Gavin A. Campbell and Kenneth J. Turner. Policy Conflict Filtering for Call Control,
in Lydie du Bousquet and Jean-Luc Richier (eds.), Proc. 9th Int. Conf.

on Feature Interactions in Software and Communications Systems,

pp. 83-98, I0S Press, Amsterdam, May 2008.

Policy Conflict Filtering for Call Control

Gavin A. Campbell and Kenneth J. Turner

Computing Science and Mathematics, University of Stirl8tiyling FK9 4LA, UK
e-mail: gca — kjt @cs.stir.ac.uk

Abstract.

Policies exhibit conflicts much as features exhibit intéeerc Since policies are
defined by end users, the combinatorial problems involvetéfacting conflicts are
substantially worse than for detecting feature interasticA new, ontology-driven
method is defined for automatically identifying potentiahflicts among policies.
This relies on domain knowledge to annotate policy actioitis their effects. Con-
flict filtering is performed offline, but supports conflict detion and resolution on-
line. The technique has been implemented in tiee R tool (Rigorously Evalu-
ated Conflicts Among Policies). Subject to user guidandgidol filters conflicting
pairs of actions and automatically generates resolutibhs.approach is generic,
but is illustrated with the APELpolicy language for call control. The technique has
improved the scalability of conflict handling, and has restlithe effort required of
the previous manual approach.

Keywords. Call Control, Conflict Detection, Ontology, V@, Policy

1. Introduction
1.1. Policies and Features

Policies are rules used to control a system dynamicallyuifinca. set of actions to be
performed in specified circumstances. Policies are tylyicifined by an event, a con-
dition and an action. Historically, policy-based systeragehbeen developed in domains
such as access control, quality of service, security angisymanagement. In all these
applications, policies are typically created and mairgdiby administrators. However,
the authors’ approach is unusual in being designed for argisystem users.

During the past decade, many policy languages and systevesble®n developed
to decentralise the control of system behaviour, to auteragstem management, and
to give more control to end users. This added flexibility Hees advantage that users
can tailor services more accurately to their needs, redughance on generic system
facilities. Traditional feature-based approaches lactiflkty. In telephony, for example,
the features are mostly defined by the network operator.dJs®re little choice except
to select the features they wish and to define a few featuanpsters.

Systems that offer multiple, independently-defined fezgtuare prone to interac-
tions — a well-known situation where the behaviour of ondéusamay affect another.
Many feature interactions have been identified in call ainetecting these interac-
tions is often problematic due to the large numbers of featseveral hundred in a

typical PBX). Resolving the interactions can also be pratatc because features are
low-level units of functionality.

It is often necessary to understand the user’s true intertédore obtaining a sat-
isfactory resolution. For example, consider the well-knaateraction between Do Not
Disturb and Alarm Call. The user’s intention was presumablgvoid calls from others,
but not the alarm call from the exchange. Policies are cltwsaser goals (e.g. ‘| do not
wish to be called by anyone’) and so more faithfully refleanisitentions. Resolving
interactions or conflicts is facilitated by the higher-leapproach of policies.

This paper presents an approach to conflict handling usingadoknowledge cap-
tured in an ontology. Collecting this knowledge is a manteh sHowever, conflict de-
tection is then fully automated using thee®ap tool (Rigorously Evaluated Conflicts
Among Policies). Conflict resolution is partially autonatey RECAP — outline reso-
lution policies are automatically generated, for completby the domain expert using
a policy wizard. The general idea is that conflicts are idietiand specified through
offline filtering. The resulting conflict resolution polisi@are then use online.

1.2. Ontology Support for Policies

The authors use a policy system called@ENT (Advanced Component Control En-
hancing Network Technologies). This includes a policy sethat supports the APEL
policy language, a wizard for creating and editing policessd a variety of supporting
interfaces for various application domains.

In recent research, the authors have extendedeA to support new and multiple
domains. As the core schema oPAEL s generic, it can be extended for different appli-
cations by adding further schemas. However, this does rasfusately deal with concepts
in the application domains. The authors have thereforeldped additional support for
ApPpPELthrough a range of ontologies.

The new approach usesM® (Web Ontology Language) to describe the comre A
PEL language. The core ontology is then extended hierarchitatiefine user interface
information and to specialise the language for particutamdins. This has increased
the extensibility and precision of the policy languagerkL is supported by a wiz-
ard that offers a web-based interface for creating andredgolicies. This has been re-
engineered to replace hard-coded domain information éthicontrol) with information
stored within the ontologies. The result is a highly flexilder interface, easily adaptable
to reflect new application domains.

1.3. Related Work

Policy conflict is equivalent of feature interaction in f@eny and related domains.
Since policies are defined in a decentralised manner, ttenpatfor unwanted interac-
tion is far greater than that of conventional feature-bagstems. The increased flexibil-
ity that policies offer to users is offset by more pervasa@nplex and subtle conflicts
among policies.

Conflicts in a policy-based environment are often causetiégimultaneous execu-
tion of policies with contradictory actions. (Conflicts calso arise between actions and
system state, i.e. the result of previous actions.) Polbicilict requires study of three dif-
ferent aspects: filtering conflict-prone policies, defingapflict detection mechanisms,

and defining a conflict resolution strategy. Although polfittgring is a new departure,
conflict detection and resolution have already been studiieslystem management, for
example, conflict detection and resolution techniquesuthel[1,2]. Enhancements to
COPS (Common Open Policy Service, RFC 2748) are aimed atgimanpolicy conflict
through rigorous definition of actions.

Many techniques have been developed to automate feateradtion detection at
the specification stage. Techniques in feature interact@action have focused heav-
ily on a variety of formal methods such as process algebraspeta and (temporal)
logic. Of these, techniques for filtering interaction-pedaatures are the most relevant.
However, few are directly relevant to policy-based continetheless, the ideas have
influenced the work reported here.

The notion of interaction filtering was initially presented[3]. The filtering pro-
cess is followed by detailed checking and refinement of axisflSeveral tools support
an automated approach to filtering feature interactionge €@ample is a prototype de-
signed to detect interactions in a call environment [4] sTiiiers interactions among IN
services, using simple descriptions of the static strectar each service. Interactions
are detected for groups of services used in particular caliarios.

Formal approaches have been followed by a number of ressrar¢ X (Feature In-
teraction Extractor [5]) is an example of a domain-indeemi@dpproach, although only
application to telephony has been reported. This uses tldelhebecker © SPANtO run
consistency tests on feature specifications. In a furtlgesthe tool user can investigate
the generated scenarios and decide on their accuracy.d6gpis a filtering technique
based on Use Case Maps and applies it to telephony featiiessgs preconditions
and postconditions to identify inconsistencies in feaue LESs (Language for End
Systems Services).

[8] describes work that is directly relevant to this papeit ases temporal logic to
formalise the semantics of #PEL This leads to a formal basis for automated detection
of conflicts. In other work on ARPEL, [9] presents a method for discovering conflicts
based on the pre/post-conditions of actions. This allowsaseically-based inferences
to be drawn about the compatibility of actions. Howevers itachnically more complex
than the simple and intuitive approach of the work reportecehAs complementary
techniques, future study will investigate how [8,9] can éeanciled and integrated with
the authors’ approach.

The work reported here differs in important respects froenftiregoing:

e Policies rather than features are used for control. Thggestihigher-level state-

ments of user intentions, and facilitate the resolutionaffticts.

e The approach is adapted to many domains, including onegleu&dephony. For
example, the authors use it to detect conflicts in home cateaensor networks.

e A formal specification of the system and its policies is nofuieed. In practice
a precise specification is usually infeasible because thesyis too complex,
is proprietary, or is open-ended because users can defimepttre features or
policies.

e The approach is intentionally less formal. This has the athges of being sim-
pler to set up and more intuitive, i.e. relying only on domiamowledge. Domain
experts, rather than formalists, can define the informatieded for conflict fil-
tering. The analysis is efficient and domain-oriented.

1.4. Paper Outline

Section 2 presents an overview of the@enT policy system, the APEL policy lan-
guage, and its approach to conflict detection and resoluiection 3 introduces ontolo-
gies, and outlines how they were used to modebAL Section 4 explains how ontolo-
gies are used to identify policy conflicts. Section 5 disessthe approach to conflict
filtering and the associated tool support. Section 6 eveduidie results.

2. The ACCENT Policy Approach
2.1. Policy System and Language

The ACCENT policy system (Advanced Component Control Enhancing NetWwech-
nologies,www.cs.stir.ac.uk/accenvas originally designed to allow users to tailor (In-
ternet) call handling to their own preferences. As illutgdsin figure 1, the ACENTSys-
tem is split across three layers. At the lowest level, theesgdayer connects the policy
system to its external environment. Policy enforcemenaisdted by the policy system
layer that incorporates the policy server, policy storedmhpolicies reside) and policy
database (containing user login and server configuratita).dat the top level, the user
interface layer is where users create policies and whereextal information is ob-
tained. Policies are defined and edited via a web-basedypsiiard [10]. Each policy
is saved as an XML document and uploaded to the policy stdregEneral approach of
ACCENTIs described in [11].

APPEL (ACCENT Project Policy Environment/Language [12]) is a comprehens
and flexible language, designed to express policies witlerACCENT system. Key fac-
tors in the design of APELinclude a simple but concise structure, ease of extensimh, a
orientation towards ordinary usersPAELcomprises a core language and its specialisa-
tions for different application domains. The original sipdisations were for call control
and conflict resolution, but new specialisations have beweldped for home care and
sensor networks.

ApPpPEL defines the overall structure of a policy document: regutdicies, resolu-
tion policies, and policy variables. A policy consists ofeasr more rules in ECA form
(Event-Condition-Action). Each rule has a combinatiorrigfigers (optional), conditions

Poli User C
User olcy Interface ontext
Wizard System
Interface —
Layer /
A
N v K«
Policy Polic Policy m‘/
Sust Y > Server (€ v
ystem Database Store
Layer S);Stem
v
Communications Communications —
System Network Server
Layer

Figure 1. ACCENTSystem Architecture
4

(optional), and actions (mandatory). The core languagstcocts are extended through
specialisation for new applications.

A policy is eligible for execution if its triggers occur sittaneously and its con-
ditions apply. Additional conditions may be imposed, sushtee period during which
the policy applies, or the profile to which the policy belong¢hen the policy system
is informed of an event, the applicable policies are retrieand applied if eligible. As
multiple policies can be triggered, conflicts may arise agitwir actions.

2.2. Conflict Detection and Resolution

Conflicts result from clashes between pairs of policy adtigks an example from call
control, the caller may wish to conference in a third partyowhthe callee does not
wish to speak to. The caller/callee policies propadd/removeparty(personfor some
individual. These contradictory actions must be identifisd&onflicting. They must also
be resolved, e.g. by giving the caller (as the bill payeryity.

The AcCCENT system allows for both static and dynamic conflict detectitatic
detection is performed when a policy is defined and uploadl#uet policy system, while
dynamic detection occurs at run-time. Although both methae permitted, only dy-
namic detection is currently implemented. This focus wéeritional since run-time con-
flict handling is the more challenging task. Dynamic cordlialso subsume static con-
flicts. The actions resulting from a policy trigger are chetairwise for conflicts. (The
design of the language means that the order of compariserelevant, and that only
pairs need be checked.) The outcome is a set of non-confliatitions.

Human guidance is almost inevitably required to determowe best to handle con-
flicts. Only certain ‘technical’ conflicts might be detecfatly automatically. Even then,
the treatment of a conflict requires judgment. As an exansplgpose one user wishes to
add video to a call but the other user wishes to avoid thiss iEhtlearly an add/remove
conflict. A trivial resolution would be to permit one or othgolicy to prevail. How-
ever, an acceptable resolution might be much more complgxusing a third party to
adjudicate the conflict.

As a further example, suppose one user wishes to add the @ug&3codec to a call
but the other user wishes to avoid it. This appears to be amigde kind of add/remove
conflict. In fact it is not, because both parties (in H.323)siroe willing to support the
G.711 audio codec. There is therefore no need to treat trascasflict. This illustrates
that conflict detection requires domain knowledge and huimtaition.

Conflict handling in ALCENT is defined by resolution policies that are distinct from
regular policies. Resolution policies express when and thaisystem should respond
to conflicts. Their effect is to process a set of proposedcpdattions, selecting those
that are compatible with the conflict handling rules. Resotupolicies are specified as
an extension of the corePEL language, and therefore use the same syntax as regular
policies. However, resolution policies use a differentalmdary because they serve a
different purpose. The domain-specific actions of reguldicies are the triggers of res-
olution policies. Resolution policies can dictate generitcomes (selecting among the
proposed actions) or specific outcomes (dictating dompétific actions).

APPEL has a built in notion of policy preference which allows a useimdicate
how strongly they wish a policy to be applied. This allocgtgerities to policies as one
means of resolving conflicts. However, other resolutiony beused such as choosing

the policy of a superior user, or choosing a longer-stangwoligy. Resolution policies
gives considerable flexibility in that conflict handling istrhard-coded into the policy
system. It is defined externally and can be domain-specificavbid infinite regress,
resolution is performed just once. The approach ensurégiautcome is conflict-free,
and does not require resolutions to be checked again forictsnfl

Conflict handling within ALCENT is described in [13]. The main limitation of this
previous work was that resolution policies had to be definadumally. This was tedious
and error-prone. The new work reported here describes ahogytdriven mechanism
to automate conflict detection. The&eRAPtool provides automated support for detecting
conflicts and for creating outline resolution policies. Tdetails of resolution require
human judgment and are added in a further manual step.

3. Ontology Support for Policies
3.1. Ontology Background

An ontology is the set of terms used to describe and represeatea of knowledge,
together with the logical relationships among these [14jrdvides a common vocabu-
lary to share information in a domain, including the key tgriheir semantic intercon-
nections, and the rules of inference. Ontologies enableragépn of domain knowledge
from common operational knowledge in a system.

A variety of specialised languages are used to define oritdo@wvL (Web Ontol-
ogy Language [15]) is a standard XML-based language. Itppstted by a wide range
of software, and can be integrated with other techniqueadtition, QvL provides a
larger function range than any other ontology language te. d&r these reasonsy@
was used to define the ontologies in the work reported here.

An OwL ontology defines classes, properties and individuals. 8sctapresents a
particular term or concept in a domain, while a property ismad relationship between
two classes. An individual is an instance or member of a clasgally representing
real data content within an ontology. Properties are deffoedlasses in the form of
restrictions that specify the nature of a relationship leefmvtwo classes.\@L supports
inheritance within class and property structureg/tlCan also import shared ontologies.
The ontological basis for APEL exploits this, using multiple documents for different
aspects of the core language and its specialisation insadomains.

Ontology support for policies is provided byoPPET(Policy Ontology Parser Pro-
gram Extensible Translation [16]). This uses theLPET ontology reasoning engine
(pellet.owldl.cormh and the Jena ontology parségn(a.sourceforge.nptPoPPETparses
and integrates ontologies on behalf of theENT system. Figure 2 illustrates the rela-
tionship between ACENTand POPPET

3.2. Ontologies for Policies

Ontologies were defined for the core oPAEL and its domain specialisations. Using
OwL, three layers of ontologies were developed [16].

At the lowest level GenPol(generic policy) defines core language elements such
as variables, rules, triggers, conditions and actionss Tigludes the basic elements

ACCENT OwL

User Interface Ontology

A A

v L2
Policy || | | [,| POPPET
Wizard [RMI ® Server

Y A

A\ 4 A\ 4
Policy PELLET

Server Reasoner

ACCENT POPPET

Figure 2. Ontology Support by BPPETfor ACCENTPolicies

of a policy and the cardinality rules relating these. Eacte @lement is defined as an
ontology class. Relationships between classes are defsieg ontology properties that
link them. Using properties to describe the associatiohsden concepts is a powerful
means of modelling the structure ofPREL The GenPolontology contains no domain
knowledge, only a definition of how high-level concepts maydombined to form a

regular policy or resolution policy.

The ACCENT policy wizard [10] is a user-friendly front-end for creagiand edit-
ing policies. Such a facility is key in supporting policy defion by non-technical users
of the system. The wizard presents policy and domain inftiomausing near natural
language. The user interface is not part afF%L proper, but is essential for the system
to be usable. Additional, wizard-related knowledge is ¢f@re defined inVizPol (wiz-
ard policy) as an extension @&enPol This specialises the core language for use with
the wizard. Examples of wizard-specific facilities inclutie categorisation of triggers,
conditions, actions and operators. In addition, a subs#teofanguage functionality is
matched to the skill or authorisation level of a user.

The GenPoland WizPol ontologies define domain-independent aspects of regular
policies and resolution policies. To specialise the lagguar a new domain, a further
ontology is created to import and extend these base onedpgnportingWizPolim-
plicitly imports GenPolas well. A domain-specific ontology can contain arbitrarwne
concepts, but all policy language concepts must be suledagithin the hierarchy de-
fined by the base ontologies. Consequently, as these orgslag: combined through an
import mechanism only, they do not suffer incompatibilggues.

The CallControl domain ontology specialisesPREL for call handling. Significant
extensions include call control triggers, conditions aciibas. Using properties defined
in GenPo| constraints may be placed on individual triggers, condgiand actions. This
defines their use for certain user levels and for displaygrates within the wizard. In
addition, properties define which actions and conditiomsparmitted with a particular
trigger, and the valid range of operators associated with eandition parameter. Fur-
ther user interface and data type aspects may be includeddmain-specific ontology.

4. Automated Conflict Detection
4.1. Action Effects

Conflicts arise between policy actions with certain paramsetWhen two actions with
a similar effect are executed simultaneously, the resuit beaa conflict. For example,
actions that add and remove the same aspect are potentialynilict. Thus, the call
control actionsadd party andremove party are likely to contradict each other. Other
conflicts are far more subtle, and cannot easily be identifjedaming alone.

Action parameters may use enumerated types, e.g. calladgarametemedium
has possible valuesidio videoandwhiteboard Actions plus selected parameters allow
a deeper exploration of conflicts. Where an action has an erated parameter type,
conflicts between instances of the same action are likely ibhe parameters are the
same. For example, call control actiadd medium(audiorould be considered to con-
flict with a secondadd. medium(audia)However, if the second action wished to add
videothen this would not be an obvious conflict. For this reasotipas with distinct
values in an enumerated parameter set are treated as thsfiions.

In general, an action must be considered along with a sulbstst parameters. In
a domain like call control, there is a rich set of action narttes suggest conflicts in
themselves. Even there, it is often necessary to take p&esriato account. For ex-
ample, adding one party and removing a different party isonoblematic. In other do-
mains such as home care and sensor networks, a much moegliseiiection of action
names is used. This is because actions are mainly diffatedtby their parameters. A
simpledevice out action, for example, carries parameters that indicate ¢hieratype,
device class, device instance and action parameters. &aidliection has to work with
the domain policy language as defined. In general, a subgatraieters must therefore
be considered for conflict along with the basic action nanmvéver, for simplicity the
following text mainly refers to comparing actions.

Policy actions are defined to have one or more effects on theution environment.
These effects range from the technical (e.g. bandwidth)egocial (e.g. privacy). Inter-
nal policy actions affect the policy system itself, suchetsiisg system properties or ac-
cessing system resources. Conflicts are likely where tworacshare a common effect.
Any action may potentially conflict with itself. However] aktion pairs must be consid-
ered too. (As noted earlier, only two-way and neway conflicts need be considered.)

Figure 3 shows the effects of internal policy actions, wfidere 4 shows the effects
of call control actions. Call control actions with enumedhparameters are listed sepa-
rately. Effects for internal policy actions are distinairin those of domain actions, as in-
ternal and external actions do not (normally) conflict. Effeategories differ depending
on the language domain.

As discussed in section 3.2, ontologies have been used telrpoticy language
concepts. It is therefore convenient to define action effiecthese ontologies. However,
the ontologies play no role in conflict detection or resautiAs conflict detection is
not an integral part of APEL, the concept of action effect is defined in t&zPolon-
tology. This allows conflict information to be specified ddesthe core language, while
maintaining the advantage of further specialisation in dimrspecific ontologies. Effect
information is defined itWizPolthrough theActionEffectclass and thédasActionEffect
property. TheActionEffectclass is a superclass of all effect categories for bothriafer

Action Effect
log_event(argl) file
restart timer(argl) timer
send message(argl,arg2) channel

setvariable(argl,arg2) | variable
start_timer(argl,arg2) timer
stop.timer(argl) timer
unsetvariable(argl) variable

Figure 3. Internal Action Effects

Effect

party, privacy
party, privacy
party, privacy
party, privacy
party, privacy

Action
add.caller(conference)
add.caller(hold)

add. caller(monitor)
add.caller(release)
add.caller(wait)

add medium(audio)

medium, privacy

add. medium(video)

medium, privacy

add medium(whiteboard)

medium, privacy

add.party party, privacy
confirm bandwidth bandwidth
connectto route
fork_to route
forward_to route

note availability availability
note presence presence
play_clip medium
reject call call

reject bandwidth bandwidth
remove medium(audio) medium
remove medium(video) medium

remove medium(whiteboard) medium
remove party party

Figure 4. Call Control Action Effects

and domain-specific policy actions. Generic action effacésdefined as subclasses of
this class inWizPol Domain-specific action effects are defined as subclasgbmve
separate domain ontology that impaW&Pol Each policy action is linked to the appro-
priate effect category class using thasActionEffecproperty. This relates actions and
effects, allowing a tool to infer overlapping actions.

4.2. Conflict Detection Algorithm
Only pairs of actions need to be considered in the analysisetare no three-way con-
flicts. Potential conflicts between actions can be inferrechfthe ontology-defined ef-

fect categories through a two-stage algorithm. Firstly,taro actions sharing at least one

9

common effect are identified as potentially conflicting. @wtly, actions with enumer-
ated parameter types are analysed. Where two actions $teasaine parameter value
then they potentially conflict, otherwise it is assumed tiatonflict exists.

The total number of action pairs, including self-conflidissw wheren is the
number of possible policy actions. The policy language &dr ©ontrol has 21 possible
actions and therefore a total of 231 action pairs. Confliodfiag is commutative (iA1
and A2 conflict, then so daA2 and Al) and associative (the way in which actions are
paired is irrelevant).

The ontologies allow a list of actions to be inferred for eaffect category. If two
actions are present in some category, they can be markedexgtiptly conflicting. For
example, the call control actiofigrk_to andforward._to potentially conflict as they both
affect theroute All action pairs deemed to conflict in this way are then awtoally
reviewed with respect to their parameters. As explainelibeaaictions with enumerated
parameter types are considered in more detail. This inesghg total number of action
pairings as an action may be instantiated multiple timeh different parameter values.
For example, the actioadd. mediumwith its parameter is equivalent to three distinct
actions. This allows more accurate analysis of potentiaflmts. Where actions might
be treated as potentially conflicting based on a sharedtgetfés might not be the case
when particular parameters are considered.

To explain this more concretely, some examplesti@diumare shown in figure 5.
An action may conflict with itself if there is a common paraerdte.g. both instances
wish to add video), and may not conflict if the parameters #ferdnt (e.g. they wish
to add video and whiteboard respectively). Different awiavith a common effect and
the same parameter indicate potential conflict (e.g. attiegnpo add and remove audio
simultaneously). Actions with a common effect and dissimpgarameters are assumed
not to conflict (e.g. altering the medium by adding video amaving whiteboard).

Actionl Action2 Conflict
add medium(audio) remove medium(audio) v
add medium(audio) add medium(video) X
add medium(video)| add medium(video) v
add medium(video)| remove medium(whiteboard X

Figure 5. Sample Call Control Conflicts with Action Parameters

5. The Recap Conflict Filtering Tool
5.1. Automated Support for Conflict Filtering

The Recap tool (Rigorously Evaluated Conflicts Among Policies) hasibdeveloped
to automate the algorithm in section 4 for identifying cartffprone actions. Figure 6
illustrates what the tool looks like on-screen. Taking thstfiine as an example, the
tool shows pairs of actionsaafld medium(audioand add medium(audig) why they
conflict (shared effect omediumandprivacy), and when this conflict was last modified
(automatically or manually).

10

1007 LS4 BEIBTIE L §7 ABW UL fuedahowa. s e =
007 158 85876 L 47 AEN ML winipaLL (PIE DG ENYMILINIDELLT SADLLE) (DIpnEjLUMIpEWTRRE O
07 Lo 81 B E L 4z dew wripaL fOApIILINIpALL BA0LIA (olpRENUNIpaLTpE O
JO07 LSH 858775 L FT AL AL LUnipaL {0IpnEILINIpaL a4aLLal {(nIpnenIpawppe
1007 LS4 BEIBTIE L §7 ABW UL el s e
2007 LSE BEETEL FT 4R nUL yplMpUEd1aala) {oipnehuninawppe
T LSS L, o] wnipaw dijahed (mpnEjInIpawT ppE
g ey | auasalid aau {(DIpnenipawppe
2007 LSE BEETEL FT 4R nUL fnge)ete"sou {oipnehuninawppe
1007 LS4 BEIBTIE L §7 ABW UL wanaBol (IR nIpaL ppE
1007 LS4 BEIBTIE L §7 ABW UL OF pleioy (IR nIpaL ppE
J00Z LA 82876 L 77 Aew nul oroy (G T2
u 007 LS8 828731 $7 AEW NUL OF 8uu0 s i
B 200Z 158 BEI8TE L ¥T Rei nuL Aaealid fuedppe (OInEnpELPRe
R y— faeaud wnipa L {pIEOOENLAILINIRE LT pE {oipnehuninawppe O
007 LS8 Z8:5EE L b7 4EW nuL Aaeapd'unipaw (BEE) T T2 (T TS O
= JO0Z 188 B2 8TEL bE AEw nul Aagad winipa w (oipne)winipawppe (ORNENIPSUTpPE
Pauno 1587 ajeq (shaawy Bunauog Z uonay i HEREIRa FIEED
AfDjouo Bunog | saldlog a)elauan E Ajuo s)o1u0d man]
disH maln W3 Al
= ar D Tradvoau])

Figure 6. Screenshot of RCAP

11

Depending on the domain, the conflicts identified bydRpP may or may not be
complete and correct. Conversely, subtle conflicts thahat@utomatically flagged can
be added by hand. As noted earlier, conflict handling willaai/require human judg-
ment and cannot be fully automated. Based on human guidR& P produces con-
flict resolution policies.

RECAP is started by pointing at the relevant domain ontology. gshe action ef-
fects, the tool automatically constructs a matrix of allipphction pairs and highlights
those deemed to be potential conflicts. The tool user mayexthe matrix, confirming
or refining each conflicting action pair. If closer inspenti@veals that there is no real
conflict, this pairing can be flagged as conflict-free. If aticacis linked in an ontology
to some effect, this may not be true of the actual implemanta€Conflicts arising from
this cause can be dismissed using the tool to undo the linking

Potential conflicts are displayed in the tool matrix by ngtihe common effects in
the appropriate cell. For convenience, internal and dorapétific actions are described
here in separate figures though in practice they are combin&ECAP.

The result of filtering internal conflicts for APEL is shown in figure 7. Conflicts
are numbered in the figure according to the underlying effecain example of conflict,
actionsstart_timer andstop timer are in conflict because they both havéraer effect
as indicated at their intersection. Some conflicts are rtorens (e.g.add. caller and
add.mediun). Detailed study by a domain expert confirmed that all cotsfliiscovered
are real, and that no conflicts had been missed. No changesherefore needed in the
analysis.

restart_timer
send message
setvariable
start_timer
stop_timer
unsetvariable

n| log_event

log_event
restart_timer
send message
4 4 | setvariable
3|3 start_timer

3 stop_timer

4 | unsetvariable

w
w
w

=

Conflict: 1 channel, 2 file, 3 timer, 4 variable

Figure 7. Internal Conflicts identified by Rcapfor APPEL

Call control actions deemed conflicting byeBAP are shown in figure 8. For sim-
plicity, this figure shows conflicts between actions withpatameters. In the tool, ac-
tions with enumerated parameter types are displayed angamu distinctly. Conflicts
are numbered in the figure according to the underlying effect

12

Detailed study by a domain expert confirmed that all detectedlicts but one are
real, and that no conflicts have been missed. There is a pogsitblem in thatcon-
firm_bandwidthis indicated to conflict with itself due to a shareandwidtheffect. This
could indeed be an error, as it might lead to bandwidth beliogated twice. As it hap-
pens, in the ACENT system it is harmless to confirm bandwidth twice. Without hu-
man guidance, this action pair would be flagged as a conftishduld be noted that
the bandwidtheffect is still required as it correctly identifies the coctflbetweercon-
firm_bandwidthandreject bandwidth

£
2 =
E zlg| |B] |5
S = S| € % =i 9,
o | 3 8|0 els | ® cl=|2|= O
sIgle2l5 . |2l=|8|e|818 |52 &°
Sle|8|Ele|2(E|5 2|85 OF
3|3 |3 |E|E|x|S|E|E| 78| ElE| &°
| e | = |3|3|e|e|e|le|a|lL|L 2oy
57 7 |57 5 | add_caller
4,7 4 4 add_medium
5,7 5 | add_party
2 2 confirm_bandwidth
8(8|8 connectto
8|8 connectto
8 forward _to
1 note availability
6 note_presence
4 4 play_clip
2 reject_bandwidth
3 reject_call
4 remove. medium
5 | remove._party

Conflict: 1 availability, 2 bandwidth, 3 call, 4 medium,
5 party, 6 presence, 7 privacy, 8 route

Figure 8. Call Control Conflicts identified by Rcapfor APPEL

As demonstrated by figures 7 and 8, the automated conflicgsingfor call control)
is very accurate. However, it confirms that human guidancgilisneeded in a small
number of cases.

REcAP is mainly intended to analyse conflicts when a domain polmyglage is
initially defined, using an ontology as the source of actifbeats. This initial analysis is
saved to file and can subsequently be reloaded into the thisl aoids the user and the
tool from having to repeat a prior analysis, particularlghié user has manually modified
the conflict list.

13

5.2. Automated Support for Resolution

REcAP turns the conflict list into a set of outlineR®EL resolution policies that define
the detection part of conflict handling. These policies aefire conflicting triggers and
parameter conditions, but resolution actions must be ceregimanually. The policies
are automatically uploaded to the policy system, where tlzand is used to define the
resolutions. Conversely,ECAP reads existing resolution policies and annotates the ma-
trix with conflicts derived from these. This is a useful featwhich allows conflicts de-
fined manually via the policy wizard to be used in conjunctigth conflicts identified
by RECAP.

Resolution policies can be simple or complex, specific oegenand dependent on
many factors including the conflicting policies and theirgraeters. One or more actions
may be required of a resolution. See [13] for a list of typiesolution policies. As an
example, suppose one party wishes to add video to the cdilagit. medium(videq)
while the other party wishes to conference in a third persah add party(person)
This is correctly flagged as a conflict since the third partyldde able to view the
call parties and their workplaces (affectipgvacy). Using human judgment, it might be
decided to allow video and the third party. However, somgeng a manager) should
be included in the call to oversee it.

In view of this complexity, RCAP generates only outline resolution policies that
specify default policy attributes, triggers corresporgdia the conflicting actions, and
default actions to resolve the conflict. The outline resohg are then uploaded and
customised using the wizard as normal. Resolution poligynedis dealt with by the
wizard and not by RcAP. This allows RECAP to remain domain-independent and not
be constrained to a particular resolution technique orcgdiinguage. An additional
advantage is that resolution policies are then edited titrtlue same interface as regular
domain policies.

All default resolution parameters are defined by a propefiie, and can therefore
be readily modified according to local practice. The propéht allows any structural
components of outline resolutions to be altered. Resalytiolicies are normally dis-
abled on upload. This ensures they are ignored by the paises until they have been
edited to include a specific resolution. This avoids incatgbr inconsistent resolutions
from being used accidentally.

REcAP could be given a more user-friendly interface to change #faudt resolu-
tion policy structure and parameters. Currently this isexad by manually editing the
properties file. Although the tool is mainly intended for ukeing definition of a new
application domain, there could be some value in easingdatnges.

Policies in general are distinguished by unique identifignsically some phrase
chosen by the user. Resolution policies automaticallyteteby REcAP have machine-
generated (but human-usable) identifiers. If the identidfesuch a policy is changed
manually, this could lead to duplication. The tool couldedtthis situation by looking
for overlap of resolution triggers and conditions.

6. Conclusion

A technique and a tool have been introduced for (semi-)aatedfiltering of conflict-
prone policies. Ontologies have been used to model the odrd@main-specific aspects

14

of APPEL- for regular and as well as resolution policies. ConflictsMeen policy ac-
tions are handled in ACENT by resolution policies. Action effects defined in ontolagie
allow conflicting action pairs to be discovered as potermimaflicts.

As has been seen, the analysis leads to very accurate réfsultsall control).
Nonetheless, Rcap allows potential conflicts to be refined manually since ayfalito-
mated approach is impossible due to the complexity andestytidf policy interactions.
Following filtering, outline resolution policies are geatyd and uploaded for comple-
tion with the policy wizard.

RecaAP offers an automated approach to conflict analysis and résolwhere pre-
viously this was achieved manually. This has improved tla¢ekdlity of APPEL and has
substantially reduced the time and complexity of dealinpwonflicts. Associating ac-
tions with their effects is very simple compared to formateels, but yields very good
results. The straightforward and domain-oriented apgragamuch less expensive to use
than one that requires a complete formal model.

RecapPprovides a way of visually identifying conflicts within arbétrary collection
of policy actions. Unlike many existing approaches andgopblicies in any domain
may be analysed easily byeRAP, and not just those for call control. The tool is also
useful for policy applications where action parametery plaigger role.

ReEcAP has been designed for stand-alone use. Although confliatisaainly ex-
pected to derive from an ontology, conflict information mayibput from a local file.
Consequently, data generated by other tools or systems enagdal by Rcap for con-
flict filtering. The only requirement is knowledge of the castftlata format used.

Although RecaP is aimed at filtering conflicts in the initial stages of spgtify a
new policy language, it may be used in later revisions of @mgluage to refine conflicts
and to generate resolutions.

Acknowledgements

The authors thank their colleagues Stephan Reiff-Margamew at the University of
Leicester) and Lynne Blair (who was on leave from Lancasteivétsity during the
development of ACENT). Both contributed substantially to the design of the polic
system that lies at the foundation of the work reported ia gaper. Gavin Campbell’s
work on the ROSENproject was supported by grant C014804 from the UK Engingeri
and Physical Sciences Research Council.

References

[1] J. Chomicki, Jorge Lobo, and S. Naqvi. A logical prograimgiapproach to conflict resolution in policy
management. In Anthony G. Cohn, Fausto Giunchiglia, and 8alman, editorsProc. Principles of
Knowledge Representation and Reasonpages 121-132. Morgan Kaufmann, 2000.

[2] Emil C. Lupu and Morris Sloman. Conflict analysis for mgeeent policies. IfProc. 5th. International
Symposium on Integrated Network Managempages 430-443. Chapman-Hall, London, UK, 1997.

[3] Kristofer Kimbler. Addressing the interaction problesh the enterprise level. In Petre Dini, Raouf
Boutaba, and Luigi M. S. Logrippo, editorBroc. 4th International Workshop on Feature Interactions
in Telecommunication Networksages 13-22. I0S Press, Amsterdam, Netherlands, June 1997

[4] Dirk O. Keck. A tool for the identification of interactieprone call scenarios. In Kristofer Kimbler
and Wiet Bouma, editor®roc. 5th Feature Interactions in Telecommunications aoffvare Systems
pages 276-290. 10S Press, Amsterdam, Netherlands, Segtd8@8.

15

(5]
(6]

[7]

(8]

9]

(10]

(11]

[12]

(13]
[14]
[15]

[16]

Amy P. Felty and Kedar S. Namjoshi. Feature specificatod automated conflict detectiolACM
Transactions on Software Engineering and Methodald@y1):3-27, January 2003.

Masahide Nakamura, Tohru Kikuno, J. Hassine, and LuigBMLogrippo. Feature interaction filtering
with Use Case Maps at requirements stage. In Muffy H. CalddrEvan H. Magill, editorsProc. 6th
Feature Interactions in Telecommunications and Softwgmstednspages 163—-178. I0OS Press, Amster-
dam, Netherlands, May 2000.

Xiaotao Wu and Henning Schulzrinne. Handling featureriactions in language for end systems ser-
vices. Computer Networks51:515-535, January 2007.

Carlo Montangero, Stephan Reiff-Marganiec, and LaweniBi. Logic based detection of conflicts in
APPELpolicies. In Ali Movaghar and Jan Rutten, editoPspc. Int. Symposium on Fundamentals of
Software EngineeringSpringer, Berlin, Germany, February 2007.

Ahmed F. Layouni, Luigi Logrippo, and Kenneth J. Turn€onflict detection in call control using first-
order logic model checking. In Lydie du Bousquet and Jeanfighier, editorsProc. 9th Int. Conf. on
Feature Interactions in Software and Communications 8ystpages 77-92, France, September 2007.
IMAG Laboratory, University of Grenoble.

Kenneth J. Turner. The @CENTpolicy wizard. Technical Report CSM-166, Department of @ating
Science and Mathematics, University of Stirling, UK, Det@m2005.

Kenneth J. Turner, Stephan Reiff-Marganiec, LynnerBlhanxiong Pang, Tom Gray, Peter Perry, and
Joe Ireland. Policy support for call contraComputer Standards and Interface8(6):635-649, June
2006.

Stephan Reiff-Marganiec, Kenneth J. Turner, and LyBlar. APPEL The ACCENT project policy en-
vironment/language. Technical Report CSM-161, DepartrnE@omputing Science and Mathematics,
University of Stirling, UK, December 2005.

Kenneth J. Turner and Lynne Blair. Policies and cordlintcall control.Computer Network$1(2):496—
514, February 2007.

N. F. Noy and D. L. McGuinness. Ontology development:1@3uide to creating your first ontology.
Technical Report KSL-01-05, Stanford Knowledge Systemtsokatory, Stanford, USA, March 2001.
World Wide Web ConsortiumWeb Ontology Language (OWL) — Referen¥ersion 1.0. World Wide
Web Consortium, Geneva, Switzerland, February 2004.

Gavin A. Campbell. Ontology for call control. Technid@eport CSM-170, Department of Computing
Science and Mathematics, University of Stirling, UK, Jufe&

16

