1

Kenneth J. Turner. Representing and Analysing Composed Web Services using CRESS
(pre-publication version), Network and Computer Applications, 30(2):541-562,
Copyright Elsevier Science Publishers, Amsterdam, April 2007.

Representing and Analysing
Composed Web Services USInRESS

Kenneth J. Turner
Computing Science and Mathematics, University of Stirling
United Kingdom FK9 4LA
Email kjt@cs.stir.ac.uk

Abstract

Composite web services are defined using the industry-atdiahguage
BPEL (Business Process Execution Logic). There is a strong rexegtdiph-
ical and automated support for this task. It is explained K®gss(Chisel
Representation Employing Systematic Specification) has lextended to
meet this challenge. REsssupports straightforward graphical descriptions
of composite web services. Sample descriptions are pess@iftthese. It
is outlined how they are automatically implemented andesystically anal-
ysed using the target languageBe& and LOTOS (Language Of Temporal
Ordering Specification).

Keywords: BPEL (Business Process Execution Logic)ptos (Lan-
guage Of Temporal Ordering Specification), web service

Introduction

1.1 Background to Web Services

Web services have become a very popular way of providingsaciedistributed
applications. These may be legacy applications given a \eelice wrapping,
or they may be new applications designed for the web. Wehicg=nare widely
documented online (e.g. seevw.webservices.orfpr a commercial perspective,
www.webservicesarchitect.cdior a technical perspective, amgdvw.xmethods.net
for public web services).

The interface to a web service is defined irsB (Web Services Description

Language [26]). However this is purely syntactic, esséntiefining the types of
inputs, outputs and faults for web service operations.DWalso defines the bind-
ing of operations to a transfer mechanism such aasfS(Simple Object Access

Protocol [23]). WsDL does not define the semantics of a web service; formalis-
ing the behaviour of a web service is therefore desirablend@3¥ML-based and
therefore textual, VDL can be created and edited manually. However, this is an
intricate and error-prone task. For this reason, mostisolsitaim to create \&WbL
automatically.

WsbDL describes an isolated web service. The excitement in weficesris
composingthem into what is called &usiness processAssume (realistically)
the following web services: airlines take flight bookingsidis take room book-
ings, hire firms take car bookings, and banks accept eléctpatyments. A travel
agency can then build a business process that arrangepeattasf a trip. Flights,
accommodation and car hire can be arranged and paid forghm@single service.

Closely related terms are used to describe the coordinafiaveb services.
Business process (flow) modelling has an independent agistas a technique for
describing business activities and their interrelatigmshThis lent itself naturally
to describing flows among web services, e.g. with IBM's#V (Web Services
Flow Language) or Microsoft's XANG. Choreography languages such as-W
CbL (Web Services Choreography Description Language [25]uaegl to char-
acterise high-level enterprise collaborations based dnsgevices. Orchestration
languages such asPBL deal with the combination of web services to create more
complex composite ones.

Unfortunately, many competing standards emerged for ceimgoweb ser-
vices [14]. Of these, WFL and XLANG were leading examples. A significant step
was made with agreement on the industry-wide specificataled BPELAWS
(Business Process Execution Language for Web ServicesTR[} is being stan-
dardised as WS-BEL [3]. For brevity, both are referred to as*BL in this paper.

WsFL stemmed from work on business process modelling. It thexedon-
phasises flows among activities. In contrast,A\G had its origins in structured
program design. It therefore emphasises constructs foeseing, alternation and
iteration. BPEL is a careful fusion of both approaches that gives considke fdx-
ibility to the developer. Both IBM and Microsoft contributdo the development
of BPEL. It is the author’s perception that $¥L and XLANG are now effectively
superseded by it for composing web services. [14] providestailed and useful
comparison of various web service flow languages.

BPEL is a recent and evolving language, so tool support is stilelbping.
BPELis also XML-based, so it can be difficult to understand a cexfibw from a
purely textual description. A graphical view of composedwervices is therefore
highly desirable.

1.2 Overview of The Paper

Section 2 explains the context oiREssfor describing web services. This is ex-
panded in section 3 that gives a brief overview of web sergarecepts and how
CREssrepresents these. Three interrelated examples are udadstmate the ap-
proach. The translation ofkEssinto BPEL and WsDL is outlined in section 4. A
lender service is used as an example of what files are gede@detion 5 discusses
the practical implications of what is achieved through falanalysis of web ser-
vices. Scenario-based validation is introduced as a pragmay of validating
both specifications and implementations of web services.

2 The Context of Web Services

This section gives the context of web service modelling aradyasis. It introduces
the philosophy of ®Ess (Chisel Representation Employing Structured Specifi-
cation). This was developed by the author for describingices, typically in
communications. Although initially used with voice semdg the value of RESs
has now been demonstrated for modelling web services as well

2.1 Web Service Modelling

Web services are well established and widely supported iercial tools. Lan-
guages like Java and C# have web service bindings. Web ssrare supported
by frameworks like Microsoft's .NET and Sun’'s ONE (Open NewEonment).

The Semantic Web, e.g. as supported by RDF (Resource Digscrframe-
work), aims to give formal meaning to the content of web pagHse approach
relies on creating ontologies containing properties andrialationships of the
terms in some domain. Semantic Web Services apply simitdmtques. QL
(Web Ontology Language, e.g. [24]) has been developed anmoa standard for
describing ontologies in a web service contexaM -S (DARPA Agent Markup
Language — Services), howwd-S, is an expressive elaboration of the ideas in
RDF for use with agent-based systems and web servicesMR{Web Services
Modeling Framework) is a comparable development, but iegiddy WSFL. Purely
ontological approaches focus on the content of what wehicger\provide. Of
greater interest here are approaches that also describeltagiour and composi-
tion of web services. @L-S is therefore particularly relevant.

BrPMN (Business Process Modeling Notation [4]) might be viewed asm-
petitor notation to @Essfor describing web services. Howeverp@N is a very
large notation (the standard is almost 300 pages). It alsalsingle purpose: de-
scribing business processesPNBN is essentially a front-end for creating web ser-

vices. Tools supporting BvN often have complex interfaces, with simple flow di-
agrams being supplemented by form-based entry of actigitsgrmpeters. Of course,
BPMN is aimed at large-scale industrial development of web sesvilt also sup-
ports the entirety of the capabilities found in, for exameEL.

In contrast, RESSis a compact and general-purpose notation that has now
been proven on services from four different domains. LikevR, CRESS de-
scribes web services graphically. However as will be se®gISdescriptions are
high-level and can be understood with limited trainingstpapers explains nearly
everything required to create web services usimgSs Unlike BPmN and its
associated tools, kREssoffers automated translation to formal specifications.(e.g
LoTos, SDL) as well as to implementations (e.geB., WsDL). This means that
CREssdescriptions of web services obtain the benefits of autainetefication
and validation as well as automated implementation.

CRrREssintroduces a feature concept that is lacking in other webicemp-
proaches. This allows capabilities to be shared among wefcss, invisible to
the user and even the developer. Comparedrm® the main lack in RESsis
that it does not support every capability oPBL — though it is believed that the
most important aspects are covered. If necessa&y3Scould be used as a precur-
sor to BPMN, allowing major aspects of web service functionality to balgsed
and demonstrated before committing substantial impleatient efforts.

2.2 Web Service Support

The focus of this paper is on composing web services. Duedadlative new-
ness of BPEL, support is only now maturing. Commercial products incliBle!’s
WebSphere, Microsoft's BizTalk Server and Active EndpsikiYebFlow. Oracle’s
BPEL Process Manager is made available for prototyping purpdeekiding a
wide range of examples and extensive tutorials. ActreB(www.activebpel.org
is an open-source community development that builds rs A4Apache Extensible
Interaction System), an implementation @& for the Tomcat web server.

Both ActiveBrPEL and BPEL Process Manager providerBL interpreters; Ac-
tiveBPEL has been mainly used in the work of this paper. Of greaterastéere
are BPEL design tools. Given the complexity ofPigL, graphical design tools are
highly desirable. Both Active WebFlow andPBL Process Manager offer graph-
ical design integrated with IBM’s ELIPSE BPEL processes can be defined by
drag-and-drop. Activity properties are manually entereforms, though help is
provided to locate information such as web service partargsprocess variables.
A significant difference is that BEL Process Manager currently shows only a sim-
ple representation of flows; arbitrary graphs are just shas/parallel activities.
Active WebFlow fully displays flows, and also supports vissimulation and de-

bugging of BPEL processes.

So far, research on formalising web services has been timit@st approaches
use either finite state methods (e.g. Petri nets or finite statomata) or process
algebras. Since the semantics of a process algebra is oftem &s an LTS (La-
belled Transition System), the two approaches are not stafaentally different.
For example, [9] gives a timed semantics for XNG that allows web services to
be checked for interoperability, and also to be implementadransition systems.

As an example of finite state methods, LTSA-WS (Labelled Siteon System
Analyzer for Web Services [7, 8]) is also close in aim tRESS LTSA-WS allows
composed web services to be described irr& Blike manner. Service composi-
tions and workflow descriptions are automatically trargldanto FSP (Finite State
Processes) to check safety and liveness propertirss&differs in being a multi-
purpose approach that works with many different kinds ofises and with many
different target languages. AREssdescription is pitched at a more abstract level.
CRESsmay be used with any analytic technique using the formaldaggs it sup-
ports, although it offers its own approach based on sceralidation.

As an example of process algebraic methodsTds has been used to specify
web services. Plain process algebras often lack the atlispecify data, which
is often an important characteristic of web servicegTts offers the advantage
of specifying both data and behaviour within one languagee Work described
in [5, 6] supports automated conversion betweer Band LOTOS This has been
used to specify, analyse and implement a stock managensehsand also nego-
tiation through web services.REssdiffers from this work in using more abstract
descriptions that are translated intel®. and LOTOS, there is no interconversion
among these representationsrRESsdescriptions are language-independent, and
can thus be used to create specifications in other formautges (e.g. SDL).
CREssalso offers a graphical notation that is more compreheadiblthe non-
specialist. This is important since web service develognigpically involves
business and marketing staff as well as technical experts.

2.3 CrEessfor Service Modelling

The author developed KEssfrom early work by BellCore on Chisel [1] for de-
scribing voice services. REsshas been used to specify and analyse voice services
for the IN (Intelligent Network) [15], SIP (Session Initiah Protocol) Internet
Telephony [16], and IVR (Interactive Voice Response) [17].

Service descriptions in REssare graphical and accessible to non-specialists.
Yet, CRESS descriptions are automatically translated into formaglaages for
analysis, and into implementation languages for execut@®essmay in princi-
ple be translated into any constructive specification laggu However, the focus

has been on standardised languages used in communicationsis (Language
Of Temporal Ordering Specification [10]) and SDL (Specifimatand Description
Language [12]).

Cresshas plug-in code for the application domain and the targajuage.
This provides direct support for each domain, but makes$sreadily extensible
for new purposes. REsshas explicit support for features, allowing these to extend
a base service in a variety of ways.

Essentially, @essdescribes the flow of actions in a service. It was therefore
natural to investigate whetherrREss might be used for describing web service
flows. This has proven to be an appropriate application RE€S in fact the
notation has required surprisingly little extension. Thaimmdescriptive additions
have been for simultaneous definition of multiple servictgyctured data types,
and parallel flows. A back-end translator fronkEssto BPEL and WsDL has of
course been a necessary and substantial addition.

Despite being a research toolREss offers a number of distinctive benefits
when used with web services:

e CREssdescriptions of composed web services are graphical amdftine
attractive to industrial users. The same notation alsdepf a wide variety
of services, and not just to web services.

e CRESsservice descriptions are automatically translated intplementa-
tions — BPEL and WsDL for web services. The translated code is neatly
organised with extensive comments. This means tirSSgenerated code
can be readily related to a service description, unlike censial tools where
the output does not seem to be intended for human use. Everg§€is
used to implement web services, the generated code canelssed with
commercial tools.

e Most importantly, thesameCRESS service descriptions are automatically
translated into formal specifications (currentlptosfor web services, but
SDL is generally supported byRESS. Commercial tools are limited to
manual simulation and debugging. By formalising web s&sjicRESS
provides access to rigorous analysis. This may use anyitpehassociated
with the formal language, such as state space exploratiorodel-checking.

e Formal languages are common as a basis for investigatingatrlity of
services (called the feature interaction problem in tedeh Compatibility
can be checked with any approach based on the formal langsageorted
by CREss However, REssoffers its own technique based on validation of
use-case scenarios [20]. Interference among web senasesolfar received
little attention. [21, 22] are two of the few papers on thigito

CRESS Service

Description

automatic)

) automatic
translation .
e translation
verification/
validation ¥
Formal Service BPEL/WSDL
Specification Implementation

Figure 1: Web Service Development WitlRESS

e CRESssintroduces a feature concept that is lacking in other weliseiap-
proaches. The idea, borrowed from telephony, is to extendces with
features that provide modular and automatic additions métfanality.

CRESsis used to give higher-level descriptions of services thatsatomat-
ically translated into other languages for other purpoges.an example, its use
for web services is shown in figure 1. AREssdescription is initially given of
a service. Since RESSsupports abstract and compact service descriptions, the
effort at this stage is small compared to actual implemanmtafThe QRESSIis au-
tomatically translated into a formal specification that ietptyped, verified and
validated. Typically this exposes flaws and weaknessesdhaire the @essde-
scription to be improved. Once therREsshas been finalised, it is automatically
turned into a real implementation that is deployed in a wetese

Translation into a formal specification gives precise meguo web services
(and their associated languages). More importantly, awedl automated verifica-
tion of desirable properties such as interoperability eneédom from deadlock.
This allows the description of a service to be checked pointplementation.
A number of specification languages (includingios and SDL) allow formal
specifications to be animated. This is very useful for dermatisg a service in
prototype form to a customer.

The same @Essdescription is also automatically translated into a wagkin
implementation: BEL and WsDL for web services. The formalisation will have
established confidence in the service description, so the foe testing the service
implementation is significantly reduced. However somediactan really only be
evaluated with the actual implementation, e.g. usabilig performance.

[18] discusses the translation and formal analysis of welics using RESS
supported by bTOS The present paper gives the complementary view of practica
web development usingrESsssupported by BEL and WsDL.

3 CREssDescription of Web Services

This section introduces web service concepts and theieseptation in RESS
As concrete illustrations, three interrelated examplesgjaren of web services.

3.1 Basic Web Service Concepts

A composite web service is termedbasiness processlt exchanges messages
with partnerweb services, considered as service providers. A web semvay be
invoked synchronouslya request and associated responsedsynchronouslya
request followed by a separate response). A business prisaeself a web service
with respect to its users. Web services have communicaticis whereoperations
are invoked. An unsuccessful operation gives risefaut. Compensatiomndoes
work following a fault. Correlation links asynchronous messages to the correct
business process instance.

A CREessdiagram is a directed graph. InPBL terms, this defines an exe-
cutable business process. Someone who knorsLBvill find the CRESSrepre-
sentation familiar, but more compact. Numbered nodes goumtetions, termed
activities for web services. Arcs between nodes may belebelith expression
guards or event guards. Expression guards are used to nekeate choices;
they may be followed by assignments in the formafiable <— expression Event
guards introduce behaviour conditional on an event. Irrg€sweb service de-
scription, the events are faults, requests for compemsatid correlation requests.

For business processesrEsSis required to offer sophisticated control over
parallelism. Branches in akEssdiagram normally reflect alternatives. However
Fork/Join can be used to bracket parallel paths. AlthougteBhas different con-
structs for sequence, iteration and graph-like flow of ainttREssmodels these
all in a uniform way. Each €essnode (BPEL activity) is joined by a ®Essarc
(BPEL link). A CrREssexpression guard (BEL transition condition) determines
whether an arc may be traversed. This requires the prioritgctd terminate suc-
cessfully and the guard to hold.

CRESsnames are given in simple or hierarchic form. Operation mahawe
the formatpartner.port.operation Fault names have the fornfatult.variable the
fault variable being optional. Simple variables have theetydefined by XSD
(XML Schema Definition, e.gFloat f, Integer i, String s). Structured variables
defined in brace$...} are accessed in the forstructure.field

3.2 Cressfor Business Processes

The subset of EEssactivities appearing in this paper is explained beloweSs
supports more than is described here. As usual, ‘?’ meaiapt*’ means zero
or more times, and*denotes choice.

Invoke operation outpufinput fault$)? An asynchronous (one-way) invocation
sends only an output. A synchronous (two-way) invocatiooharges an
output and an input with a partner web serviceRESSrequires potential
faults to be declared statically, though their occurrerecelyinamic. The
faults that may arise in a business process are impliddumke, Reply and
Throw.

Receiveoperation input Typically this is used at the start of a business process to
receive a request for service. An initiRleceivecreates a new instance of
the process. Each suéteceiveis usually matched by Reply for the same
operation.Receivealso accepts an asynchronous response to an earlier one-
way Invoke.

Reply operation(output| fault) Typically this is used at the end of a business pro-
cess to provide some output. Alternatively, a fault may geadied.

Fork strictnes® This is used to introduce parallel paths; further forks rhay
nested to any depth. Normally, failure to complete pargighs as expected
leads to a fault. This is strict parallelism, and may be iathd explicitly as
strict (the default). If this is too stringeniposemay be used instead.

Join conditior? Each-ork is matched byloin. By default, only one of the parallel
paths leading tdoin need terminate successfully. However, an explicit join
condition may be defined over termination of parallel atiggi In GRESS
the condition uses the node numbers of immediately priaviaes. For
example, 1 && (2|| 3) means that activity 1 and either activity 2 or 3 must
terminate successfully. In turn, this means that the piGtivisies must also
succeed.

Throw fault This reports a fault as an event to be caught elsewhere byent ev
handler.

Compensatescop® This is called after a fault to undo previous work. An explic
scope (Ressnode number) indicates which compensation to perform. In
the absence of this, compensation handlers are called erseeorder of
completion.

The Throw and Compensateactions cause event handlers to be invoked. A
fault is considered by progressively larger scopes withéngrocess until it is han-
dled. Compensation also deals with progressively larggress. In BPEL a handler
may be defined in any scope, but iRESSIt is either global or associated with an
Invoke. (This is a small restriction that accords with common pcacanyway.)

Catch fault This introduces a separate flow for dealing with the speciféet.
If a fault has just a name and no value, it is handled b@atch with a
matching fault name. A fault with name and value is handledi@atch
with matching fault name and variable type, or batch without a fault
name but a matching type.

CatchAll This introduces a separate flow that deals with any fault.

Compensation This introduces a separate flow for undoing the work of a mece

3.3 A Lender Web Service

A loan service is a frequent example for business procetisesine here is based
on that in the BEL standard. LoanStar is landerthat offers a loan to an on-
line customer, who makesmoposalcontaining name, address and loan amount.
Deciding whether to make a loan may require time-consuminguigies. If the
amount is less than 10000, LoanStar asks its business pRisidaker to make a
quick assessment via its web service. RiskTaker iassessothat evaluates the
risk of the loan. If the risk is low, LoanStar offers to lendaabasic rate of 3.5%.
Otherwise, LoanStar asks its business partner FirstRatéomine a realistic loan
rate. FirstRate is aapproverthat thoroughly evaluates a loan proposal; its loan
rate is returned by LoanStar to the customer.

This example involves multiple web services: two partnebservices &s-
sessoy approve), and the business process itsédinder, see figure 2). The loan
customer (the borrower) acts like a further web service,raag indeed be one.

Nearly everything needed to understand figure 2 has beemiezdl earlier.

A rounded rectangle contains aR€ss rule box, whereUsesdeclares diagram
variables likeproposalandrisk, and macros likéasicRate

All the web services happen to communicate via paaih, but the port names
could vary. The borrower operation (nodes 1, 3, 5) is namexte the approver
operation (node 2Approve and the assessor operation (nodegjess

In general, a ®Ess configuration diagram defines the environment for ser-
vices. For web services, it maps partners to namespacegsgefiamespace URIs
(Uniform Resource Identifiers), and web service URIs. Faneple, for the lender
service it might say:

10

1 Receive
lender.loan.quote

proposal

proposal.amount >= 10000 Else

6 Invoke
assessor.loan.assess
proposal risk

2 Invoke
approver.loan.approve
proposal rate refusal.error

Else

risk = "low"

Catch refusal.error)
u / rate <- basicRate

Uses
{String name String address
Integer amount} proposal
String risk
Float rate
String error

3 Reply
lender.loan.quote
refusal.error

5 Reply
lender.loan.quote
rate

basicRate <- 3.5

Figure 2: Lender Business Process

approver app urn:FirstRate http://localhost:8080/sesfApprover
assessor ass urn:RiskTaker http://localhost:8080ts=stAssessor
lender lend urn:LoanStar http://localhost:8080/sesficender

For the work reported here, web services were given simplBl&J®niform Re-
source Names) and were deployed using ActiweBon the local host. In prac-
tice, actual URIs would be used (eldtp://www.firstrate.com:8080/ axis/ services/
Approverfor FirstRate). The definitions common to a service and ittneas use
namespacedefs

3.4 A Car Supplier Web Service

As a further example, DoubleQuote isapplierthat offers its online customers a
good deal on car orders. A customer (the buyer) providesegicontaining name,
address and car model. This is passed to two dealers, eachidf wesponds
with an offer giving the dealer reference, name, car price, and days foede
DoubleQuote works with two business partners: BigDealirfgcasdealer) and
WheelerDealer (acting adealerd. The better quote (i.e. lower price, or earlier
delivery date if equal) is turned into a definite order. Thieiois also returned to
the buyer. A dealer indicates it cannot supply a car by reglyvith infinite price.
(It would also have been possible to indicate this by throvarfault.)

11

Start

10 Receive
supplier.car.cancel
offer

1 Receive
supplier.car.order
need

offer.dealer = dealer! Else

4 Invoke 11 Invoke 12 Invoke
dealer2.car.quote

need offer2

3 Invoke
dealer1.car.quote
need offer

dealer1.car.cancel dealer2.car.cancel
offer offer

(offer.price < offer2.price) Il
((offer.price = offer2.price) && Else
(offer.delivery < offer2.delivery))

8 Invoke
dealer2.car.order
offer2

6 Invoke
dealer1.car.order
offer

Uses

{String name String address String model} need

{Natural reference String dealer Float price
Natural delivery} offer, offer2

7 Reply
supplier.car.order
offer

9 Reply
supplier.car.order
offer2

Figure 3: Car Supplier Business Process

Again, multiple web services are involved: the dealelsaferl, dealerd and
the business process itsefupplier see figure 3). All partners happen to use
the same portar. The buyer operations amder (nodes 1, 7, 9) andancel
(node 10). The dealer operations aumote (nodes 3, 4)prder (nodes 6, 8), and
cancel(nodes 11, 12).

Figure 3 uses concepts explained earlier. The supplieinsd@aler quotations
in parallel (nodes 2 to 5) in order to save time. Both quotestrine obtained
(3 && 4 in node 5) for the quotation process to terminate sasfidly. Whichever
dealer offer is selected leads to an order (nodes 6 to 9).eSimx better offer is
turned into a definite order, the order may have to be undaihe ibuyer renegues
(or the calling web service faults). DoubleQuote therefallews an order to be
cancelled through the selected dealer (nodes 11, 12).

12

3.5 A Car Broker Web Service

As a final example, CarMen istaokerthat provides an online service to negotiate
car purchases and loans for these. Customers provideribedin the form of
name, address and car model. CarMen first uses its busingssrgaoubleQuote
(section 3.4) to order the car. If the car is unavailable ftfiee is infinite), CarMen
informs its customer of refusal (by responding with a fau@therwise, CarMen
now asks its business partner LoanStar (section 3.3) togara loan for the car
price. (Since a price is a float, it is rounded to a whole nunfiggore applying
for a loan.) If a quote can be provided, the customer reca\sehedulewith the
dealer reference, name, price, delivery period and loan rat

Start

AN
Catch refusal.error
7 Compensate

8 Reply
broker.carloan.purchase

refusal.error
offer.price != Infinity

9 Terminate
/ proposal.name <- need.name

/ proposal.address <- need.address Else Compensation
/ proposal.amount <- Round(offer.price)

1 Receive
broker.carloan.purchase
need

2 Invoke
supplier.car.order
need offer

/ error <- "car unavailable"

3 Invoke
lender.loan.quote
proposal rate refusal.error

6 Invoke
supplier.car.cancel
offer

5 Reply
broker.carloan.purchase
refusal.error

/ schedule.reference <- offer.reference
/ schedule.dealer <- offer.dealer
/ schedule.price <- offer.price
/ schedule.delivery <- offer.delivery
/ schedule.rate <- rate

Uses
{Natural reference String dealer Float price
Natural delivery Float rate} schedule

/ LENDER SUPPLIER

4 Reply
broker.carloan.purchase
schedule

Figure 4: Car Broker Business Process

13

Now the situation with web services is very complex. The CamNbusiness
process ljroker, figure 4) indirectly invokes three web services for suppdythe
car supplier, figure 3). The CarMen business process also indirecthkiesdhree
web services to arrange a loan forlér{der, figure 2). The beauty of web services
is that this is all invisible to CarMen’s customer, who sesigle web service for
ordering a car and receiving a schedule for its delivery amahfting.

Figure 4 illustrates some additional constructs mentiosadier. TheUses
clause defines dependence on the partner business protesEsand supplier
(named following ‘/’). If thelenderthrows arefusalfault (node 3), this is caught
and compensation is invoked (node 7). The compensatiorciagso with a car
order (node 3) requires theeipplierto cancel this (node 6). The same fault is then
returned to the customer (node 8).

4 Translating CREssWeb Services to BPEL and WsSDL

This section outlines the general principles behind tetimgd GRESSweb service
descriptions into BEL and WsDL. As an example, the generation of files for the
lender service is explained.

4.1 Service Deployment

Web services require a considerable amount of XML that isegdad automati-
cally by CREss Translation and deployment of sREssbusiness process is en-
tirely automated, except for the one-off implementatiorpaftner web services.
Partner services are automatically deployed usingsAwhile the business pro-
cess is automatically deployed using ActiveR.

The most important generated code is theeB describing the business pro-
cess. AWsDL definition is created for the business process since it ideservice
in its own right. A WsDL file is also created for message and type definitions that
are common to the business process and its partners.

The translation from @essto BPEL is fairly complex, partly becausergL
needs to be defined in a particular order, and partly becalsteod information
has to be inferred by RESS

4.2 Handlers

CREsshas a uniform representation for handlers. A node may bergedeby
an event guard that relies on dynamic occurrence of some.e¥m example,
Catch andCatchAll introduce a fault handler, whilEompensationintroduces a
compensation handler.

14

In CRESS handlers are either global or are associated witinaoke (which
is where faults or compensation, for example, are mostiiteebccur). Although
BPELAWS allows handlers to be defined globally for an entire lessrprocess,
global compensation is quite problematic to support. Fisr tBason, WS-BEL
does not support this capability. To avoid this restrictimglobal handler in ess
is in fact defined as part of the top-level flow rather than at glthe top-level
process.

4.3 Service Flow

A web service may use a variety of constructs to describe tive ftonditions
(if, switch, sequencesséquencg loops (vhile), arbitrary parallel flowsflow),
and several kinds of handlers (event, fault, compensatiorrelation). ®ESS
simplifies this to conditions (expression guards), arbjtfiows, and one kind of
handler (event guard). A number of constructs used b¥LBare intentionally
hidden by Ress For example scopes are implicit, and specialised coristauch
asonMessageas opposed teeceiveare used implicitly by @Essas required.

Cressautomatically determines and declares the links amongtesi, which
are then chained usingF&L sourceand target elements. The BEL function
getLinkStatuds used to check whether a linked activity has terminated ess:
fully. An awkward case to handle is assignment onrReE€sarc leaving a node.
This has to be translated along with the prior node, depdratewhether the tran-
sition condition holds or not.

The flows of handlers, and therefore the links among theivities, are in-
dependent of the main flow. However by treating the top-lé&es¥ as the global
level, CRESsis able to declare a single set of links that applies to bothntiain
flow and the handlers.

4.4 Data Types

Data types in @essare either the usual ones defined by XML Schemas (e.qg. float,
integer) or are structures consisting of a number of fields.

The use of variables in BEL is somewhat ugly. They are automatically char-
acterised by Bessas message variables (input, output) or data variablegfass
ment, expression). Unfortunately the syntax and usage adfethis different in
BPEL. CRESsgenerates XSD complex types for structured variables, sed u
XSD built-in types for simple variables. Variables are ugedxpressions by the
BPEL function getVariableData Fields in structured variables are accessed by
XPATH expressions.

15

4.5 Partner Services

The WsDL for partners is automatically generated from ttreSsdiagrams, along
with Web Service Deployment Descriptors. If a partner sendlready exists, its
WsDL can be used directly. TheREssview is likely to be a subset of the partner
WsDL, since a business process is likely to use only certain padoperations of
an already defined partner. If a partner web service doesmnealdy exist, its VEDL

is translated into Java using thex tool wsdl2java The skeleton partner service
must then be implemented manually. If this is an existingdggapplication, it is
usually straightforward to give it a web service wrappirfgh& application is new,
then of course substantial implementation effort is resplianyway. The partner
web services in sections 3.3 to 3.5 were given plausibleemphtations in Java. If
the QRESSstranslator finds an existing implementation (eagprover.java, it uses
this instead of the default service skeleton.

4.6 The ORESS Toolset

CRESsis supported by a large toolset that accepts diagrams froee thraphi-
cal editors:Diagram! from Lighthouse DesignyEd from yWorks, GRESSs own
CHIVE editor. QREss handles services in four domains: Intelligent Networks,
Internet telephony, Interactive Voice Response, Web Sesvi RESstranslates
diagrams into four target languagesPB/WsDL, LoTOS SDL, VoiceXML.

The toolset is written in Perl for portability, and has besedion four different
platforms (Linux, OpenStep, Solaris, Windows). The tobtsemprises five main
programs plus supporting modules — about 27,000 lines df cotbtal. As will be
seen in section 5.2, KESsis supported by the separate but relatedSviarD tool
for validating services. The entire toolset is availablerfon-commercial, research
purposeswyww.cs.stir.ac.ukfkjt/ research/ cress.html

The structure of the RESStoolset appears in figure 5; overlapping shapes
indicate where variations may exist. The boxed area represkee RESStooOlset
proper. The primary inputs are service (and feature) dragradrawn with one
of several graphical editors. TherEsstools are designed to be driven from a
development environment for the target language. For elgragimple command
(Topotoolset for LoTOS) or a button click (Telelogic Tau for SDL) is used to
invoke the translation and analysis.

Initially, the front-end tools for the target language (eagraphical editor for
LoTog9) are used to create a framework for the target language aiidaipon do-
main. For example, this might bedros as used to described web services. The
framework establishes everything that is common, sucheasttiicture of the re-
sulting specification, common data types, and common psesed he framework

16

Diagram CRESS
Editor Diagram
Target Target Analysi
Target arge Code age Target ! na ys!s/
Language { Language Simulation

Front-End Generator - Back-End
Framework) Realisation Results

Figure 5: Structure of The REsSToolset

is specific to a language-domain combination, but is indéeenof the partic-
ular services. The framework has hooks for where servicernmdtion must be
added. The @esspreprocessor uses the service diagrams to establish wisit mu
be added. It uses theREsslexer to convert the diagrams into neutral format, in-
dependent of any diagram editor. The&Xssparser then converts this information
into an abstract syntax graph. (This is not a tree becaugganiies may contain
cyclic references.) The end result describes the entirefssrvices in language-
independent form.

A CREsscode generator (of which there are several) translates reqeh gof
services into the same target language as the original fvarke This is then
passed to the back-end tools for the target language (e.gTad.semantic anal-
yser or model-checker). At a minimum, these tools check yinéastic and static
semantic correctness of the generated specification. Farafdanguages, they
support automated analysis through verification, vakmataind simulation. For
implementation languages, they support automated executi

4.7 Translation of the Lender Service

Figure 6 illustrates the procedure for translatingeSsdiagrams into BEL and
WsbDL. The example here is for the lender service in figure 2; theetltolumns
show the files generated for the approver, the lender andstessor.

BpPEL and WsDL are created for the main lender service. A separas®ile
is created for type definitions that are shared by the lerelwice and its partners.
For use with ActiveBEL, a catalogue of WWDL files and a process deployment
descriptor are also generated.

WSsDL is created for the two partner services (approver and as3esktheir
implementations do not already exist, thissWL is converted into skeleton Java
implementations bysdl2java

Translation of just the lender service and its partner megugenerating 25
source files totalling nearly 2,000 lines of code. It is tifi@re not practicable to

17

Lender
CRESS Description

—/ !
Lender

Approver BPEL Assessor
WsDL WSDL and Catalogue WSDL
Deployment Descriptor
Definitions WSDL
Y Y
Java Implementation Java Implementation
Deployment Descriptor Deployment Descriptor
Y Y Y
Web Service Archive BPEL Archive Web Service Archive

Figure 6: Translation of Lender

give extracts here. Instead, the code generated by thdatianshas been placed
online atwww.cs.stir.ac.uk/kijt/ software/ download/ cress-lender.tar.géhe inter-
ested reader can download these files to see what the transtategy described
in this paper produces. The files can also be executed g Bnvironment.

5 Analysing CREssWeb Service Descriptions

This section discusses the practical implications of fdlynanalysing web ser-
vices, and looks at scenario-based validation as a prageggpiroach.

5.1 Service Verification

After a CREssdescription has been translated into a formal specificaioriety
of formal analyses can be performed:

e State exploration allows the discovery of undesirable s such as
deadlock (stalled progress) or livelock (unproductivepio Because busi-
ness processes combine separately developed web semézatipck can
readily arise if they are not fully interoperable. Systemanalysis discov-
ers such deadlocks.

e Web services should also have desirable safety propeniekitg bad hap-
pens) and liveness properties (something good eventuafipdns). Con-

18

sider thebroker service in figure 4. An invocation of it should not fault
(safety), and every invocation of the service should ewadhtueceive a
response (liveness). Model-checking allows such prageitt be verified
against a service specification.

e WsDL can be written in many ways that reflect the same functignatiow-
ever, WsDL is purely syntactic and without a formal model. As a restilt, i
can be problematic to check whether twesWL descriptions are equivalent.
The formal model of a service precisely describes its behmviFrom a for-
mal methods point of view, it can be checked whether two $ipations are
equivalent in some sense. This is automated using a chosien b equiv-
alence, e.g. whether the two have the same external behdolmervational
equivalence).

e The design of a web service is proprietary and may be confalenfor
example, the car supplier in figure 3 may not wish to publieibéch dealers
are used. The owner of a web service, however, needs to baigh-level
description of the service. There is then a question of wdrethe high-
level description is consistent with its detailed desigornkal checking of
equivalence can determine this.

e A similar issue arises because services evolve over timee¥xample, the
car supplier may later decide to get quotes from three dealemay decide
to use different dealers. The question is then whether tiveseevice is func-
tionally equivalent to the old one. Again, automated edeivee checking
can settle this.

In formal methods, such techniques are termed verificapooof). Unfortu-
nately, state space explosion often limits what can be @tkokrealistic services.

5.2 Service Validation

Because of practical limits to verification,RESsS also makes use of validation
(testing). In fact, both specifications and implementatiane validated by the
same means. The idea is to characterise the behaviour efeeithrough use-
case scenarios. If these scenarios deal with all critigaéets of a service, they
can be used to check whether a service behaves as expectecbudé, such
an approach is incomplete — drastically so, since typicatily a tiny fraction of
possible behaviour is checked. However, systematic gestiathodologies can
be used from fields such as hardware design, software emgigeand protocol
conformance testing.

The author has developeddTARD (Multiple-Use Scenario Test and Refusal
Description [20]) as a language-independent and toolgaddent approach for

19

CRESS Service
Description

MUSTARD Scenario

Description
7/ \
automatic automatic

translation

translation

Formal Service Formal Scenario BPEL/WSDL BPEL/WSDL
Specification Specification Scenario Implementation

7 N\ 7 N\ V4

automatic automatic automatic
verification combination/validation combination/validation

> I < D I
Verification Validation Validation
Results Results Results

Figure 7. Scenario-Based Validation

expressing use-case scenarios. (AlthoughsWhRrD is the culinary counterpart of
CREssand is typically used along with it, MSTARD is also used independently
to validate system descriptions in various domains.) Tipgaach of MUSTARD is
illustrated in figure 7. The left-hand side of this figure dealth a formal specifi-
cation, while the right-hand side deals with an actual imq@atation.

Validation scenarios are described textually with an ajgilve (function-like)
syntax or with an XML Schema-based syntax. The scenariogamslated into a
language appropriate to what is being evaluated. For uselv@itos, the scenarios
are rendered in ©T0S For use with SDL, the scenarios are rendered using MSCs
(Message Sequence Charts [11]). For use with actual welteenthe scenarios
are rendered usingi:L and WsDL (i.e. as web services themselves).

When a formal specification is the target, theeESSsservice description is au-
tomatically translated into its formalisation. This candmalysed by purely formal
means, leading to verification results.UMITARD scenarios are automatically trans-
lated into, say, bTostest processes. These are automatically combined with the
main service specification, and are automatically checked.

The result of validation is a verdict on each scenario: pgslsor inconclu-
sive. A pass verdict means that the specification allowsagt e behaviour of
the scenario, while a fail verdict means this is not resgedeceptance scenarios

20

are designed to show that the expected happens, but thisidbesclude extrane-
ous behaviour. Refusal scenarios are designed to showritlesinable behaviour
does not occur. It is possible for the same scenario to passme paths through
the behaviour but to fail on others; such an outcome is reghes inconclusive.
Clearly a fail or inconclusive verdict requires re-exantioa of the GRESSservice
description, which may be incorrect or incomplete. Somesiracenarios have to
be corrected because they do not fully capture the core miranf the service.

After successfully validating scenarios, the develop@uhhave confidence
in the QRESSs description. In theory, correct descriptions should leaddrrect
implementations. However, pragmatic problems may arisenwimplementations
are deployed. For example there may be issues of usabtitipnmance and inde-
pendence.

There is insufficient space here to explain the $4ARD notation, so reference
to [20] and to the following example must suffice. BrieflyUEITARD allows sce-
narios with sequences, alternatives, inter-service diganes, non-determinism
and concurrency. Since many web services act like RPCs (ReRrocedure
Calls), their scenarios mainly check that the expectedutsitpre produced by the
selected inputs. However, scenarios may involve seveaaldiied communications
between the web service user and the service itself. Sosnaith concurrency are
useful for finding race conditions, as well as for checking service under load
conditions. Both acceptance scenarios and refusal sosrane valuable in deter-
mining the behaviour of a service at the edges of its ‘envlop

The following MUSTARD scenario (in applicative form) checks simultaneous
requests to theroker process. (Strings are preceded by a single quote.) Two be-
haviours are checked in parallel (by interleaving) in céised are any unexpected
interdependencies in the implementation:

e The first parallel branch offers a non-deterministic chdiest-decided) of
two orders. A request for an Audi A5 expects to receive a adeedith
dealer reference 8, name WheelerDealer, price 33000¢edglB0 days, loan
rate 3.5%. Alternatively, a Renault Mégane may be ordered.

e The second parallel branch requests a Ford Mondeo. A detistinichoice
(system-decided) then allows a specified schedule or arailable response

in return.
test(SimultaneousPurchases, % simultaneous purchases scenario
succeed % behaviour must succeed
interleave(% behaviours are interleaved
decideg % non-deterministic choice
sequencé % Ken Turner buys an A5

sendbroker.carloan.purchase,Ne&t€n Turner,Stirling Scotland Audi A5)),
read(broker.carloan.purchase,Schedulaf&eelerDealer,33000.,30,3.5))),

21

sequencé % Sally Dean buys a Mégane
sendbroker.carloan.purchase,Ne&siflly Dearl,Cardiff Wales,Renault Mégane)),
read(broker.carloan.purchase,SchedulégigDeal,11000.,5,4.4)))),

sequencé % Kurt Jenner requests a Mondeo
sendbroker.carloan.purchase,Ne&igrt JennefLondon EnglandFord Mondeo)),
offer(% choice of schedule or fault

read(broker.carloan.purchase,Scheduleg&Deal,20000.,10,4.1)),
read(broker.carloan.purchase,refusedy unavailable))))))

Of course, there is then the issue of where such scenarios émm. The
author has separately developed PCL (Parameter Constraiguage [19]) for
this kind of purpose. Fully automatic generation of useégts from a complex
specification is generally infeasible. Often input valuesyrbe chosen from an
infinite set, of which only certain values are crucial toiteg(cf. boundary testing).
In a system with many inputs, the combinatorial combinatibthese inputs may
yield an unworkable number of scenarios.

Instead, it is necessary to identify critical input valuesl #gheir combinations
using domain-specific knowledge. PCL is then used to ana@atpecification
with constraints on interesting input values and on usefdewngs over inputs.
This makes test generation practicable for specificatiatis @@mplex data types,
infinite data sorts or concurrency — all characteristic obwervice specifications.
Using algorithms described in [13, 19], the annotated $jgations can be used to
create useful validation scenarios.

5.3 Service Independence

[21] argues that interaction (i.e. interference) among sawices is an integration
issue. Integration is less of an issue if web service ingtaace truly independent
and self-contained. However there are ways in which thisrapton may be
broken:

e Web service instances running on the same physical systein aompeti-
tion and may suffer from resource interference or starmatio

e Partner web services may indirectly share resources andheassfore suffer
from resource conflicts. As an example, Hyproverandassessopartners
in figure 2 seem to be completely independent. In practies, thay rely on
a common partner whose visibility is not apparent. For eXanthey may
use a shared web service to validate the customer addresshyHeading to
potential interference.

e A web service may appear to offer stateless (RPC) operatibos many
reasons, including efficiency, web services may store ts@ityi of past op-
erations. For example, the lender service may cache defgl®vious loan
applications; a new loan application can then be evaluateck muickly.

22

However this negates the assumption of independence andedyo in-
teractions among different instances of the same servioeeXxample if a
customer is denied a loan because of a temporary overdraftny prevent
getting a loan on a future occasion.

¢ Independence may also be violated if information about ppsetations is
passed to other web service providers. For example, thelessdvice may
make its loan assessments available to other web serviga®evious failure
to obtain a loan might thus cause a mail-order web serviceftse an order.

If the full descriptions of services are available, sucluésscan be discovered
through analysis. However, this is often not possible bseaervice descriptions
are usually proprietary and unavailable. For this reasimtatons of service inde-
pendence may have to be checked empirically. The validatipmoach supported
by CrEssallows this to be assessed in practice.

5.4 Feature Interaction

CRrEssallows web services to be extended by means of features. ideortbe
sample web services discussed earlier. They all make useusftamer name and
address. In fact, this is likely to be the case with many gusteoriented services.
It would be useful to validate the name and address provided.

As a sample feature, figure 8 matches &wsceivefor a quote order or pur-
chaseoperation. (The asterisks denote any partner or port.) dtmedl parameter
detailsis matched to the actual parameter of Receive(heedor proposalfor the
examples in this paper). The ‘+’ after the number in node 1nsdhat the fea-
ture behaviour is appended to tReceive This invokes thenormaliseoperation
of the externalkcheckerpartner with the given name, receiving the name back in
normalised form. For example, the author's name is noreadlie ‘KJ Turner’
and stored in the name field détails The feature then finishes, continuing with
whatever followed the triggerinBeceive

As a further sample feature, figure 9 similarly matcheRegeiveoperation.
This invokes theheckoperation of theheckemartner to take the given name and
address, receiving in return a check on whether the names&ldombination is
valid. This service might, for example, check a credit caathdase. The fea-
ture finishes if the combination is valid, allowing normahbgiour to continue.
Otherwise it throws avrongContacfault.

These features are automatically deployed IReSsinto the web services de-
scribed earlier. There is an immediate question of wheth@mae should be nor-
malised before being checked against an address. Thisiiallesand is achieved
in CRESsby associating features with priorities.

23

1+ Receive
. (quotelorderlpurchase)
details

2 Invoke
checker.name.normalise
details.name name

/ details.name <- name

Finish

Figure 8: Name Normalising Feature

1+ Receive
**.(quotelorderlpurchase)
details

/ contact.name <- details.name
/ contact.address <- details.address

2 Invoke
checker.location.check
contact valid

valid Else
. J 3 Throw
Finish wrongContact
Uses
{String name String address} contact
Boolean valid

Figure 9: Address Checking Feature

24

However, the introduction of features may lead to interieeeamong them. In
fact, the name normalisation and address checking featuagsnteract with each
other. For example, the normal form of the author’s name doematch the name
known to his credit card company. As a result, normalisirggrthme might hinder
address checking.

This kind of problem is detected automatically during vatidn with ORESS
A common interpretation of feature interaction is that atdea behaves differ-
ently in the presence of other featuresrReSsallows the behaviour of features to
be validated in isolation (thus confirming their functiorakrectness) and also in
combination (thus confirming absence of interactions).

6 Conclusions

It has been argued that isolated web services can benefitfmorral models of
their behaviour. A graphical description of business psses helps to make them
more understandable. A high degree of automation is styodgsirable in the
creation of web services. KEssmeets all of these requirements.

Compared to commercial tools,REssdoes not support all of BeL (though
it handles most things that are used in practice). HowewESS confers dis-
tinctive benefits: applicability to many types of servidegman-usable automated
implementation, service features, and translation to &ianguages for rigorous
analysis.

CRESsIs complementary to current development practices for vesbices.
The introduction of a compact graphical notation and rigeranalysis are believed
to be beneficial additions. In future workREsswill be extended to cover more
of BPEL. It is also planned to apply REssto the composition of grid services,
which closely resemble web services.

References

[1] A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and. I~ Swayne.
SCF3/Sculptor with Chisel: Requirements engineering éonmunications services.
In K. Kimbler and W. Bouma, editor&roc. 5th. Feature Interactions in Telecommu-
nications and Software Systenpages 45—-63. I0S Press, Amsterdam, Netherlands,
Sept. 1998.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klef, Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weeraaraa, editors.Business
Process Execution Language for Web Servidéersion 1.1. BEA, IBM, Microsoft,
SAP, Siebel, May 2003.

25

[3] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kha, C. K. Lie, S. Thatte,
P. Yendluri, and A. Yiu, editoraNeb Services Business Process Execution Language
Version 2.0 (Draft). Organization for The Advancement afuStured Information
Standards, Billerica, Massachusetts, USA, Feb. 2005.

[4] BPMI. Business Process Modeling Notatidrersion 1.0. Business Process Manage-
ment Initiative, May 2004.

[5] A. Chirichiello and G. Salaiin. Encoding abstract dgg@ns into executable web
services: Towards a formal developmentPimc. Web Intelligence 2005nstitution
of Electrical and Electronic Engineers Press, New York, UB&c. 2005.

[6] A. Ferrara. Web services: A process algebra approactPrdo. 2nd. International
Conference on Service-Oriented Computipgges 242—-251. ACM Press, New York,
USA, Nov. 2004.

[7] H. Foster, S. Uchitel, J. Kramer, and J. Magee. Modekdagerification of web
service compositions. lAutomated Software Engineering 2Q008ontreal, Canada,
Oct. 2003.

[8] H. Foster, S. Uchitel, J. Kramer, and J. Magee. Comgdtibierification for web
service choreography. Bnd. International Conference on Web Servj&sn Diego,
California, USA, July 2004.

[9] S.Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Mbdglveb services interop-
erability. InProc. 6th International Conference on Enterprise InforioatSystems
Porto, Portugal, Apr. 2004.

[10] ISO/IEC. Information Processing Systems — Open Systems Interciimmed OTOS
— A Formal Description Technique based on the Temporal Ondesf Observational
Behaviour ISO/IEC 8807. International Organization for Standaatian, Geneva,
Switzerland, 1989.

[11] ITU. Message Sequence Chart (MSO)U-T Z.120. International Telecommunica-
tions Union, Geneva, Switzerland, 2000.

[12] ITU. Specification and Description Languad@U-T Z.100. International Telecom-
munications Union, Geneva, Switzerland, 2000.

[13] C. Jard and T. Jéron. TGV: Theory, principles and atpars. Software Tools for
Technology Transfepages 297-315, Aug. 2005.

[14] S. Staab, W. van der Aalst, V. R. Benjamins, A. Sheth, JMiler, C. Bussler,
A. Maedche, D. Fensel, and D. Gannon. Web services: Beea,ttiene thatlEEE
Intelligent Systemd 8(1):72-85, Jan. 2003.

[15] K. J. Turner. Formalising the i@sEL feature notation. In M. H. Calder and E. H.
Magill, editors,Proc. 6th. Feature Interactions in Telecommunications Software
Systemspages 241-256. |0S Press, Amsterdam, Netherlands, Mdy 200

26

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

K. J. Turner. Modelling SIP services usingR€ss In D. A. Peled and M. Y. Vardi,
editors,Proc. Formal Techniques for Networked and Distributed &yst (FORTE
XV), number 2529 in Lecture Notes in Computer Science, pagesliG2 Springer,
Berlin, Germany, Nov. 2002.

K. J. Turner. Analysing interactive voice servic&omputer Networks45(5):665—
685, Aug. 2004.

K. J. Turner. Formalising web services. In F. Wang, @dRroc. Formal Techniques
for Networked and Distributed Systems (FORTE XYh)mber 3731 in Lecture
Notes in Computer Science, pages 473-488. Springer, B&tirmany, Oct. 2005.

K. J. Turner. Test generation for radiotherapy acadtas. Software Tools for Tech-
nology Transfer7(4):361-375, Aug. 2005.

K. J. Turner. Validating feature-based specificatioBsftware Practice and Experi-
ence May 2005. In press.

M. Weiss. Feature interactions in web services. In Dyabtand L. Logrippo, editors,
Proc. 7th. Feature Interactions in Telecommunications 8oftware Systempages
149-156. 10S Press, Amsterdam, Netherlands, June 2003.

M. Weiss and B. Esfandari. On feature interactions itbwervices. IrProc. IEEE
International Conference on Web Servicgages 88-95, San Diego, California, July
2004.

World-Wide Web ConsortiumSimple Object Access Protocol (SOARErsion 1.2.
World-Wide Web Consortium, June 2003.

World-Wide Web ConsortiumWeb Ontology Language (OWL) — Overvieversion
1.0. World-Wide Web Consortium, Geneva, Switzerland, Re04.

World-Wide Web ConsortiumWeb Services Choreography Description Language
Candidate Version 1.0. World-Wide Web Consortium, Gen&mitzerland, Nov.
2005.

World-Wide Web Consortiumieb Services Description Language (WSDJgrsion
2.0 (Draft). World-Wide Web Consortium, Aug. 2005.

27

