
Claire Maternaghan and Kenneth J. Turner. Policy Conflicts in Home Automation,
Computer Networks, 57(12):2429-2241, August 2013 (pre-publication version,
copyright Elsevier Science).

Policy Conflicts in Home Automation

Claire Maternaghan and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

Abstract

The nature of home automation is introduced. It is argued that end users should be able
to define how the home system reacts to changing circumstances. Policies are employed
as user-defined rules for how this should happen. The architecture of the Homer home
automation system is briefly overviewed. The Homer policy system and the Homeric policy
language it supports are explained. A technique is described for offline conflict analysis
among policies (the analogue of the feature interaction problem). A substantial worked
example shows how conflict detection is performed on a range of sample home policies.

Key words: Feature Interaction, Home Automation, Policy-Based Management, Policy
Conflict

1 Introduction

This section introduces home automation and the desirability of end-user program-
ming for a home system. Policy-based approaches to home management are dis-
cussed, along with relevant work on features and policies for the home.

1.1 Background

Home automation has been a goal for many years. This is comingcloser to fruition
with the increased number of computer-based devices aroundthe home, coupled
with greater user understanding of technology. However, many existing systems
do not really deal with homeautomation(i.e. defining automated reactions by the
home system). Rather, the focus tends to be on homecontrol (e.g. of audio-visual

Email addresses:clairematernaghan@gmail.com (Claire Maternaghan),
kjt@cs.stir.ac.uk (Kenneth J. Turner).

Preprint submitted to Elsevier 22 July 2013

devices, heating and lighting). Based on a survey by the firstauthor [6], there is user
demand for being able to modify how the home system should react to changing
circumstances.

Although some commercial systems allow a degree of programming, in many cases
this has to be performed by the system installer. Where end user programming
is possible, this requires detailed technical knowledge that is likely to be beyond
the ordinary householder. What is required is a convenient,user-definable way of
specifying how the home should support the residents. However, there are many
challenges in creating a home automation system such as the following.

Heterogeneity: The system must be able to accommodate a wide variety of do-
mestic appliances and devices, ranging from simple ones like lamps to complex
ones like media centres. These are likely to be from many manufacturers and to
conform to many standards.

Extensibility: The range of computer-controllable devices in the home is continu-
ally increasing. Examples are the recent introduction of media servers and media
players. It is impracticable for the system developer to provide support for every
kind or make of device. Instead, the system must be extensible to allow third
parties to add support for new devices. It is also necessary to support configu-
ration of new devices and automatic integration of these into home control and
customisation.

Separability: A home automation system needs to be able to deal with devices
directly and also with complete subsystems. For example, a heating system or
an entertainment system is likely to be self-contained in its own right. A home
system should therefore not expect to control everything directly. However, ev-
erything is managed from one location and can therefore be considered as cen-
tralised (though not all in one system).

Mobility: The user is likely to require monitoring and control of the home system
from outside the home (e.g. in the office or while on holiday).Although most
facilities are likely to be fixed in the home, it may be desirable to extend these
to mobile devices. For example, the user might wish to streammusic or video
from the home to a mobile device or to a car. The boundaries of the home mostly
obviously include the building and its immediate environment, but increased de-
mands for mobility can extend these boundaries.

Customisability: Besides being able to monitor and control the home, users would
like to modify how it reacts to changing circumstances [6]. Home users tend to
think of this as customisation rather than programming (a term that could put off
non-technical users).

Usability: Home users are unlikely to be technically knowledgeable, and there-
fore need easily understood ways of configuring, monitoringand customising
the home system. Usability can also be subjective, so differences in user prefer-
ences must be accommodated.

This paper introduces the Homer home automation system and its associated Ho-

2

meric policy language. More about these can be found in [8]. The aim has been
to meet the challenges above. The approach supports heterogeneity, extensibility,
separability and mobility, while the Homer policy system supports customisability
and usability through user-defined policies for how the homeshould behave. As
policies may conflict with each other, a technique is used to detect and handle these
kinds of problems.

1.2 Related Work

As the focus of this article is on conflicts among home policies, see [8] for related
work on home systems.

1.2.1 Features and Interactions in The Home

Many techniques have been developed for detecting feature interactions, particu-
larly in telephony. There has also been relevant work on feature interaction in home
systems:

Nakamura et al. model appliances within a home network [9,10]. Before a me-
thod can be invoked on an appliance, its pre- and post-conditions must be met.
Failure to meet these conditions is treated as an interaction. Methods also affect
a pre-defined list of ‘environment’ properties such as poweror temperature. The
approach is rather restrictive in the range of environment properties that can be
considered. More seriously, it assumes that precise modelscan be created for all
the domestic appliances. This is unrealistic as appliancesare typically propri-
etary; they also exist in many varieties that could not all bereasonably modelled.

Wilson et al. follow a high-level approach that aims to detect conflicts among ser-
vices [3,20]. The effects of each device on ‘environment’ variables are defined,
and used to detect whether invoking a device action can lead to interference.
Environment variables can be ‘locked’ according to whetherthey must be ex-
clusively modified, may be shared for increases or decreases, or could be either
increased or decreased. The approach was inspired by operating systems, but is
rather basic for home use. In practice, whether a conflict exists can be subjec-
tive. For example, in some regions it is common to have an openfire (for visual
effect) but also to have the air conditioning on (to avoid overheating). Wilson’s
strict interpretation would consider this to be a conflict.

In the field of feature interaction, detection techniques are usually classified as of-
fline (static, definition-time) or online (dynamic, run-time). Offline techniques often
require detailed knowledge of features, while online techniques aim to deal with the
effects of features as they are executed. In telephony, online techniques are prefer-
able as the specification of features may be proprietary and unavailable. In addition,

3

the features involved in a call may not be known in advance since anyone on any
network can call anyone else.

The situation in the home is different. Features are centralised in the home system,
so the issue of feature distribution does not arise. This allows simplifications to be
made in detecting interactions, though proprietary deviceinterfaces may still be a
challenge.

1.2.2 Policies and Conflicts in The Home

The notion of a feature originated in telephony to describe functionality that can
be added to a called, e.g. the ability to redirect calls. Computer-interpreted poli-
cies were originally devised for applications such as managing systems, networks,
quality of service and access control. More recent policy applications have included
body sensor networks, business rules and call control.

In the context of the home, telephony and home automation canoverlap. For exam-
ple, when the phone rings at home then the TV could be muted. Also, when the user
goes out then calls could be redirected to a mobile phone. Thus both features and
policies can be relevant in the home. Policies resemble features, so policy conflict
is the analogue of feature interaction.

The two policy approaches of greatest relevance to home automation are as follows.

ACCENT (Advanced Component Control Enhancing Network Technologies [18])
was originally developed for call control in Internet telephony. However, it was
subsequently extended to manage home care [16] and so is highly relevant to
this paper. ACCENT supports policies in ECA form (Event-Condition-Action).
In addition ACCENT supports domain-specific ontologies, goals and their reali-
sation through policies, conflict handling among goals and policies, and wizards
for easy policy definition.

However, ACCENT is intentionally a rather generalised approach. Its applica-
bility to many domains is a strength, but is also a weakness inthat it is not well
tailored for particular domains (such as home automation).ACCENT is therefore
not as convenient for home users as it should be. The approachis designed for a
distributed setting such as a telephone network, and is morecomplex than needed
for the home (where nearly everything is centralised).

ACCENT also does not support certain key capabilities that have been iden-
tified as important for home system rules [6]. For example, home users do not
readily distinguish events and conditions so these should be blurred. As an ex-
ample, most users would consider ‘the front door opens’ (trigger) and ‘the front
door is open’ (condition) to be equivalent when writing a policy. It has also been
found that users like to define conditional actions in policies (e.g. ‘when the front
door opens, if the house is occupied then play music else report an intruder’).

Ponder (and its derivative Ponder 2,www.ponder2.net) is a well-known policy

4

language that is often used for system management, but has now been extended
for applications such as Body Sensor Networks [2]. Like ACCENT, Ponder sup-
ports policies in ECA form. Additional features include policy domains, support
of obligation and prohibition policies, and integration with goal refinement.

Ponder has not, however, been designed for use in a home setting. It is also
more oriented toward systems programmers, and is thereforeless suitable for
ordinary users. Like ACCENT, Ponder lacks important features that were found
to be desirable for home use. Experiments by the authors withPonder showed
that it would not be a good match to the needs of managing the home.

Policies are the analogue of telephony features, so policy conflict is the analogue
of feature interaction. For the approaches discussed above, policy conflict for AC-
CENT has been investigated for telephony [4,12] and for home care[19]. ACCENT

supports offline detection of conflict-prone policies [1] and also online detection
[17]. Policy conflict for Ponder has been investigated for distributed system man-
agement [5,11].

1.2.3 Constraint Satisfaction

Constraint satisfaction originated with early work on Artificial Intelligence [14].
The aim is to find values that satisfy a set of constraints. Sometimes the existence
of a solution is a sufficient answer, but the ‘best’ solution may also be required. A
wide range of constraint solvers is available. JaCoP (Java Constraint Programming,
www.jacop.eu) was of particular interest to the authors because it can be integrated
easily with Homer (which also uses Java). As will be seen, JaCoP is used as the
basis for detecting policy overlaps.

1.3 Paper Outline

Section 2 gives a high-level overview of the Homer system. The policy server and
its policy language are also introduced. Section 3 discusses how conflicts are han-
dled in three stages: detecting overlaps among policies, detecting conflicts among
their actions, and dealing with detected conflicts. An extended example of conflict
analysis is given. Section 4 summarises the paper and pointsto future work.

2 The Homer Home Automation System

This section introduces the Homer home automation system and the support it of-
fers for policy-based management through the Homeric language.

5

2.1 Homer Philosophy

Homer aims to support control, monitoringandcustomisation of a home system. It
is designed to be open, allowing easy addition of new device types by third party
developers. User-friendly definition of rules is supported, using interfaces provided
by Homer or by third parties. The policy language reflects therequirements ex-
pressed by users for home management [6].

An important aspect is allowing policies to be expressed in multiple ways. Many
other approaches enforce a device-oriented view which (as argued in [13]) can be
unnatural for the user. Instead, Homer is designed to allow policies to be written
from multiple perspectives: device (e.g. how signals should be handled), location
(e.g. what should happen in a room), time (e.g. what should happen on a week-
day) and people (e.g. how an individual should be supported). For example, similar
policies with different perspectives might say ‘when the bedroom sensor reports
movement’, ‘when the bedroom becomes unoccupied’, ‘when itis 7:30AM’ and
‘when I get up’. This gives users the freedom to formulate policies as they choose.
It has been confirmed that users like and can make use of this flexibility [7].

The challenges of home automation outlined in section 1.1 motivated the design of
Homer as follows:

Heterogeneity: Homer needs to support a wide range of appliances and devices. In
comparison, traditional telephony has a relatively limited variety of components
and is usually under the control of one design authority (thenetwork operator).

Homer needs to support a rich (and growing) variety of eventsand actions, and
also a wide range of conflicts that arise from these. In comparison, telephony
feature interaction involves a limited range of well-defined events and actions.
As a result, many of the techniques for feature interaction in telephony do not
map well to home automation.

Extensibility: Traditional telephony does not have to support addition of third-
party devices. For home automation, Homer was designed to beextensible by
separating the core system from component-specific configuration, control and
customisation. The Homer framework is device-independent, with variations em-
bedded in the components. Homer already supports many devices, but can be
(and has been) extended by third-party developers for new kinds of devices.

Separability: Since Homer components are self-describing, it is easy for Homer
to manage not only simple devices but also complex ones (thatmay in fact be
self-contained subsystems).

Mobility: Homer supports user mobility by allowing the home to be managed
through mobile devices like phones and tablets (as well as remote web-based
access). Homer itself does not support other forms of mobility such as streaming
media to a mobile device or a car. However, these are likely tobe offered by other
services that Homer can simply use without having to duplicate the capability.

6

Customisability: Requirements for the Homer policy language were drawn from a
survey of user needs [6]. Examples of specific needs for home automation were
noted above. Many policy approaches (e.g. ACCENT and Ponder) do not meet
these requirements. Many policy languages are also designed for technically ori-
ented users (e.g. for system management, access control or quality of service).
These and other factors mean that standard policy languagesare not especially
suitable for home use.

Customisation also includes how policy conflict is handled.Policy conflict (or
feature interaction) in home automation can be subtle and subjective. For exam-
ple, turning the heating on and opening a window might or might not be con-
sidered to be an interaction. Switching on two power-hungryappliances might
be considered undesirable if it exceeds electricity consumption limits. Homer is
designed to deal with these kinds of issues. In contrast, telephony feature inter-
actions tend to be much more clear-cut, e.g. accept call vs. block call, or forward
call vs. reject call. As a result, feature interaction techniques developed for tele-
phony have limitations when applied to home automation.

Usability: Unlike many technical systems, home systems must be usable by or-
dinary people. This requires the system to be easily conceptualised and to have
convenient user interfaces. These requirements are reflected in the design of Ho-
mer and also in its interfaces. For example, Homer supports monitoring, control
and customisation using desktop, web, phone and tablet interfaces.

In a home context, all policies are under the control of the central home system
and are known to it. This means that the information requiredto detect conflicts is
available when a policy is defined. It is preferable to reportproblems when policies
are defined rather than when they are executed. This gives theuser the opportunity
to modify problematic policies (whether new or existing). It is still possible for
run-time conflicts to occur (e.g. due to competition for a resource), but these are
relatively rare. In any case, a resident would probably not wish to be interrupted by
execution-time problems (and may not even be around to handle them). For these
reasons, offline conflict detection is preferable.

2.2 Homer Architecture

Homer builds on and extends OSGi (‘Open Services Gateway initiative’, www.osgi.
org). OSGi is a dynamic modular system for Java that supports components called
bundles. These have a simple interface which Homer enrichesto allow many kinds
of components (and devices) to be integrated. Bundles can bestarted, stopped and
updated while the platform is running. Homer components make extensive use of
the OSGi Event Admin service that allows asynchronous communication via an
event bus. The major Homer elements shown in figure 1 are as follows:

Database: A lightweight relational database (H2,www.h2database.com) stores

7

Fig. 1. Overall Homer Architecture

component and configuration data. Only the Homer framework has direct ac-
cess to the database, partly for security and partly to isolate components from
database details.

Event Coordinator: This posts events relating to policy triggers, conditions and
actions, and allows components to register for events of interest. In particular,
components can listen for classes of events (e.g. for a room or device type).

Policy System: This supports the storage and execution of user-defined rules for
the home system. When policies are defined, they are checked for validity and
conflict with other policies.

Service Gateway, Services:This gateway deals with communication between the
Homer framework and services. A Homer service supports common code (e.g.
for logging or communication) on behalf of a number of components. By treating
this kind of functionality as a separate service rather thana component, it is
possible to maintain the independence of components.

Component Gateway, Components:This gateway deals with communication be-
tween the Homer framework and component bundles. This includes dealing with
component configuration, triggers, conditions and actions. A component offers
self-contained functionality that typically deals with a class of device (e.g. X10
mains-controlled appliances or Visonic wireless sensors).

8

Fig. 2. Policy System Architecture

System Gateway, Web Server:This gateway deals with communication between
the Homer framework and external entities via the Web Server. Configuration
is also handled by the system gateway. The Web Server offers an HTTP-based
interface for external monitoring and control. External interfaces exchange data
with Homer in JSON format (JavaScript Object Notation,www.json.org).

2.3 Policy System

The policy system is independent of particular components and so is applicable
to a wide variety of devices. This is possible because componentsdeclare their
triggers, conditions and actions to the policy system. Thismakes the core system
independent of devices since components inform the policy system of what they
handle. Components also have the freedom to use absolute measures (e.g. tempera-
ture in◦C) or subjective measures (e.g. ‘chilly’, ‘comfortable’, ‘hot’). The policies
that can be written by a user automatically reflect what components declare about
themselves. The policy language is therefore fully extensible.

Figure 2 shows an expansion of the policy system appearing infigure 1. The major
elements of the policy system are as follows:

Registry: This deals with addition, deletion and editing of policies.It invokes
functions in other elements to validate a policy and to applyan offline conflict
detection algorithm.

Live Policy Store: This handles the storage and execution of currently enabled
policies.

Overlap Detector: This checks a new or edited policy against existing policies.
Apart from examining the validity of a policy it also checks if a policy might be
simultaneously enabled along with an existing one. If so, they are considered to
overlap.

9

Conflict Detector: This checks whether overlapping policies have actions thatcon-
flict with each other. As will be seen later, conflict detection relies on information
that users provide about ‘environment’ effects of particular actions.

2.4 Policy Language

The structure of Homeric, the Homer policy language, is defined by the follow-
ing grammar. Following a common grammar convention, non-terminal symbols
are plain identifiers while terminal symbols are given in quotes. The operator ‘?’
means optional, ‘*’ means zero or more, and ‘|’ separates alternatives.

The first part of a policy is awhen clause that determines when it is triggered. A
simple event is an external trigger or a condition on values.Events can be combined
with and, or andthen (for an event sequence). A time limit can be imposed on a
group of events to allow the definition of higher-level events. For example, the
macro event ‘user returns home’ might be defined as ‘garage door opensthen car
enters garagethen garage door closeswithin five minutes’.

policy : ′′when′′ event′′do′′ execution′′.′′ ;
event: simple event| ′′(′′ compoundevent′′)′′ ;
simple event : trigger| condition ;
compound event: event (timedevent| or event) ;
timed event: ((′′then′′ | ′′and′′) event)* (′′within′′ duration)? ;
or event: (′′or′′ event)* ;

The second part of a policy is ado clause that states what it does. Simple actions
may be combined withand. Actions may also be made conditional. For example,
when a policy is triggered by movement its action might be: ‘if the house is occu-
pieddo play musicelse doreport an intruder’.

execution: simple execution| ′′(′′ compoundexecution′′)′′ ;
simple execution: action ;
compound execution: and execution| conditional execution ;
and execution: execution (′′and′′ execution)* ;
conditional execution: ′′if ′′ action condition′′do′′ execution (′′else′′ ′′do′′ execution)? ;
action condition : condition| ′′(′′ (and condition| or condition)′′)′′ ;
and condition : condition (′′and′′ condition)* ;
or condition : condition (′′or′′ condition)* ;

A trigger indicates the user-defined device causing it, the trigger name and optional
parameters. An example trigger could be: hall sensor, temperature reading, value
20◦C. Conditions and actions are similarly defined. Rather thanusing fixed strings
as identifiers, Homer maps user-defined names to internal identifiers. This allows
names to be later changed or to be rendered in different languages. For example the
original name ‘TV’ might later become ‘lounge TV’ when a second TV is added,
or might be termed ‘la télé’ by a French speaker.

10

trigger : user device id trigger id (parameter)* ;
condition : user device id condition id (parameter)* ;
action : user device id action id (parameter)* ;
duration : /* unsigned positive integer */ ;
parameter : /* uninterpreted character string, e.g.′′12′′, ′′Alice′′ */ ;
* id : /* uninterpreted unique character string, e.g. 984657651468 */ ;

For extensibility, the values above are intentionally not mandated by the policy
language. Rather they are defined by components. For example, a door component
might declare its triggers as ‘has opened’ and ‘has closed’,its conditions as ‘is
open’ and ‘is closed’, and its actions as ‘open’ and ‘close’.Although triggers and
conditions are distinguished internally, they can be used interchangeably in a policy.

2.5 Policy Examples

Example Homeric policies appear in figure 3. These are revisited in section 3.4
when a worked example is given. As explained later, there is adeliberate problem
with the event clause of policy 5. Also note that the messagesin policies 7 and 8
are treated as equivalent since letter case is unimportant in strings.

3 Home Policy Conflict Handling

This section describes the approach to offline handling of conflicts among home
policies. An extended worked example explains the technique. Although conflict
detection looks at only pairs of policies (a new policy and anexisting one), the
detection algorithm is commutative (if A conflicts with B then B conflicts with A)
and associative (if A conflicts with B-and-C, then A-and-B also conflict with C).
This means that a pairwise algorithm is guaranteed to detectconflicts among two
or morepolicies (the analogue of the three-way feature interaction question).

3.1 Overlap Detection

3.1.1 Philosophy

Homer aims to be independent of particular devices and the user’s language. This
means that only components, and not the policy system, embody device-specific
information. This is why components declare their triggers, conditions and actions
to Homer, along with methods to evaluate these.

Homeric policies naturally fall into two parts:when (event) anddo (action). When

11

Id Policy

1 when time is earlier than 8:30PMdo turn on hall lamp

2 when time is 7PMdo turn off hall lamp

3 when time is between 8PM and 10PMdo open window

4 whenwashing machine turns offdo turn on dehumidifier

5 when (front door is openand front door is closed)
do turn on washing machine

6 when (front door is openor front door is closed)do turn on washing machine

7 whenSMS received from Alice saying ‘On The Way Home’
do if indoor temperature is below 18◦C do turn on gas central heating

8 whenSMS received from Alice saying ‘on the way home’
do turn on gas ovenand
if indoor temperature is above 24◦C do open window
else if indoor temperature is below 15◦C do turn on gas central heating

9 when (day is a weekdayand time is 6:30AM)or
(day is a weekendand time is 8:30AM)

do turn on gas central heating

10 when ((front door opensor back door opens)and time is 5PM or laterand
lounge lamp is off)

do turn on lounge lamp

11 when (day is a weekdayand time is 7:30AM)
do turn on immerserand open curtains

12 when time is 9:45PMdo turn off TV

13 when (TV turns off then lounge lamp turns off)
do turn on bedside lampand close curtains

14 whenSMS received from Alice saying ‘Start washing machine’
do turn on washing machine

15 when (day is Sundayand time is 11AM)do turn on washing machine

16 when (day is Sundaythen washing machine turns off)
do turn on dehumidifier

17 when (day is a weekdayand time is 7:30AM)do turn on air conditioning

18 when (time is 8AMor time is 5PM)do send SMS to Alice saying ‘Feed cat’

19 when (indoor temperature is above 25◦C and time is 2PM)
do turn on lawn sprinkler

20 when ((curtain closesthen bedside lamp turns on)and time is after 10PM)
do turn on burglar alarm

Fig. 3. Sample Policies

12

a new policy is defined (or an existing policy is edited), it ischecked for overlap
with existing policies. That is, it is checked whether a new policy and existing
policies can be simultaneously triggered (i.e. their eventclauses can both hold at
the same time).

A philosophical question is how literally to treat ‘at the same time’. There are clear
cases where events could be simultaneously true (e.g. ‘the kettle is boiling’ vs. ‘the
kettle is over 90◦C’). There are clear cases of the opposite (e.g. ‘it is 9AM’ vs. ‘it
is the afternoon’). However, there are also less clear-cut possibilities (e.g. ‘the front
door opens’ vs. ‘the fire alarm goes off’).

A permissive view would consider independent events to be capable of happening
at the same time. However, this could lead to the user being alerted to many possible
conflicts that a commonsense view would exclude. In these circumstances, the user
would be likely to ignore any conflict warnings. Homer therefore takes a pragmatic
view and aims to report only plausible overlaps.

The approach identifies all common cases of overlap (e.g. ‘the front door opens’
vs. ‘the front door opens’). However, as noted earlier, Homeric deliberately blurs
triggers and conditions. For example, ‘the front door opens’ and ‘the front door is
open’ would be treated as equivalent by most users. However,the first of these is
technically a trigger while the second is technically a condition. Component sup-
port of triggers and conditions deals with this situation, so it would be concluded
that there is an overlap despite the different linguistic forms. Components also han-
dle comparison of parameter values, e.g. numbers or strings.

Overlap detection aims to discover whether some combination of triggers and con-
ditions can cause the event clauses of two policies to hold. This is treated as a
constraint satisfaction problem: can the constraints imposed by the event clauses
be simultaneously satisfied? If so, the policies can be triggered at the same time.

However, there are additional complications due to the richness of event clauses.
For sequences to overlap, their common elements must be ableto occur in the
same order. Consider ‘the front door opensthen someone entersthen the front
door closes’ vs. ‘the doorbell ringsthen the front door opensthen the front door
closes’. These are considered to overlap as their common events occur in the same
order. The same type of event may also be repeated within a clause (e.g. ‘the front
door opensthen the TV is switched onthen the front door opens’). In fact these
repetitions refer to different instances of the same type ofevent. Care is therefore
necessary to distinguish these, but also to relate them properly to the corresponding
events in a second policy.

Consider two policies with event clauses ‘the front door opens then the front door
closes’ and ‘the front door closesthen the front door opens’. It might seem obvious
that these do not overlap. However, now add a time constraintto both: ‘within 1
minute’. If the front door opens, closes, then opens again within a minute, then both

13

policies could be simultaneously triggered. This is a somewhat pathological case,
so again Homer takes a commonsense view and does not considerthese to overlap.

Policy events can have parameters (e.g. ‘a message arrives from Alice sayingturn
the heating on’, ‘the loungehumidity is above70%’). Some parameter values be-
long to an enumerated set (e.g. on, off, dim) while others aredrawn from an un-
limited set (e.g. temperature). Overlap detection therefore needs to take parameters
fully into account. For extensibility, parameters comparison is carried out by indi-
vidual components and not by the policy system.

The technique for overlap detection also has an unexpected benefit. The event
clause of a policy can be considered in isolation to find triggers and conditions
that make the event clause hold. This allows an event clause to be checked for va-
lidity. If a policy cannot be triggered, the user is asked to correct this. As a simple
example, consider the problematic event clause: ‘the day isTuesdayand it is the
weekend’.

3.1.2 Overlap Detection through Constraint Satisfaction

Policy event clauses can become complex, with multiple sub-clauses and operators.
It is thus non-trivial to decide whether two policies overlap. The event clauses are
therefore mapped into constraints and analysed by a constraint satisfaction solver.
As noted in section 1.2.3, the authors use JaCoP as an efficient, Java-based solution
that can readily be integrated with Homer.

Each term in an event clause is translated into its JaCoP equivalent. An unparame-
terised event corresponds to a simple JaCoP variable. A parameterised event corre-
sponds to a JaCoP variable with a range of values. Since JaCoPsolves only integer
programming problems, parameters must be mapped to integers. The values of an
enumerated type are simply mapped to 0, 1, 2, etc. This includes string values since
Homer is aware of all the strings used in policies (e.g. the SMS message ‘turn the
heating on’ might be mapped to 3).

For continuous values a more complex mapping is required. Toallow efficient
searches for a solution, JaCoP requires variables to have a modest range of integer
values (a few thousand). Real numbers are therefore treatedas fixed-point values
with limited precision. These are turned into integers, e.g. 23.1 is mapped to 231
(allowing for one decimal place).

JaCoP requires the minimum value of variables to be defined; for simplicity, this is
always treated as 0 by the policy system. Minima depend on theapplication domain
and the device, so there is no sensible default. Negative parameters must therefore
be mapped with an offset. For indoor temperature, 0◦C is a plausible minimum.
However, the minimum outdoor temperature might be more plausibly -20◦C. This
would be treated as 0, so 19.2◦C would be mapped to 392 (i.e. 19.2 plus offset of

14

20.0, allowing for one decimal place).

The operatorsand, or andthen are translated into calls of (polyadic) Java methods
that impose the relevant conditions on their parameters. The case ofthen requires
special treatment. The time at which an event occurs needs tobe recorded in the
corresponding JaCoP variable. The absolute time of an eventis unimportant, so
events in a sequence are considered to occur at time index 0 for the first event, 1 for
the second event, etc. A JaCoP variable therefore has two fields: the actual value of
the variable, and the time index at which this value was established.

JaCoP has the notion of a ‘store’ that holds all the constraints to be satisfied. The
constraints constructed from each event clause are imposedon the store, then Ja-
CoP is requested to look for solutions. For policy purposes it is sufficient to find
one solution in order to determine overlap; JaCoP reports the variable values for
this solution. If subsequent conflict detection discovers contradictory actions, the
variable values allow a concrete example to be given to the user of when conflict
can occur. If JaCoP cannot find any values to satisfy the constraints then no over-
lap (and therefore no conflict) exists. As a concrete example, consider two policies
with the following event clauses:

when day is a weekdayand
(movement is detected in drivethen Alice opens garage doorthen
movement is detected in garagethen garage door closesthen
front door opens)

when (movement is detected in drivethen someone opens garage doorthen
movement is detected in garagethen garage door closesthen
front door opens)and

house temperature is at least 20◦C

The result from JaCoP is that the constraints can be satisfiedby the following vari-
able assignments (with time indexes shown in parentheses):day is Monday (0),
movement in drive (0), Alice opens garage door (1), someone opens garage door
(1), movement in garage (2), garage door closes (3), front door opens (4), house
temperature is 20◦C (0). In the case of a timed/parameterised event, JaCoP reports
the earliest time/lowest value that satisfies the constraints.

3.2 Conflict Detection

3.2.1 Philosophy

Since the actions of a policy self-conflict, it is necessary to check the actions of
each policy in isolation. For pairs of policies whose event clauses overlap, it is also
necessary to check whether their actions conflict. The work on action conflict was

15

inspired by the work of Nakamura [9,10] and Wilson [3,20], though it is an exten-
sion of their ideas. If conditional actions are present, their conditions are considered
part of the event clause for the purposes of overlap detection (see section 3.1.2).

In fact, action conflict can be quite subtle and even subjective. Suppose one policy
would open a window while another would turn on the heating. It could be argued
that these have contrary effects (cooling, heating) and arein conflict. However,
the user might consider both actions desirable (fresh air, keeping warm). Closing
the curtains and turning on a light might also appear to be contradictory (reducing
light, increasing light). Yet the corresponding effects (negative, positive) should be
considered acceptable.

As a result, it is not possible to automatically decide whether a conflict is significant
or not. Since the nature of policy conflict can be subjective,the approach aims
to identify conflict-pronepolicies. Since determining whether conflict exists often
requires human judgment, cases of potential conflict are reported to the user for a
decision.

Even if both effects are in the same direction, they may be considered undesirable
if their cumulative effect is excessive. In some parts of theworld there are limits
on how much power a house should consume. Turning on both the washing ma-
chine (e.g. 3kW) and the air conditioning (e.g. 5kW) might cause this limit to be
exceeded. As an extra complication, some effects do not add linearly. Suppose the
washing machine increases background noise by 30dB while the air conditioning
increases it by 25dB. The net noise power increases not by 30dB + 25dB but actu-
ally by 31.1dB because decibels are on a logarithmic scale.

Actions are assessed for conflict by their effect on ‘environment’ values. In some
cases these could be considered as variables (e.g. light level, humidity) and in
other cases as resources (e.g. power, water). The generic term ‘environ’ is used
for something that an action can affect. Environs are not defined by the policy sys-
tem. Rather, for generality, environs and effects on these are defined by users when
configuring their home. For example, a user may state that turning on the wash-
ing machine increases power consumption by 3kW, water consumption by 25l, and
noise level by 30dB. Environs can also be abstract concepts such as security or
comfort. Homer currently expects the user to define environsfor each device class.
There are no default environs, but this will be supported in future (e.g power con-
sumption would be an effect for all electrical appliances).

An environ is classified according to how effects on it are treated:minimise(effects
on the environ should be minimised),maximise(effects on the environ should be
maximised),neutral(effects should be both minimising or maximising), andignore
(the kind of effect is unimportant).

Example environs are listed in figure 4. Note that environs are user-definedand
not intrinsic to Homer; this allows conflict detection to be independent of devices,

16

Environ Treatment

audio neutral

gas minimise

light neutral

humidity minimise

noise minimise

power minimise

security maximise

temperature neutral

water ignore

Fig. 4. Example Environs and Their User-Defined Treatment

application domain and user language. These environs are revisited in section 3.4
when a worked example is given.

3.2.2 Conflict Detection through Environmental Effects

The action clauses of overlapping policies are analysed forhow their terms affect
the environs. The conflict analysis leads to one of the following results for a pair of
actions:none(e.g. ‘send email’, ‘turn on lamp’),same(e.g. ‘turn on lamp’, ‘turn
on lamp’),opposing(e.g. ‘turn on lamp’, ‘turn off lamp’), andpossible(e.g. ‘open
window’, ‘turn on heating’). The analysis helps users to assess whether a conflict
really exists or can be ignored as unimportant. Users will typically treatopposing
as needing attention. The outcomesameis likely to be regarded as harmless unless
it unnecessarily repeats an expensive action (like sendinga large text message by
phone twice).

The analysis depends on whether the actions affect the same device (figure 5) or
different devices (figure 6). For the same device, analysis also depends on whether
the actions are the same (e.g. both ‘turn on’), are opposing (e.g. ‘turn on’ and ‘turn
off’), or are otherwise different (e.g. ‘turn on’ and ‘dim’).

Whether an action is parameterised or not may affect the outcome. Unparame-
terised actions are plain ones like ‘call emergency services’ or ‘sound the alarm’.
Examples of parameterised actions are ‘send a message toAlice abouta possible
intruder’ and ‘set theloungetemperature to20◦C’. Finally, the sense in which an
action affects an environ is also taken into account (‘+’ increasing it, ‘-’ decreasing
it).

If an action affects multiple environs, the analysis is undertaken for each environ.
It is possible for some of the effects to be conflict-free, butfor others to suggest
conflict. The user is therefore informed of cases where at least one environ suggests

17

Fig. 5. Conflict Analysis for Two Actions on The Same Device

Claire Maternaghan and Kenneth J. Turner. Policy Conflicts in Home Automation,
Computer Networks, 57(12):2429-2241, August 2013 (pre-publication version,
copyright Elsevier Science).

Fig. 6. Conflict Analysis for Two Actions on Different Devices

conflict.

As an example, suppose one action wishes to turn a floodlight on while another
wishes to dim it. Both actions increase the light level, but light is neutral in fig-
ure 4. In figure 5, different actions, neutral and ‘++’ lead toa ‘none’ judgment
for conflict. However, both actions also increase power consumption (which could
be significant for a floodlight). Power is to be minimised according to figure 4. In
figure 5, different actions, minimise and ‘++’ lead to a ‘possible’ judgment for con-
flict. Overall, there is possible conflict due to power (though not due to light). This
will be reported to the user for a decision as to whether the conflict is significant.

3.3 Conflict Resolution

Because of the subjective nature of conflicts, the user is allowed to decide what is
important and what should be ignored.

When a new policy is defined, the user may be informed of existing policies that
it could conflict with. The user is also told of the events thatlead to overlap and
the reasons for actions conflicting. At this point the user can edit the new or ex-
isting policy, or can disable or delete the existing policy (which might have been
superseded). The user can also save the new policy on the basis that the conflict is

18

unlikely or will not have significant consequences.

The user can tell Homer that specific conflicts among the devices in the new and ex-
isting policies should be ignored (e.g. a power conflict between a radio and a lamp
is insignificant). Alternatively the user can choose to ignore classes of conflict (e.g.
light level conflicts involving lamps should be ignored as they are unimportant).
This avoids the user being asked repeatedly in future how to resolve such conflicts.

3.4 Worked Example

The following example illustrates conflict analysis using the example policies in
figure 2.5 and the environ definitions in figure 4.

Figure 7 shows what potential conflicts are reported among the policies; possible
conflictsa to i are explained in figure 8. It is assumed that the policies are defined
one-by-one in the order 1 to 20. The table columns from left toright show what
happens as new policies are defined: the column height grows as more policies are
added to the old policies. As an example, the column numbered17 shows what
happens when policy 17 is added to existing policies 1 to 16: possible conflicti is
detected between policies 17 and 11.

Initially there are no policies, so defining policy 1 does notrequire conflict analysis.
When policy 2 is added, it is reported that this conflicts withpolicy 1 (casea); one
of the policies needs corrected. When policies 3 and 4 are added, no conflicts are
detected. When policy 5 is defined, the user is asked to correct it because its event
clause is invalid: ‘front door is openand front door is closed’ cannot be satisfied.
As policies 6 to 20 are added, eight further potential conflicts are reported and dealt
with by the user.

Caseb is interesting because the new policy (8) has actions that self-conflict; there
is also conflict with an existing policy (7). Similarly casee exhibits self-conflict in
the new policy (13) and with an existing policy (10).

The possible conflicts are explained in figure 8. This shows the policy overlap con-
dition, the analysis outcome, and the likely user reaction to each reported case. As
will be seen, there is significant subjectivity in whether a possible conflict should
be treated as genuine. This is why it is important for Homer toconsult the user (and
to record the user’s decision for future similar cases).

Following user reactions to possible conflicts, the end result is a set of acceptable
policies. As conflict detection has been performed at definition time, the policies
should execute without interference (in the user’s judgement). The only exception
would be if policies conflicted at run-time due to competition for resources. How-
ever, this is unlikely as resource conflict should have been determined through the

19

New

1 2 3 4 5? 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Old

a 1

c 2

d 3

g 4

5

6

b 7

f 8

9

e 10

i 11

12

13

14

h 15

16

17

18

19

20

Fig. 7. Analysis Results for Example Policies and Environs

analysis of environ effects (e.g. large demands for power orgas).

From a purely technical perspective, none of the conflicts inthis example is par-
ticularly surprising. However, from the perspective of a home user the results are
nonetheless useful. Conflicts that may be obvious to a developer may not be antic-
ipated by a non-technical user. Over time, policies defined for the home can accu-
mulate ‘dead wood’: older policies that are no longer relevant and conflict with new
policies. The user may also not think of subtler conflicts such as the tumble drier
interfering with the air conditioning keeping the humiditydown. If several residents
are allowed to define policies, conflict can also arise due to differing viewpoints.
For example, one resident might like to keep all rooms at a temperature of 18◦C but
another might prefer to have public rooms warmer. These are all examples where
the conflicts reported by Homer are useful to the user.

20

Case Overlap Condition Action Analysis Likely Reaction

a 7PM opposing: hall lamp onand off
(opposite actions)

change policy

b not applicable (self-conflict) possible: gas oven onand gas
central heating on (may exceed
gas use limit)

change policy if
gas use important

homeward SMSand 0◦C possible: gas oven onand gas
central heating on (may exceed
gas use limit)

change policy if
gas use important

same: gas central heating on
twice (duplicate actions)

ignore as harmless

c front door opensand 7PM
and lounge lamp off

possible: hall lamp off and
lounge lamp on (opposite light
effects)

ignore as harmless

d 9:45PM possible: window openand TV
off (both decreasing security)

change policy if
security important

e not applicable (self-conflict) possible: bedside lamp onand
curtains closed (opposite light
effects)

ignore as harmless

front doorand 5PMand (TV
off then lounge lamp off)

possible: lounge lamp onand
curtains closed (opposite light
effects)

ignore as harmless

f washing machine SMSand
homeward SMSand 0◦C

possible: washing machine on
and air conditioning on (may
exceed power use limit)

change policy if
power use impor-
tant

g Sunday then washing ma-
chine off

same: dehumidifier on twice
(duplicate actions)

ignore as harmless

h (Sunday then washing ma-
chine off)and 11AM

possible: dehumidifier onand
washing machine on (may ex-
ceed power use or noise limit)

change policy if
power use/noise
important

i Mondayand 7:30AM possible: immerser onand air
conditioning on (may exceed
power use limit)

change policy if
power use impor-
tant

Fig. 8. Possible Conflicts and Likely User Reactions

21

4 Conclusion

It has been argued that policies offer a practical way of allowing end users to specify
how a home automation system should react to changing circumstances. The Ho-
mer system has been briefly introduced, along with the policysystem that supports
this. The Homeric policy language has been described, as well as the approach to
offline conflict detection. A substantial worked example hasshown how the system
deals with conflicts as policies are defined. The subsequent execution of policies
should be conflict-free.

The approach is independent of the application domain, the devices and the user’s
language. The key to achieving this is that components describe to Homer the de-
vices they support. Although Homer has been designed and tested for home au-
tomation, the generality of the approach means that it should be applicable to other
domains as well. However, one limiting factor may be that conflict analysis assumes
a centralised system and hence complete knowledge of all policies. In a distributed
setting (e.g. telephony) this would not hold. Alternative approaches to policy con-
flict such as [17] could therefore be needed.

Homer allows control, monitoringandprogramming of the home. The system ar-
chitecture offers easy extension for new devices, automatically integrating these
with the policy system. Homer also supports a wide variety ofexternal user inter-
faces [8]. Homeric reflects the requirements expressed by users for home manage-
ment policies [6]. An extensive evaluation has been carriedout into the usability of
Homeric policies [7]. This has demonstrated that ordinary users are able to grasp the
policy-based approach, and can successfully write policies to control their homes.
In particular, the use of perspectives has proven to be successful. Techniques and
tool support have also been developed for handling conflictsamong policies as they
are defined.

The Homer system has been evaluated in a laboratory setting.Homer has also been
used by independent developers to create components for newdevices (the Mi-
crosoft Kinect and various multimedia interfaces). As the next major step, it is
planned to deploy Homer into realistic home settings so thatits usability and de-
pendability can be assessed.

Various technical developments are planned for the future.Although Homer sup-
ports policy perspectives, these have not been fully developed in the current in-
terfaces. Work is ongoing to extend the current iPad and iPhone applications, and
also to create more comprehensive support using Android. Although offline conflict
analysis is handled, online analysis and distributed conflict handling could also be
desirable. It is planned to add the capability to explain policy conflicts in the same
kind of way that expert systems explain their recommendations.

Other extensions include enhancing the basic support for sensor and actuator fu-

22

sion, so a more comprehensive solution will be investigated(using macro events
and actions, or along the lines of [15]). It would be desirable to support fuzzy poli-
cies so that the system can deal with uncertain information (e.g. ‘it will probably
be cold tonight’ and ‘the usermayhave fallen’). A library of pre-defined policies
would be a useful future addition. For convenience in defining environs, likely de-
faults for known device types will be added.

Acknowledgements

Claire Maternaghan was financially supported by the Scottish Informatics and Com-
puter Science Alliance and the University of Stirling.

References

[1] G. A. Campbell and K. J. Turner. Policy conflict filtering for call control. In L. du
Bousquet and J.-L. Richier, editors,Proc. 9th Int. Conf. on Feature Interactions
in Software and Communications Systems, pages 83–98. IOS Press, Amsterdam,
Netherlands, May 2008.

[2] S. Keoh, K. Twidle, N. Pryce, E. Lupu, A. S. Filho, N. Dulay, M. Sloman, S. Heeps,
S. Strowes, and J. Sventek. Policy-based management for body-sensor networks. In
Proc. 4th Int. Workshop on Wearable and Implantable Body Sensor Networks, pages
92–98, Aachen, Germany, Mar. 2007.

[3] M. Kolberg, E. H. Magill, and M. E. Wilson. Compatibilityissues between services
supporting networked appliances.IEEE Communications Magazine, 41:136–147,
Nov. 2003.

[4] A. F. Layouni, L. Logrippo, and K. J. Turner. Conflict detection in call control using
first-order logic model checking. In L. du Bousquet and J.-L.Richier, editors,Proc.
9th Int. Conf. on Feature Interactions in Software and Communications Systems, pages
66–82. IOS Press, Amsterdam, Netherlands, May 2008.

[5] E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management.
IEEE Trans. on Software Engineering, 25(6):852–869, Nov. 1999.

[6] C. Maternaghan. How do people want to control their home?Technical Report CSM-
185, Computing Science and Mathematics, University of Stirling, UK, Dec. 2010.

[7] C. Maternaghan. Can people program their home? Technical Report CSM-191,
Computing Science and Mathematics, University of Stirling, UK, Apr. 2012.

[8] C. Maternaghan and K. J. Turner. Pervasive computing forhome automation
and telecare. In S. I. A. Shah, M. Ilyas, and H. T. Mouftah, editors, Pervasive
Communications Handbook, pages 17.1–17.25. CRC Press, Boca Raton, Florida,
USA, Nov. 2011.

23

[9] M. Nakamura, H. Igaki, and K. Matsumoto. Feature interactions in integrated services
of networked home appliances. In S. Reiff-Marganiec and M. D. Ryan, editors,Proc.
8th Int. Conf. on Feature Interactions in Telecommunications and Software Systems,
pages 236–251. IOS Press, Amsterdam, Netherlands, June 2005.

[10] M. Nakamura, H. Igaki, Y. Yoshimura, and K. Ikegami. Considering online feature
interaction detection and resolution for integrated services in home network system.
In M. Nakamura and S. Reiff-Marganiec, editors,Proc. 10th Int. Conf. on Feature
Interactions in Software and Communications Systems, pages 191–206. IOS Press,
Amsterdam, Netherlands, June 2009.

[11] G. Russello, C. Dong, and N. Dulay. Authorisation and conflict resolution for
hierarchical domains. InWorkshop on Policies for Distributed Systems and Networks.
Institution of Electrical and Electronic Engineers Press,New York, USA, 2007.

[12] M. H. ter Breek, S. Gnesi, C. Montangero, and L. Semini. Detecting policy conflicts
by model checking UML state machines. In M. Nakamura and S. Reiff-Marganiec,
editors,Proc. 10th Int. Conf. on Feature Interactions in Software and Communications
Systems, pages 59–74. IOS Press, Amsterdam, Netherlands, June 2009.

[13] K. N. Truong, E. M. Huang, and G. D. Abowd. CAMP: A magnetic poetry interface for
end-user programming of capture applications for the home.In N. Davies, E. Mynatt,
and I. Siio, editors,Proc. Ubiquitous Computing, number 3205 in Lecture Notes in
Computer Science, pages 143–160. Springer, Berlin, Germany, Sept. 2004.

[14] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, London,
1993.

[15] K. J. Turner. Device services for the home. In K. Drira, A. H. Kacem, and M. Jmaiel,
editors,Proc. 10th Int. Conf. on New Technologies for Distributed Systems, pages 41–
48. IEEE Computer Society, Los Alamitos, California, USA, May 2010.

[16] K. J. Turner. Flexible management of smart homes.Ambient Intelligence and Smart
Environments, 3(2):83–110, May 2011.

[17] K. J. Turner and L. Blair. Policies and conflicts in call control. Computer Networks,
51(2):496–514, Feb. 2007.

[18] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry, and J. Ireland.
Policy support for call control.Computer Standards and Interfaces, 28(6):635–649,
June 2006.

[19] F. Wang and K. J. Turner. Policy conflicts in home care systems. In L. du Bousquet
and J.-L. Richier, editors,Proc. 9th Int. Conf. on Feature Interactions in Software and
Communications Systems, pages 61–76. IMAG Laboratory, University of Grenoble,
France, Sept. 2007.

[20] M. Wilson, M. Kolberg, and E. H. Magill. Considering side effects in service
interactions in home automation – An online approach. In L. du Bousquet and
J.-L. Richier, editors,Proc. 9th Int. Conf. on Feature Interactions in Software and
Communications Systems, pages 172–187. IOS Press, Amsterdam, Netherlands, May
2008.

24

