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Abstract

CRESS(CHISEL Representation Employing Systematic Specification) idatiom and
set of tools for graphical specification and analysis ofufees. It is applicable wherever a
system consists of base functionality to which are addeidmgity selected features. The
CRrREssnotation is introduced for basic diagrams, feature diagtaend rules governing
their behaviour. Although telephony is used to illustréie approach, Ressis not limited
to this domain. The structure and use of the portalieEStoolset is explained. RESS
can generate code for a variety of target languages. Thegyréor translation to btos
is presented, along with some technigues for analysingehergted specifications.

Keywords: feature, IN (Intelligent Network), bTos (Language Of Temporal Ordering
Specification), SDL (Specification and Description Lang)agervice, telephony

1 Introduction

1.1 Overview of CRESS

CRESS(CHISEL Representation Employing Systematic Specification) istatium and set of
tools for graphical specification and analysis of featusessis designed as a flexible nota-
tion for describing and combining features. It is graphinalrder to improve its attractiveness
to an industrial audience. Automated tool support has beeeldped to check the correctness
of diagrams and to translate them into various (formal) leges. The toolset is portable and
can run on a variety of platforms with a variety of front-endgtam editors and back-end
target languages.

CRESssis based on the SEL notation developed by BellCore [1] for describing telepjhon
features. Animportant reason for choosingI€EL as the basis is that it was developed to meet
industrial needs. As far as practicablerESsis a strict (if substantial) extension ofHGSEL.
This means that practically anyHGSEL diagram can be used withREss although it is highly
desirable to use the new capabilities d#€3s CHISEL has been significantly extended and
generalised in EEss More importantly, @esshas a tightly defined notation that is translated
automatically into formal specifications — currentlptos (Language Of Temporal Ordering
Specification) and SDL (Specification and Description Layg).
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A CREssroot diagram describes the basic capabilities of a systelme. ribtation resem-
bles a state transition diagram. The main capability REEsis describing additional feature
diagrams that modify the root diagram (or other feature rdiang). Features are automatically
combined with each other and the root diagram to yield a caigpsystem description. This
approach is common in telephony, where the root diagramesponds to POTS (Plain Old
Telephone Service) and the feature diagrams corresporitiibamal services like CW (Call
Waiting) and TWC (Three-Way Calling).

CRESsis not fixed in the telephony domain, although this is the neagpplication to be
presented in the paper. It can be used to describe any syst¢consists of base functionality
and additions to this. This situation is quite common; exiasarise in defining car accessories,
electronic mail [6], lift control [11], object-oriented delopment, operating systems and word
processors. Combining a number of features often leadsetdetiture interaction problem
[3], whereby features that are conceived in isolation dointgrwork properly. One of the
motivations for translating REssinto a formal specification is that it permits rigorous aisay
of feature interaction problems.

The work has achieved a graphical and flexible representafionodular features. It is
applicable to a variety of domains, although it has beerdaédid in the field of telephony. The
approach is neutral with respect to the target languagesarmén be used as a front-end for
any formally-based approach. The toolset is portable andeaised on a range of platforms.

1.2 Previous Work

The initial version of @Esswas described in [14]. The emphasis in that paper was on for-
malising CHISEL diagrams. The main limitation was that feature descrifgtioere not very
modular. Features could be described and analysed indiNybut their automated combina-
tion was severely limited. The work reported in the presemep has addressed the modularity
problem. Feature descriptions are now modular and more acmpeature combination has
also been made much more flexible. Interestingly the imprmres have require relatively
small changes to the graphical notation, though the uniertpol support has had to be sub-
stantially extended.

The notion of feature composition has been around for some.tiArchitectures such
as [8, 10, 15] have been devised to allow features to be tretdbuilding blocks. In some
approaches, the architectural descriptions are tramstatéormal specifications that permit
further analysis. For example, [2] describes use-case Hwapelephony features that are
hand-translated into&Ttos [12, 13] and other papers illustrate the author’s work onsk
(Architectural Notions in Service Engineering) NASE builds features and services in a hier-
archical fashion, and then translates them @o@sfor simulation and interaction analysis.

CRrEss intentionally separates the representation of featui@® fiheir analysis. Those
who apply formal methods to feature interaction often haveiaste time re-discovering and
re-specifying features in their formalismREssis intended as a common front-end for other
languages. €essalso does not need to develop its own approach to featunexatieen since
this is handled by other tools that take a specification astdrging point. As an example, the
University of Ottawa [4] have developed analysis techngghet can be used with the output of
CRESS In fact the Ottawa team wrote their specifications by hantial reported in [14] the
LoTos generated €Essis more compact and more readable. And of course, autortiatica
generated specifications are much easier to maintain thrch@nges to the feature diagrams.
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2 CRESSNotation

This section provides a brief overview of the&kEssnotation. RESSis illustrated with ref-
erence to telephony and the IN (Intelligent Network); sfieally, features taken from [5] are
used as examples.RESSis not, however, limited to telephony. The tools are tabigesh so
that OREssmay be used in a variety of other domains.

2.1 Basic Diagrams

A CREssdiagram is a directed, possibly cyclic, graph of nodes lioksarcs. A basic node
has a number and an associated event,le@ff-hook Ato indicate subscribeA picking up
the phone. The node number is only for identification, buypla role when features are
introduced. An event carries a signal suchCdishookand optional parameters like If an
event parameter has a known value it is supplied in the egdrgrwise it receives a value as a
result of the event.

Events are classified as inputs or outputs (as far as thesystieg specified is concerned).
A composite node may contain several events in paralleltimge must be all inputs or all
outputs. Input nodes normally alternate with output nodi@sgaa path, but this is not a restric-
tion. Each event may be associated with explicit assignsnefhese are normally separated
by ‘7, but this symbol can be omitted (as irHGSEL) if there is no syntactic ambiguity. KESS
expressions allow the usual kinds of arithmetic, comparisogical and set operators. An
example of a composite event is:

14 Stop Ringing B A / Busy B<— False||| Stop AudibleRinging A B

An empty node, meaning no event occurs, is occasionallyulasfa connector. It can be
used to join a number of preceding and following nodes as & mampact way of linking all
the nodes directly. As in SEL, an empty node may be explicitly labelledldsEvent

The arcs linking nodes may be plain or may carry a booleanitondas a guard. If the
branches of a choice are not guarded, the decision is detedby the events that follow. If the
branches are guarded, the decision is determined by thé gqpressions. For convenience,
anElsecondition may be used as one of the alternatives.

A diagram must have a unique initial node. If cycles in a daagmean that the initial node
cannot be determined, an artifictatart node may be added to the diagram. A diagram may
have several leaf nodes. Behaviour either terminates mengctes back to the initial node (as
a design choice).

A large diagram may be split over several pages. Each sastiettered (to avoid confusion
with the numeric node labels). An arrow symbol points to tegtrdiagram section (e.@),
which begins with this target label.

2.2 Rule Boxes

A major informality in GHISEL concerns how variable values are changed by events. As may
be seen from [5], such rules are generally expressed in&ndh GRESS a rule box provides
a formal definition. The variables used by a diagram are deéfxelicitly, e.qg.:

UsesAddress A Address B
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An address is the identification of a user (e.g. a phone num@¢her variables types include
Boolean Messagdvoice message to a subscribd?)N (Personal Identification Number) and
Time Temporary variables like addre8$..A9and messagkl0..M9 are implicitly available.
Any stands for an indeterminate address — an unknown or do@tvedme.

In addition to diagram variables,RESsssupports status variables that capture globally sig-
nificant information. For example, a phone call needs to kifithe called party is busy or not.
Status variables are typically indexed by address parameidusBusy Pindicates whether
phone numbeP is busy. Status variables are also used to hold user profdenation such as
what features have been subscribed to, €ajlWaiting P. Following theUsesstatement, rules
of various types can be given.

Variable initialisation rules can be given, e.g.:

F := ForwardBusy A

CREssdelays such initialisations until the required valuadsgre known.

Although the assignments triggered by an event can be wrix@licitly after the event,
this clutters a diagram and becomes repetitious. Instemds€allows rules to be formulated
for assignments. For example when the calling party handgetgre the called party answers,
the called party stops ringing and is no longer blisy:

Stop Ringing P Q / Busy R— False

This is the same notation as used in an event node, excephéhavent parameters are place-
holders. If an event matches the pattern ab&endQ will be set to the actual parameters. An
assignment rule may be overridden by an explicit assignifoeriie same variable in an event
node.

Expression rewrite rules may be defined. A simple exampleatd line being idle means
it is not busy:

Idle P<— ~Busy P

Any use ofldle is then transformed into a use®bisy This kind of rule in fact defines a macro.
Much more complex macros can be defined as shorthand natafibacros can also be used
to introduce named constants.

Finally, itis occasionally useful to define a signal tramsfation rule that causes one signal
to generate another:

Start Billing P Q / LogBegin P Q Fime

With this brief introduction to @ess the description of POTS in figure 1 should be com-
prehensible. The rule box is the rounded rectangle at thietopf the figure. The text between
horizontal bars at top centre is a comment. The event nogeshawn as shadowed ovals. In
fact the shapes of the symbols in a diagram are irrelevamragsds they are distinct and con-
sistent. Other forms of comment are possible such as audiphigal and textual attachments.

1CrEssneeds only simple rules f@usybecause its boolean variables are ‘sticky’. For examplevifriable
is assignedruetwice, it needs to be assign€disetwice before it reverts t&alse
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ﬂes Address A Address B \ A !S the calling number
B is the called number

1 Off-hook A
Off-hook P / Busy P <- True
Answer P / Busy P <- True
On-hook P / Busy P <- False

2 DialTone A
Start Ringing P Q / Busy P <- True
Stop Ringing PQ/ Busy P <- False 3DialAB 17 On-hook A
w P <- ~Busy P /
Idle B

Busy B

15 LineBusyTone A
13 On-hook A 16 On-hook A
Stop AudibleRinging A B Ill

14 Stop Ringing B A lll
Stop AudibleRinging A B
Start Billng A B P 9ng
7 On-hook A 10 On-hook B
8 Disconnect B A Il 11 Disconnect A B |l
Stop Billing A B Stop Biling A B

9 On-hook B 12 On-hook A

Figure 1: GREssRoot Diagram for the Plain Old Telephone Service

4 Start Ringing B A lll
Start AudibleRinging A B

6 Stop Ringing B A lll

2.3 Feature Diagrams

The CREssnotation introduced so far is essentially a convenient fofratate transition di-
agram. Where €eEssmakes a significant contribution is in its capabilities fefiding and
combining features. A feature describes how it is insenméal another diagram. Typically this
is the root diagram, although features may modify featui@shrevity, ‘root diagram’ in the
following covers both cases. A feature hablsesstatement that imports the other diagrams
it needs. If features depend on each other hierarchichlystibsidiary diagrams are imported
automatically. In the simplest and commonest case, onlydbediagram need be named:
Uses/ POTS. Any variables required by a feature are declaredrédife /' (though this part
of a Usesstatement is often empty). Feature behaviour may be irtserte another diagram
through splicing or instantiation.
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2.3.1 Splicing Features

When a feature is to be spliced it defines its attachment pothe root diagram, e.®2OTS 7
This source node gives the diagram name and node numbeac(|rHis is the main reason for
having node numbers.) To attach to the first node of a diagite@mode ‘number’ is given as
Start. The source node for a feature may bind the values of rootaiagariables to those in
the feature:

POTS Ac—XB<-Z7

Having located the point of attachment, a feature defineg iwh#ers in the root diagram.
A node and its successors may added to the root. Part of thdieggygam may also be replaced
in its entirety by identifying the original node, e.g. nd@®TS land its content& Off-hook A
The effect is to replace this node and what originally fokalit. Guards as well as event
nodes may be added or replaced in a feature diagram. A featayesimply add behaviour
that terminates in its own leaf nodes. More typically it gones with another part of the root
diagram by referencing a target node IR®TS 2 A target node may also have root/feature
variable bindings like a source node.

Figure 2 shows how the feature INTL (IN Teen Line) is splicathiPOTS. The idea of
INTL is that use of the phone between certain hours requirBé\ato be entered (e.g. to
prevent teenagers from calling within peak hours). Thisuleamakes use of signals between
the telephone switch and the SCP (Service Control Pointsed in the IN). SCP signals are
somewhat complex and irregular in their structure, tholgly Blways start with the triggering
phone number. This may be followed by the calling number &edctlled number. Other
parameters may include the current time, the paying pargyforwarding number. The exact
details of SCP signals are given in [5].

The INTL feature is defined to replace POTS node 1 and itsitrango node 2: the initial
off-hook progressing to dial tone, as shown in figure 1. Wiherpthone goes off-hook, the SCP
is alerted: INTL events 1 and 2. If INTL is not enabled for thisone or for the current time,
the SCP allows the call to continue: INTL event 13, POTS efe@therwise a voice message
M1 (e.g. ‘Enter PIN’) is provided by the SCP and announced tae: INTL events 3 and 4.
The user may hang up and abort the call attempt: INTL evenisl%aAlternatively, the user
may dial a PIN in the form of a phone numb&t: INTL event 7; see section 2.3.2 regarding
the use of ‘7!". The PIN is sent as a resource value to the SGReIPIN is correct, the SCP
allows the call to continue: INTL event 13, POTS event 2. Qilge the SCP causes a voice
messagaM?2 (e.g. ‘Wrong PIN’) to be announced, and the call is forcildymiinated: INTL
events 9to 12.

2.3.2 Feature Templates

A feature should be spliced if it applies just once to the riagram. Another necessary
condition for splicing is that the feature should have ordwMocal effect on the root diagram.
A number of the GISEL features in [5] suffer from the problem of replacing largetpaf
POTS. For example CFBL (Call Forward on Busy Line) repladesua80% of POTS, much
of diagram being similar to the original. Worse still, CFBbutd apply several times in a
call. A call may be forwarded several times, for exampleydeessive forwarding numbers are
busy. TWC (Three-Way Calling) sets up two call legs, and Clidy apply in each case. The
original CHISEL diagrams can therefore really only be combined individuaith POTS. The



MICON 2001

Uses / POTS POTS Start
POTS 1
1 Off-hook A

3 SendToResource A A M1

4 Announce A M1
5 On-hook A 7! Dial A A1

6 ResourceAbort A A 8 Resource A A1
9 SendToResource A A M2 13 Continue A A Any

10 Announce A M2 |I|
Resource A Any
11 Terminate A A
12 On-hook A

Figure 2: GRessFeature Diagram for IN Teen Line

diagrams are modular in the limited sense of being selfasoat, but are not modular in the
sense of being parameterised and re-usable.

CRrREesstherefore permits features to be defined as templates. Areemplate defines the
pattern of its behaviour. The initial feature node definesavent that may trigger it. For each
matching trigger in the root diagram, an instance of theuieais inserted. The template body
requires unique start and finish nodes; if necessary, engatgsican be used for this purpose.
The template is copied with substitution of actual paramsesed placed after the triggering
node in the root diagram.

Figure 3 shows CND (Calling Number Delivery) as a featurepiate. This allows the
destination to see the number of the caller. The asteriskentriggering node ({*’) indi-
cates a wild card event: CND event 1 will match any node in tw diagram that contains
a Start Ringingevent with two parameters? andQ are formal parameters of the template,
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Uses / POTS 1* Start Ringing P Q
CallingNumber P

Else
2 Display P Q

Figure 3: GREssFeature Diagram for Calling Number Delivery

Busy Q && Else
ForwardBusy Q != Any /
Via P ForwardBusy Q <- Q/
Q <- ForwardBusy Q

J

Figure 4. GREssFeature Diagram for Call Forward on Busy Line

matched to the actual parameters in the triggering everthelhumber being rung has caller
display CallingNumber B, the number of the callef)) will be displayed: CND event 2. After
this, or if the destination does not have caller displayddléprogresses as normal.

Figure 4 shows the template for CFBL (Call Forward on Busyel.irt allows a phone that
is busy to have calls forwarded to another number. The feaswactivated whenever a number
is dialled. Forwarding occurs if the number being diall€)) {s busy but has a number for
forwarding on busyRorwardBusy Qs determined). If so, the dialled number is changed to
the forwarding number. Alternatively, no action is taketh# called number is idle or does not
have forwarding on busy. In this case the call progressesmasat: the destination is rung if it
is idle or the caller gets busy tone if the destination is busy

A forwarded call is recorded in théa status variable. If a call from number 1 to number 2
is forwarded to number 3/ia 1 3records2 as the number via which the call was made. Since
a call may be forwarded to another busy number, severaleeéhns may occur. This is why
CFBL loops back to the start, meaning just after where thaufeavas triggered. This loop
is discussed again in section 2.4. The new forwarding nunsberecked for being busy, and
may lead to further forwarding. (In practice, telephonenweks enforce a limit on the number
of forwarding attempts.)

Sometimes it is not desirable to apply a template. For exayfpFBL is meant to be
inserted anywhere an actual phone number is dialled. Haveewee uses of dialling are not to
establish a call. INTL in figure 2 contains an example (evéntitere dialling is used to enter
a PIN. It would be inappropriate to insert CFBL after suchiggeering event. For this reason,
template matching can be suppressed by placing ‘"' (‘no hipadfter the node number.

2.4 Billing and Redirection

CRESS (CHISEL) is relatively unusual among modelling approaches in explisupporting
billing. This is surprising since billing is a crucial aspe€network behaviour (for the operator
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*1 DialPQ
2 InfoAnalysed Q P Q Time

3 AnalyseRoute QP Q A1/ .
Bill P Q <- A1 4 Continue QP Q

Figure 5: GRessFeature Diagram for IN Freephone Billing

at least!). In fact billing itself can lead to interaction€HISEL has simpleLogBeginand
LogEndevents to denote the start and end of billing. The callintiedand paying parties are
identified in these events. Normally the caller pays, bubviiéephone the callee pays. More
complex arrangements can exist, e.g. the caller pays foropéne call at local rates and the
callee pays the rest.

Figure 5 shows the feature INFB (IN Freephone Billing) as sangple of how RESS
handles billing. This features causes the destinationydga call. Dialling triggers a request
to the SCP to determine who should pay for a call: INFB evetitthis is other than the caller
(P), the SCP replies with the paying addréds INFB event 3. For freephone this would be the
callee Q), but for other billing arrangements could indicate thatsglbilling. INFB records
the paying party in th&ill status variable. If no special billing arrangements apilg, SCP
asks the call to continue as normal: INFB event 4. By defdludt caller is charged for a call.

Now consider the loop in figure 4 again. A complication arifeseveral features are
triggered by the same event. For example INFB, INCF (IN Caliwarding) and INFR (IN
Freephone Routing) are each enabled by dialling as well & CFheir instances are appended
in sequence to thBial node. A loop back to the trigger of a feature template is digtt@the
start of such a feature chain.

INFB first checks which party will pay the bill. INCF, INFR ardFBL then have the
opportunity to forward the call (unconditional for INCF, ideolled by source and time for
INFR, depending on destination busy for CFBL). If the cafiasvarded then the feature chain
is invoked again, starting with INFB. This is necessary bseathe new destination may have
different charging arrangements. By the time the call readts destination, it may have been
forwarded several times. The billing for each call redi@civill also be different.

The simpleLogBegin/Enevents used by @ SEL are therefore insufficient. Although these
are allowed by @Ess the Start Billing andStop Billingevents should be used; they appeared
in nodes 6, 8 and 11 of figure 1. In fact, these are macro evhatsekpand to primitive
LogBegin/Encevents for each redirection. The stoNdd andBill values are used to infer the
redirections and the paying parties.

Dialling is a major nexus in telephony for features to be kad As well as those just
mentioned, OCS/TCS (Outgoing/Terminating Call Screenarg also triggered on dialling to
forbid calls to/from certain numbers. Fortunately the deatcomposition mechanism auto-
matically handles the chaining of all these features. Thsggther can describe each feature in
isolation (the goal of modularity), and their combinatigrautomatic. In fact there are certain
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Deploys -n 10 -r/ INTL TWC INFB CND INFR INCF CFBL TCS

INTL 2 Pin 3 Start 9 Finish 17 # number 2 needs PIN 3 from 09.00 to 17.00

TCS 3 From18 # number 3 rejects calls from numbers 1 and 8
CFBL 3 To5 # number 3 forwards on busy to number 5
INFB 9 # number 9 pays for calls it receives

Figure 6: GREssConfiguration Diagram

precedence rules that have to be enforced. For examplegoitiust be considered before call
forwarding, and terminating call screening must be appitethe final number obtained after
forwarding. The tools ensure that features are combinedanaible order.

2.5 Configuration

A special configuration diagram is used to define the featanelsthe user profiles. A small
example is shown in figure 6. THaeploysstatement has the forn®ptions / FeaturesThe
options are translation parameters. Here, they ask thatlli@stances be generated (L0) and
that call instance behaviour be repeated on hangr)ipROTS is implicit in the list of features
but can be given explicitly if preferred. User profiles appedfter theDeploysstatement, giving
the features and their parameters selected by each user.

3 Tool Support

This section gives an overview of theREsstools, with particular reference to howorosis
generated and analysed.

3.1 Toolset Structure

Figure 7 shows the relationship among theeESstools. Symbols are shown doubled where
there may be several files or several variants of a tool. Tikedarea in figure 7 is theRESS
toolset. Outside this, the diagram editor and target laggueols are provided by others.

CRESssis designed for versatility and portability. It is theredarot bound to any particular
diagram editor or target language. The tools are writteremh ¥, which runs on a wide variety
of platforms. In total the toolset is about 5000 non-comntiees of code (five Perl scripts and
five Perl modules). The code is quite intricate, and reptssamout 9 man-months of work.
However the investment in the infrastructure has produagharal-purpose toolset of use in a
variety of domains on a variety of platforms. To help othess and adapt the toolset, the code
is extensively commented.

The author preparesrREssdiagrams using Lighthouse Desigisagram! editor that runs
on five different platforms. From preliminary investigatg) it appears that a number of other
diagram formats are suitable foREss (e.g. Adobelllustrator, FrameMakeMIF, andxfig).
Many diagram editors can produce output in well-known falsn@rEssis thus not dependent
on a particular diagram editor.
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processor

Diagram CRESS
Diagram 4
T T Analysi
Targe Langune Coce Languge et )l
Front-End guag Generator g g "\ Back-End
Framework _ Realisation Results

Figure 7. GREssToolset

CRESsis also not bound to any particular target language. Cuyrématnslation to lOTOS
and to SDL is supported. EdToswas studied as a target language as it confers some advan-
tages relative to bTos However E-loTOStools are only at a very early stage, so Bilos
is not yet a target for REss The SDL translator does not generate advanced SDL cobstruc
and is in fact compatible with SDL 88. Later versions of SDtlsas SDL 92 were considered,
but CREssdoes not really gain anything from them. Other target laggsdave been thought
about, including translation to Java (Beans). The choidargfet language depends on the in-
tended use of a REssgenerated specification.dros offers good analytic capabilities, SDL
is industrially attractive, while Java (Beans) would pae/an interesting development route.

The target language framework is created using the targeta®@ment environment. Since
the framework is fixed for a given domain and target languagan be provided as standard.
IN telephony frameworks for @aTosand SDL are currently available. The framework provides
the architecture in which the features are embedded. Fongeain telephony the framework
defines the behaviour of the SCP, status manager and bijlstgra.

3.2 Toolset Usage

The designer preparesREssdiagrams using a convenient editor. The designer is asstoned
have a suitable development environment for the targeulage. Most development environ-
ments allow pre-processing. A simple commandt{bs) or button click (SDL) can activate
the CRESstoolset automatically. The RESS pre-processor scans the target language frame-
work for CREssmacro calls:

CresqTypes) (* generate domain-dependent data types *)
CresgqProfiles) (* generate user profile information *)
CresqFeatures) (* combine root diagram and features *)

Each of these is expanded to the corresponding definitidhgtarget language. The data types
are partly fixed and partly dependent on the domain of apdica Since (status) variables
and signals are defined in tables loaded into the tools, agghahdomain is easy to arrange.
The variable/signal tables are used while checking diagramd are also used to generate the
domain-specific data types.

Each (REssmacro is expanded using the toolset. The lexer appropgatieet diagram
editor is called to build a rule list and event node graph twhediagram. The parser is com-
mon, and checks the syntax and static semantics of eachathaggparately. The parser then
combines the root and features diagrams, performing fucvesistency checks. A number of
optimisations are carried out on the graph to make code ggoemore efficient. For example,
empty (NoEvent) nodes are removed where possilitése is moved to the end of alternative
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guards, and alternative inputs are ordered by signal namellythe parser hands the graph
to the appropriate code generator that outputs in the tirggtiage. To the target development

environment, a single (albeit very complex) step of preepesing has taken place.

Once the target language specification has been genetag¢ddnguage back-end tools can
be used to simulate, analyse or implement the specificaBoth LoTosand SDL can be used
for single-step or automated simulation. They can also leel digr state space exploration.
LoTos also has advanced analysis tools for state space minionsaguivalence checking,
model checking, etc. Both@Tosand SDL can be compiled to usable C for implementation.

Specifications are generated with acceptable speed. Fompéxathe configuration shown
in figure 6 is translated from diagrams t@tosin about 5 seconds on a Pentium 450. The
resulting specification is about 1800 non-comment lines@fds. In fact the translators can

optionally produce very detailed comments on the geneiaidd.

3.3 LoTos as A Target Language

3.3.1 Translation to LOTOS

As an example of how REsSsis translated, the strategy for generatingTios will be de-
scribed. (The translation to SDL is broadly similar, but basleal with some nasty compli-
cations due to SDL restrictions.) The outline structurehef generated specification is given
below. Processes communicate via the g&iiglog billing events) Scp(signals to/from the
SCP),Stat(read/write status variables and profiles ) &rskr(signals to/from the subscribers).
Of these just thé&Jsergate is externally visible, so only events like going oflek@r the phone
ringing can be seen. Theallinstancegrocess represents all concurrent calls. Beevice-
Control process defines the SCP. Status variables and profile infiomere managed globally
for all calls by theStatusManager Finally, theBillingSystenprocess simply accepts billing

events. Calculation of call charges is presumed to be spdcéparately.

SpecificationNetwork [User] :NoEXxit (* network *)
Library ... (* library types *)
Type ... (* pre-defined data types *)
Type ... (* domain-specific data types *)
Behaviour (* overall behaviour *)

Hide Bill,Stat,Scpin (* hide internal signals *)
(
(
Callinstances [Bill,Scp,Stat,User] (* call instances *)
|[Scp| (* synchronised on SCP messages *)
ServiceControl [Scp,Stat] (* service control point *)
)
|[Stat| (* synchronised on status messages *)
StatusManager [Bill,Stat] (...) (* status manager *)
)
|[Bill ] (* synchronised on billing messages *)
BillingSystem [Bill] (* billing system *)
Where

Process... (* processes *)
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CrEssConstruct | LoTos Construct |

diagram parameterprocess parameter

Any dummy variable (input) coAnyAddresgoutput, expression)

node direct translation (once-used node) or process call (tedigsode)
node contents nothing (empty node) or events and assignments (non-enoplig)n
event||| event “” (no concurrency) or f||' (concurrency)

event event offer

event parameter | ‘" (known variable) or “?’ (unknown variable)

assignment set (status) variable value from expression

variable use read status manager (global variable) or direct use (diageaiable)
variable update | write status manager (global variable)lLat (diagram variable)
Time read status manager clock

leaf node followed by Stop (no repeat) or recursive process call (repeat)

Figure 8: (RESSto LOTOSMapping

Each call instance deals with an arbitrary pair of subscsiltbe actual phone numbers are
fixed only during the call by going off-hook and dialling. Thehaviour of a call is determined
by the root diagram and features in use. The number of calimees is defined as a translator
option. Although GQesscan handle an arbitrary number of concurrent calls, too ncanypli-
cates the analysis. In practice, three concurrent callswdfieient to discover most interesting
feature interactions. A translator option decides whetbaching a leaf node (hanging up)
terminates a call instance or causes call behaviour to tepea

Figure 8 summarises the key aspects of the translationottos. This table hints at a
number of complications. Normally a node is translatedatiye However if more than one
path in the graph converges on the node, then it and its ssmceare placed in a process
definition. References to the node then become calls of tlwsgss. The translators have
an option to serialise concurrent events. This is becausedhcurrency adds little to the
expressive power of RESSbut greatly complicates analysis. The translators perfardata
flow analysis of a graph in order to determine which variablesknown at each event. This is
partly to detect errors, but it is also necessary to decidethndr an event parameter is input or
output. Statuses and profiles are held globally for all ety the status manager, so reading
or writing a variable requires communication with it. Diagr variables are simpler because
they are local and can be accessed directly.

3.4 Feature Analysis with LOTOS

The emphasis in REssso far has been on the representation and formalisationatiires.
Work on feature interaction detection has been limited te.d&he following presents prelimi-
nary work, but in fact techniques developed by others cardaptad easily with the specifica-
tions generated by RESS

To check the correctness of features, each was simulated own when combined with
POTS. Human judgment was used in deciding significant el@ctytaths. The aim was to
execute each path at least once. This procedure built coctde the feature descriptions as
well as creating a collection of validation scenarios.
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For simple features the number of interesting paths is siialis CND (Calling Number
Delivery, figure 3) has two such paths: the destination doe®es not have caller display. As
an example, the following shows a call from phone number lhimng number 3 (which has

CND and so sees the caller's number):

User !OffHook 1

User !DialTone !'1

User !Dial 11 13

User IStartRinging 13 11

User IStartAudibleRinging !1 13
User IDisplay 1311

User !Answer I3

User IStopRinging 1311

User !StopAudibleRinging !1 13
User !OnHook !3

User IDisconnect 113

User !OnHook !'1

(* 1 picks up *)
(* 1 receives dial tone *)
(* 1 dials 3 %)
(* 3 starts ringing from 1 *)
(* 1 starts ringing for 3 *)
(* 3 sees 1 as the caller *)
(* 3 answers the call *)
(* 3 stops ringing from 1 *)
(* 1 stops ringing for 3 *)
(* 3 hangs up *)
(* Lis told 3 has hung up *)
(* 1 hangs up *)

For complex features the number of interesting paths ismastageable. TWC (Three-
Way Calling), for example, has 23 important paths. Eitherusay start a three-way call, and
there are a number of ways in which three-way setup may falay later revert to a two-way
call. As a sample execution, the following starts with a éaim phone number 1 to phone
number 2. A three-way call is then initiated by 2 doing flasiokand calling phone number
3. However before 3 can answer, 2 does flash-hook to canctirdseway call and then hangs
up. The call from 2 to 3 is cancelled, and 1 is forced to hang up:

User !OffHook !1

User IDialTone !1

User IDial 11 12

User IStartRinging 12 11

User IStartAudibleRinging !1 12
User !Answer 12

User IStopRinging 12 11

User IStopAudibleRinging !1 12
User !'Flash 12

User !DialTone !2

User IDial 12 13

User IStartRinging 13 12

User IStartAudibleRinging 12 13
User !'Flash 12

User !OnHook 2

User !StopRinging 13 12

User IStopAudibleRinging !12 13
User IDisconnect !1 12

User !OnHook !'1

(* 1 picks up *)
(* 1 receives dial tone *)
(* 1L dials 2 *)
(* 2 starts ringing from 1 *)
(* 1 starts ringing for 2 *)
(* 2 answers the call *)
(* 2 stops ringing from 1 *)
(* 1 stops ringing for 2 *)
(* 2 does flash-hook *)
(* 2 receives dial tone *)
(* 2 dials 3 %)
(* 3 starts ringing from 2 *)
(* 2 starts ringing for 3 *)
(* 2 does flash-hook *)
(* 2 hangs up *)
(* 3 stops ringing from 2 *)
(* 2 stops ringing for 3 *)
(* Lis told 2 has hung up *)
(* 1 hangs up *)

Validation scenarios like these characterise the expdxthdviour of features of isolation.
The scenarios can then be encoded using tkeesT (ANISE Test) language developed for
ANISE [13]. Briefly, ANTEST is a flexible validation language that expresses tests mser
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of user-visible behaviour. Acceptance tests (behavioustrhappen) and rejection tests (be-
haviour must not happen) can be written. Tests may have sgguer concurrent behaviour.
Alternatives are permitted, and behaviour can be made tiondi on a feature being present

for a phone number. In fact, \WTESTis used to encode more comprehensive use-case scenarios
that synthesise the individual executions obtained thinaigulation.

The ANTEST tool automatically translates validation scenarios intors and runs them
in parallel with a specification using theestExpandunction of LOLA. When features are
combined individually with POTS, this merely confirms thdidiy of the scenarios. More
importantly, the scenarios can be run against POTS combiniidall features. A common
interpretation of feature interaction is that a featurésfeo perform as expected when other
features are present. The manifestation of feature irtterawvhen using AITEST is either
deadlock or non-determinism. Deadlock means that oneriegtevented another from work-
ing; for example, CNDB (Calling Number Delivery Blocking)gvents CND from working — a
desired interaction! Non-determinism means that an anilyiguose; for example, flash-hook
is used by both CW and TWC.

The University of Ottawa have in fact worked on the same fest(5] as used here with
CRESS though their loTOS specifications were created by hand [4]. Their techniquedde
tecting interactions are therefore also applicabler@ €5 For example non-intrusive observer
processes can be used to check for violation of feature prepegand watchdog processes can
be used to check for violation of system properties.

In future work, the author intends to apply techniques hestiged from protocol confor-
mance testing [9] to derive use-case scenarios automgtidéalother avenue that the author
intends to explore is the use of symbolic model-checkingetiofy that feature properties are
preserved in the presence of other features. The curreidiatiah approach can check that
calls to a specific number are rejected if they are on its gageaening list. Model-checking
should allow such properties to be proved in general.

4 Conclusion

It has been seen thatREssis a graphical language for specifying systems with a base-fu
tionality and additional features. The elements of the tmtehave been introduced for root
diagrams, feature diagrams, rules and configurations. ahgcplar contribution of ®ESS
is its ability to describe and combine features in a flexilld automatic manner. A portable
toolset enables thorough checking and translation of dragrto various languages, currently
LoTosand SDL. Early work has been presented on feature interadétection using the spec-
ifications generated by®Ess Future developments will include support for a wider ranfje
diagram editors and target languages. More complete titeredetection techniques will also
be developed. Although®Esshas been illustrated on traditional telephony features,ap-
plicable to a number of problem domains. One immediate ngMicgtion to be pursued is
Internet telephony using SIP (Session Initiation Protgéfl It would also be interesting to
study non-telephony applications such as word processigile
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