
Kenneth J. Turner. Modular Feature Specification.
In Tom Gray, editor, Proc. MICON 2001,
Mitel Networks Corporation, Kanata, Canada, August 2001

Modular Feature Specification

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling
Stirling FK9 4LA, Scotland

kjt@cs.stir.ac.uk

Abstract

CRESS(CHISEL Representation Employing Systematic Specification) is a notation and
set of tools for graphical specification and analysis of features. It is applicable wherever a
system consists of base functionality to which are added optionally selected features. The
CRESSnotation is introduced for basic diagrams, feature diagrams, and rules governing
their behaviour. Although telephony is used to illustrate the approach, CRESSis not limited
to this domain. The structure and use of the portable CRESStoolset is explained. CRESS

can generate code for a variety of target languages. The strategy for translation to LOTOS

is presented, along with some techniques for analysing the generated specifications.

Keywords: feature, IN (Intelligent Network), LOTOS (Language Of Temporal Ordering
Specification), SDL (Specification and Description Language), service, telephony

1 Introduction

1.1 Overview of CRESS

CRESS(CHISEL Representation Employing Systematic Specification) is a notation and set of
tools for graphical specification and analysis of features.CRESSis designed as a flexible nota-
tion for describing and combining features. It is graphicalin order to improve its attractiveness
to an industrial audience. Automated tool support has been developed to check the correctness
of diagrams and to translate them into various (formal) languages. The toolset is portable and
can run on a variety of platforms with a variety of front-end diagram editors and back-end
target languages.

CRESSis based on the CHISEL notation developed by BellCore [1] for describing telephony
features. An important reason for choosing CHISEL as the basis is that it was developed to meet
industrial needs. As far as practicable, CRESS is a strict (if substantial) extension of CHISEL.
This means that practically any CHISEL diagram can be used with CRESS, although it is highly
desirable to use the new capabilities of CRESS. CHISEL has been significantly extended and
generalised in CRESS. More importantly, CRESShas a tightly defined notation that is translated
automatically into formal specifications – currently LOTOS (Language Of Temporal Ordering
Specification) and SDL (Specification and Description Language).

1

MICON 2001

A CRESS root diagram describes the basic capabilities of a system. The notation resem-
bles a state transition diagram. The main capability of CRESS is describing additional feature
diagrams that modify the root diagram (or other feature diagrams). Features are automatically
combined with each other and the root diagram to yield a composite system description. This
approach is common in telephony, where the root diagram corresponds to POTS (Plain Old
Telephone Service) and the feature diagrams correspond to additional services like CW (Call
Waiting) and TWC (Three-Way Calling).

CRESS is not fixed in the telephony domain, although this is the mainapplication to be
presented in the paper. It can be used to describe any system that consists of base functionality
and additions to this. This situation is quite common; examples arise in defining car accessories,
electronic mail [6], lift control [11], object-oriented development, operating systems and word
processors. Combining a number of features often leads to the feature interaction problem
[3], whereby features that are conceived in isolation do notinterwork properly. One of the
motivations for translating CRESSinto a formal specification is that it permits rigorous analysis
of feature interaction problems.

The work has achieved a graphical and flexible representation of modular features. It is
applicable to a variety of domains, although it has been validated in the field of telephony. The
approach is neutral with respect to the target language, andso can be used as a front-end for
any formally-based approach. The toolset is portable and can be used on a range of platforms.

1.2 Previous Work

The initial version of CRESS was described in [14]. The emphasis in that paper was on for-
malising CHISEL diagrams. The main limitation was that feature descriptions were not very
modular. Features could be described and analysed individually, but their automated combina-
tion was severely limited. The work reported in the present paper has addressed the modularity
problem. Feature descriptions are now modular and more compact. Feature combination has
also been made much more flexible. Interestingly the improvements have require relatively
small changes to the graphical notation, though the underlying tool support has had to be sub-
stantially extended.

The notion of feature composition has been around for some time. Architectures such
as [8, 10, 15] have been devised to allow features to be treated as building blocks. In some
approaches, the architectural descriptions are translated to formal specifications that permit
further analysis. For example, [2] describes use-case mapsfor telephony features that are
hand-translated into LOTOS. [12, 13] and other papers illustrate the author’s work on ANISE

(Architectural Notions in Service Engineering). ANISE builds features and services in a hier-
archical fashion, and then translates them to LOTOS for simulation and interaction analysis.

CRESS intentionally separates the representation of features from their analysis. Those
who apply formal methods to feature interaction often have to waste time re-discovering and
re-specifying features in their formalism. CRESS is intended as a common front-end for other
languages. CRESSalso does not need to develop its own approach to feature interaction since
this is handled by other tools that take a specification as thestarting point. As an example, the
University of Ottawa [4] have developed analysis techniques that can be used with the output of
CRESS. In fact the Ottawa team wrote their specifications by hand, but as reported in [14] the
LOTOS generated CRESS is more compact and more readable. And of course, automatically
generated specifications are much easier to maintain through changes to the feature diagrams.

MICON 2001

2 CRESSNotation

This section provides a brief overview of the CRESSnotation. CRESS is illustrated with ref-
erence to telephony and the IN (Intelligent Network); specifically, features taken from [5] are
used as examples. CRESS is not, however, limited to telephony. The tools are table-driven so
that CRESSmay be used in a variety of other domains.

2.1 Basic Diagrams

A CRESS diagram is a directed, possibly cyclic, graph of nodes linksby arcs. A basic node
has a number and an associated event, e.g.1 Off-hook Ato indicate subscriberA picking up
the phone. The node number is only for identification, but plays a role when features are
introduced. An event carries a signal such asOff-hookand optional parameters likeA. If an
event parameter has a known value it is supplied in the event,otherwise it receives a value as a
result of the event.

Events are classified as inputs or outputs (as far as the system being specified is concerned).
A composite node may contain several events in parallel, butthese must be all inputs or all
outputs. Input nodes normally alternate with output nodes along a path, but this is not a restric-
tion. Each event may be associated with explicit assignments. These are normally separated
by ‘/’, but this symbol can be omitted (as in CHISEL) if there is no syntactic ambiguity. CRESS

expressions allow the usual kinds of arithmetic, comparison, logical and set operators. An
example of a composite event is:

14 Stop Ringing B A / Busy B<− False||| Stop AudibleRinging A B

An empty node, meaning no event occurs, is occasionally useful as a connector. It can be
used to join a number of preceding and following nodes as a more compact way of linking all
the nodes directly. As in CHISEL, an empty node may be explicitly labelled asNoEvent.

The arcs linking nodes may be plain or may carry a boolean condition as a guard. If the
branches of a choice are not guarded, the decision is determined by the events that follow. If the
branches are guarded, the decision is determined by the guard expressions. For convenience,
anElsecondition may be used as one of the alternatives.

A diagram must have a unique initial node. If cycles in a diagram mean that the initial node
cannot be determined, an artificialStart node may be added to the diagram. A diagram may
have several leaf nodes. Behaviour either terminates here or cycles back to the initial node (as
a design choice).

A large diagram may be split over several pages. Each sectionis lettered (to avoid confusion
with the numeric node labels). An arrow symbol points to the next diagram section (e.g.B),
which begins with this target label.

2.2 Rule Boxes

A major informality in CHISEL concerns how variable values are changed by events. As may
be seen from [5], such rules are generally expressed in English. In CRESS, a rule box provides
a formal definition. The variables used by a diagram are defined explicitly, e.g.:

UsesAddress A Address B

MICON 2001

An address is the identification of a user (e.g. a phone number). Other variables types include
Boolean, Message(voice message to a subscriber),PIN (Personal Identification Number) and
Time. Temporary variables like addressA0..A9and messageM0..M9are implicitly available.
Any stands for an indeterminate address – an unknown or don’t care value.

In addition to diagram variables, CRESSsupports status variables that capture globally sig-
nificant information. For example, a phone call needs to knowif the called party is busy or not.
Status variables are typically indexed by address parameters. ThusBusy Pindicates whether
phone numberP is busy. Status variables are also used to hold user profile information such as
what features have been subscribed to, e.g.CallWaiting P. Following theUsesstatement, rules
of various types can be given.

Variable initialisation rules can be given, e.g.:

F : ForwardBusy A

CRESSdelays such initialisations until the required values (A) are known.
Although the assignments triggered by an event can be written explicitly after the event,

this clutters a diagram and becomes repetitious. Instead, CRESSallows rules to be formulated
for assignments. For example when the calling party hangs upbefore the called party answers,
the called party stops ringing and is no longer busy:1

Stop Ringing P Q / Busy P<− False

This is the same notation as used in an event node, except thatthe event parameters are place-
holders. If an event matches the pattern above,P andQ will be set to the actual parameters. An
assignment rule may be overridden by an explicit assignmentfor the same variable in an event
node.

Expression rewrite rules may be defined. A simple example is that a line being idle means
it is not busy:

Idle P<− ∼Busy P

Any use ofIdle is then transformed into a use ofBusy. This kind of rule in fact defines a macro.
Much more complex macros can be defined as shorthand notations. Macros can also be used
to introduce named constants.

Finally, it is occasionally useful to define a signal transformation rule that causes one signal
to generate another:

Start Billing P Q / LogBegin P Q PTime

With this brief introduction to CRESS, the description of POTS in figure 1 should be com-
prehensible. The rule box is the rounded rectangle at the topleft of the figure. The text between
horizontal bars at top centre is a comment. The event nodes are shown as shadowed ovals. In
fact the shapes of the symbols in a diagram are irrelevant as long as they are distinct and con-
sistent. Other forms of comment are possible such as audio, graphical and textual attachments.

1CRESSneeds only simple rules forBusybecause its boolean variables are ‘sticky’. For example if avariable
is assignedTrue twice, it needs to be assignedFalsetwice before it reverts toFalse.

MICON 2001

1 Off-hook A

2 DialTone A

3 Dial A B 17 On-hook A

4 Start Ringing B A |||

Start AudibleRinging A B 15 LineBusyTone A

Idle B

5 Answer B 13 On-hook A

6 Stop Ringing B A |||

Stop AudibleRinging A B |||

Start Billing A B

7 On-hook A

8 Disconnect B A |||

Stop Billing A B

9 On-hook B 12 On-hook A

10 On-hook B

11 Disconnect A B |||

Stop Billing A B

Busy B

14 Stop Ringing B A |||

 Stop AudibleRinging A B

16 On-hook A

Uses Address A Address B

Off-hook P / Busy P <- True

Answer P / Busy P <- True

On-hook P / Busy P <- False

Start Ringing P Q / Busy P <- True

Stop Ringing P Q / Busy P <- False

Idle P <- ~Busy P

A is the calling number

B is the called number

Figure 1: CRESSRoot Diagram for the Plain Old Telephone Service

2.3 Feature Diagrams

The CRESS notation introduced so far is essentially a convenient formof state transition di-
agram. Where CRESS makes a significant contribution is in its capabilities for defining and
combining features. A feature describes how it is inserted into another diagram. Typically this
is the root diagram, although features may modify features;for brevity, ‘root diagram’ in the
following covers both cases. A feature has aUsesstatement that imports the other diagrams
it needs. If features depend on each other hierarchically, the subsidiary diagrams are imported
automatically. In the simplest and commonest case, only theroot diagram need be named:
Uses/ POTS. Any variables required by a feature are declared before the ‘/’ (though this part
of a Usesstatement is often empty). Feature behaviour may be inserted into another diagram
through splicing or instantiation.

MICON 2001

2.3.1 Splicing Features

When a feature is to be spliced it defines its attachment pointin the root diagram, e.g.POTS 7.
This source node gives the diagram name and node number. (In fact, this is the main reason for
having node numbers.) To attach to the first node of a diagram,the node ‘number’ is given as
Start. The source node for a feature may bind the values of root diagram variables to those in
the feature:

POTS A<−X B<−Z 7

Having located the point of attachment, a feature defines what it alters in the root diagram.
A node and its successors may added to the root. Part of the root diagram may also be replaced
in its entirety by identifying the original node, e.g. nodePOTS 1and its contents1 Off-hook A.
The effect is to replace this node and what originally followed it. Guards as well as event
nodes may be added or replaced in a feature diagram. A featuremay simply add behaviour
that terminates in its own leaf nodes. More typically it continues with another part of the root
diagram by referencing a target node likePOTS 2. A target node may also have root/feature
variable bindings like a source node.

Figure 2 shows how the feature INTL (IN Teen Line) is spliced into POTS. The idea of
INTL is that use of the phone between certain hours requires aPIN to be entered (e.g. to
prevent teenagers from calling within peak hours). This feature makes use of signals between
the telephone switch and the SCP (Service Control Point, as used in the IN). SCP signals are
somewhat complex and irregular in their structure, though they always start with the triggering
phone number. This may be followed by the calling number and the called number. Other
parameters may include the current time, the paying party ora forwarding number. The exact
details of SCP signals are given in [5].

The INTL feature is defined to replace POTS node 1 and its transition to node 2: the initial
off-hook progressing to dial tone, as shown in figure 1. When the phone goes off-hook, the SCP
is alerted: INTL events 1 and 2. If INTL is not enabled for thisphone or for the current time,
the SCP allows the call to continue: INTL event 13, POTS event2. Otherwise a voice message
M1 (e.g. ‘Enter PIN’) is provided by the SCP and announced to theuser: INTL events 3 and 4.
The user may hang up and abort the call attempt: INTL events 5 and 6. Alternatively, the user
may dial a PIN in the form of a phone numberA1: INTL event 7; see section 2.3.2 regarding
the use of ‘7!’. The PIN is sent as a resource value to the SCP. If the PIN is correct, the SCP
allows the call to continue: INTL event 13, POTS event 2. Otherwise the SCP causes a voice
messageM2 (e.g. ‘Wrong PIN’) to be announced, and the call is forcibly terminated: INTL
events 9 to 12.

2.3.2 Feature Templates

A feature should be spliced if it applies just once to the rootdiagram. Another necessary
condition for splicing is that the feature should have only very local effect on the root diagram.
A number of the CHISEL features in [5] suffer from the problem of replacing large parts of
POTS. For example CFBL (Call Forward on Busy Line) replaces about 80% of POTS, much
of diagram being similar to the original. Worse still, CFBL could apply several times in a
call. A call may be forwarded several times, for example, if successive forwarding numbers are
busy. TWC (Three-Way Calling) sets up two call legs, and CFBLmay apply in each case. The
original CHISEL diagrams can therefore really only be combined individually with POTS. The

MICON 2001

POTS Start

POTS 1

1 Off-hook A

2 OriginationAttempt A A Any Time

Uses / POTS

3 SendToResource A A M1

4 Announce A M1

5 On-hook A 7! Dial A A1

8 Resource A A1

13 Continue A A Any

POTS 2

9 SendToResource A A M2

10 Announce A M2 |||

Resource A Any

11 Terminate A A

12 On-hook A

6 ResourceAbort A A

Figure 2: CRESSFeature Diagram for IN Teen Line

diagrams are modular in the limited sense of being self-contained, but are not modular in the
sense of being parameterised and re-usable.

CRESStherefore permits features to be defined as templates. A feature template defines the
pattern of its behaviour. The initial feature node defines the event that may trigger it. For each
matching trigger in the root diagram, an instance of the feature is inserted. The template body
requires unique start and finish nodes; if necessary, empty nodes can be used for this purpose.
The template is copied with substitution of actual parameters and placed after the triggering
node in the root diagram.

Figure 3 shows CND (Calling Number Delivery) as a feature template. This allows the
destination to see the number of the caller. The asterisk in the triggering node (‘1*’) indi-
cates a wild card event: CND event 1 will match any node in the root diagram that contains
a Start Ringingevent with two parameters.P andQ are formal parameters of the template,

MICON 2001

1* Start Ringing P QUses / POTS

2 Display P Q
Else

CallingNumber P

Figure 3: CRESSFeature Diagram for Calling Number Delivery

1* Dial P QUses / POTS

Else
Busy Q &&

ForwardBusy Q != Any /

Via P ForwardBusy Q <- Q /

Q <- ForwardBusy Q

Figure 4: CRESSFeature Diagram for Call Forward on Busy Line

matched to the actual parameters in the triggering event. Ifthe number being rung has caller
display (CallingNumber P), the number of the caller (Q) will be displayed: CND event 2. After
this, or if the destination does not have caller display, thecall progresses as normal.

Figure 4 shows the template for CFBL (Call Forward on Busy Line). It allows a phone that
is busy to have calls forwarded to another number. The feature is activated whenever a number
is dialled. Forwarding occurs if the number being dialled (Q) is busy but has a number for
forwarding on busy (ForwardBusy Qis determined). If so, the dialled number is changed to
the forwarding number. Alternatively, no action is taken ifthe called number is idle or does not
have forwarding on busy. In this case the call progresses as normal: the destination is rung if it
is idle or the caller gets busy tone if the destination is busy.

A forwarded call is recorded in theVia status variable. If a call from number 1 to number 2
is forwarded to number 3,Via 1 3records2 as the number via which the call was made. Since
a call may be forwarded to another busy number, several redirections may occur. This is why
CFBL loops back to the start, meaning just after where the feature was triggered. This loop
is discussed again in section 2.4. The new forwarding numberis checked for being busy, and
may lead to further forwarding. (In practice, telephone networks enforce a limit on the number
of forwarding attempts.)

Sometimes it is not desirable to apply a template. For example, CFBL is meant to be
inserted anywhere an actual phone number is dialled. However some uses of dialling are not to
establish a call. INTL in figure 2 contains an example (event 7) where dialling is used to enter
a PIN. It would be inappropriate to insert CFBL after such a triggering event. For this reason,
template matching can be suppressed by placing ‘!’ (‘no match’) after the node number.

2.4 Billing and Redirection

CRESS (CHISEL) is relatively unusual among modelling approaches in explicitly supporting
billing. This is surprising since billing is a crucial aspect of network behaviour (for the operator

MICON 2001

*1 Dial P Q

2 InfoAnalysed Q P Q Time

Uses / POTS

3 AnalyseRoute Q P Q A1 /

Bill P Q <- A1
4 Continue Q P Q

Figure 5: CRESSFeature Diagram for IN Freephone Billing

at least!). In fact billing itself can lead to interactions.CHISEL has simpleLogBeginand
LogEndevents to denote the start and end of billing. The calling, called and paying parties are
identified in these events. Normally the caller pays, but with freephone the callee pays. More
complex arrangements can exist, e.g. the caller pays for part of the call at local rates and the
callee pays the rest.

Figure 5 shows the feature INFB (IN Freephone Billing) as an example of how CRESS

handles billing. This features causes the destination to pay for a call. Dialling triggers a request
to the SCP to determine who should pay for a call: INFB event 2.If this is other than the caller
(P), the SCP replies with the paying addressA1: INFB event 3. For freephone this would be the
callee (Q), but for other billing arrangements could indicate the split of billing. INFB records
the paying party in theBill status variable. If no special billing arrangements apply,the SCP
asks the call to continue as normal: INFB event 4. By default,the caller is charged for a call.

Now consider the loop in figure 4 again. A complication arisesif several features are
triggered by the same event. For example INFB, INCF (IN Call Forwarding) and INFR (IN
Freephone Routing) are each enabled by dialling as well as CFBL. Their instances are appended
in sequence to theDial node. A loop back to the trigger of a feature template is actually to the
start of such a feature chain.

INFB first checks which party will pay the bill. INCF, INFR andCFBL then have the
opportunity to forward the call (unconditional for INCF, controlled by source and time for
INFR, depending on destination busy for CFBL). If the call isforwarded then the feature chain
is invoked again, starting with INFB. This is necessary because the new destination may have
different charging arrangements. By the time the call reaches its destination, it may have been
forwarded several times. The billing for each call redirection will also be different.

The simpleLogBegin/Endevents used by CHISEL are therefore insufficient. Although these
are allowed by CRESS, theStart Billing andStop Billingevents should be used; they appeared
in nodes 6, 8 and 11 of figure 1. In fact, these are macro events that expand to primitive
LogBegin/Endevents for each redirection. The storedVia andBill values are used to infer the
redirections and the paying parties.

Dialling is a major nexus in telephony for features to be invoked. As well as those just
mentioned, OCS/TCS (Outgoing/Terminating Call Screening) are also triggered on dialling to
forbid calls to/from certain numbers. Fortunately the feature composition mechanism auto-
matically handles the chaining of all these features. The designer can describe each feature in
isolation (the goal of modularity), and their combination is automatic. In fact there are certain

MICON 2001

Deploys -n 10 -r / INTL TWC INFB CND INFR INCF CFBL TCS

INTL 2 Pin 3 Start 9 Finish 17 # number 2 needs PIN 3 from 09.00 to 17.00

TCS 3 From 1 8 # number 3 rejects calls from numbers 1 and 8

CFBL 3 To 5 # number 3 forwards on busy to number 5

INFB 9 # number 9 pays for calls it receives

Figure 6: CRESSConfiguration Diagram

precedence rules that have to be enforced. For example billing must be considered before call
forwarding, and terminating call screening must be appliedto the final number obtained after
forwarding. The tools ensure that features are combined in asensible order.

2.5 Configuration

A special configuration diagram is used to define the featuresand the user profiles. A small
example is shown in figure 6. TheDeploysstatement has the form:Options / Features. The
options are translation parameters. Here, they ask that 10 call instances be generated (-n 10) and
that call instance behaviour be repeated on hang-up (-r). POTS is implicit in the list of features
but can be given explicitly if preferred. User profiles appear after theDeploysstatement, giving
the features and their parameters selected by each user.

3 Tool Support

This section gives an overview of the CRESStools, with particular reference to how LOTOS is
generated and analysed.

3.1 Toolset Structure

Figure 7 shows the relationship among the CRESS tools. Symbols are shown doubled where
there may be several files or several variants of a tool. The boxed area in figure 7 is the CRESS

toolset. Outside this, the diagram editor and target language tools are provided by others.
CRESSis designed for versatility and portability. It is therefore not bound to any particular

diagram editor or target language. The tools are written in Perl 5, which runs on a wide variety
of platforms. In total the toolset is about 5000 non-commentlines of code (five Perl scripts and
five Perl modules). The code is quite intricate, and represents about 9 man-months of work.
However the investment in the infrastructure has produced ageneral-purpose toolset of use in a
variety of domains on a variety of platforms. To help others use and adapt the toolset, the code
is extensively commented.

The author prepares CRESSdiagrams using Lighthouse Design’sDiagram! editor that runs
on five different platforms. From preliminary investigations, it appears that a number of other
diagram formats are suitable for CRESS (e.g. AdobeIllustrator, FrameMakerMIF, andxfig).
Many diagram editors can produce output in well-known formats. CRESSis thus not dependent
on a particular diagram editor.

MICON 2001

Target

Language

Realisation

Target

Back-End

Analysis/

Simulation

Results

Target

Front-End

CRESS

Diagram

Target

Language

Framework

Code

Generator

Diagram

Editor
Lexer

Pre-

processor
Parser

Figure 7: CRESSToolset

CRESS is also not bound to any particular target language. Currently translation to LOTOS

and to SDL is supported. E-LOTOS was studied as a target language as it confers some advan-
tages relative to LOTOS. However E-LOTOS tools are only at a very early stage, so E-LOTOS

is not yet a target for CRESS. The SDL translator does not generate advanced SDL constructs,
and is in fact compatible with SDL 88. Later versions of SDL such as SDL 92 were considered,
but CRESSdoes not really gain anything from them. Other target languages have been thought
about, including translation to Java (Beans). The choice oftarget language depends on the in-
tended use of a CRESS-generated specification. LOTOS offers good analytic capabilities, SDL
is industrially attractive, while Java (Beans) would provide an interesting development route.

The target language framework is created using the target development environment. Since
the framework is fixed for a given domain and target language,it can be provided as standard.
IN telephony frameworks for LOTOSand SDL are currently available. The framework provides
the architecture in which the features are embedded. For example, in telephony the framework
defines the behaviour of the SCP, status manager and billing system.

3.2 Toolset Usage

The designer prepares CRESSdiagrams using a convenient editor. The designer is assumedto
have a suitable development environment for the target language. Most development environ-
ments allow pre-processing. A simple command (LOTOS) or button click (SDL) can activate
the CRESS toolset automatically. The CRESSpre-processor scans the target language frame-
work for CRESSmacro calls:

Cress(Types) (* generate domain-dependent data types *)
Cress(Profiles) (* generate user profile information *)
Cress(Features) (* combine root diagram and features *)

Each of these is expanded to the corresponding definitions inthe target language. The data types
are partly fixed and partly dependent on the domain of application. Since (status) variables
and signals are defined in tables loaded into the tools, a change of domain is easy to arrange.
The variable/signal tables are used while checking diagrams, and are also used to generate the
domain-specific data types.

Each CRESS macro is expanded using the toolset. The lexer appropriate to the diagram
editor is called to build a rule list and event node graph for each diagram. The parser is com-
mon, and checks the syntax and static semantics of each diagram separately. The parser then
combines the root and features diagrams, performing further consistency checks. A number of
optimisations are carried out on the graph to make code generation more efficient. For example,
empty (NoEvent) nodes are removed where possible,Else is moved to the end of alternative

MICON 2001

guards, and alternative inputs are ordered by signal name. Finally the parser hands the graph
to the appropriate code generator that outputs in the targetlanguage. To the target development
environment, a single (albeit very complex) step of pre-processing has taken place.

Once the target language specification has been generated, the language back-end tools can
be used to simulate, analyse or implement the specification.Both LOTOSand SDL can be used
for single-step or automated simulation. They can also be used for state space exploration.
LOTOS also has advanced analysis tools for state space minimisation, equivalence checking,
model checking, etc. Both LOTOSand SDL can be compiled to usable C for implementation.

Specifications are generated with acceptable speed. For example, the configuration shown
in figure 6 is translated from diagrams to LOTOS in about 5 seconds on a Pentium 450. The
resulting specification is about 1800 non-comment lines of LOTOS. In fact the translators can
optionally produce very detailed comments on the generatedcode.

3.3 LOTOS as A Target Language

3.3.1 Translation to LOTOS

As an example of how CRESS is translated, the strategy for generating LOTOS will be de-
scribed. (The translation to SDL is broadly similar, but hasto deal with some nasty compli-
cations due to SDL restrictions.) The outline structure of the generated specification is given
below. Processes communicate via the gatesBill (log billing events),Scp(signals to/from the
SCP),Stat(read/write status variables and profiles) andUser(signals to/from the subscribers).
Of these just theUsergate is externally visible, so only events like going off-hook or the phone
ringing can be seen. TheCallInstancesprocess represents all concurrent calls. TheService-
Controlprocess defines the SCP. Status variables and profile information are managed globally
for all calls by theStatusManager. Finally, theBillingSystemprocess simply accepts billing
events. Calculation of call charges is presumed to be specified separately.

SpecificationNetwork [User] :NoExit (* network *)
Library ... (* library types *)
Type ... (* pre-defined data types *)
Type ... (* domain-specific data types *)
Behaviour (* overall behaviour *)

Hide Bill,Stat,ScpIn (* hide internal signals *)
(

(
CallInstances [Bill,Scp,Stat,User] (* call instances *)

|[Scp]| (* synchronised on SCP messages *)
ServiceControl [Scp,Stat] (* service control point *)

)
|[Stat]| (* synchronised on status messages *)

StatusManager [Bill,Stat] (...) (* status manager *)
)

|[Bill]| (* synchronised on billing messages *)
BillingSystem [Bill] (* billing system *)

Where
Process... (* processes *)

MICON 2001

CRESSConstruct LOTOSConstruct

diagram parameterprocess parameter
Any dummy variable (input) orAnyAddress(output, expression)
node direct translation (once-used node) or process call (revisited node)
node contents nothing (empty node) or events and assignments (non-empty node)
event||| event ‘;’ (no concurrency) or ‘|||’ (concurrency)
event event offer
event parameter ‘!’ (known variable) or ‘?’ (unknown variable)
assignment set (status) variable value from expression
variable use read status manager (global variable) or direct use (diagram variable)
variable update write status manager (global variable) orLet (diagram variable)
Time read status manager clock
leaf node followed byStop (no repeat) or recursive process call (repeat)

Figure 8: CRESSto LOTOSMapping

Each call instance deals with an arbitrary pair of subscribers; the actual phone numbers are
fixed only during the call by going off-hook and dialling. Thebehaviour of a call is determined
by the root diagram and features in use. The number of call instances is defined as a translator
option. Although CRESScan handle an arbitrary number of concurrent calls, too manycompli-
cates the analysis. In practice, three concurrent calls aresufficient to discover most interesting
feature interactions. A translator option decides whetherreaching a leaf node (hanging up)
terminates a call instance or causes call behaviour to repeat.

Figure 8 summarises the key aspects of the translation to LOTOS. This table hints at a
number of complications. Normally a node is translated directly. However if more than one
path in the graph converges on the node, then it and its successors are placed in a process
definition. References to the node then become calls of this process. The translators have
an option to serialise concurrent events. This is because the concurrency adds little to the
expressive power of CRESS but greatly complicates analysis. The translators performa data
flow analysis of a graph in order to determine which variablesare known at each event. This is
partly to detect errors, but it is also necessary to decide whether an event parameter is input or
output. Statuses and profiles are held globally for all features by the status manager, so reading
or writing a variable requires communication with it. Diagram variables are simpler because
they are local and can be accessed directly.

3.4 Feature Analysis with LOTOS

The emphasis in CRESS so far has been on the representation and formalisation of features.
Work on feature interaction detection has been limited to date. The following presents prelimi-
nary work, but in fact techniques developed by others can be adapted easily with the specifica-
tions generated by CRESS.

To check the correctness of features, each was simulated on its own when combined with
POTS. Human judgment was used in deciding significant execution paths. The aim was to
execute each path at least once. This procedure built confidence in the feature descriptions as
well as creating a collection of validation scenarios.

MICON 2001

For simple features the number of interesting paths is small. Thus CND (Calling Number
Delivery, figure 3) has two such paths: the destination does or does not have caller display. As
an example, the following shows a call from phone number 1 to phone number 3 (which has
CND and so sees the caller’s number):

User !OffHook !1 (* 1 picks up *)
User !DialTone !1 (* 1 receives dial tone *)
User !Dial !1 !3 (* 1 dials 3 *)
User !StartRinging !3 !1 (* 3 starts ringing from 1 *)
User !StartAudibleRinging !1 !3 (* 1 starts ringing for 3 *)
User !Display !3 !1 (* 3 sees 1 as the caller *)
User !Answer !3 (* 3 answers the call *)
User !StopRinging !3 !1 (* 3 stops ringing from 1 *)
User !StopAudibleRinging !1 !3 (* 1 stops ringing for 3 *)
User !OnHook !3 (* 3 hangs up *)
User !Disconnect !1 !3 (* 1 is told 3 has hung up *)
User !OnHook !1 (* 1 hangs up *)

For complex features the number of interesting paths is justmanageable. TWC (Three-
Way Calling), for example, has 23 important paths. Either user may start a three-way call, and
there are a number of ways in which three-way setup may fail ormay later revert to a two-way
call. As a sample execution, the following starts with a callfrom phone number 1 to phone
number 2. A three-way call is then initiated by 2 doing flash-hook and calling phone number
3. However before 3 can answer, 2 does flash-hook to cancel thethree-way call and then hangs
up. The call from 2 to 3 is cancelled, and 1 is forced to hang up:

User !OffHook !1 (* 1 picks up *)
User !DialTone !1 (* 1 receives dial tone *)
User !Dial !1 !2 (* 1 dials 2 *)
User !StartRinging !2 !1 (* 2 starts ringing from 1 *)
User !StartAudibleRinging !1 !2 (* 1 starts ringing for 2 *)
User !Answer !2 (* 2 answers the call *)
User !StopRinging !2 !1 (* 2 stops ringing from 1 *)
User !StopAudibleRinging !1 !2 (* 1 stops ringing for 2 *)
User !Flash !2 (* 2 does flash-hook *)
User !DialTone !2 (* 2 receives dial tone *)
User !Dial !2 !3 (* 2 dials 3 *)
User !StartRinging !3 !2 (* 3 starts ringing from 2 *)
User !StartAudibleRinging !2 !3 (* 2 starts ringing for 3 *)
User !Flash !2 (* 2 does flash-hook *)
User !OnHook !2 (* 2 hangs up *)
User !StopRinging !3 !2 (* 3 stops ringing from 2 *)
User !StopAudibleRinging !2 !3 (* 2 stops ringing for 3 *)
User !Disconnect !1 !2 (* 1 is told 2 has hung up *)
User !OnHook !1 (* 1 hangs up *)

Validation scenarios like these characterise the expectedbehaviour of features of isolation.
The scenarios can then be encoded using the ANTEST (ANISE Test) language developed for
ANISE [13]. Briefly, ANTEST is a flexible validation language that expresses tests in terms

MICON 2001

of user-visible behaviour. Acceptance tests (behaviour must happen) and rejection tests (be-
haviour must not happen) can be written. Tests may have sequential or concurrent behaviour.
Alternatives are permitted, and behaviour can be made conditional on a feature being present
for a phone number. In fact, ANTEST is used to encode more comprehensive use-case scenarios
that synthesise the individual executions obtained through simulation.

The ANTEST tool automatically translates validation scenarios into LOTOS and runs them
in parallel with a specification using theTestExpandfunction of LOLA. When features are
combined individually with POTS, this merely confirms the validity of the scenarios. More
importantly, the scenarios can be run against POTS combinedwith all features. A common
interpretation of feature interaction is that a feature fails to perform as expected when other
features are present. The manifestation of feature interaction when using ANTEST is either
deadlock or non-determinism. Deadlock means that one feature prevented another from work-
ing; for example, CNDB (Calling Number Delivery Blocking) prevents CND from working – a
desired interaction! Non-determinism means that an ambiguity arose; for example, flash-hook
is used by both CW and TWC.

The University of Ottawa have in fact worked on the same features [5] as used here with
CRESS, though their LOTOS specifications were created by hand [4]. Their techniques for de-
tecting interactions are therefore also applicable to CRESS. For example non-intrusive observer
processes can be used to check for violation of feature properties, and watchdog processes can
be used to check for violation of system properties.

In future work, the author intends to apply techniques he developed from protocol confor-
mance testing [9] to derive use-case scenarios automatically. Another avenue that the author
intends to explore is the use of symbolic model-checking to verify that feature properties are
preserved in the presence of other features. The current validation approach can check that
calls to a specific number are rejected if they are on its givenscreening list. Model-checking
should allow such properties to be proved in general.

4 Conclusion

It has been seen that CRESS is a graphical language for specifying systems with a base func-
tionality and additional features. The elements of the notation have been introduced for root
diagrams, feature diagrams, rules and configurations. The particular contribution of CRESS

is its ability to describe and combine features in a flexible and automatic manner. A portable
toolset enables thorough checking and translation of diagrams to various languages, currently
LOTOSand SDL. Early work has been presented on feature interaction detection using the spec-
ifications generated by CRESS. Future developments will include support for a wider rangeof
diagram editors and target languages. More complete interaction detection techniques will also
be developed. Although CRESShas been illustrated on traditional telephony features, itis ap-
plicable to a number of problem domains. One immediate new application to be pursued is
Internet telephony using SIP (Session Initiation Protocol[7]). It would also be interesting to
study non-telephony applications such as word processor design.

MICON 2001

References

[1] A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and D. F. Swayne. SCF3/Sculptor with
Chisel: Requirements engineering for communications services. In K. Kimbler and W. Bouma,
editors,Proc. 5th. Feature Interactions in Telecommunications andSoftware Systems, pages 45–63.
IOS Press, Amsterdam, Netherlands, Sept. 1998.

[2] D. Amyott, L. Charfi, N. Gorse, and T. Gray. Feature description and feature interaction analysis
with use case maps and LOTOS. In M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Inter-
actions in Telecommunications and Software Systems, pages 274–289, Amsterdam, Netherlands,
May 2000. IOS Press.

[3] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthuijsen. A
feature-interaction benchmark for IN and beyond.IEEE Communications Magazine, pages 64–69,
Mar. 1993.

[4] Q. Fu, P. Harnois, L. M. S. Logrippo, and J. Sincennes. Feature interaction detection: A LOTOS-
based approach.Computer Networks, 32(4):433–448, Apr. 2000.

[5] N. D. Griffeth, R. B. Blumenthal, J.-C. Gregoire, and T. Ohta. Feature interaction detection contest.
In K. Kimbler and W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications and
Software Systems, pages 327–359. IOS Press, Amsterdam, Netherlands, Sept. 1998.

[6] R. J. Hall. Feature interactions in electronic mail. In M. H. Calder and E. H. Magill, editors,Proc.
6th. Feature Interactions in Telecommunications and Software Systems, pages 67–82, Amsterdam,
Netherlands, May 2000. IOS Press.

[7] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, editors.SIP: Session Initiation Proto-
col. RFC 2543bis. The Internet Society, New York, USA, July 2000.

[8] ITU. Intelligent Network – Global Functional Plane for Intelligent Network Capability Set 2.
ITU-T Q.1223. International Telecommunications Union, Geneva, Switzerland, 1997.

[9] Ji He and K. J. Turner. Protocol-inspired hardware testing. In G. Csopaki, S. Dibuz, and K. Tar-
nay, editors,Proc. Testing Communicating Systems XII, pages 131–147, London, UK, Sept. 1999.
Kluwer Academic Publishers.

[10] F. J. Lin and Y.-J. Lin. A building block approach to detecting and resolving feature interactions.
In L. G. Bouma and H. Velthuijsen, editors,Proc. 2nd. International Workshop on Feature Interac-
tions in Telecommunications Systems and Software Systems, pages 86–119. IOS Press, Amsterdam,
Netherlands, 1994.

[11] M. Plath and M. Ryan. Plug-and-play features. In K. Kimbler and W. Bouma, editors,Proc. 5th.
Feature Interactions in Telecommunications and Software Systems, pages 150–164. IOS Press,
Amsterdam, Netherlands, Sept. 1998.

[12] K. J. Turner. An architectural description of intelligent network features and their interactions.
Computer Networks, 30(15):1389–1419, Sept. 1998.

[13] K. J. Turner. Validating architectural feature descriptions using LOTOS. In K. Kimbler and
W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications andSoftware Systems,
pages 247–261, Amsterdam, Netherlands, Sept. 1998. IOS Press.

[14] K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H. Magill, editors,
Proc. 6th. Feature Interactions in Telecommunications andSoftware Systems, pages 241–256, Am-
sterdam, Netherlands, May 2000. IOS Press.

[15] P. Zave and M. Jackson. New feature interactions in mobile and multimedia telecommunications
services. In M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Interactions in Telecommu-
nications and Software Systems, pages 51–66, Amsterdam, Netherlands, May 2000. IOS Press.

