
Gavin A. Campbell and Kenneth J. Turner. Policy Conflict Filtering for Call Control,
in Lydie du Bousquet and Jean-Luc Richier (eds.), Proc. 9th Int. Conf.
on Feature Interactions in Software and Communications Systems,
pp. 83-98, IOS Press, Amsterdam, May 2008.

Policy Conflict Filtering for Call Control

Gavin A. Campbell and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
e-mail: gca — kjt @cs.stir.ac.uk

Abstract.
Policies exhibit conflicts much as features exhibit interaction. Since policies are

defined by end users, the combinatorial problems involved indetecting conflicts are
substantially worse than for detecting feature interactions. A new, ontology-driven
method is defined for automatically identifying potential conflicts among policies.
This relies on domain knowledge to annotate policy actions with their effects. Con-
flict filtering is performed offline, but supports conflict detection and resolution on-
line. The technique has been implemented in the RECAP tool (Rigorously Evalu-
ated Conflicts Among Policies). Subject to user guidance, this tool filters conflicting
pairs of actions and automatically generates resolutions.The approach is generic,
but is illustrated with the APPELpolicy language for call control. The technique has
improved the scalability of conflict handling, and has reduced the effort required of
the previous manual approach.

Keywords. Call Control, Conflict Detection, Ontology, OWL, Policy

1. Introduction

1.1. Policies and Features

Policies are rules used to control a system dynamically through a set of actions to be
performed in specified circumstances. Policies are typically defined by an event, a con-
dition and an action. Historically, policy-based systems have been developed in domains
such as access control, quality of service, security and system management. In all these
applications, policies are typically created and maintained by administrators. However,
the authors’ approach is unusual in being designed for ordinary system users.

During the past decade, many policy languages and systems have been developed
to decentralise the control of system behaviour, to automate system management, and
to give more control to end users. This added flexibility has the advantage that users
can tailor services more accurately to their needs, reducing reliance on generic system
facilities. Traditional feature-based approaches lack flexibility. In telephony, for example,
the features are mostly defined by the network operator. Users have little choice except
to select the features they wish and to define a few feature parameters.

Systems that offer multiple, independently-defined features are prone to interac-
tions – a well-known situation where the behaviour of one feature may affect another.
Many feature interactions have been identified in call control. Detecting these interac-
tions is often problematic due to the large numbers of features (several hundred in a

1



typical PBX). Resolving the interactions can also be problematic because features are
low-level units of functionality.

It is often necessary to understand the user’s true intention before obtaining a sat-
isfactory resolution. For example, consider the well-known interaction between Do Not
Disturb and Alarm Call. The user’s intention was presumablyto avoid calls from others,
but not the alarm call from the exchange. Policies are closerto user goals (e.g. ‘I do not
wish to be called by anyone’) and so more faithfully reflect user intentions. Resolving
interactions or conflicts is facilitated by the higher-level approach of policies.

This paper presents an approach to conflict handling using domain knowledge cap-
tured in an ontology. Collecting this knowledge is a manual step. However, conflict de-
tection is then fully automated using the RECAP tool (Rigorously Evaluated Conflicts
Among Policies). Conflict resolution is partially automated by RECAP – outline reso-
lution policies are automatically generated, for completion by the domain expert using
a policy wizard. The general idea is that conflicts are identified and specified through
offline filtering. The resulting conflict resolution policies are then use online.

1.2. Ontology Support for Policies

The authors use a policy system called ACCENT (Advanced Component Control En-
hancing Network Technologies). This includes a policy server that supports the APPEL

policy language, a wizard for creating and editing policies, and a variety of supporting
interfaces for various application domains.

In recent research, the authors have extended APPEL to support new and multiple
domains. As the core schema of APPEL is generic, it can be extended for different appli-
cations by adding further schemas. However, this does not adequately deal with concepts
in the application domains. The authors have therefore developed additional support for
APPEL through a range of ontologies.

The new approach uses OWL (Web Ontology Language) to describe the core AP-
PEL language. The core ontology is then extended hierarchically to define user interface
information and to specialise the language for particular domains. This has increased
the extensibility and precision of the policy language. APPEL is supported by a wiz-
ard that offers a web-based interface for creating and editing policies. This has been re-
engineered to replace hard-coded domain information (for call control) with information
stored within the ontologies. The result is a highly flexibleuser interface, easily adaptable
to reflect new application domains.

1.3. Related Work

Policy conflict is equivalent of feature interaction in telephony and related domains.
Since policies are defined in a decentralised manner, the potential for unwanted interac-
tion is far greater than that of conventional feature-basedsystems. The increased flexibil-
ity that policies offer to users is offset by more pervasive,complex and subtle conflicts
among policies.

Conflicts in a policy-based environment are often caused by the simultaneous execu-
tion of policies with contradictory actions. (Conflicts canalso arise between actions and
system state, i.e. the result of previous actions.) Policy conflict requires study of three dif-
ferent aspects: filtering conflict-prone policies, definingconflict detection mechanisms,

2



and defining a conflict resolution strategy. Although policyfiltering is a new departure,
conflict detection and resolution have already been studied. In system management, for
example, conflict detection and resolution techniques include [1,2]. Enhancements to
COPS (Common Open Policy Service, RFC 2748) are aimed at managing policy conflict
through rigorous definition of actions.

Many techniques have been developed to automate feature interaction detection at
the specification stage. Techniques in feature interactiondetection have focused heav-
ily on a variety of formal methods such as process algebras, automata and (temporal)
logic. Of these, techniques for filtering interaction-prone features are the most relevant.
However, few are directly relevant to policy-based control. Nonetheless, the ideas have
influenced the work reported here.

The notion of interaction filtering was initially presentedin [3]. The filtering pro-
cess is followed by detailed checking and refinement of conflicts. Several tools support
an automated approach to filtering feature interactions. One example is a prototype de-
signed to detect interactions in a call environment [4]. This filters interactions among IN
services, using simple descriptions of the static structure for each service. Interactions
are detected for groups of services used in particular call scenarios.

Formal approaches have been followed by a number of researchers. FIX (Feature In-
teraction Extractor [5]) is an example of a domain-independent approach, although only
application to telephony has been reported. This uses the model checker COSPAN to run
consistency tests on feature specifications. In a further stage, the tool user can investigate
the generated scenarios and decide on their accuracy. [6] presents a filtering technique
based on Use Case Maps and applies it to telephony features. [7] uses preconditions
and postconditions to identify inconsistencies in features for LESS (Language for End
Systems Services).

[8] describes work that is directly relevant to this paper asit uses temporal logic to
formalise the semantics of APPEL. This leads to a formal basis for automated detection
of conflicts. In other work on APPEL, [9] presents a method for discovering conflicts
based on the pre/post-conditions of actions. This allows semantically-based inferences
to be drawn about the compatibility of actions. However, it is technically more complex
than the simple and intuitive approach of the work reported here. As complementary
techniques, future study will investigate how [8,9] can be reconciled and integrated with
the authors’ approach.

The work reported here differs in important respects from the foregoing:
• Policies rather than features are used for control. These support higher-level state-

ments of user intentions, and facilitate the resolution of conflicts.
• The approach is adapted to many domains, including ones outside telephony. For

example, the authors use it to detect conflicts in home care and in sensor networks.
• A formal specification of the system and its policies is not required. In practice

a precise specification is usually infeasible because the system is too complex,
is proprietary, or is open-ended because users can define their own features or
policies.

• The approach is intentionally less formal. This has the advantages of being sim-
pler to set up and more intuitive, i.e. relying only on domainknowledge. Domain
experts, rather than formalists, can define the informationneeded for conflict fil-
tering. The analysis is efficient and domain-oriented.

3



1.4. Paper Outline

Section 2 presents an overview of the ACCENT policy system, the APPEL policy lan-
guage, and its approach to conflict detection and resolution. Section 3 introduces ontolo-
gies, and outlines how they were used to model APPEL. Section 4 explains how ontolo-
gies are used to identify policy conflicts. Section 5 discusses the approach to conflict
filtering and the associated tool support. Section 6 evaluates the results.

2. The ACCENT Policy Approach

2.1. Policy System and Language

The ACCENT policy system (Advanced Component Control Enhancing Network Tech-
nologies,www.cs.stir.ac.uk/accent) was originally designed to allow users to tailor (In-
ternet) call handling to their own preferences. As illustrated in figure 1, the ACCENTsys-
tem is split across three layers. At the lowest level, the system layer connects the policy
system to its external environment. Policy enforcement is handled by the policy system
layer that incorporates the policy server, policy store (where policies reside) and policy
database (containing user login and server configuration data). At the top level, the user
interface layer is where users create policies and where contextual information is ob-
tained. Policies are defined and edited via a web-based policy wizard [10]. Each policy
is saved as an XML document and uploaded to the policy store. The general approach of
ACCENT is described in [11].

APPEL (ACCENT Project Policy Environment/Language [12]) is a comprehensive
and flexible language, designed to express policies within the ACCENT system. Key fac-
tors in the design of APPELinclude a simple but concise structure, ease of extension, and
orientation towards ordinary users. APPELcomprises a core language and its specialisa-
tions for different application domains. The original specialisations were for call control
and conflict resolution, but new specialisations have been developed for home care and
sensor networks.

APPEL defines the overall structure of a policy document: regular policies, resolu-
tion policies, and policy variables. A policy consists of one or more rules in ECA form
(Event-Condition-Action). Each rule has a combination of triggers (optional), conditions

Policy

Store

Context

System

Communications

Network Server

User

InterfaceUser

Interface

Layer

Policy

System

Layer

Communications

System

Layer

Policy

Wizard

Policy

Server

System

Policy

Database

Figure 1. ACCENTSystem Architecture

4



(optional), and actions (mandatory). The core language constructs are extended through
specialisation for new applications.

A policy is eligible for execution if its triggers occur simultaneously and its con-
ditions apply. Additional conditions may be imposed, such as the period during which
the policy applies, or the profile to which the policy belongs. When the policy system
is informed of an event, the applicable policies are retrieved and applied if eligible. As
multiple policies can be triggered, conflicts may arise among their actions.

2.2. Conflict Detection and Resolution

Conflicts result from clashes between pairs of policy actions. As an example from call
control, the caller may wish to conference in a third party whom the callee does not
wish to speak to. The caller/callee policies proposeadd/removeparty(person)for some
individual. These contradictory actions must be identifiedas conflicting. They must also
be resolved, e.g. by giving the caller (as the bill payer) priority.

The ACCENT system allows for both static and dynamic conflict detection. Static
detection is performed when a policy is defined and uploaded to the policy system, while
dynamic detection occurs at run-time. Although both methods are permitted, only dy-
namic detection is currently implemented. This focus was intentional since run-time con-
flict handling is the more challenging task. Dynamic conflicts also subsume static con-
flicts. The actions resulting from a policy trigger are checked pairwise for conflicts. (The
design of the language means that the order of comparison is irrelevant, and that only
pairs need be checked.) The outcome is a set of non-conflicting actions.

Human guidance is almost inevitably required to determine how best to handle con-
flicts. Only certain ‘technical’ conflicts might be detectedfully automatically. Even then,
the treatment of a conflict requires judgment. As an example,suppose one user wishes to
add video to a call but the other user wishes to avoid this. This is clearly an add/remove
conflict. A trivial resolution would be to permit one or otherpolicy to prevail. How-
ever, an acceptable resolution might be much more complex, e.g. using a third party to
adjudicate the conflict.

As a further example, suppose one user wishes to add the G.723audio codec to a call
but the other user wishes to avoid it. This appears to be an identical kind of add/remove
conflict. In fact it is not, because both parties (in H.323) must be willing to support the
G.711 audio codec. There is therefore no need to treat this asa conflict. This illustrates
that conflict detection requires domain knowledge and humanintuition.

Conflict handling in ACCENT is defined by resolution policies that are distinct from
regular policies. Resolution policies express when and howthe system should respond
to conflicts. Their effect is to process a set of proposed policy actions, selecting those
that are compatible with the conflict handling rules. Resolution policies are specified as
an extension of the core APPEL language, and therefore use the same syntax as regular
policies. However, resolution policies use a different vocabulary because they serve a
different purpose. The domain-specific actions of regular policies are the triggers of res-
olution policies. Resolution policies can dictate genericoutcomes (selecting among the
proposed actions) or specific outcomes (dictating domain-specific actions).

APPEL has a built in notion of policy preference which allows a userto indicate
how strongly they wish a policy to be applied. This allocatespriorities to policies as one
means of resolving conflicts. However, other resolutions may be used such as choosing

5



the policy of a superior user, or choosing a longer-standingpolicy. Resolution policies
gives considerable flexibility in that conflict handling is not hard-coded into the policy
system. It is defined externally and can be domain-specific. To avoid infinite regress,
resolution is performed just once. The approach ensures that the outcome is conflict-free,
and does not require resolutions to be checked again for conflicts.

Conflict handling within ACCENT is described in [13]. The main limitation of this
previous work was that resolution policies had to be defined manually. This was tedious
and error-prone. The new work reported here describes an ontology-driven mechanism
to automate conflict detection. The RECAP tool provides automated support for detecting
conflicts and for creating outline resolution policies. Thedetails of resolution require
human judgment and are added in a further manual step.

3. Ontology Support for Policies

3.1. Ontology Background

An ontology is the set of terms used to describe and representan area of knowledge,
together with the logical relationships among these [14]. It provides a common vocabu-
lary to share information in a domain, including the key terms, their semantic intercon-
nections, and the rules of inference. Ontologies enable separation of domain knowledge
from common operational knowledge in a system.

A variety of specialised languages are used to define ontologies. OWL (Web Ontol-
ogy Language [15]) is a standard XML-based language. It is supported by a wide range
of software, and can be integrated with other techniques. Inaddition, OWL provides a
larger function range than any other ontology language to date. For these reasons, OWL

was used to define the ontologies in the work reported here.
An OWL ontology defines classes, properties and individuals. A class represents a

particular term or concept in a domain, while a property is a named relationship between
two classes. An individual is an instance or member of a class, usually representing
real data content within an ontology. Properties are definedfor classes in the form of
restrictions that specify the nature of a relationship between two classes. OWL supports
inheritance within class and property structures. OWL can also import shared ontologies.
The ontological basis for APPEL exploits this, using multiple documents for different
aspects of the core language and its specialisation in various domains.

Ontology support for policies is provided by POPPET(Policy Ontology Parser Pro-
gram Extensible Translation [16]). This uses the PELLET ontology reasoning engine
(pellet.owldl.com) and the Jena ontology parser (jena.sourceforge.net). POPPETparses
and integrates ontologies on behalf of the ACCENT system. Figure 2 illustrates the rela-
tionship between ACCENT and POPPET.

3.2. Ontologies for Policies

Ontologies were defined for the core of APPEL and its domain specialisations. Using
OWL, three layers of ontologies were developed [16].

At the lowest level,GenPol(generic policy) defines core language elements such
as variables, rules, triggers, conditions and actions. This includes the basic elements

6



POPPET

Server

PELLET

Reasoner

POPPET

Policy
Wizard

Policy
Server

ACCENT

RMI

OWL

Ontology
ACCENT

User Interface

Figure 2. Ontology Support by POPPETfor ACCENTPolicies

of a policy and the cardinality rules relating these. Each core element is defined as an
ontology class. Relationships between classes are defined using ontology properties that
link them. Using properties to describe the associations between concepts is a powerful
means of modelling the structure of APPEL. TheGenPolontology contains no domain
knowledge, only a definition of how high-level concepts may be combined to form a
regular policy or resolution policy.

The ACCENT policy wizard [10] is a user-friendly front-end for creating and edit-
ing policies. Such a facility is key in supporting policy definition by non-technical users
of the system. The wizard presents policy and domain information using near natural
language. The user interface is not part of APPELproper, but is essential for the system
to be usable. Additional, wizard-related knowledge is therefore defined inWizPol(wiz-
ard policy) as an extension ofGenPol. This specialises the core language for use with
the wizard. Examples of wizard-specific facilities includethe categorisation of triggers,
conditions, actions and operators. In addition, a subset ofthe language functionality is
matched to the skill or authorisation level of a user.

The GenPolandWizPol ontologies define domain-independent aspects of regular
policies and resolution policies. To specialise the language for a new domain, a further
ontology is created to import and extend these base ontologies; importingWizPol im-
plicitly imports GenPolas well. A domain-specific ontology can contain arbitrary new
concepts, but all policy language concepts must be subclasses within the hierarchy de-
fined by the base ontologies. Consequently, as these ontologies are combined through an
import mechanism only, they do not suffer incompatibility issues.

TheCallControl domain ontology specialises APPEL for call handling. Significant
extensions include call control triggers, conditions and actions. Using properties defined
in GenPol, constraints may be placed on individual triggers, conditions and actions. This
defines their use for certain user levels and for display categories within the wizard. In
addition, properties define which actions and conditions are permitted with a particular
trigger, and the valid range of operators associated with each condition parameter. Fur-
ther user interface and data type aspects may be included in adomain-specific ontology.

7



4. Automated Conflict Detection

4.1. Action Effects

Conflicts arise between policy actions with certain parameters. When two actions with
a similar effect are executed simultaneously, the result may be a conflict. For example,
actions that add and remove the same aspect are potentially in conflict. Thus, the call
control actionsadd party and remove party are likely to contradict each other. Other
conflicts are far more subtle, and cannot easily be identifiedby naming alone.

Action parameters may use enumerated types, e.g. call control parametermedium
has possible valuesaudio, videoandwhiteboard. Actions plus selected parameters allow
a deeper exploration of conflicts. Where an action has an enumerated parameter type,
conflicts between instances of the same action are likely only if the parameters are the
same. For example, call control actionadd medium(audio)could be considered to con-
flict with a secondadd medium(audio). However, if the second action wished to add
video then this would not be an obvious conflict. For this reason, actions with distinct
values in an enumerated parameter set are treated as distinct actions.

In general, an action must be considered along with a subset of its parameters. In
a domain like call control, there is a rich set of action namesthat suggest conflicts in
themselves. Even there, it is often necessary to take parameters into account. For ex-
ample, adding one party and removing a different party is notproblematic. In other do-
mains such as home care and sensor networks, a much more limited selection of action
names is used. This is because actions are mainly differentiated by their parameters. A
simpledevice out action, for example, carries parameters that indicate the action type,
device class, device instance and action parameters. Conflict detection has to work with
the domain policy language as defined. In general, a subset ofparameters must therefore
be considered for conflict along with the basic action name. However, for simplicity the
following text mainly refers to comparing actions.

Policy actions are defined to have one or more effects on the execution environment.
These effects range from the technical (e.g. bandwidth) to the social (e.g. privacy). Inter-
nal policy actions affect the policy system itself, such as setting system properties or ac-
cessing system resources. Conflicts are likely where two actions share a common effect.
Any action may potentially conflict with itself. However, all action pairs must be consid-
ered too. (As noted earlier, only two-way and notn-way conflicts need be considered.)

Figure 3 shows the effects of internal policy actions, whilefigure 4 shows the effects
of call control actions. Call control actions with enumerated parameters are listed sepa-
rately. Effects for internal policy actions are distinct from those of domain actions, as in-
ternal and external actions do not (normally) conflict. Effect categories differ depending
on the language domain.

As discussed in section 3.2, ontologies have been used to model policy language
concepts. It is therefore convenient to define action effects in these ontologies. However,
the ontologies play no role in conflict detection or resolution. As conflict detection is
not an integral part of APPEL, the concept of action effect is defined in theWizPolon-
tology. This allows conflict information to be specified outside the core language, while
maintaining the advantage of further specialisation in domain-specific ontologies. Effect
information is defined inWizPolthrough theActionEffectclass and thehasActionEffect
property. TheActionEffectclass is a superclass of all effect categories for both internal

8



Action Effect
log event(arg1) file
restart timer(arg1) timer
send message(arg1,arg2) channel
set variable(arg1,arg2) variable
start timer(arg1,arg2) timer
stop timer(arg1) timer
unsetvariable(arg1) variable

Figure 3. Internal Action Effects

Action Effect
add caller(conference) party, privacy
add caller(hold) party, privacy
add caller(monitor) party, privacy
add caller(release) party, privacy
add caller(wait) party, privacy
add medium(audio) medium, privacy
add medium(video) medium, privacy
add medium(whiteboard) medium, privacy
add party party, privacy
confirm bandwidth bandwidth
connect to route
fork to route
forward to route
note availability availability
note presence presence
play clip medium
reject call call
reject bandwidth bandwidth
removemedium(audio) medium
removemedium(video) medium
removemedium(whiteboard) medium
removeparty party

Figure 4. Call Control Action Effects

and domain-specific policy actions. Generic action effectsare defined as subclasses of
this class inWizPol. Domain-specific action effects are defined as subclasses within a
separate domain ontology that importsWizPol. Each policy action is linked to the appro-
priate effect category class using thehasActionEffectproperty. This relates actions and
effects, allowing a tool to infer overlapping actions.

4.2. Conflict Detection Algorithm

Only pairs of actions need to be considered in the analysis; there are no three-way con-
flicts. Potential conflicts between actions can be inferred from the ontology-defined ef-
fect categories through a two-stage algorithm. Firstly, any two actions sharing at least one

9



common effect are identified as potentially conflicting. Secondly, actions with enumer-
ated parameter types are analysed. Where two actions share the same parameter value
then they potentially conflict, otherwise it is assumed thatno conflict exists.

The total number of action pairs, including self-conflicts,is n(n+1)
2 wheren is the

number of possible policy actions. The policy language for call control has 21 possible
actions and therefore a total of 231 action pairs. Conflict handling is commutative (ifA1
andA2 conflict, then so doA2 andA1) and associative (the way in which actions are
paired is irrelevant).

The ontologies allow a list of actions to be inferred for eacheffect category. If two
actions are present in some category, they can be marked as potentially conflicting. For
example, the call control actionsfork to andforward to potentially conflict as they both
affect theroute. All action pairs deemed to conflict in this way are then automatically
reviewed with respect to their parameters. As explained earlier, actions with enumerated
parameter types are considered in more detail. This increases the total number of action
pairings as an action may be instantiated multiple times with different parameter values.
For example, the actionadd mediumwith its parameter is equivalent to three distinct
actions. This allows more accurate analysis of potential conflicts. Where actions might
be treated as potentially conflicting based on a shared effect, this might not be the case
when particular parameters are considered.

To explain this more concretely, some examples formediumare shown in figure 5.
An action may conflict with itself if there is a common parameter (e.g. both instances
wish to add video), and may not conflict if the parameters are different (e.g. they wish
to add video and whiteboard respectively). Different actions with a common effect and
the same parameter indicate potential conflict (e.g. attempting to add and remove audio
simultaneously). Actions with a common effect and dissimilar parameters are assumed
not to conflict (e.g. altering the medium by adding video and removing whiteboard).

Action1 Action2 Conflict
add medium(audio) removemedium(audio) X

add medium(audio) add medium(video) ×

add medium(video) add medium(video) X

add medium(video) removemedium(whiteboard) ×

Figure 5. Sample Call Control Conflicts with Action Parameters

5. The RECAP Conflict Filtering Tool

5.1. Automated Support for Conflict Filtering

The RECAP tool (Rigorously Evaluated Conflicts Among Policies) has been developed
to automate the algorithm in section 4 for identifying conflict-prone actions. Figure 6
illustrates what the tool looks like on-screen. Taking the first line as an example, the
tool shows pairs of actions (add medium(audio)and add medium(audio)), why they
conflict (shared effect onmediumandprivacy), and when this conflict was last modified
(automatically or manually).

10



Figure 6. Screenshot of RECAP

11



Depending on the domain, the conflicts identified by RECAP may or may not be
complete and correct. Conversely, subtle conflicts that arenot automatically flagged can
be added by hand. As noted earlier, conflict handling will always require human judg-
ment and cannot be fully automated. Based on human guidance,RECAP produces con-
flict resolution policies.

RECAP is started by pointing at the relevant domain ontology. Using the action ef-
fects, the tool automatically constructs a matrix of all policy action pairs and highlights
those deemed to be potential conflicts. The tool user may explore the matrix, confirming
or refining each conflicting action pair. If closer inspection reveals that there is no real
conflict, this pairing can be flagged as conflict-free. If an action is linked in an ontology
to some effect, this may not be true of the actual implementation. Conflicts arising from
this cause can be dismissed using the tool to undo the linking.

Potential conflicts are displayed in the tool matrix by noting the common effects in
the appropriate cell. For convenience, internal and domain-specific actions are described
here in separate figures though in practice they are combinedby RECAP.

The result of filtering internal conflicts for APPEL is shown in figure 7. Conflicts
are numbered in the figure according to the underlying effect. As an example of conflict,
actionsstart timer andstop timer are in conflict because they both have atimer effect
as indicated at their intersection. Some conflicts are non-obvious (e.g.add caller and
add medium). Detailed study by a domain expert confirmed that all conflicts discovered
are real, and that no conflicts had been missed. No changes were therefore needed in the
analysis.

lo
g

ev
en

t

re
st

ar
t

tim
er

se
nd

m
es

sa
ge

se
tv

ar
ia

bl
e

st
ar

t
tim

er

st
op

tim
er

un
se

tv
ar

ia
bl

e

Acti
on

1/
Acti

on
2

2 log event
3 3 3 restart timer

1 send message
4 4 set variable

3 3 start timer
3 stop timer

4 unset variable

Conflict: 1 channel, 2 file, 3 timer, 4 variable

Figure 7. Internal Conflicts identified by RECAP for APPEL

Call control actions deemed conflicting by RECAP are shown in figure 8. For sim-
plicity, this figure shows conflicts between actions withoutparameters. In the tool, ac-
tions with enumerated parameter types are displayed and compared distinctly. Conflicts
are numbered in the figure according to the underlying effect.

12



Detailed study by a domain expert confirmed that all detectedconflicts but one are
real, and that no conflicts have been missed. There is a possible problem in thatcon-
firm bandwidthis indicated to conflict with itself due to a sharedbandwidtheffect. This
could indeed be an error, as it might lead to bandwidth being allocated twice. As it hap-
pens, in the ACCENT system it is harmless to confirm bandwidth twice. Without hu-
man guidance, this action pair would be flagged as a conflict. It should be noted that
the bandwidtheffect is still required as it correctly identifies the conflict betweencon-
firm bandwidthandreject bandwidth.

ad
d

ca
lle

r

ad
d

m
ed

iu
m

ad
d

pa
rt

y

co
nfi

rm
ba

nd
w

id
th

co
nn

ec
tt

o

fo
rk

to

fo
rw

ar
d

to

no
te

av
ai

la
bi

lit
y

no
te

pr
es

en
ce

pl
ay

cl
ip

re
je

ct
ba

nd
w

id
th

re
je

ct
ca

ll

re
m

ov
e

m
ed

iu
m

re
m

ov
e

pa
rt

y

Acti
on

1/
Acti

on
2

5,7 7 5,7 5 add caller
4,7 7 4 4 add medium

5,7 5 add party
2 2 confirm bandwidth

8 8 8 connect to
8 8 connect to

8 forward to
1 note availability

6 note presence
4 4 play clip

2 reject bandwidth
3 reject call

4 remove medium
5 remove party

Conflict: 1 availability, 2 bandwidth, 3 call, 4 medium,
5 party, 6 presence, 7 privacy, 8 route

Figure 8. Call Control Conflicts identified by RECAP for APPEL

As demonstrated by figures 7 and 8, the automated conflict analysis (for call control)
is very accurate. However, it confirms that human guidance isstill needed in a small
number of cases.

RECAP is mainly intended to analyse conflicts when a domain policy language is
initially defined, using an ontology as the source of action effects. This initial analysis is
saved to file and can subsequently be reloaded into the tool. This avoids the user and the
tool from having to repeat a prior analysis, particularly ifthe user has manually modified
the conflict list.

13



5.2. Automated Support for Resolution

RECAP turns the conflict list into a set of outline APPEL resolution policies that define
the detection part of conflict handling. These policies define the conflicting triggers and
parameter conditions, but resolution actions must be completed manually. The policies
are automatically uploaded to the policy system, where the wizard is used to define the
resolutions. Conversely, RECAP reads existing resolution policies and annotates the ma-
trix with conflicts derived from these. This is a useful feature which allows conflicts de-
fined manually via the policy wizard to be used in conjunctionwith conflicts identified
by RECAP.

Resolution policies can be simple or complex, specific or generic, and dependent on
many factors including the conflicting policies and their parameters. One or more actions
may be required of a resolution. See [13] for a list of typicalresolution policies. As an
example, suppose one party wishes to add video to the call with add medium(video),
while the other party wishes to conference in a third person with add party(person).
This is correctly flagged as a conflict since the third party would be able to view the
call parties and their workplaces (affectingprivacy). Using human judgment, it might be
decided to allow video and the third party. However, someone(e.g. a manager) should
be included in the call to oversee it.

In view of this complexity, RECAP generates only outline resolution policies that
specify default policy attributes, triggers corresponding to the conflicting actions, and
default actions to resolve the conflict. The outline resolutions are then uploaded and
customised using the wizard as normal. Resolution policy editing is dealt with by the
wizard and not by RECAP. This allows RECAP to remain domain-independent and not
be constrained to a particular resolution technique or policy language. An additional
advantage is that resolution policies are then edited through the same interface as regular
domain policies.

All default resolution parameters are defined by a properties file, and can therefore
be readily modified according to local practice. The property file allows any structural
components of outline resolutions to be altered. Resolution policies are normally dis-
abled on upload. This ensures they are ignored by the policy server until they have been
edited to include a specific resolution. This avoids incomplete or inconsistent resolutions
from being used accidentally.

RECAP could be given a more user-friendly interface to change the default resolu-
tion policy structure and parameters. Currently this is achieved by manually editing the
properties file. Although the tool is mainly intended for useduring definition of a new
application domain, there could be some value in easing later changes.

Policies in general are distinguished by unique identifiers, typically some phrase
chosen by the user. Resolution policies automatically created by RECAP have machine-
generated (but human-usable) identifiers. If the identifierof such a policy is changed
manually, this could lead to duplication. The tool could detect this situation by looking
for overlap of resolution triggers and conditions.

6. Conclusion

A technique and a tool have been introduced for (semi-)automated filtering of conflict-
prone policies. Ontologies have been used to model the core and domain-specific aspects

14



of APPEL – for regular and as well as resolution policies. Conflicts between policy ac-
tions are handled in ACCENT by resolution policies. Action effects defined in ontologies
allow conflicting action pairs to be discovered as potentialconflicts.

As has been seen, the analysis leads to very accurate results(for call control).
Nonetheless, RECAP allows potential conflicts to be refined manually since a fully auto-
mated approach is impossible due to the complexity and subtlety of policy interactions.
Following filtering, outline resolution policies are generated and uploaded for comple-
tion with the policy wizard.

RECAP offers an automated approach to conflict analysis and resolution where pre-
viously this was achieved manually. This has improved the scalability of APPEL, and has
substantially reduced the time and complexity of dealing with conflicts. Associating ac-
tions with their effects is very simple compared to formal methods, but yields very good
results. The straightforward and domain-oriented approach is much less expensive to use
than one that requires a complete formal model.

RECAPprovides a way of visually identifying conflicts within an arbitrary collection
of policy actions. Unlike many existing approaches and tools, policies in any domain
may be analysed easily by RECAP, and not just those for call control. The tool is also
useful for policy applications where action parameters play a bigger role.

RECAP has been designed for stand-alone use. Although conflict data is mainly ex-
pected to derive from an ontology, conflict information may be input from a local file.
Consequently, data generated by other tools or systems may be used by RECAP for con-
flict filtering. The only requirement is knowledge of the conflict data format used.

Although RECAP is aimed at filtering conflicts in the initial stages of specifying a
new policy language, it may be used in later revisions of the language to refine conflicts
and to generate resolutions.

Acknowledgements

The authors thank their colleagues Stephan Reiff-Marganiec (now at the University of
Leicester) and Lynne Blair (who was on leave from Lancaster University during the
development of ACCENT). Both contributed substantially to the design of the policy
system that lies at the foundation of the work reported in this paper. Gavin Campbell’s
work on the PROSENproject was supported by grant C014804 from the UK Engineering
and Physical Sciences Research Council.

References

[1] J. Chomicki, Jorge Lobo, and S. Naqvi. A logical programming approach to conflict resolution in policy
management. In Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, editors,Proc. Principles of
Knowledge Representation and Reasoning, pages 121–132. Morgan Kaufmann, 2000.

[2] Emil C. Lupu and Morris Sloman. Conflict analysis for management policies. InProc. 5th. International
Symposium on Integrated Network Management, pages 430–443. Chapman-Hall, London, UK, 1997.

[3] Kristofer Kimbler. Addressing the interaction problemat the enterprise level. In Petre Dini, Raouf
Boutaba, and Luigi M. S. Logrippo, editors,Proc. 4th International Workshop on Feature Interactions
in Telecommunication Networks, pages 13–22. IOS Press, Amsterdam, Netherlands, June 1997.

[4] Dirk O. Keck. A tool for the identification of interaction-prone call scenarios. In Kristofer Kimbler
and Wiet Bouma, editors,Proc. 5th Feature Interactions in Telecommunications and Software Systems,
pages 276–290. IOS Press, Amsterdam, Netherlands, September 1998.

15



[5] Amy P. Felty and Kedar S. Namjoshi. Feature specificationand automated conflict detection.ACM
Transactions on Software Engineering and Methodology, 12(1):3–27, January 2003.

[6] Masahide Nakamura, Tohru Kikuno, J. Hassine, and Luigi M. S. Logrippo. Feature interaction filtering
with Use Case Maps at requirements stage. In Muffy H. Calder and Evan H. Magill, editors,Proc. 6th
Feature Interactions in Telecommunications and Software Systems, pages 163–178. IOS Press, Amster-
dam, Netherlands, May 2000.

[7] Xiaotao Wu and Henning Schulzrinne. Handling feature interactions in language for end systems ser-
vices.Computer Networks, 51:515–535, January 2007.

[8] Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini. Logic based detection of conflicts in
APPEL policies. In Ali Movaghar and Jan Rutten, editors,Proc. Int. Symposium on Fundamentals of
Software Engineering. Springer, Berlin, Germany, February 2007.

[9] Ahmed F. Layouni, Luigi Logrippo, and Kenneth J. Turner.Conflict detection in call control using first-
order logic model checking. In Lydie du Bousquet and Jean-Luc Richier, editors,Proc. 9th Int. Conf. on
Feature Interactions in Software and Communications Systems, pages 77–92, France, September 2007.
IMAG Laboratory, University of Grenoble.

[10] Kenneth J. Turner. The ACCENTpolicy wizard. Technical Report CSM-166, Department of Computing
Science and Mathematics, University of Stirling, UK, December 2005.

[11] Kenneth J. Turner, Stephan Reiff-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray, Peter Perry, and
Joe Ireland. Policy support for call control.Computer Standards and Interfaces, 28(6):635–649, June
2006.

[12] Stephan Reiff-Marganiec, Kenneth J. Turner, and LynneBlair. APPEL: The ACCENT project policy en-
vironment/language. Technical Report CSM-161, Department of Computing Science and Mathematics,
University of Stirling, UK, December 2005.

[13] Kenneth J. Turner and Lynne Blair. Policies and conflicts in call control.Computer Networks, 51(2):496–
514, February 2007.

[14] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to creating your first ontology.
Technical Report KSL-01-05, Stanford Knowledge Systems Laboratory, Stanford, USA, March 2001.

[15] World Wide Web Consortium.Web Ontology Language (OWL) – Reference. Version 1.0. World Wide
Web Consortium, Geneva, Switzerland, February 2004.

[16] Gavin A. Campbell. Ontology for call control. Technical Report CSM-170, Department of Computing
Science and Mathematics, University of Stirling, UK, June 2006.

16


