
Gavin A. Campbell and Kenneth J. Turner. Goals and Policies for Sensor Network Management.
In M. Benveniste, B. Braem, C. Dini, G. Fortino, R. Karnapke, J. L. Mauri and M. S. H. Monsi, editors,
Proc. 2nd International Conference on Sensor Technologies and Applications,
pages 354-359, IEEE Computer Society, Los Alamitos, California, August 2008.

Goals and Policies for Sensor Network Management
Gavin A. Campbell and Kenneth J. Turner

Department of Computing Science and Mathematics
University of Stirling

Stirling FK9 4PA, Scotland, UK
Email: gca| kjt @cs.stir.ac.uk

Abstract—This paper describes a goal-directed, policy-based
approach to managing sensor networks in the context of a wind
farm. It describes the use of policies to enable end-users todetect
and handle events, and discusses how high-level goals can beused
to configure both the sensor network and the monitored system.
Such use of goals and policies for sensor network managementis
a new area of research. While this paper discusses the approach
in relation to the wind farm domain, the frameworks described
are applicable to sensor network management in general.

I. I NTRODUCTION

Within a wind farm environment, turbines are prone to
mechanical failures and degradation caused by (extreme)
weather conditions and the stress this can cause. The downtime
associated with these issues reduces the energy and, in turn,
revenue generated from the site. Deploying sensors to detect
potential faults before they occur is highly beneficial in what
are often remote and challenging environments, where human
observation is difficult and expensive. This paper outlinesa
goal-directed approach to proactive condition-monitoring of
sensor networks, in the domain of wind farm operation. The
work forms part of the PROSEN project (Proactive Condition
Monitoring of Sensor Networks,http://www.prosen.org.uk).
The use of high-level goals to direct system configuration is
a new and novel approach to sensor network management.
The use of policies in sensor network management is also
new. Both goals and policies offer considerable control over a
system. The approach is also usable by non-technical domain
experts, such as wind farm operators.

A. Background and Related Work

Historically, policies have been used for systems adminis-
tration purposes, for tasks such as system security and access
control. More recently, policies have been adopted in a wider
range of domains such as telephony [1]. A variety of policy
languages and systems exist. The ACCENT policy system
(Advanced Component Control Enhancing Network Technolo-
gies, www.cs.stir.ac.uk/accent), is a generic, highly flexible
framework and is the basis of the work reported here. Other
well-known policy systems include Rei (http:// rei.umbc.edu)
and Ponder [2]. A comparison between popular policy-based
approaches is given in [3].

Wireless sensor networks have been employed in many
different areas to date, but there has been little research using
goal or policy-based techniques to manage them. A policy-
based approach to managing wireless body sensor networks for

health monitoring has been developed [4]. However, despite
a common approach of using policies to achieve proactive
configuration, this policy framework is designed to run on
portable devices (such as PDAs) and is not extensible for large-
scale distributed sensor networks on a wind farm. In addition,
the target users are the individuals being monitored, whereas
the system presented in this paper is geared toward multiple
administrative operators of a wind farm.

Goal-directed systems have been developed extensively by
the Artificial Intelligence (AI) community, and are typically
utilised in agent-based systems and robotics. Goals have also
been used extensively in Requirements Engineering (RE), to
derive software specifications in system design [5], [6]. Goal-
directed configuration in the context of sensor networks and
wind farm operation is entirely novel.

Goal to policy refinement is a relatively new topic, with
limited evidence of previous work in this area. A formal
method of defining goals and refinement into policy sets is
presented in [7]. That work is formally based, whereas the
current paper report a practical and pragmatic approach that
exploits domain knowledge in the form of ontologies.

In summary, techniques for policy-based systems, goals,
goal to policy refinement, and sensor network management
have been researched individually to varying degrees. How-
ever, as far as the authors are aware, no previous work has
combined and integrated these ideas in the field of sensor
networks (and wind farm management in particular).

B. Paper Outline

Section II discusses policy-based management, and explains
the policy system and policy language the paper is based
on. Section III discusses how policies are used in high-level
management and configuration of sensor networks. Section IV
introduces an approach to goal-based management of sensor
networks, and explains how goals are defined and also refined
into policies. Section V rounds off the paper with a summary
and a discussion of future work.

II. POLICY-BASED MANAGEMENT

A policy is defined in a high-level language that speci-
fies the syntax and semantics of policy constructs. Policy-
based management techniques have typically been developed
by others for purposes such as access control, quality of
service, and security. However, the management of sensor
networks is significantly different in a number of respects.



 User  
Interface 
Layer 

Network 
Layer 

  

  
  

  
  
  

  
  

Sensor Network 
Interface 

Policy 
Server 

Policy 
Store 
Server 

Policy 
Database 
Server 

Policy 
Wizard 

Context 
System 

Policy 
System 
Layer 

Fig. 1. ACCENT System Architecture

The work reported here makes use of the ACCENT policy
system (Advanced Component Control Enhancing Network
Technologies,www.cs.stir.ac.uk/accent). In turn, this supports
the APPEL policy language (Adaptable and Programmable
Policy Environment and Language,www.cs.stir.ac.uk/appel).
The following sections describe ACCENT system architecture,
the APPEL policy language, and how both have been adapted
for sensor network management.

A. Accent Policy System

The ACCENT policy system was originally designed for
the domain of (Internet) telephony, providing user-defined
handling of call preferences. The system has three conceptual
layers, as shown in figure 1. At the lowest level, the system
layer connects the policy system to its external environment.
The policy system layer is responsible for enforcing policies.
It consists of a policy server, policy store (where policies
reside) and a policy database (containing user login and server
configuration data). At the top level, the user interface layer
provides a mechanism for users to create policies and a means
to obtain contextual information. The ACCENT architecture is
described in [1].

APPEL is a policy language used to express policies within
ACCENT. The language is extremely flexible, comprising a
core structure which can be extended for any application
domain. Originally, APPEL was tailored for telephony and
policy conflict resolution, but has since been extended and
specialised for a number of new areas, including sensor
networks and home care. The APPEL language specification
can be found in [8].

The core of APPEL defines the overall structure of a policy
document, including regular policies, resolution policies and
policy variables. A policy consists of one or more rules in ECA
form (Event-Condition-Action). Each rule has a combination
of optional triggers, optional conditions, and mandatory ac-
tions. These constructs are extended for new applications with
domain-specific triggers, conditions and actions.

A policy is eligible for execution if its triggers occur
simultaneously and its conditions apply. Additional conditions

may be imposed, such as the time period during which the
policy applies. When the policy system is informed of an
event, the applicable policies are retrieved and applied if
eligible. As multiple policies can be triggered, conflicts may
arise among their actions. Such conflicts are handled at run-
time using resolution policies. Resolution policies have avery
similar structure to regular policies, except that their triggers
are a conflicting pair of regular policy actions. Policy conflict
and resolution in ACCENT is discussed in [9], while filtering
for conflict-prone policies is described in [10].

B. Policy Wizard User Interface

APPELpolicies are specified in XML. To make the language
accessible to non-specialists, a variety of policy wizardsare
available. For example, a web-based policy wizard [11] allows
policies to be defined using near-natural language. This wizard
retrieves policies in XML, renders them in a user-friendly
way, allows them to be edited easily, and finally stores them
again in XML. The wizard supports multiple natural languages
and may easily be extended for others. In general, the policy
wizards allow domain experts to make effective use of the
policy system.

C. Ontologies for Policy Language Modelling

An ontology is the set of terms used to describe and
represent an area of knowledge, together with the logical
relationships among these. OWL (Web Ontology Language
[12]) is a standardised, XML-based ontology language that
models a domain using classes (concepts) and properties (the
relationships between concepts). Using OWL, a framework
of ontologies was devised to support APPEL. The frame-
work models the core language constructs (GenPol), how
such constructs are categorised and displayed within the
policy wizard (WizPol), and specialisations of the language
for various domains (e.g.SenPolfor sensor networks). OWL

supports ontology inheritance, allowing ontologies to extend
one another through importing. Consequently, the domain-
specific aspects of APPEL can be easily modelled in a new
ontology by importing the generic language model.

The web-based policy wizard was originally hard coded
with options specific to call control. In previous work [13],
[14], the policy wizard was re-engineered and generalised
for use with any domain specialisation of APPEL using the
ontology framework just described. Hard-coded call control
options (including specific triggers, conditions, actionsand
variables) were removed and specified in an ontology. When
accessed, the wizard dynamically generates policy options
based on information drawn from the appropriate ontology.

To integrate ontology information within the policy wizard,
previous work developed a stand-alone server named POPPET

(Policy Ontology Parser Program Extensible Translation),as
shown in figure 2.

POPPET parses an ontology document at a given URL,
reasons about its contents, and builds a model of its struc-
ture. Any client application (such as the policy wizard) may
then interrogate the stored ontology model using a variety



POPPET

Server

PELLET

Reasoner

POPPET

Policy
Wizard

Policy
Server

ACCENT

RMI

OWL

Ontology
ACCENT

User Interface

Fig. 2. Ontology Integration using POPPET

of generic methods. Communication with a policy wizard
is achieved using Java RMI (Remote Method Invocation).
Although the ontologies were originally designed to drive
the policy wizards, a domain-specific ontology may contain
unlimited information about the domain area. This additional
information is used for goal modelling and goal refinement as
described later.

III. POLICIES FORSENSORNETWORKS

The policy-based approach described here is fully imple-
mented and being tested with a sensor network in a real wind
farm site as part of the PROSEN project. Sensor network poli-
cies are defined using a combination of generic and domain-
specific triggers, conditions and actions.

Generic constructs are handled internally by the ACCENT

system. Generic triggers include timer expiry, general condi-
tions include time-based restrictions, and general actions deal
with logging, timers and variables.

Specific constructs for sensor networks are used to interface
to the managed system. The approach is designed to be simple
but highly flexible. Sensor network constructs include the
following:

• A device in trigger reports incoming events from any
external component (whether hardware, software or ser-
vice). The first trigger parameter is mandatory to specify
the event type. Four optional trigger parameters deal with
the entity, entity instance, when the event occurred, and
a list of message values.

• Conditions can use the trigger parameters.
• A device out action is used to configure and control

external components (again of any type). The action
parameters are similar to those for triggers, the first being
the action type, with the others specifying the entity,
entity instance, when to execute the action, and a list
of message values.

Using these language constructs, sensor network policies
can be triggered by events such as sensor measurements,
warning alerts, network status information, and commands
issued by an operator (say, via a console). Policy conditions
can be based on any trigger parameter such as the event type
(e.g. wind speed, gearbox oil temperature, sensor battery alert)

or the entity reporting the event (e.g. the operator console, a
particular sensor node, a software agent). Policies can also
depend on the particular message values.

Examples are provided in this paper of policies and goals.
These are mostly given in their native XML form. However,
in practice a policy wizard is used to allow user-friendly
definition and editing of policies.

The following policy applies to domainfarm3.wind.com, i.e.
wind farm 3. It alerts the operator if the average speed from
any anemometer is reported to be above 20m/s for at least one
hour. No entity name or instance is given in the action because
operator messages are for the default console. In general there
may be several trigger parameters, but just a single value (the
wind speed) is used here. Note that this policy deals with a
single wind speed report. To deal with multiple reports, the
trigger history would need to be checked.

<policy owner=′′admin′′ applies to=′′@farm3.wind.com′′

id=′′Gusts′′ enabled=′′true′′ changed=′′2008-04-15T10:20:59′′>
<policy rule>

<trigger arg1=′′average speed′′ arg2=′′anemometer′′>
device in(arg1,arg2)

</trigger>
<conditions>

<and/>
<condition>

<parameter>messageperiod</parameter>
<operator>ge</operator>
<value>60</value>

</condition>

<condition>

<parameter>parametervalues</parameter>
<operator>gt</operator>
<value>20</value>

</condition>

</conditions>
<action arg1=′′operator output′′ arg5=′′Repeated gusts′′>

device out(arg1,,,,arg5)
</action>

</policy rule>

</policy>

As an example of a resolution policy, conflicts can arise
where actions cannot be performed simultaneously due to
underlying sensor limitations (e.g. on processing, memory,
electrical power or bandwidth). The following checks for
conflicts between the actionsget log and sensorcheck. The
actual parameters of these actions (arg2 for entity name,arg3
for entity instance) are bound to resolution variables. If these
pairs are identical, the action with the stronger preference
is applied. (A variable is substituted into an expression by
preceding its name with ‘:’.)
<resolution owner=′′admin′′ applies to=′′@farm3.wind.com′′

id=′′Resource conflict′′ enabled=′′true′′

changed=′′2008-04-13T20:40:00′′>
<policy rule>

<triggers>

<and/>
<trigger arg2=′′variable2′′ arg3=′′variable4′′>

device out(get log,arg2,arg3)
</trigger>
<trigger arg2=′′variable3′′ arg3=′′variable5′′>

device out(sensorcheck,arg2,arg3)



</trigger>
</triggers>

<conditions>
<and/>
<condition>

<value>:variable2</value>
<operator>eq</operator>
<value>:variable3</value>

</condition>

<condition>

<value>:variable4</value>
<operator>eq</operator>
<value>:variable5</value>

</condition>

</conditions>
<action>apply stronger</action>

</policy rule>

</resolution>

IV. GOALS FORSENSORNETWORKS

A goal is a high-level principle governing how a system
should behave. Goals are a way of controlling system be-
haviour, and can be used for autonomous system management
based on high-level operational and strategic aims. Achieving
a goal means reaching a desired state (or set of acceptable
states). In an Artificial Intelligence (AI) approach, this is
typically accomplished by constructing a plan that uses the
procedural actions available to the system. In a policy-based
approach, goals are achieved by determining which policies
will ensure the aims are met. This section outlines an approach
for goal-directed management of sensor networks for wind
farm monitoring.

A. Example Goals

For sensor network management, two aspects can be man-
aged via goals and policies. One is the sensor network itself,
including configuration of data sampling rates, data logging,
data transmission frequency and other sensor settings. The
other is management of the monitored system. For the work of
this paper, the monitored system encompasses the wind farm
as a whole, including individual turbines and other monitored
components within its general environment – physical or
otherwise.

Goals may therefore focus on managing the sensor network
or the wind farm. For example, a sensor network goal might
be to conserve battery life in sensor nodes, while a wind farm
goal might be to minimise turbine downtime. Refinement of
goals relating to the monitored system may result in policies
for managing the sensor network. For example, minimising
turbine downtime might require maximising sensor data on
turbine gearboxes so as to anticipate problems. Goals typically
fall into the following categories:

• for many kinds of systems: maximise revenue, minimise
component degradation, reduce unplanned downtime, etc.

• for sensor networks: maximise battery life, make best use
of bandwidth, deal with intermittent communications, etc.

• for condition monitoring: maximise value of measure-
ment data, minimise spurious alerts, optimise data quality
and timeliness, etc.

• for wind farms: reduce blade vibration, limit turbine
rotational speed, avoid damage in gusty conditions, etc.

Broadly speaking, there are two types of goals the system
might want to achieve. The first kind of goal typically involves
maximisation (e.g. of sensor battery life) or minimisation(e.g.
of unplanned maintenance), possibly subject to constraints.
There is usually a space of possible solutions that need to
be optimised in some fashion. The second kind of goal aims
to alter system behaviour to achieve a desirable state (e.g.
stable power output from a wind farm despite varying wind
conditions).

B. Goal System Requirements

A goal-directed approach requires the following:

• a language to express goals, including the means to
express constraints on goals

• a method of goal refinement to select and define policies
that realise the goals

• domain information and system state information to help
in the refinement.

The following subsections describe how APPEL is used
to express goals for the work described here. System state
can be captured with the aid of domain ontologies and
goal constraints, while refinement of goals to policies can
be achieved using optimisation approaches combined with a
domain ontology.

C. Goal Definition

Following a study of formal techniques and AI-based frame-
works used in existing goal-based systems, no approach was
found to suit the needs of goals for the sensor network
domain. Consequently, APPELwas adapted for goal definition.
Defining goals based on this has several advantages. Primarily,
it allows sharing and reuse of the existing ACCENT framework
and tools:

• a policy wizard: to define and edit goals and their
associated policies

• the conflict analyser: for offline determination of conflicts
among goals and policies

• the policy server: for run-time policy execution and
conflict resolution

• the policy store: for storage and retrieval of goals and
policies.

In addition, defining goals in a similar format to the target
policies that they refine into allows a completely consistent
approach.

Using APPEL, a goal is expressed as a policy without a
trigger. A goal is therefore always available for execution,
subject to meeting any constraints that appear in conditions.
Like a policy, a goal has a mandatory action – the goal
statement itself. Optional conditions are constraints which
must be satisfied for the goal to be achieved. A constraint
typically specifies some value or range for one or more system
variables. This effectively defines the set of states the system
must be in for the goal to be achieved.



As an example, the goal for operating a wind farm at
night may be to operate it cautiously (reducing the risk
of breakdown), and to reduce power drain on the sensor
network (which cannot use solar cells during this period). The
constraints on the goal are that it should apply between 8PM
and 8AM, and that operational turbines should generate power
in the range 200kW to 600kW.
<goal owner=′′admin′′ applies to=′′@farm3.wind.com′′

id=′′Night time′′ enabled=′′true′′

changed=′′2008-04-12T21:43:15′′>
<policy rule>

<conditions>
<and/>
<condition>

<parameter>time</parameter>
<operator>in</operator>
<value>20:00..08:00</value>

</condition>

<condition>

<parameter>turbine output</parameter>
<operator>in</operator>
<value>200..600</value>

</condition>

</conditions>
<actions>

<and/>
<action>maximise(turbine life)</action>

<action>minimise(sensordrain)</action>

</actions>
</policy rule>

</goal>

D. Goal to Policy Refinement

Goal refinement is the process of incrementally breaking
down a goal into one or more executable policies that achieve
it. These policies are expressed in the sensor network dialect
of APPEL described earlier. Note that goals do not directly
invoke actions. Only during policy execution do events lead
to actions that manage the monitored system and the sensor
network.

Policies derived from goals have the same structure as
ordinary (user-defined) policies defined by users. However,
they need to be kept distinct since goal-derived policies are
related only to the goals they achieve. If a goal is changed
or removed, the policies generated from it are also affected.
From the viewpoint of the policy server, however, ordinary
policies and those derived from goals are stored and executed
identically.

Goals for sensor networks are not straightforward aims of
achieving some state. Instead, they specify aspects of the
monitored system that must be optimised. There is no single
course of actions for the system to perform. Refinement leads
to a set of policies that best achieve the goal.

Optimisation selects a set of suitable policies that when
instantiated achieve the desired goal. Besides simply selecting
policies, refinement may also parameterise them. For example,
thresholds may be set for alarms, or limits may be set for
acceptable operation of the wind turbines.

The conditions of goal execution are specified as constraints.
These specify a range of values for system variables. If all

constraints are deemed satisfiable, the goal is achievable.
System variables in this sense represent state that may be
influenced by goals. Examples include operational cost, system
downtime, component lifetime, and equipment noise levels.

Goals and policies have effects on system variables. This
kind of information is domain-dependent, and is formulatedin
the ontology for sensor networks. This contains information
about:

• the factors that contribute towards goals
• how constraints are affected by these factors
• the contribution (qualitative or quantitative) of policies

towards these factors.
Goal refinement is treated as an optimisation problem. It is

necessary to select and parameterise a collection of policies
that optimally achieve some goal. This is measured by an
objective function that evaluates a potential solution in the
form of a collection of policies. The domain ontology allows
the fitness of this solution to be judged in terms of the
contributions by policies to the goal characteristics thatthey
aim to realise. The optimisation therefore requires selecting
and combining predefined policies (some of which may also
be parameterised). Goal constraints impose boundaries on
acceptable regions of the solution space.

Consider the goal for night-time operation of a wind farm
given in the previous subsection. This can be refined into a
number of policies such as the following (given here in English
for clarity and brevity):

• when wind speeds exceed 25m/s, take higher-up turbines
out of service

• if the amplitude of turbine blade vibration exceeds 1mm,
decrease blade pitch by 10◦

• if a turbine’s output falls below 200kW, take the turbine
out of service

• if a turbine’s output exceeds 600kW, decrease blade pitch
by 20◦

• if solar power for a sensor node falls to 20% of normal,
send measurements in blocks every 30 minutes

• if battery power for a sensor node falls below 75% of
capacity, reduce sensor measurements to once every 10
minutes.

V. CONCLUSION

The paper has presented new research into policies and
goals for proactive management of sensor networks in general,
and for wind farms in particular. The ACCENT policy system
and its associated APPEL policy language have been adapted
and specialised for sensor network management. Policies sup-
port automated, but user-defined, management and configura-
tion of systems. Goals are high-level system objectives that are
refined into policies that realise them. Similar to policies, goals
are defined in APPELand share the existing mechanisms of the
ACCENT policy system. For example, the existing wizards are
easily extended to support goal definition in a manner similar
to that for policies.

Goals for sensor network management commonly define
aspects of the system to be optimised. These goals can be



achieved using optimisation techniques in conjunction with
ontology-defined state information. The benefit of using goals
and policies in this way is to give domain experts the means
of managing a system based on high-level operational and
strategic aims.

Conflicts are detected and resolved only at the level of
policies, not goals. Further work might extend this to detect
and resolve goal conflicts at an earlier stage in the refinement
process. It would also be useful to have automated explanation
for a human operator of why certain policies were chosen as
a result of goals, or of why certain actions were performed as
a result of policies. The goal refinement strategy presentedin
this paper will be evaluated on two wind farm test sites.

ACKNOWLEDGEMENTS

The authors thank their colleagues on the PROSEN project
for discussions that helped shape work presented in this
paper. They also thank Stephan Reiff-Marganiec (now at the
University of Leicester) and Lynne Blair (who was on leave
from Lancaster University during development of ACCENT),
for their substantial contribution to the original policy system.
Gavin Campbell was supported in this work by grant C014804
from the UK Engineering and Physical Sciences Research
Council.

REFERENCES

[1] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry,
and J. Ireland, “Policy support for call control,”Computer Standards
and Interfaces, vol. 28, no. 6, pp. 635–649, June 2006.

[2] N. Damianou, N. Dulay, E. C. Lupu, and M. Sloman, “Ponder:A
language specifying security and management policies for distributed
systems,” Imperial College, London, UK, Tech. Rep. 2000/1,2000.

[3] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and
A. Uszok, “Semantic web languages for policy representations and
reasoning: A comparison of KAoS, Rei, and Ponder,” inProc. 2nd Int.
Conf. on The Semantic Web. Berlin, Germany: Springer, 2003, pp.
419–437.

[4] S. Keoh, K. Twidle, N. Pryce, E. Lupu, A. S. Filho, N. Dulay, M. Slo-
man, S. Heeps, S. Strowes, and J. Sventek, “Policy-based management
for body-sensor networks,” inProc. 4th Int. Workshop on Wearable and
Implantable Body Sensor Networks, Aachen, Germany, Mar. 2007, pp.
92–98.

[5] D. Alrajeh, A. Russo, and S. Uchitel, “Inferring operational requirements
from scenarios and goal models using inductive learning,” Shanghai,
China, May 2006.

[6] E. Letier and A. van Lamsweerde, “Deriving operational software
specifications from system goals,” inProc.10th ACM SIGSOFT Symp.
on the Foundations of Software Engineering, Charleston, South Carolina,
Nov. 2002.

[7] A. Bandara, “A formal approach to analysis and refinementof policies,”
Ph.D. dissertation, Imperial College, London, July 2005.

[8] K. J. Turner, S. Reiff-Marganiec, L. Blair, G. A. Campbell, and F. Wang,
“A PPEL: The ACCENT project policy environment/language,” Depart-
ment of Computing Science and Mathematics, University of Stirling,
UK, Tech. Rep. CSM-161, Sept. 2007.

[9] K. J. Turner and L. Blair, “Policies and conflicts in call control,”
Computer Networks, vol. 51, no. 2, pp. 496–514, Feb. 2007.

[10] G. A. Campbell and K. J. Turner, “Policy conflict filtering for call
control,” in Proc. 9th Int. Conf. on Feature Interactions in Software
and Communications Systems, L. du Bousquet and J.-L. Richier, Eds.
Amsterdam, Netherlands: IOS Press, May 2008, pp. 83–98.

[11] K. J. Turner, “The ACCENT policy wizard,” Department of Computing
Science and Mathematics, University of Stirling, UK, Tech.Rep. CSM-
166, Dec. 2005.

[12] World Wide Web Consortium,Web Ontology Language (OWL) – Ref-
erence, ser. Version 1.0. Geneva, Switzerland: World Wide Web
Consortium, Feb. 2004.

[13] G. A. Campbell, “Overview of policy-based management using
POPPET,” Department of Computing Science and Mathematics, Univer-
sity of Stirling, UK, Tech. Rep. CSM-168, June 2006.

[14] G. A. Campbell and K. J. Turner, “Policy conflict filtering for call
control,” in Proc. 9th Int. Conf. on Feature Interactions in Software
and Communications Systems, L. du Bousquet and J.-L. Richier, Eds.
France: IMAG Laboratory, University of Grenoble, Sept. 2007, pp. 93–
108.


