
Daren A. Reed and Kenneth J. Turner.  Components for Quality of Service in
Distributed Environments: Monitoring Service (extended version). In Andrew
Campbell and Klara Nahrstedt, editors, Proc. 5th International Workshop on
Quality of Service, pages 255-258, Columbia University, New York, USA, May 1997.

Support Components  for Quality of Service in
Distributed Environments: Monitoring Service

D.A. Reed (dar@cs.stir.ac.uk) and K.J. Turner (kjt@cs.stir.ac.uk)
Department of Computing Science and Mathematics, University of Stirling
Stirling, FK9 4LA, UK

A.P. Grace (apgrace@jungle.bt.co.uk)
Distributed Systems Group, BT Laboratories
Martlesham Heath, Ipswich, IP5 7RE, UK

Abstract - A number of services are required in a Quality of Service oriented
distributed environment. One of these required services is monitoring. To provide a complete
picture monitoring must occur with both local and global scope. Rather than have a bespoke
monitoring system for each distributed application it is proposed that the optimum solution is
a generic service which can be modified to suit the distributed application. The approach
presented in this paper develops naturally from formal system specifications and encompasses
many of the Quality of Service characteristics outlined in the proposed ISO Quality of Service
Framework Standard.

Keywords - Quality of Service, monitoring, distributed environments

1. Introduction
There are many ‘middleware’  distributed systems currently in use around the world

including: the Distributed Computing Environment1 (DCE), ANSAware2 and a number of
Common Object Request Broker Architecture3 (CORBA) implementations. Until recently
Quality of Service (QoS) was not a vital issue in the design of these systems but since the
introduction of multimedia services with time critical characteristics and the need for
synchronisation between data streams this has changed. Most of these ‘middleware’  systems
have been expanded to encompass QoS; a notable exception being DCE although the Open
Software Foundation (OSF) is investigating other QoS initiatives for ‘middleware’ .
Architecture Projects Management (APM) for example is defining the Distributed Interactive
MultiMedia Architecture (DIMMA) [1-3] as an extension of the real-time Advanced Network
System Architecture (ANSA) model [4-6]. Methodologies which introduce QoS management
into existing systems are currently of interest to ‘middleware’ providers.

This paper outlines a generic QoS monitoring service which is tailored by the
distributed application. The methodology progresses naturally from formal temporal
specification techniques thereby aiding development and design of the distributed application.
Also described are a number of further support components that a designer/programmer might
expect in a QoS-oriented distributed environment.

Section 2 briefly describes other services necessary for a QoS-oriented distributed
environment. It includes the responsibilities of these other services with respect to the
monitoring service and to the client distributed applications. The descriptions are by necessity
brief. Section 3 outlines in detail the proposed monitoring service. Section 3.1 explains the
motivation for monitoring and the functional and performance requirements demanded by a

                                                     

1 URL, http://www.osf.org
2 URL, http://www.ansa.co.uk
3 URL, http://www.omg.org



client distributed application of a monitoring service. Section 3.2 describes the structure of
the monitoring service. Section 3.3 explains how QoS characteristics can be expressed while
section 3.4 extends this relationship to include characteristics outlined in the ISO QoS
framework document [7]. Section 4 takes a simple example and provides a QoS monitoring
schema for it. The paper concludes with an assessment of this methodology including view on
further work and development.

2. Service Components
The services proposed for supporting QoS within QoS-oriented distributed

environments are co-ordinating, monitoring, negotiating, networking and scheduling. Figure 1
shows the relationship between the five services. The co-ordinating service provides the
pivotal role, interfacing with the other four services. Monitoring and negotiating services need
not interface directly; negotiation deals with establishment concerns, monitoring deals with
operational concerns. Networking and scheduling services are similarly non-contiguous;
scheduling deals with local resources, networking deals with remote communications. The
negotiating service also establishes the distributed application’s QoS requirements of the
infrastructure so it must interface with the networking and scheduling services during the
establishment phase of the distributed application, just as the monitoring service must
interface with these services during the operational phase of the distributed application.

A descriptive outline of the four other services is required since these services do not
operate in isolation. The descriptions refer to clients. A client is taken mean a component or
group of components which require QoS support regardless of whether the component
performs a client or server role within the distributed application.

The co-ordinating service is a facilitator. All client distributed applications initially
deal with the co-ordinating service. This service is responsible for organising the other
services for the client distributed application.

The negotiating service is an arbitrator. It establishes QoS characteristics between the
components within the client distributed application. The negotiating service also negotiates
the QoS characteristics required of the infrastructure, negotiating with both the networking
and scheduling services.

The scheduling service is a resource manager. It establishes and manages local
resources which possess the QoS characteristics required by the client distributed
applications. These resources include available local memory, peripherals and CPU cycles.
The scheduling service operates as an access control mechanism. In future work, the
scheduling service will communicate with ‘ intelligent adaptive’  QoS-oriented resource
components thereby reducing the prediction required to maintain a reliable service to the
client distributed applications.

Figure 1: The Service Cloverleaf



The networking service is a transport manager. It establishes and manages
communication resources which possess the QoS characteristics required by the client
distributed applications. The networking service works closely with the negotiating service to
provide the required communications infrastructure. The networking service is largely
predictive operating as an access control mechanism. In future work, the networking service
will communicate with ‘ intelligent adaptive’  QoS-oriented network components thereby
reducing the prediction required to maintain a reliable service to the client distributed
applications.

3. Monitoring Service

3.1 Motivation
Monitoring is an essential service in a QoS-oriented distributed environment. After

established ranges for QoS characteristics during the establishment phase (negotiating
service) it is necessary to monitor these QoS characteristics during the operational phase
(monitoring service). This monitoring is necessary because distributed systems are by nature
mathematically chaotic. In a completely managed system, operating full guarantees with
respect to resource availability, monitoring might not be necessary. Such utopian systems can
exist but require that resources stand idle just in case they are required by a current
component. A monitoring service is required to provide information to counter the effects of
chaos in the system.

A large number and varied range of distributed applications have QoS characteristics
which require monitoring. If each distributed application had a unique monitoring service this
would increase the size and complexity of the distributed application and could lead to
resource deprivation, possibly precipitating a failure which would not have occurred if
management overheads been lower. A generic service has lower management overheads since
only one copy is required by all distributed applications within the distributed environment.

Monitoring can also have additional benefits, particularly in the predictive QoS of a
distributed application. Statistics created from previous run-time occurrences of a particular
distributed application can highlight weaknesses in the QoS requested with respect to the
infrastructure. Alternatively performance comparisons between different software
components with identical functions becomes possible given sufficient statistics which may
also influence the distributed application.

There are a number of requirements of a monitoring service: minimum interference
with the application, minimum operational resource overhead, timely response to erroneous
conditions, correct response to erroneous conditions. These requirements are easily explained
although some will be shown to be antagonistic.

The monitoring service will inevitably perturb distributed applications from normal
operation. A distributed application that spends valuable time informing the monitoring
service about its operation may lead to a ‘bureaucracy breakdown’ ; the distributed application
fails to meet its requirements because it spends time interfacing with the monitoring service.
This must be minimised thereby reducing the effect.

The monitoring service will also consume system resources. In order that distributed
applications are not unnecessarily perturbed the system resource consumption should be
minimised and regular. Regrettably system resource consumption is related to the timeliness
of response to erroneous conditions in the distributed application. Consumption increases as
faster responses are required.

A monitoring service which correctly identifies all erroneous conditions and the cause
but does not report before the distributed application fails is worthless. The monitoring



service must provide timely reports regardless of whether the distributed application can
perform remedial action to rectify the failure. Timeliness is subjective and varies from
application to application. Being timely also impacts on system resources. A faster response
time will require the monitoring service to distribute monitored information more often
thereby increasing the network overhead.

Correct response to erroneous conditions is not truly a monitoring service
requirement. The monitoring service simply evaluates the status of conditions of importance
to the distributed application. The distributed application designer must compose a
monitoring schema which will reflect the required QoS characteristics.

3.2 Elements
The monitoring service proposed in this paper is based on a ‘witness’  monitor. It is

not built into the distributed application and is designed to reduce the interference with the
client distributed application. The monitoring service receives signals from the distributed
application and combines these signals with a number of pre-stated conditions established
during negotiation which determines if a QoS transgression has arisen. The monitor then
informs the client distributed application of the transgression. How the distributed application
proceeds is not the responsibility of the monitoring service. Figure 2 gives a graphical
representation of this arrangement.

In order for the monitoring service to be generic there is no application specific
information conveyed to it in the signals from the client distributed application. The
conditions presented to the monitor encapsulate the required specific QoS characteristics in a
general notation. The monitoring service can also monitor the infrastructure supporting the
distributed application provided it has been designed to integrate with the monitoring service.
The infrastructure is treated as simply another part of the distributed application.

This monitoring service has been being developed with application pair-wise events as
the underlying model. In a pair-wise event there is an action event and a reaction event. The
reaction event occurs after the action event and is causally linked. For the purposes of this
paper the ratio of action to reaction will be taken as 1:1. This is not a limitation of the model
since the 1:n case is a simple extension of 1:1. The n:1 case, where a number of related action

Figure 2



events precipitate a single reaction event, and the n:m case, where a number of related action
events precipitate a number of related reaction events, are considered unlikely to be required.

The client distributed application sends signals to the monitoring service; these
signals are indicative of events within the distributed application. The signal is characterised
by a colour. This terminology is used to avoid the overloading of the term ‘channel’ . Each
colour is associated with an single type of event or related set of events within a component
of the client distributed application. The colour is a unique identifier which can be used by
the client distributed application to state the QoS conditions the monitoring service is to
observe.

Each ‘node’  with component of the distributed application requiring QoS monitoring
runs a local monitoring service component. Co-location is required to minimise latency
between the event occurring within the distributed application and the event being registered
as occurring at the monitoring component. Local monitors receive signals from the client
applications which they combine with a time-stamp to create an event tag. This event tag is
then used to test local conditions. Event tags are associated together according to colour to
create an event tag list. When necessarily, this is periodically sent to the global monitor.

A signal is composed of a colour identifier, sequence number and signature: signal ≡
(colour, sequence, signature). Signals are only sent between the client distributed application
and the local monitor. The sequence number is required to re-sequence event pairs at the
reaction event. The signature is an application derived ‘ label’  which identifies the data at the
monitored event. It needs to be reasonably unique with respect to the data and is required for
simple error checking. Although the underlying transfer protocol may support error
checking/recovery and re-sequencing, the generic nature of the monitoring service means that
this cannot be assumed. In the event of an error occurring, the monitoring service will not
attempt recovery but will use this information in evaluating the QoS conditions. The
underlying protocol may of course act upon its own internal error check and re-sequencing
procedures.

An event tag is the combination of a signal and a time-stamp indicating when the
signal arrived at the local monitor: tag ≡ (signal, time-stamp). The time-stamp is attached by
the monitor for a number of reasons. Firstly the monitor is trusted to be honest: it will attach
the time-stamp on receipt of the signal. This precludes the possibility of components ‘ fixing’
the conditions. Secondly the monitoring service requires a global clock, although this clock
need not be perfectly synchronised between all nodes of the client distributed application. The
service must be capable of establishing the difference between these clocks to at least one
order of magnitude less than the accuracy required by the client distributed application.

An event tag list is a list of the event tags which have been associated with a particular
colour: tag list ≡ (colour, (signature0, time-stamp0), (signature1, time-stamp1), …,
(signaturen, time-stampn), these lists are periodically sent to the relevant global monitor so
that global conditions can be assessed. How regularly this occurs depends on the feedback
time for global conditions. A faster feedback will require the event tag lists to be sent more
often.

The distributed environment which requires the monitoring service must run at least
one global monitoring service component. It is naturally impossible for the global monitor to
have a minimum latency for all nodes though its physical location in the network may affect
its response times. If there is more than one global monitor, only one global monitor should
be associated with the QoS monitoring of any particular distributed application. Without this
restriction there is the possibility of data inconsistencies between global monitors which can
only be resolved by establishing either a centralised information store for QoS data or



managing the information store as a distributed database. Both these solutions are
unacceptable.

The monitoring service tests QoS conditions for the client distributed application.
These conditions are expressions of the required QoS characteristics. Conditions may be local
or global in scope. Local conditions can be tested with event tags collected at a single local
monitor, global conditions require the collation of event tags lists from two or more local
monitors at a global monitor. Conditions are also divided into two further categories, primary
and secondary.

If the status of a condition can be ascertained from the tags collected at a single
monitor then the condition is local. Local conditions can be subdivided into permanent and
transient. A permanent local condition will always be a local condition regardless of how the
client application is distributed. These conditions must contain event tags which originate
from only one local component. A transient local condition is one in which the condition may
be local dependent on how the client application is distributed. These conditions contain tags
which originate from more than one component which are not necessarily co-located. If two
or more components are always co-located the monitor will treat them as being one
component and conditions spanning these components will be considered permanent. Local
conditions are always assessed faster than global conditions.

If the status of a condition can only be ascertained from the tags collected at more than
one monitor then the condition is global. Global conditions can also be subdivided into
permanent and transient, though no global condition has yet been constructed that must
belong to the permanent class. A transient global condition is identical to a transient local
condition. The status of the condition is dependent on the distribution of the application.

A primary condition failure requires the monitor to inform the client distributed
application of a QoS transgression. A primary condition may be a simple condition such as a
specific latency specified to remain within an upper and lower bound, or it may be a simple
condition which is augmented. Augmentation allows a primary condition to fail without
informing the distributed application until the pattern of failure meets some further condition.
The simplest augmentation is a counter: the primary condition is allowed to fail a number of
times before the monitor informs the distributed application. Augmentation can be easily
expanded to encompass a range of statistical conditions suitable for QoS.

A secondary condition is only tested in the event of an associated primary condition
failure. The secondary conditions can be used to pinpoint the cause of the primary condition
failure. Primary conditions generally express the user-perceived QoS requirements while the
secondary conditions express the underlying application QoS requirements. Provided the
user-perceived QoS requirements are met the application might not halt if an application QoS
requirement is broken.

The following tables exemplify the message passing between a client A and a server
B. The right arrow is a send action and the left arrow a receive action; sender and recipient are
written under the arrow. The wai t  and pr ocess  commands are place holders indicating
that time is passing while either nothing is happening or there are internal events of no
consequence to the external viewer.

A message B

AB
 → ( )data1

BA
← 

wait process

AB
←  ( )data2

BA
 →



This table gives the basic message sequence for a 1:1 interaction between a client and
a server. Client A sends some data to a method at server B and receives back some different

data. This constitutes  a pair of action/reaction events. The AB
 →

, BA
← 

 events are one pair, and

the BA
 →

, AB
← 

 are the second pair. The following tables elaborate the message sequences when
the monitoring service is introduced into this client server call.

This table gives the basic monitored message sequence for a 1:1 interaction. Client A
first sends a signal to its local monitor. This must occur before the call to the server even
though this is the event being monitored. In many systems of remote procedure call (RPC) A
could not perform another action until the RPC had returned. The call to the monitor must
therefore occur before the call to the server in the knowledge that the call to the server will
occur without undue delay. The data1 is then sent to the server but included with it is the
sequence number. The server includes this sequence number in the signal to its local monitor.
When the event tag lists are compared the sequence number will allow the these events to be
matched and the signatures can be compared for errors.

This table gives an enhanced message sequence for a 1:1 interaction. The difference
from the previous sequence is that in addition to the sequence number passing from the client
A to the server B so does the signature generated at the client A. This allows the local monitor
at the server B to compare the signatures for errors without the need to send the event tag lists
to the global monitor. Although the lists still need to be compared to assess latencies this does
increase the response time for some conditions, moving them from the class of global
condition to transient local condition.

The following table gives a basic message sequence for an n:1 interaction. The client
event colour is unique even among identical clients. However unless this colour is passed
between the client and server there is no method for matching the action and reaction event.

A message B

AM A

 → ( )col seq sigA A A, , wait

AB
 → ( , )seq dataA 1

BA
← 

wait ( )col seq sigB A B, ,
BMB

 →

wait process

AB
←  ( )data2

BA
 →

A message B

AM A

 → ( )col seq sigA A A, , wait

AB
 → ( )seq sig dataA A, , 1 BA

← 

wait ( )col seq sig sigB A A B, , , BMB

 →

wait process

AB
←  ( )data2

BA
 →



The case of n:m, many clients with many servers, appears problematic but if treated as
the n:1 case and all servers are assigned the same colour for a particular reaction event
prompted by clients the global monitor can identify the appropriate action/reaction pairs.

3.3 Conditions
The conditions which the monitors evaluate are composed of a number of functions

and operators which may be applied to the event tags. Local monitor receive the event tags
directly from the application components while the global monitor receive the event tags
indirectly as event tag lists. There are three primary functions which may be applied to the
event tags directly, a number of meta-functions and the standard logical operators. All
conditions evaluate to Boolean results, a false result indicating the condition has failed.
Compound conditions are also permissible and there also the enable and disable operators
which can activate and inactivate conditions dependent on other conditions.

The t and s functions simply return the time and signature of a particular event
respectively. The c function returns the number of times an event has occurred. These three
functions are the fundamental elements required in this methodology. If the seq parameter is
omitted from the t or s functions then the function is applied to all the event tags with the

specified colour. This is a convenient shorthand notation. Therefore ( )t col seq x1, < , means

that the first event associated with col1 must occur before time x while ( )t col x1 < means that
all the events associated with col1 must occur before time x.

The cmp function is used to compare signatures and returns true if the signatures are
the same. The truth function is used to count how often a condition is true and therefore in
combination with the not operator how often a condition is false. These functions are required
in conditions relating to counting errors.

An message B

A Mn An

 → ( )col seq sigA A An n n
, , wait

A Bn

 → ( )col seq dataA An n
, , 1 BAn

← 

wait ( )col col seq sigB A A Bn n
, , , BMB

 →

wait process

A Bn

←  ( )data2
BAn

 →

Primary function Returned type Purpose

( )t col seq, time time of event

( )s col seq, signature signature of event

( )c col integer counter of event

Meta-function Return type

( )cmp sig sig1 2, Boolean

( )truth cond integer

Symbol Operator
¬ not
∧ and

∨ or



These are the standard logical operators. Whether implication and equivalence are
required to express a full range of conditions is not yet known. The existential and universal
operators may also have benefits which further study of more complex condition statements
might require. The shorthand of dropping the sequence number from the t and s functions
provides a form of universal operator but may be removed if a more general form is required.

This is the basis for a language which can be used to express QoS characteristics. It is
not complete; new functions and operators maybe suggested as more complex QoS conditions
are expressed. In particular operators to flush the event counter and disabling or enabling
conditions dependent on further conditions are of substantial interest. There is also the
possibility of using event tags to start and stop stopwatches within the local monitors in order
to improve the range and response of some condition statements.

It is not anticipated that a client distributed application will state the conditions it
requires in these basic functions. Common QoS characteristics will be expressed using this
language and will constitute a set of macros containing parameters which the client
distributed application will instantiate. This set of macros would conform to an international
standard such as the ISO QoS framework document. The next section illustrates how such
macros can be constructed for the present ISO QoS framework.

3.4 Relationship to ISO QoS
The ISO QoS framework document outlines fifty four QoS characteristics grouped

into eight categories: time, coherence, capacity, integrity, safety, security, reliability and
precedence. Many of these characteristics lack a clear definition and some appear to be non-
measurable by any reasonable computational method. However the tagging methodology
proposed enables some of these characteristics to be expressed as conditions to be monitored.
Most of the categories have a generic characteristic which is specialised to create new
characteristics. This section is directed to expressing the generic characteristic; expressing the
specific characteristics is an extension of this process.

The time characteristics are the characteristics most closely related to the tagging
methodology. The data/time characteristic is simply the t function as described in section 3.3,
while the time delay characteristic is simply the difference of two date/time characteristics.
An example of a time delay characteristic is:

( ) ( )time delay ≡ −t n t ncol 1 col 2, ,
This expresses the latency between the nth action event recorded at col 1 and the nth reaction
event recorded at col 2. The date/time and time delay characteristics form the building
blocks for characteristics in the other categories. The remaining time characteristics are
difficult to express within the methodology although the inclusion of the stopwatch
functionality discussed in section 3.3 may provide a method for monitoring them.

Many of the coherence characteristics require that a certain operation is applied within
a given time frame. This can be measured by tagging the start of the operation with an action
event and the end of the operation with the reaction event. These coherence characteristics are
therefore camouflaged time delay characteristics. The spatially coherent characteristics,
although offering symmetry (coherency in time and space), appear non-measurable by any
reasonable method.

Many of the capacity characteristics can be measured by counting the number of
action events from the start of a data transfer. One representation is:

( )
( ) ( )capacity =

×
−

c m

t n t

col

col col, ,0



col  is the colour indicating the type of a packet being sent, m is the size of the packet and the
denominator is the time over which the entire transfer occurred. This is a very approximate
characteristic relying upon a constant packet size, but does illustrate how conditions based on
capacity characteristics might be constructed.

Most of the integrity characteristics are based on the accuracy characteristic. This is
defined by ISO as ‘ the correctness of an event, a set of events, a condition, or data’ , and
quantified as a probability

( )
( )accuracy =

c

c

col 2

col 1
col 1 is the number of action events and col 2 the number of ‘correct’  reaction events. This
does rely on the client distributed application being able to distinguish between correct and
incorrect reaction events.

The safety and security characteristics are unsuitable for this methodology. There is
still some confusion in the framework document as to how these characteristics are to be
defined and measured. It is unlikely that these characteristics will ever be suitable,
constituting as they do a unique class.

Most of the reliability characteristics are based on the availability characteristic. This
is defined provided that there is a contractual understanding of the term ‘satisfactory’ . The
standard does however suggest that availability can be defined in terms of ‘mean time
between failures’ (MTBF) and ‘mean time to repair (MTTR):

( )availability
MTBF

MTBF MTTR
=

+
This can be re-expressed as:

( ) ( )

( ) ( ) ( ) ( )availability =
−

− + −
=

= =

∑
∑ ∑

t n t n

t n t n t n t n
n

n n

col 1 col 2

col 1 col 2 col 2 col 1

, ,

, , , ,
0

0 1

col 1 event is the resource becoming unavailable and col 2 event is the resource becoming
available. MTBF becomes the sum of the time that the resource is available and MTTR
becomes the sum of the time that the resource is unavailable. No upper limit is given as this is
constantly moving upwards. There are simpler ways of expressing availability but the above
exemplifies the ease of translating a common characteristic directly into the tagging
methodology.

The precedence characteristics are non-measurable, conveying priority information.
However these characteristics will be of use in directing the infrastructure when resource
conflicts arise.

4. Example Monitoring Service
Given that TX is a video encoder and RX is a video decoder a simple monitoring

scheme can be constructed using the proposed monitoring service. It is assumed that there is
an intervening network between the encoder and decoder but no specific transfer protocol is
required or expected.

The following scheme utilises four ‘colours’  with the identifiers; gold (GLD), silver
(SI L), bronze (BRZ) and copper (COP). The gold and silver colours are associated with
events at TX while the bronze and copper colours are associated with events at RX. The TX
associates the gold and silver colours with the events receive frame (GLD) and transmit data
(SI L). The RX associates the bronze and copper colours with the events receive data (BRZ)
and display frame (COP). See Figure 3.



Each time one of the monitored events occurs in the distributed application a context-
specific signature is generated. This signature is composed into a monitor signal and sent to
the local monitor. The application does not wait for an acknowledgement and the monitor
does not issue one. The monitor generates an event tag by time-stamping the signal and
checks that the local conditions are satisfied. The event tag is stored in the event tag list
which is periodically sent to the global monitor. A number of simple conditions are now
outlined for the distributed application.

TX local primary conditions:

( ) ( ) ( )t
n

t n t
n

GLD GLD GLD, , ,0
25

1

1000
0

25

1

1000
+ − ≤ ≤ + +  rate/jitter characteristic

This TX local condition express the rate at which the frames are captured. It is expresses the
expectation of the time signature on the nth event after the initial event. The condition also
expresses an allowed jitter range. Failure of this condition would indicate the camera is
failing to meet the QoS requirements.

RX local primary conditions:

( ) ( ) ( )t
n

t t
n

nCOP COP COP0 025

1

1000 25

1

1000
+ − ≤ ≤ + + rate/jitter characteristic

The RX local condition express the rate at which the frames are displayed. It is expresses the
expectation of the time signature on the nth event after the initial event. The condition also
expresses an allowed jitter range. Failure of this condition indicates a failure of the
application but does not indicate the location of the failure. If the TX primary condition has
also failed then the failure is likely to have occurred at the camera. If this condition is intact
then the secondary conditions must be examined.

Periodically the event tag list is sent to the co-ordinating monitor which assesses the
global conditions by a comparison of event tags. The comparison of event tags is a nontrivial
exercise requiring use of global clock values. The conditions are stated given that missing
event tags are assigned an undefined time and a null signature.

TX/RX global primary conditions:

( ) ( )t tn nCOP GLD− ≤
1

25
upper bounded latency characteristic

( ) ( )( )cmp s sn n
n

n m

SI L BRZ,
=

=

∑ ≤
0

10 maximum errors allowed

The TX/RX global conditions express latency and error characteristics. The latency
characteristic is expressed as the latency perceived by the user of the system, it is the time
between capturing a frame and displaying a frame. The error characteristic is expressed as the
number of signatures that are not consistent between the send and receive data events. This
obviously includes damage and loss but not duplication.
TX local secondary conditions:

( ) ( )t n t nSI L GLD, ,− ≤
2

125
upper bounded latency characteristic

RX local secondary conditions:

Figure 3 : Layered representation of the system



( ) ( )t tn nCOP BRZ− ≤
1

125
upper bounded latency characteristic

TX/RX global secondary condition:

( ) ( )t tn nBRZ SI L− ≤
2

125
upper bounded latency characteristic

The choice of the secondary conditions values was made to ensure that given a primary
condition failure at least one of the secondary conditions would fail4.

This example expresses conditions for rate, jitter, latency and error. Although these
characteristics are crude it is evident that the expression of QoS characteristics by tagging
events is extremely powerful. In combination with a light-weight application level protocol it
is possible to extend this methodology to include other scenarios.

5. Conclusion
At present this monitoring methodology is tailored for systems whose data is identical

for the events that are being monitored. The transferred data is then used to establish the
causality between the action and reaction event. This is particularly suited to monitoring
network communications such as found in protocol stacks.

 Future work will extend this methodology to systems in which the data is transformed
between events and to causally related events between which there is no data transfer. This
will naturally require the designer to embed a method of establishing the action/reaction
events. It is anticipated that tools for automating this procedure will be developed, thus
minimising the impact of this methodology on the designer and programmer.

References
1. Kramer, A., DIMMA Amber; APM.1669.00.01: 1995, APM Ltd., Cambridge, UK.
2. Kramer, A., The Amber Project; APM.1686.00.01: 1996, APM Ltd., Cambridge, UK.
3. Otway, D., DIMMA overview; APM.1439.02: 1995, APM Ltd., Cambridge, UK.
4. ANSAware/RT 1.0 Manual; APM.1476.01: 1995, APM Ltd., Cambridge, UK.
5. Li, G., ANSAware/RT 1.0: Programming and Systems Overview; APM.1460.01: 1995,

APM  Ltd., Cambridge, UK.
6. Macmillan, I., ANSAware/RT 1.1 Release Notes; APM.1675.00.01: 1995, APM Ltd.,

Cambridge, UK.
7. Information Technology - Quality of Service - Framework - Final CD. Open Systems

Interconnection, data management and Open Distributed Processing. 1995: ISO/IEC
JTC1/SC 21.

                                                     

4 since
2

125

1

125

2

125

1

25
+ + =


