9) andcancel
(node 10). The dealer operations arequote(nodes 3, 4),order (nodes 6, 8), and
cancel(nodes 11, 12).

Figure 3 uses concepts explained earlier. The supplier obtains dealer quotations
in parallel (nodes 2 to 5) in order to save time. Both quotes must be obtained
(3 && 4 in node 5) for the quotation process to terminate successfully. Whichever
dealer offer is selected leads to an order (nodes 6 to 9). Since the better offer is
turned into a definite order, the order may have to be undone ifthe buyer renegues
(or the calling web service faults). DoubleQuote thereforeallows an order to be
cancelled through the selected dealer (nodes 11, 12).
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3.5 A Car Broker Web Service

As a final example, CarMen is abroker that provides an online service to negotiate
car purchases and loans for these. Customers provide theirneedin the form of
name, address and car model. CarMen first uses its business partner DoubleQuote
(section 3.4) to order the car. If the car is unavailable (theprice is infinite), CarMen
informs its customer of refusal (by responding with a fault). Otherwise, CarMen
now asks its business partner LoanStar (section 3.3) to arrange a loan for the car
price. (Since a price is a float, it is rounded to a whole numberbefore applying
for a loan.) If a quote can be provided, the customer receivesa schedulewith the
dealer reference, name, price, delivery period and loan rate.

2 Invoke

supplier.car.order

need offer

3 Invoke

lender.loan.quote

proposal rate refusal.error

Uses

{Natural reference String dealer Float price

Natural delivery Float rate} schedule

  / LENDER SUPPLIER

4 Reply

broker.carloan.purchase

schedule

7 Compensate

5 Reply

broker.carloan.purchase

refusal.error

offer.price != Infinity

/ proposal.name <- need.name

/ proposal.address <- need.address

/ proposal.amount <- Round(offer.price)
Else

/ error <- "car unavailable"

1 Receive

broker.carloan.purchase

need

/ schedule.reference <- offer.reference

/ schedule.dealer <- offer.dealer

/ schedule.price <- offer.price

/ schedule.delivery <- offer.delivery

/ schedule.rate <- rate

Start

6 Invoke

supplier.car.cancel

offer

Catch refusal.error

Compensation

8 Reply

broker.carloan.purchase

refusal.error

9 Terminate

Figure 4: Car Broker Business Process
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Now the situation with web services is very complex. The CarMen business
process (broker, figure 4) indirectly invokes three web services for supplying the
car (supplier, figure 3). The CarMen business process also indirectly invokes three
web services to arrange a loan for it (lender, figure 2). The beauty of web services
is that this is all invisible to CarMen’s customer, who sees asingle web service for
ordering a car and receiving a schedule for its delivery and financing.

Figure 4 illustrates some additional constructs mentionedearlier. TheUses
clause defines dependence on the partner business processeslenderandsupplier
(named following ‘/’). If thelenderthrows arefusalfault (node 3), this is caught
and compensation is invoked (node 7). The compensation associated with a car
order (node 3) requires thesupplierto cancel this (node 6). The same fault is then
returned to the customer (node 8).

4 Translating CRESSWeb Services to BPEL and WSDL

This section outlines the general principles behind translating CRESSweb service
descriptions into BPEL and WSDL. As an example, the generation of files for the
lender service is explained.

4.1 Service Deployment

Web services require a considerable amount of XML that is generated automati-
cally by CRESS. Translation and deployment of a CRESSbusiness process is en-
tirely automated, except for the one-off implementation ofpartner web services.
Partner services are automatically deployed using AXIS, while the business pro-
cess is automatically deployed using ActiveBPEL.

The most important generated code is the BPEL describing the business pro-
cess. A WSDL definition is created for the business process since it is a web service
in its own right. A WSDL file is also created for message and type definitions that
are common to the business process and its partners.

The translation from CRESS to BPEL is fairly complex, partly because BPEL

needs to be defined in a particular order, and partly because alot of information
has to be inferred by CRESS.

4.2 Handlers

CRESS has a uniform representation for handlers. A node may be governed by
an event guard that relies on dynamic occurrence of some event. For example,
Catch andCatchAll introduce a fault handler, whileCompensationintroduces a
compensation handler.
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In CRESS, handlers are either global or are associated with anInvoke (which
is where faults or compensation, for example, are most likely to occur). Although
BPEL4WS allows handlers to be defined globally for an entire business process,
global compensation is quite problematic to support. For this reason, WS-BPEL

does not support this capability. To avoid this restriction, a global handler in CRESS

is in fact defined as part of the top-level flow rather than as part of the top-level
process.

4.3 Service Flow

A web service may use a variety of constructs to describe the flow: conditions
(if, switch), sequences (sequence), loops (while), arbitrary parallel flows (flow),
and several kinds of handlers (event, fault, compensation,correlation). CRESS

simplifies this to conditions (expression guards), arbitrary flows, and one kind of
handler (event guard). A number of constructs used by BPEL are intentionally
hidden by CRESS. For example scopes are implicit, and specialised constructs such
asonMessageas opposed toreceiveare used implicitly by CRESSas required.

CRESSautomatically determines and declares the links among activities, which
are then chained using BPEL sourceand target elements. The BPEL function
getLinkStatusis used to check whether a linked activity has terminated success-
fully. An awkward case to handle is assignment on a CRESSarc leaving a node.
This has to be translated along with the prior node, dependent on whether the tran-
sition condition holds or not.

The flows of handlers, and therefore the links among their activities, are in-
dependent of the main flow. However by treating the top-levelflow as the global
level, CRESS is able to declare a single set of links that applies to both the main
flow and the handlers.

4.4 Data Types

Data types in CRESSare either the usual ones defined by XML Schemas (e.g. float,
integer) or are structures consisting of a number of fields.

The use of variables in BPEL is somewhat ugly. They are automatically char-
acterised by CRESSas message variables (input, output) or data variables (assign-
ment, expression). Unfortunately the syntax and usage of these is different in
BPEL. CRESS generates XSD complex types for structured variables, and uses
XSD built-in types for simple variables. Variables are usedin expressions by the
BPEL function getVariableData. Fields in structured variables are accessed by
XPATH expressions.
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4.5 Partner Services

The WSDL for partners is automatically generated from the CRESSdiagrams, along
with Web Service Deployment Descriptors. If a partner service already exists, its
WSDL can be used directly. The CRESSview is likely to be a subset of the partner
WSDL, since a business process is likely to use only certain portsand operations of
an already defined partner. If a partner web service does not already exist, its WSDL

is translated into Java using the AXIS tool wsdl2java. The skeleton partner service
must then be implemented manually. If this is an existing legacy application, it is
usually straightforward to give it a web service wrapping. If the application is new,
then of course substantial implementation effort is required anyway. The partner
web services in sections 3.3 to 3.5 were given plausible implementations in Java. If
the CRESStranslator finds an existing implementation (e.g.approver.java), it uses
this instead of the default service skeleton.

4.6 The CRESS Toolset

CRESS is supported by a large toolset that accepts diagrams from three graphi-
cal editors:Diagram! from Lighthouse Design,yEd from yWorks, CRESS’s own
CHIVE editor. CRESS handles services in four domains: Intelligent Networks,
Internet telephony, Interactive Voice Response, Web Services. CRESS translates
diagrams into four target languages: BPEL/WSDL, LOTOS, SDL, VoiceXML.

The toolset is written in Perl for portability, and has been used on four different
platforms (Linux, OpenStep, Solaris, Windows). The toolset comprises five main
programs plus supporting modules – about 27,000 lines of code in total. As will be
seen in section 5.2, CRESSis supported by the separate but related MUSTARD tool
for validating services. The entire toolset is available for non-commercial, research
purposes (www.cs.stir.ac.uk/∼kjt/ research/cress.html).

The structure of the CRESS toolset appears in figure 5; overlapping shapes
indicate where variations may exist. The boxed area represents the CRESStoolset
proper. The primary inputs are service (and feature) diagrams, drawn with one
of several graphical editors. The CRESS tools are designed to be driven from a
development environment for the target language. For example, a simple command
(TOPO toolset for LOTOS) or a button click (Telelogic Tau for SDL) is used to
invoke the translation and analysis.

Initially, the front-end tools for the target language (e.g. a graphical editor for
LOTOS) are used to create a framework for the target language and application do-
main. For example, this might be LOTOS as used to described web services. The
framework establishes everything that is common, such as the structure of the re-
sulting specification, common data types, and common processes. The framework
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Figure 5: Structure of The CRESSToolset

is specific to a language-domain combination, but is independent of the partic-
ular services. The framework has hooks for where service information must be
added. The CRESSpreprocessor uses the service diagrams to establish what must
be added. It uses the CRESSlexer to convert the diagrams into neutral format, in-
dependent of any diagram editor. The CRESSparser then converts this information
into an abstract syntax graph. (This is not a tree because diagrams may contain
cyclic references.) The end result describes the entire setof services in language-
independent form.

A CRESScode generator (of which there are several) translates the graph of
services into the same target language as the original framework. This is then
passed to the back-end tools for the target language (e.g. a LOTOS semantic anal-
yser or model-checker). At a minimum, these tools check the syntactic and static
semantic correctness of the generated specification. For formal languages, they
support automated analysis through verification, validation and simulation. For
implementation languages, they support automated execution.

4.7 Translation of the Lender Service

Figure 6 illustrates the procedure for translating CRESSdiagrams into BPEL and
WSDL. The example here is for the lender service in figure 2; the three columns
show the files generated for the approver, the lender and the assessor.

BPEL and WSDL are created for the main lender service. A separate WSDL file
is created for type definitions that are shared by the lender service and its partners.
For use with ActiveBPEL, a catalogue of WSDL files and a process deployment
descriptor are also generated.

WSDL is created for the two partner services (approver and assessor). If their
implementations do not already exist, this WSDL is converted into skeleton Java
implementations bywsdl2java.

Translation of just the lender service and its partner requires generating 25
source files totalling nearly 2,000 lines of code. It is therefore not practicable to
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give extracts here. Instead, the code generated by the translation has been placed
online atwww.cs.stir.ac.uk/∼kjt/software/download/cress-lender.tar.gz. The inter-
ested reader can download these files to see what the translation strategy described
in this paper produces. The files can also be executed in a BPEL environment.

5 Analysing CRESSWeb Service Descriptions

This section discusses the practical implications of formally analysing web ser-
vices, and looks at scenario-based validation as a pragmatic approach.

5.1 Service Verification

After a CRESSdescription has been translated into a formal specification, a variety
of formal analyses can be performed:

• State exploration allows the discovery of undesirable conditions such as
deadlock (stalled progress) or livelock (unproductive loops). Because busi-
ness processes combine separately developed web services,deadlock can
readily arise if they are not fully interoperable. Systematic analysis discov-
ers such deadlocks.

• Web services should also have desirable safety properties (nothing bad hap-
pens) and liveness properties (something good eventually happens). Con-
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sider thebroker service in figure 4. An invocation of it should not fault
(safety), and every invocation of the service should eventually receive a
response (liveness). Model-checking allows such properties to be verified
against a service specification.

• WSDL can be written in many ways that reflect the same functionality. How-
ever, WSDL is purely syntactic and without a formal model. As a result, it
can be problematic to check whether two WSDL descriptions are equivalent.
The formal model of a service precisely describes its behaviour. From a for-
mal methods point of view, it can be checked whether two specifications are
equivalent in some sense. This is automated using a chosen notion of equiv-
alence, e.g. whether the two have the same external behaviour (observational
equivalence).

• The design of a web service is proprietary and may be confidential. For
example, the car supplier in figure 3 may not wish to publicisewhich dealers
are used. The owner of a web service, however, needs to publish a high-level
description of the service. There is then a question of whether the high-
level description is consistent with its detailed design. Formal checking of
equivalence can determine this.

• A similar issue arises because services evolve over time. For example, the
car supplier may later decide to get quotes from three dealers, or may decide
to use different dealers. The question is then whether the new service is func-
tionally equivalent to the old one. Again, automated equivalence checking
can settle this.

In formal methods, such techniques are termed verification (proof). Unfortu-
nately, state space explosion often limits what can be checked of realistic services.

5.2 Service Validation

Because of practical limits to verification, CRESS also makes use of validation
(testing). In fact, both specifications and implementations are validated by the
same means. The idea is to characterise the behaviour of services through use-
case scenarios. If these scenarios deal with all critical aspects of a service, they
can be used to check whether a service behaves as expected. Ofcourse, such
an approach is incomplete – drastically so, since typicallyonly a tiny fraction of
possible behaviour is checked. However, systematic testing methodologies can
be used from fields such as hardware design, software engineering, and protocol
conformance testing.

The author has developed MUSTARD (Multiple-Use Scenario Test and Refusal
Description [20]) as a language-independent and tool-independent approach for
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expressing use-case scenarios. (Although MUSTARD is the culinary counterpart of
CRESSand is typically used along with it, MUSTARD is also used independently
to validate system descriptions in various domains.) The approach of MUSTARD is
illustrated in figure 7. The left-hand side of this figure deals with a formal specifi-
cation, while the right-hand side deals with an actual implementation.

Validation scenarios are described textually with an applicative (function-like)
syntax or with an XML Schema-based syntax. The scenarios aretranslated into a
language appropriate to what is being evaluated. For use with LOTOS, the scenarios
are rendered in LOTOS. For use with SDL, the scenarios are rendered using MSCs
(Message Sequence Charts [11]). For use with actual web services, the scenarios
are rendered using BPEL and WSDL (i.e. as web services themselves).

When a formal specification is the target, the CRESSservice description is au-
tomatically translated into its formalisation. This can beanalysed by purely formal
means, leading to verification results. MUSTARD scenarios are automatically trans-
lated into, say, LOTOS test processes. These are automatically combined with the
main service specification, and are automatically checked.

The result of validation is a verdict on each scenario: pass,fail or inconclu-
sive. A pass verdict means that the specification allows at least the behaviour of
the scenario, while a fail verdict means this is not respected. Acceptance scenarios
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are designed to show that the expected happens, but this doesnot exclude extrane-
ous behaviour. Refusal scenarios are designed to show that undesirable behaviour
does not occur. It is possible for the same scenario to pass onsome paths through
the behaviour but to fail on others; such an outcome is regarded as inconclusive.
Clearly a fail or inconclusive verdict requires re-examination of the CRESSservice
description, which may be incorrect or incomplete. Sometimes scenarios have to
be corrected because they do not fully capture the core behaviour of the service.

After successfully validating scenarios, the developer should have confidence
in the CRESS description. In theory, correct descriptions should lead to correct
implementations. However, pragmatic problems may arise when implementations
are deployed. For example there may be issues of usability, performance and inde-
pendence.

There is insufficient space here to explain the MUSTARD notation, so reference
to [20] and to the following example must suffice. Briefly, MUSTARD allows sce-
narios with sequences, alternatives, inter-service dependencies, non-determinism
and concurrency. Since many web services act like RPCs (Remote Procedure
Calls), their scenarios mainly check that the expected outputs are produced by the
selected inputs. However, scenarios may involve several branched communications
between the web service user and the service itself. Scenarios with concurrency are
useful for finding race conditions, as well as for checking the service under load
conditions. Both acceptance scenarios and refusal scenarios are valuable in deter-
mining the behaviour of a service at the edges of its ‘envelope’.

The following MUSTARD scenario (in applicative form) checks simultaneous
requests to thebroker process. (Strings are preceded by a single quote.) Two be-
haviours are checked in parallel (by interleaving) in case there are any unexpected
interdependencies in the implementation:

• The first parallel branch offers a non-deterministic choice(test-decided) of
two orders. A request for an Audi A5 expects to receive a schedule with
dealer reference 8, name WheelerDealer, price 33000, delivery 30 days, loan
rate 3.5%. Alternatively, a Renault Mégane may be ordered.

• The second parallel branch requests a Ford Mondeo. A deterministic choice
(system-decided) then allows a specified schedule or an unavailable response
in return.

test(SimultaneousPurchases, % simultaneous purchases scenario
succeed( % behaviour must succeed

interleave( % behaviours are interleaved
decides( % non-deterministic choice

sequence( % Ken Turner buys an A5
send(broker.carloan.purchase,Need(′Ken Turner,′Stirling Scotland,′Audi A5)),
read(broker.carloan.purchase,Schedule(8,′WheelerDealer,33000.,30,3.5))),
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sequence( % Sally Dean buys a Mégane
send(broker.carloan.purchase,Need(′Sally Dean,′Cardiff Wales,′Renault Mégane)),
read(broker.carloan.purchase,Schedule(1,′BigDeal,11000.,5,4.4)))),

sequence( % Kurt Jenner requests a Mondeo
send(broker.carloan.purchase,Need(′Kurt Jenner,′London England,′Ford Mondeo)),
offer( % choice of schedule or fault

read(broker.carloan.purchase,Schedule(6,′BigDeal,20000.,10,4.1)),
read(broker.carloan.purchase,refusal,′car unavailable))))))

Of course, there is then the issue of where such scenarios come from. The
author has separately developed PCL (Parameter ConstraintLanguage [19]) for
this kind of purpose. Fully automatic generation of useful tests from a complex
specification is generally infeasible. Often input values may be chosen from an
infinite set, of which only certain values are crucial to testing (cf. boundary testing).
In a system with many inputs, the combinatorial combinationof these inputs may
yield an unworkable number of scenarios.

Instead, it is necessary to identify critical input values and their combinations
using domain-specific knowledge. PCL is then used to annotate a specification
with constraints on interesting input values and on useful orderings over inputs.
This makes test generation practicable for specifications with complex data types,
infinite data sorts or concurrency – all characteristic of web service specifications.
Using algorithms described in [13, 19], the annotated specifications can be used to
create useful validation scenarios.

5.3 Service Independence

[21] argues that interaction (i.e. interference) among webservices is an integration
issue. Integration is less of an issue if web service instances are truly independent
and self-contained. However there are ways in which this assumption may be
broken:

• Web service instances running on the same physical system are in competi-
tion and may suffer from resource interference or starvation.

• Partner web services may indirectly share resources and maytherefore suffer
from resource conflicts. As an example, theapproverandassessorpartners
in figure 2 seem to be completely independent. In practice, they may rely on
a common partner whose visibility is not apparent. For example, they may
use a shared web service to validate the customer address, thereby leading to
potential interference.

• A web service may appear to offer stateless (RPC) operations. For many
reasons, including efficiency, web services may store the history of past op-
erations. For example, the lender service may cache detailsof previous loan
applications; a new loan application can then be evaluated more quickly.
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However this negates the assumption of independence and maylead to in-
teractions among different instances of the same service. For example if a
customer is denied a loan because of a temporary overdraft, this may prevent
getting a loan on a future occasion.

• Independence may also be violated if information about pastoperations is
passed to other web service providers. For example, the lender service may
make its loan assessments available to other web services. Aprevious failure
to obtain a loan might thus cause a mail-order web service to refuse an order.

If the full descriptions of services are available, such issues can be discovered
through analysis. However, this is often not possible because service descriptions
are usually proprietary and unavailable. For this reason, violations of service inde-
pendence may have to be checked empirically. The validationapproach supported
by CRESSallows this to be assessed in practice.

5.4 Feature Interaction

CRESS allows web services to be extended by means of features. Consider the
sample web services discussed earlier. They all make use of acustomer name and
address. In fact, this is likely to be the case with many customer-oriented services.
It would be useful to validate the name and address provided.

As a sample feature, figure 8 matches anyReceivefor a quote, order or pur-
chaseoperation. (The asterisks denote any partner or port.) The formal parameter
detailsis matched to the actual parameter of theReceive(needor proposalfor the
examples in this paper). The ‘+’ after the number in node 1 means that the fea-
ture behaviour is appended to theReceive. This invokes thenormaliseoperation
of the externalcheckerpartner with the given name, receiving the name back in
normalised form. For example, the author’s name is normalised to ‘KJ Turner’
and stored in the name field ofdetails. The feature then finishes, continuing with
whatever followed the triggeringReceive.

As a further sample feature, figure 9 similarly matches aReceiveoperation.
This invokes thecheckoperation of thecheckerpartner to take the given name and
address, receiving in return a check on whether the name-address combination is
valid. This service might, for example, check a credit card database. The fea-
ture finishes if the combination is valid, allowing normal behaviour to continue.
Otherwise it throws awrongContactfault.

These features are automatically deployed by CRESSinto the web services de-
scribed earlier. There is an immediate question of whether aname should be nor-
malised before being checked against an address. This is desirable, and is achieved
in CRESSby associating features with priorities.
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However, the introduction of features may lead to interference among them. In
fact, the name normalisation and address checking featuresmay interact with each
other. For example, the normal form of the author’s name doesnot match the name
known to his credit card company. As a result, normalising the name might hinder
address checking.

This kind of problem is detected automatically during validation with CRESS.
A common interpretation of feature interaction is that a feature behaves differ-
ently in the presence of other features. CRESSallows the behaviour of features to
be validated in isolation (thus confirming their functionalcorrectness) and also in
combination (thus confirming absence of interactions).

6 Conclusions

It has been argued that isolated web services can benefit fromformal models of
their behaviour. A graphical description of business processes helps to make them
more understandable. A high degree of automation is strongly desirable in the
creation of web services. CRESSmeets all of these requirements.

Compared to commercial tools, CRESSdoes not support all of BPEL (though
it handles most things that are used in practice). However CRESS confers dis-
tinctive benefits: applicability to many types of services,human-usable automated
implementation, service features, and translation to formal languages for rigorous
analysis.

CRESS is complementary to current development practices for web services.
The introduction of a compact graphical notation and rigorous analysis are believed
to be beneficial additions. In future work, CRESSwill be extended to cover more
of BPEL. It is also planned to apply CRESS to the composition of grid services,
which closely resemble web services.
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