Claire Maternaghan and Kenneth J. Turner. Policy Conflicts in Home Automation,
Computer Networks, 57(12):2429-2241, August 2013 (pre-publication version,
copyright Elsevier Science).

Policy Conflicts in Home Automation

Claire Maternaghan and Kenneth J. Turner

Computing Science and Mathematics, University of StiflBtiyling FK9 4LA, UK

Abstract

The nature of home automation is introduced. It is arguetighd users should be able
to define how the home system reacts to changing circum&aPRcdicies are employed
as user-defined rules for how this should happen. The acthite of the Homer home
automation system is briefly overviewed. The Homer policstemn and the Homeric policy
language it supports are explained. A technique is destiitmeoffline conflict analysis
among policies (the analogue of the feature interactiorblpro). A substantial worked
example shows how conflict detection is performed on a rahgarmaple home policies.

Key words: Feature Interaction, Home Automation, Policy-Based Managnt, Policy
Conflict

1 Introduction

This section introduces home automation and the desityabflend-user program-
ming for a home system. Policy-based approaches to homegearemt are dis-
cussed, along with relevant work on features and policiethimhome.

1.1 Background

Home automation has been a goal for many years. This is coctosgr to fruition
with the increased number of computer-based devices artiventlome, coupled
with greater user understanding of technology. Howevenyrexisting systems
do not really deal with homautomation(i.e. defining automated reactions by the
home system). Rather, the focus tends to be on haoné&ol (e.g. of audio-visual

Email addressesc| ai r ermat er naghan@nai | . com(Claire Maternaghan),
kjt@s. stir.ac.uk (Kenneth J. Turner).

Preprint submitted to Elsevier 22 July 2013

devices, heating and lighting). Based on a survey by thediutstor [6], there is user
demand for being able to modify how the home system shoultt teachanging
circumstances.

Although some commercial systems allow a degree of proghiagynm many cases
this has to be performed by the system installer. Where erd p®gramming
is possible, this requires detailed technical knowledge it likely to be beyond
the ordinary householder. What is required is a conveniesgs-definable way of
specifying how the home should support the residents. Hewelrere are many
challenges in creating a home automation system such asltbwihg.

Heterogeneity: The system must be able to accommodate a wide variety of do-
mestic appliances and devices, ranging from simple oneddikps to complex
ones like media centres. These are likely to be from many faaturers and to
conform to many standards.

Extensibility: The range of computer-controllable devices in the homensico-
ally increasing. Examples are the recent introduction alimeervers and media
players. It is impracticable for the system developer tovjg® support for every
kind or make of device. Instead, the system must be extentiballow third
parties to add support for new devices. It is also necessasypport configu-
ration of new devices and automatic integration of these lraime control and
customisation.

Separability: A home automation system needs to be able to deal with devices
directly and also with complete subsystems. For exampleadirig system or
an entertainment system is likely to be self-containedsrown right. A home
system should therefore not expect to control everythingetly. However, ev-
erything is managed from one location and can therefore hsidered as cen-
tralised (though not all in one system).

Mobility: The user is likely to require monitoring and control of therfeosystem
from outside the home (e.g. in the office or while on holidalfjhough most
facilities are likely to be fixed in the home, it may be desieaio extend these
to mobile devices. For example, the user might wish to streamic or video
from the home to a mobile device or to a car. The boundaridseafibme mostly
obviously include the building and its immediate enviromtéut increased de-
mands for mobility can extend these boundaries.

Customisability: Besides being able to monitor and control the home, usergiwou
like to modify how it reacts to changing circumstances [6pni€ users tend to
think of this as customisation rather than programmingr(@a that could put off
non-technical users).

Usability: Home users are unlikely to be technically knowledgeabld, there-
fore need easily understood ways of configuring, monitoangd customising
the home system. Usability can also be subjective, so diffegs in user prefer-
ences must be accommodated.

This paper introduces the Homer home automation systemtaiagsociated Ho-

meric policy language. More about these can be found in [Be &im has been
to meet the challenges above. The approach supports hetaibg extensibility,
separability and mobility, while the Homer policy systenpgarts customisability
and usability through user-defined policies for how the hateuld behave. As
policies may conflict with each other, a technique is usecteat and handle these
kinds of problems.

1.2 Related Work

As the focus of this article is on conflicts among home paodicsee [8] for related
work on home systems.

1.2.1 Features and Interactions in The Home

Many techniques have been developed for detecting featteeactions, particu-
larly in telephony. There has also been relevant work onufeanteraction in home
systems:

Nakamura et al. model appliances within a home network [9,10]. Before a me-
thod can be invoked on an appliance, its pre- and post-gondiust be met.
Failure to meet these conditions is treated as an interaddlethods also affect
a pre-defined list of ‘environment’ properties such as powdemperature. The
approach is rather restrictive in the range of environmeopgrties that can be
considered. More seriously, it assumes that precise modalbe created for all
the domestic appliances. This is unrealistic as applianoegypically propri-
etary; they also exist in many varieties that could not alidasonably modelled.

Wilson et al. follow a high-level approach that aims to detect conflictoagser-
vices [3,20]. The effects of each device on ‘environmentialales are defined,
and used to detect whether invoking a device action can leadterference.
Environment variables can be ‘locked’ according to whethey must be ex-
clusively modified, may be shared for increases or decreasesuld be either
increased or decreased. The approach was inspired by iogesgstems, but is
rather basic for home use. In practice, whether a conflidtexian be subjec-
tive. For example, in some regions it is common to have an @peffor visual
effect) but also to have the air conditioning on (to avoidrbeating). Wilson’s
strict interpretation would consider this to be a conflict.

In the field of feature interaction, detection techniqueswsually classified as of-
fline (static, definition-time) or online (dynamic, run-g& Offline techniques often
require detailed knowledge of features, while online teghes aim to deal with the
effects of features as they are executed. In telephonyy@tdichniques are prefer-
able as the specification of features may be proprietary aadailable. In addition,

the features involved in a call may not be known in advanceesanyone on any
network can call anyone else.

The situation in the home is different. Features are ceséa@lin the home system,
so the issue of feature distribution does not arise. Thasallsimplifications to be
made in detecting interactions, though proprietary dewiterfaces may still be a
challenge.

1.2.2 Policies and Conflicts in The Home

The notion of a feature originated in telephony to describecfionality that can
be added to a called, e.g. the ability to redirect calls. Qaterpinterpreted poli-
cies were originally devised for applications such as manpgystems, networks,
quality of service and access control. More recent poligfiaations have included
body sensor networks, business rules and call control.

In the context of the home, telephony and home automatiowwearap. For exam-
ple, when the phone rings at home then the TV could be muted, Alhen the user
goes out then calls could be redirected to a mobile phones Bbth features and
policies can be relevant in the home. Policies resembleffest so policy conflict
is the analogue of feature interaction.

The two policy approaches of greatest relevance to homereiton are as follows.

ACCENT (Advanced Component Control Enhancing Network Technel®§l8])
was originally developed for call control in Internet tetemy. However, it was
subsequently extended to manage home care [16] and so iy hgévant to
this paper. A£CENT supports policies in ECA form (Event-Condition-Action).
In addition ACCENT supports domain-specific ontologies, goals and their-reali
sation through policies, conflict handling among goals amities, and wizards
for easy policy definition.

However, ACCENT is intentionally a rather generalised approach. Its applic
bility to many domains is a strength, but is also a weaknessanit is not well
tailored for particular domains (such as home automati®aENT is therefore
not as convenient for home users as it should be. The appedesigned for a
distributed setting such as a telephone network, and is ouonglex than needed
for the home (where nearly everything is centralised).

ACCENT also does not support certain key capabilities that hava k-
tified as important for home system rules [6]. For examplenédasers do not
readily distinguish events and conditions so these shoaildlixred. As an ex-
ample, most users would consider ‘the front door opengjdert) and ‘the front
door is open’ (condition) to be equivalent when writing aipplit has also been
found that users like to define conditional actions in pekdie.g. ‘when the front
door opens, if the house is occupied then play music elsetrapontruder’).

Ponder (and its derivative Ponder 2yww.ponder2.ngtis a well-known policy

language that is often used for system management, but mabe®n extended
for applications such as Body Sensor Networks [2]. Likec&NT, Ponder sup-
ports policies in ECA form. Additional features include jggldomains, support
of obligation and prohibition policies, and integratiorthvgoal refinement.
Ponder has not, however, been designed for use in a homegséttis also

more oriented toward systems programmers, and is theréfesesuitable for
ordinary users. Like ACENT, Ponder lacks important features that were found
to be desirable for home use. Experiments by the authorsRatider showed
that it would not be a good match to the needs of managing threho

Policies are the analogue of telephony features, so potigflict is the analogue
of feature interaction. For the approaches discussed apoliey conflict for Ac-
CENT has been investigated for telephony [4,12] and for home [d&je ACCENT
supports offline detection of conflict-prone policies [1Haaiso online detection
[17]. Policy conflict for Ponder has been investigated fatrdbuted system man-
agement [5,11].

1.2.3 Constraint Satisfaction

Constraint satisfaction originated with early work on Acial Intelligence [14].
The aim is to find values that satisfy a set of constraints. Gwnes the existence
of a solution is a sufficient answer, but the ‘best’ solutioaynalso be required. A
wide range of constraint solvers is available. JaCoP (Javeitaint Programming,
www.jacop.edwas of particular interest to the authors because it cantegrated
easily with Homer (which also uses Java). As will be seenpPaiS used as the
basis for detecting policy overlaps.

1.3 Paper Outline

Section 2 gives a high-level overview of the Homer systene pblicy server and
its policy language are also introduced. Section 3 dissulse® conflicts are han-
dled in three stages: detecting overlaps among policigectieg conflicts among
their actions, and dealing with detected conflicts. An edéehexample of conflict
analysis is given. Section 4 summarises the paper and goifuture work.

2 The Homer Home Automation System

This section introduces the Homer home automation systehthensupport it of-
fers for policy-based management through the Homeric laggu

2.1 Homer Philosophy

Homer aims to support control, monitoriagd customisation of a home system. It
is designed to be open, allowing easy addition of new deyipes by third party
developers. User-friendly definition of rules is supportegzing interfaces provided
by Homer or by third parties. The policy language reflectsrétpirements ex-
pressed by users for home management [6].

An important aspect is allowing policies to be expressed uttiple ways. Many
other approaches enforce a device-oriented view whichrfaged in [13]) can be
unnatural for the user. Instead, Homer is designed to allolicips to be written
from multiple perspectives: device (e.g. how signals sthdad handled), location
(e.g. what should happen in a room), time (e.g. what shoutghdra on a week-
day) and people (e.g. how an individual should be supparka)example, similar
policies with different perspectives might say ‘when thelfo®m sensor reports
movement’, ‘when the bedroom becomes unoccupied’, ‘whes T 30AM’ and
‘when | get up’. This gives users the freedom to formulateqoed as they choose.
It has been confirmed that users like and can make use of thiisililsy [7].

The challenges of home automation outlined in section 1.tivated the design of
Homer as follows:

Heterogeneity: Homer needs to support a wide range of appliances and deknces
comparison, traditional telephony has a relatively limit@riety of components
and is usually under the control of one design authority itgvork operator).

Homer needs to support a rich (and growing) variety of evandsactions, and
also a wide range of conflicts that arise from these. In corspay telephony
feature interaction involves a limited range of well-defire/ents and actions.
As a result, many of the techniques for feature interactioteiephony do not
map well to home automation.

Extensibility: Traditional telephony does not have to support additionhaflt
party devices. For home automation, Homer was designed exteasible by
separating the core system from component-specific coatigar, control and
customisation. The Homer framework is device-independtdttt variations em-
bedded in the components. Homer already supports manyedg\bat can be
(and has been) extended by third-party developers for nedslof devices.

Separability: Since Homer components are self-describing, it is easy tonéf
to manage not only simple devices but also complex ones iftlgtin fact be
self-contained subsystems).

Mobility: Homer supports user mobility by allowing the home to be madag
through mobile devices like phones and tablets (as well a®ite web-based
access). Homer itself does not support other forms of ntglsilich as streaming
media to a mobile device or a car. However, these are likdbgtoffered by other
services that Homer can simply use without having to duditiae capability.

Customisability: Requirements for the Homer policy language were drawn from a
survey of user needs [6]. Examples of specific needs for hartoeration were
noted above. Many policy approaches (e.@.C&NT and Ponder) do not meet
these requirements. Many policy languages are also desfgneechnically ori-
ented users (e.g. for system management, access controalitygf service).
These and other factors mean that standard policy langwageasot especially
suitable for home use.

Customisation also includes how policy conflict is handfalicy conflict (or
feature interaction) in home automation can be subtle abpbstive. For exam-
ple, turning the heating on and opening a window might or migit be con-
sidered to be an interaction. Switching on two power-hurappliances might
be considered undesirable if it exceeds electricity conion limits. Homer is
designed to deal with these kinds of issues. In contragtpeliny feature inter-
actions tend to be much more clear-cut, e.g. accept callesk sall, or forward
call vs. reject call. As a result, feature interaction teghas developed for tele-
phony have limitations when applied to home automation.

Usability: Unlike many technical systems, home systems must be usglbe- b
dinary people. This requires the system to be easily conaeéped and to have
convenient user interfaces. These requirements are exflecthe design of Ho-
mer and also in its interfaces. For example, Homer suppaststoring, control
and customisation using desktop, web, phone and tablefanés.

In a home context, all policies are under the control of thetreé home system
and are known to it. This means that the information requioedietect conflicts is
available when a policy is defined. It is preferable to repooblems when policies
are defined rather than when they are executed. This gives#drehe opportunity
to modify problematic policies (whether new or existing)id still possible for
run-time conflicts to occur (e.g. due to competition for aotgse), but these are
relatively rare. In any case, a resident would probably nshwo be interrupted by
execution-time problems (and may not even be around to Bahdm). For these
reasons, offline conflict detection is preferable.

2.2 Homer Architecture

Homer builds on and extends OSGi (‘Open Services Gatewagtine’, www.0sgi.
org). OSGi is a dynamic modular system for Java that supportgpooents called
bundles. These have a simple interface which Homer enrichedtow many kinds
of components (and devices) to be integrated. Bundles catabted, stopped and
updated while the platform is running. Homer componentsar@kensive use of
the OSGi Event Admin service that allows asynchronous comeation via an
event bus. The major Homer elements shown in figure 1 are lasvil

Database: A lightweight relational database (H2yww.h2database.constores

/OSGi N

(Homer Framework h
Event Policy
Calabuse Coordinator System
Service Component System

\J Gateway Gateway Gateway |/

\[Services J_‘ Components H Web Server | /

Fig. 1. Overall Homer Architecture

component and configuration data. Only the Homer framewask direct ac-
cess to the database, partly for security and partly to tsaamponents from
database details.

Event Coordinator: This posts events relating to policy triggers, conditiond a
actions, and allows components to register for events efast. In particular,
components can listen for classes of events (e.g. for a reaewce type).

Policy System: This supports the storage and execution of user-defined fofe
the home system. When policies are defined, they are cheokealfdity and
conflict with other policies.

Service Gateway, ServicesThis gateway deals with communication between the
Homer framework and services. A Homer service supports comecode (e.g.
for logging or communication) on behalf of a number of comgrats. By treating
this kind of functionality as a separate service rather thaamomponent, it is
possible to maintain the independence of components.

Component Gateway, Components:This gateway deals with communication be-
tween the Homer framework and component bundles. Thisdesidealing with
component configuration, triggers, conditions and actidnsomponent offers
self-contained functionality that typically deals with lass of device (e.g. X10
mains-controlled appliances or Visonic wireless sensors)

fHomer Framework \

/Homer Policy System)

Homer

Detector Registry |
System
Gateway

Conflict Live Policy | /

Detector Store T~ Event

KK ”) CoordlnatorJ

Fig. 2. Policy System Architecture

System Gateway, Web Server:This gateway deals with communication between
the Homer framework and external entities via the Web Sefenfiguration
is also handled by the system gateway. The Web Server offeksTd P-based
interface for external monitoring and control. Externdemfaces exchange data
with Homer in JSON format (JavaScript Object Notatiamyw.json.org.

2.3 Policy System

The policy system is independent of particular componentsso is applicable
to a wide variety of devices. This is possible because commseclaretheir
triggers, conditions and actions to the policy system. Tigkes the core system
independent of devices since components inform the polisjesn of what they
handle. Components also have the freedom to use absoluseiraede.g. tempera-
ture in°C) or subjective measures (e.g. ‘chilly’, ‘comfortabldipt’). The policies
that can be written by a user automatically reflect what camepts declare about
themselves. The policy language is therefore fully extaasi

Figure 2 shows an expansion of the policy system appearifigure 1. The major
elements of the policy system are as follows:

Registry: This deals with addition, deletion and editing of policiésinvokes
functions in other elements to validate a policy and to agmiyoffline conflict
detection algorithm.

Live Policy Store: This handles the storage and execution of currently enabled
policies.

Overlap Detector: This checks a new or edited policy against existing policies
Apart from examining the validity of a policy it also checksipolicy might be
simultaneously enabled along with an existing one. If sey @re considered to
overlap.

Conflict Detector: This checks whether overlapping policies have actionscibrat
flict with each other. As will be seen later, conflict detentielies on information
that users provide about ‘environment’ effects of paracactions.

2.4 Policy Language

The structure of Homeric, the Homer policy language, is @efiby the follow-
ing grammar. Following a common grammar convention, nomitgal symbols
are plain identifiers while terminal symbols are given in t@so The operator ‘?’
means optional, * means zero or more, afficseparates alternatives.

The first part of a policy is avhen clause that determines when it is triggered. A
simple event is an external trigger or a condition on valkeents can be combined
with and, or andthen (for an event sequence). A time limit can be imposed on a
group of events to allow the definition of higher-level exgerftor example, the
macro event ‘user returns home’ might be defined as ‘garageamenghen car
enters garagthen garage door closesithin five minutes’.

policy : “wheri’ event’do”’ execution’.” ;

event: simple event| ”(” compoundevent”)” ;
simple_event: trigger| condition ;

compound. event: event (timedevent| or_event) ;
timed_event: (("ther!’ | “and’) event)* ('within” duration)? ;
or_event: ("or” event)*;

The second part of a policy is@o clause that states what it does. Simple actions
may be combined witland. Actions may also be made conditional. For example,
when a policy is triggered by movement its action might lifetie house is occu-
pieddo play musicelse doreport an intruder’.

execution: simple execution ”(” compoundexecution’)” ;

simple_execution: action ;

compound. execution: and execution conditional execution ;

and_execution: execution (and’ execution)* ;

conditional_execution: ”if” action. condition”dod” execution {els¢ "dd’ execution)? ;
action_condition : condition| ”(” (and. condition| or_condition)”)” ;

and_ condition : condition ('and’ condition)* ;

or_condition : condition (‘or’ condition)* ;

A trigger indicates the user-defined device causing it,riggeér name and optional
parameters. An example trigger could be: hall sensor, testyre reading, value
20°C. Conditions and actions are similarly defined. Rather tisng fixed strings
as identifiers, Homer maps user-defined names to internafifiées. This allows
names to be later changed or to be rendered in different &gegi For example the
original name ‘TV' might later become ‘lounge TV’ when a sadolV is added,
or might be termed ‘la télé’ by a French speaker.

10

trigger : user device id trigger._id (parameter)* ;

condition : user device id condition id (parameter)* ;

action : user device id action id (parameter)*;

duration : /* unsigned positive integer */ ;

parameter : /* uninterpreted character string, €’d.2’, "Alice” */ ;
_id : / uninterpreted unique character string, e.g. 984654681/ ;

For extensibility, the values above are intentionally n@nahated by the policy
language. Rather they are defined by components. For exaat®r component
might declare its triggers as ‘has opened’ and ‘has closedgonditions as ‘is
open’ and ‘is closed’, and its actions as ‘open’ and ‘clogdthough triggers and
conditions are distinguished internally, they can be usegichangeably in a policy.

2.5 Policy Examples

Example Homeric policies appear in figure 3. These are tedsn section 3.4
when a worked example is given. As explained later, theredisli@aerate problem
with the event clause of policy 5. Also note that the messageslicies 7 and 8
are treated as equivalent since letter case is unimportattings.

3 Home Policy Conflict Handling

This section describes the approach to offline handling ofliobs among home
policies. An extended worked example explains the tecteiddthough conflict
detection looks at only pairs of policies (a new policy andearsting one), the
detection algorithm is commutative (if A conflicts with B th& conflicts with A)

and associative (if A conflicts with B-and-C, then A-and-Baatonflict with C).

This means that a pairwise algorithm is guaranteed to detatticts among two
or morepolicies (the analogue of the three-way feature interaajigestion).

3.1 Overlap Detection

3.1.1 Philosophy

Homer aims to be independent of particular devices and teesuanguage. This
means that only components, and not the policy system, eyntbexdce-specific
information. This is why components declare their triggeohditions and actions
to Homer, along with methods to evaluate these.

Homeric policies naturally fall into two partathen (event) andlo (action). When

11

Policy

whentime is earlier than 8:30PMo turn on hall lamp

whentime is 7PMdo turn off hall lamp

whentime is between 8PM and 10P#b open window

whenwashing machine turns offo turn on dehumidifier

a|lbhrlwWw|N|PF

when (front door is operand front door is closed)
do turn on washing machine

when (front door is operor front door is closedylo turn on washing maching

117

when SMS received from Alice saying ‘On The Way Home’
do if indoor temperature is below 18 do turn on gas central heating

when SMS received from Alice saying ‘on the way home’
doturn on gas oveand
if indoor temperature is above 24 do open window
else ifindoor temperature is below 16 do turn on gas central heating

when (day is a weekdagnd time is 6:30AM)or
(day is a weekendnd time is 8:30AM)
do turn on gas central heating

10

when ((front door open®r back door opensand time is 5PM or lateand
lounge lamp is off)
doturn on lounge lamp

11

when (day is a weekdagnd time is 7:30AM)
do turn on immerseand open curtains

12

whentime is 9:45PMdo turn off TV

13

when (TV turns offthen lounge lamp turns off)
do turn on bedside lamand close curtains

14

when SMS received from Alice saying ‘Start washing machine’
do turn on washing machine

15

when (day is Sundayand time is 11AM)do turn on washing machine

16

when (day is Sundayhen washing machine turns off)
do turn on dehumidifier

17

when (day is a weekdagnd time is 7:30AM)do turn on air conditioning

18

when (time is 8AMor time is 5PM)do send SMS to Alice saying ‘Feed cat

19

when (indoor temperature is above Z5and time is 2PM)
do turn on lawn sprinkler

20

when ((curtain closeshen bedside lamp turns o@nd time is after 10PM)
do turn on burglar alarm

Fig. 3. Sample Policies

12

a new policy is defined (or an existing policy is edited), itieecked for overlap
with existing policies. That is, it is checked whether a nesliqy and existing
policies can be simultaneously triggered (i.e. their exdtaises can both hold at
the same time).

A philosophical question is how literally to treat ‘at thexsatime’. There are clear
cases where events could be simultaneously true (e.g. étitle ks boiling’ vs. ‘the
kettle is over 90C’). There are clear cases of the opposite (e.g. ‘it is 9AM’its
is the afternoon’). However, there are also less clear-ossipilities (e.g. ‘the front
door opens’ vs. ‘the fire alarm goes off’).

A permissive view would consider independent events to palda of happening
at the same time. However, this could lead to the user beartealto many possible
conflicts that a commonsense view would exclude. In theseamistances, the user
would be likely to ignore any conflict warnings. Homer thereftakes a pragmatic
view and aims to report only plausible overlaps.

The approach identifies all common cases of overlap (e.g.flttnt door opens’
vs. ‘the front door opens’). However, as noted earlier, Homeeliberately blurs
triggers and conditions. For example, ‘the front door opand ‘the front door is
open’ would be treated as equivalent by most users. Howtheefjrst of these is
technically a trigger while the second is technically a dbad. Component sup-
port of triggers and conditions deals with this situatiamjtsvould be concluded
that there is an overlap despite the different linguistrafe. Components also han-
dle comparison of parameter values, e.g. numbers or strings

Overlap detection aims to discover whether some combimatitriggers and con-

ditions can cause the event clauses of two policies to hdiis iE treated as a
constraint satisfaction problem: can the constraints seddy the event clauses
be simultaneously satisfied? If so, the policies can bedrigg at the same time.

However, there are additional complications due to thengss of event clauses.
For sequences to overlap, their common elements must bet@lolecur in the
same order. Consider ‘the front door opeghen someone enterthen the front
door closes’ vs. ‘the doorbell ringben the front door openghen the front door
closes’. These are considered to overlap as their commansewecur in the same
order. The same type of event may also be repeated withiruaelg.g. ‘the front
door openghen the TV is switched orthen the front door opens’). In fact these
repetitions refer to different instances of the same typeveht. Care is therefore
necessary to distinguish these, but also to relate thenegdyaje the corresponding
events in a second policy.

Consider two policies with event clauses ‘the front doorrgiben the front door
closes’ and ‘the front door closésen the front door opens’. It might seem obvious
that these do not overlap. However, now add a time consti@iboth: within 1
minute’. If the front door opens, closes, then opens againima minute, then both

13

policies could be simultaneously triggered. This is a soh@avpathological case,
so again Homer takes a commonsense view and does not cotisderto overlap.

Policy events can have parameters (e.g. ‘a message amvag\fice sayingturn
the heating oh ‘the loungehumidity is abover0%). Some parameter values be-
long to an enumerated set (e.g. on, off, dim) while othersdaag/n from an un-
limited set (e.g. temperature). Overlap detection theeafi@eds to take parameters
fully into account. For extensibility, parameters compani is carried out by indi-
vidual components and not by the policy system.

The technique for overlap detection also has an unexpeagdfib The event
clause of a policy can be considered in isolation to find #rggand conditions
that make the event clause hold. This allows an event clause thecked for va-
lidity. If a policy cannot be triggered, the user is askeddaect this. As a simple
example, consider the problematic event clause: ‘the dayésdayand it is the
weekend'.

3.1.2 Overlap Detection through Constraint Satisfaction

Policy event clauses can become complex, with multipledabses and operators.
It is thus non-trivial to decide whether two policies overldhe event clauses are
therefore mapped into constraints and analysed by a contstedisfaction solver.
As noted in section 1.2.3, the authors use JaCoP as an dffitaea-based solution
that can readily be integrated with Homer.

Each term in an event clause is translated into its JaCoRaquot. An unparame-
terised event corresponds to a simple JaCoP variable. Angdeaised event corre-
sponds to a JaCoP variable with a range of values. Since Js@a#3 only integer
programming problems, parameters must be mapped to istefee values of an
enumerated type are simply mapped to O, 1, 2, etc. This ieslatting values since
Homer is aware of all the strings used in policies (e.g. thesSivessage ‘turn the
heating on’ might be mapped to 3).

For continuous values a more complex mapping is requiredallfov efficient
searches for a solution, JaCoP requires variables to hawalashrange of integer
values (a few thousand). Real numbers are therefore treatéided-point values
with limited precision. These are turned into integers, 23j1 is mapped to 231
(allowing for one decimal place).

JaCoP requires the minimum value of variables to be defimedijmplicity, this is
always treated as 0 by the policy system. Minima depend oappkcation domain
and the device, so there is no sensible default. Negatiapeters must therefore
be mapped with an offset. For indoor temperatur&; & a plausible minimum.
However, the minimum outdoor temperature might be moregltdy1-20°C. This
would be treated as 0, so 192would be mapped to 392 (i.e. 19.2 plus offset of

14

20.0, allowing for one decimal place).

The operatorand, or andthen are translated into calls of (polyadic) Java methods
that impose the relevant conditions on their parameters.ciise othen requires
special treatment. The time at which an event occurs neelds tecorded in the
corresponding JaCoP variable. The absolute time of an eyvemimportant, so
events in a sequence are considered to occur at time indexiefbrst event, 1 for
the second event, etc. A JaCoP variable therefore has twig fible actual value of
the variable, and the time index at which this value was éstadal.

JaCoP has the notion of a ‘store’ that holds all the congsdambe satisfied. The
constraints constructed from each event clause are impmséue store, then Ja-
CoP is requested to look for solutions. For policy purposés sufficient to find
one solution in order to determine overlap; JaCoP repods/#niable values for
this solution. If subsequent conflict detection discovenstadictory actions, the
variable values allow a concrete example to be given to tke alswhen conflict
can occur. If JaCoP cannot find any values to satisfy the caingt then no over-
lap (and therefore no conflict) exists. As a concrete exaneplesider two policies
with the following event clauses:

whenday is a weekdagnd
(movement is detected in drivken Alice opens garage dodtinen
movement is detected in garatipen garage door closdben
front door opens)

when (movement is detected in dritken someone opens garage ddoen
movement is detected in garatipen garage door closdben
front door opensand
house temperature is at least€0

The result from JaCoP is that the constraints can be satlsfi¢tue following vari-
able assignments (with time indexes shown in parenthedag)is Monday (0),
movement in drive (0), Alice opens garage door (1), some@an® garage door
(1), movement in garage (2), garage door closes (3), froat dpens (4), house
temperature is 2@ (0). In the case of a timed/parameterised event, JaCoPtsepo
the earliest time/lowest value that satisfies the congain

3.2 Conflict Detection

3.2.1 Philosophy
Since the actions of a policy self-conflict, it is necessargheck the actions of

each policy in isolation. For pairs of policies whose evéatises overlap, it is also
necessary to check whether their actions conflict. The waor&ation conflict was

15

inspired by the work of Nakamura [9,10] and Wilson [3,20hudlh it is an exten-
sion of their ideas. If conditional actions are presentytt@nditions are considered
part of the event clause for the purposes of overlap dete(dee section 3.1.2).

In fact, action conflict can be quite subtle and even subjecBuppose one policy
would open a window while another would turn on the heatibgould be argued
that these have contrary effects (cooling, heating) andrac®nflict. However,
the user might consider both actions desirable (fresh aepig warm). Closing
the curtains and turning on a light might also appear to béradittory (reducing
light, increasing light). Yet the corresponding effectedative, positive) should be
considered acceptable.

As aresult, itis not possible to automatically decide whethconflict is significant
or not. Since the nature of policy conflict can be subjectitie, approach aims
to identify conflictpronepolicies. Since determining whether conflict exists often
requires human judgment, cases of potential conflict arerteg to the user for a
decision.

Even if both effects are in the same direction, they may baidened undesirable
if their cumulative effect is excessive. In some parts ofwweld there are limits

on how much power a house should consume. Turning on both éisbing ma-

chine (e.g. 3kW) and the air conditioning (e.g. 5kW) mighisa this limit to be

exceeded. As an extra complication, some effects do notiaédrly. Suppose the
washing machine increases background noise by 30dB wtelaithconditioning

increases it by 25dB. The net noise power increases not big 3@bdB but actu-

ally by 31.1dB because decibels are on a logarithmic scale.

Actions are assessed for conflict by their effect on ‘enuviment’ values. In some
cases these could be considered as variables (e.g. lighlf lwmidity) and in
other cases as resources (e.g. power, water). The genericerviron’ is used
for something that an action can affect. Environs are nohddfby the policy sys-
tem. Rather, for generality, environs and effects on theséefined by users when
configuring their home. For example, a user may state thatnmiron the wash-
ing machine increases power consumption by 3kW, water ecopsan by 25I, and
noise level by 30dB. Environs can also be abstract conceyfs as security or
comfort. Homer currently expects the user to define envifonsach device class.
There are no default environs, but this will be supporteditnrie (e.g power con-
sumption would be an effect for all electrical appliances).

An environ is classified according to how effects on it aratied:minimise(effects
on the environ should be minimisedapaximise(effects on the environ should be
maximised)neutral(effects should be both minimising or maximising), agilore
(the kind of effect is unimportant).

Example environs are listed in figure 4. Note that enviroresuser-definecand
not intrinsic to Homer; this allows conflict detection to Ibelependent of devices,

16

Environ Treatment

audio neutral
gas minimise
light neutral

humidity minimise

noise minimise
power minimise
security maximise

temperature neutral

water ignore

Fig. 4. Example Environs and Their User-Defined Treatment

application domain and user language. These environs asgtee in section 3.4
when a worked example is given.

3.2.2 Conflict Detection through Environmental Effects

The action clauses of overlapping policies are analysetdor their terms affect
the environs. The conflict analysis leads to one of the falgwesults for a pair of
actions:none(e.g. ‘send email’, ‘turn on lamp’same(e.g. ‘turn on lamp’, ‘turn
on lamp’),opposinge.g. ‘turn on lamp’, ‘turn off lamp’), anghossible(e.g. ‘open
window’, ‘turn on heating’). The analysis helps users tceasswvhether a conflict
really exists or can be ignored as unimportant. Users wplidgily treatopposing

as needing attention. The outcosamaeis likely to be regarded as harmless unless
it unnecessarily repeats an expensive action (like seraliagye text message by
phone twice).

The analysis depends on whether the actions affect the sameedfigure 5) or
different devices (figure 6). For the same device, analyssd@epends on whether
the actions are the same (e.g. both ‘turn on’), are opposing ‘turn on’ and ‘turn
off’), or are otherwise different (e.g. ‘turn on’ and ‘dim’)

Whether an action is parameterised or not may affect theom#c Unparame-
terised actions are plain ones like ‘call emergency sesvioe‘sound the alarm’.
Examples of parameterised actions are ‘send a messayetmabouta possible
intruder and ‘set theloungetemperature t@(0°C'. Finally, the sense in which an
action affects an environ is also taken into account (‘+r@asing it, -’ decreasing

it).

If an action affects multiple environs, the analysis is utalesn for each environ.
It is possible for some of the effects to be conflict-free, fautothers to suggest
conflict. The user is therefore informed of cases where at l@@e environ suggests

17

Al st Ryt is Gl i IR T PRIt 1 Ry A iRt T T AR AR Iy
Computer Networks, 57(12):2429-2241, August 2013 (pre-publication version,
copyright Elsevier Science).

2 None/Same »(SAME)
'% Has

g Parameters? Affects Yes POSSIBLE
g Different nvironment?

@ No NONE

[%2]

c

2

©

<<

2 all OPPOSING
B

o

f=3

o

o

2

= »(_POSSIBLE)
g

=

g Neutral and +- >(_OPPOSING)
b=

Fig. 5. Conflict Analysis for Two Actions on The Same Device
Minimise and ++ »(_POSSIBLE)

else NONE

Fig. 6. Conflict Analysis for Two Actions on Different Devige

conflict.

As an example, suppose one action wishes to turn a floodlighttole another
wishes to dim it. Both actions increase the light level, bgiht is neutral in fig-
ure 4. In figure 5, different actions, neutral and ‘++ leadatonone’ judgment
for conflict. However, both actions also increase power gonsion (which could
be significant for a floodlight). Power is to be minimised adaog to figure 4. In
figure 5, different actions, minimise and ‘++’ lead to a ‘pis’ judgment for con-
flict. Overall, there is possible conflict due to power (thbumpt due to light). This
will be reported to the user for a decision as to whether tmdlicbis significant.

3.3 Conflict Resolution

Because of the subjective nature of conflicts, the userasvalll to decide what is
important and what should be ignored.

When a new policy is defined, the user may be informed of eggpolicies that
it could conflict with. The user is also told of the events tlead to overlap and
the reasons for actions conflicting. At this point the user edit the new or ex-
isting policy, or can disable or delete the existing poliahich might have been
superseded). The user can also save the new policy on tretbasthe conflict is

18

unlikely or will not have significant consequences.

The user can tell Homer that specific conflicts among the dsvitthe new and ex-
isting policies should be ignored (e.g. a power conflict lestwa radio and a lamp
is insignificant). Alternatively the user can choose to igndasses of conflict (e.g.
light level conflicts involving lamps should be ignored asyttare unimportant).
This avoids the user being asked repeatedly in future hoestolve such conflicts.

3.4 Worked Example

The following example illustrates conflict analysis usihg example policies in
figure 2.5 and the environ definitions in figure 4.

Figure 7 shows what potential conflicts are reported amoagtiicies; possible
conflictsato i are explained in figure 8. It is assumed that the policies afiaed
one-by-one in the order 1 to 20. The table columns from lefight show what
happens as new policies are defined: the column height grewsee policies are
added to the old policies. As an example, the column numbg&reshows what
happens when policy 17 is added to existing policies 1 to d6sible conflict is
detected between policies 17 and 11.

Initially there are no policies, so defining policy 1 doesremjuire conflict analysis.
When policy 2 is added, it is reported that this conflicts vaiticy 1 (casen); one

of the policies needs corrected. When policies 3 and 4 aredadw conflicts are
detected. When policy 5 is defined, the user is asked to datieecause its event
clause is invalid: ‘front door is opeand front door is closed’ cannot be satisfied.
As policies 6 to 20 are added, eight further potential cotsfice reported and dealt
with by the user.

Caseb is interesting because the new policy (8) has actions thfatseflict; there
is also conflict with an existing policy (7). Similarly casexhibits self-conflict in
the new policy (13) and with an existing policy (10).

The possible conflicts are explained in figure 8. This showgtiicy overlap con-
dition, the analysis outcome, and the likely user reactioeach reported case. As
will be seen, there is significant subjectivity in whetherasgible conflict should
be treated as genuine. This is why it is important for Homeotesult the user (and
to record the user’s decision for future similar cases).

Following user reactions to possible conflicts, the endltesa set of acceptable
policies. As conflict detection has been performed at dedmitime, the policies
should execute without interference (in the user’s judgsindhe only exception
would be if policies conflicted at run-time due to competitior resources. How-
ever, this is unlikely as resource conflict should have betarchined through the

19

New
112 |3 |4 |5?|6 |7 |8 |9 |10|11|12|13|14|15|16|17|18|19|20|0Id

OO N0~ |W|N|PF

0]
=
o

=
=

=
N

=
w

=
IS

>
=
(6]

=
»

=
\‘

=
(o]

=
©

N
o

Fig. 7. Analysis Results for Example Policies and Environs

analysis of environ effects (e.g. large demands for powe@asy.

From a purely technical perspective, none of the conflicthis example is par-
ticularly surprising. However, from the perspective of arfeouser the results are
nonetheless useful. Conflicts that may be obvious to a degeimay not be antic-
ipated by a non-technical user. Over time, policies defimedife home can accu-
mulate ‘dead wood’: older policies that are no longer re¢eand conflict with new
policies. The user may also not think of subtler conflictshsas the tumble drier
interfering with the air conditioning keeping the humiditywn. If several residents
are allowed to define policies, conflict can also arise duefferohg viewpoints.
For example, one resident might like to keep all rooms at g&zature of 18C but
another might prefer to have public rooms warmer. These laexamples where
the conflicts reported by Homer are useful to the user.

20

Case| Overlap Condition Action Analysis Likely Reaction

a |7PM opposing hall lamp onand off | change policy
(opposite actions)

b | not applicable (self-conflict) possible gas oven orand gas| change policy i
central heating on (may exceggls use important
gas use limit)

homeward SM&nd 0°C possible gas oven orand gas| change policy i
central heating on (may exceggias use important
gas use limit)
same gas central heating angnore as harmless
twice (duplicate actions)

¢ |front door opensand 7PM|possible hall lamp off and|ignore as harmless

and lounge lamp off lounge lamp on (opposite light
effects)

d |9:45PM possible window operand TV | change policy i
off (both decreasing security)| security important

e |not applicable (self-conflict) possible bedside lamp omand | ignore as harmless
curtains closed (opposite light
effects)

front doorand 5PMand (TV | possible lounge lamp orand |ignore as harmless

off then lounge lamp off) | curtains closed (opposite light
effects)

f |washing machine SM&nd | possible washing machine ojchange policy i

homeward SM&nd 0°C and air conditioning on (maypower use impor
exceed power use limit) tant

g |Sunday then washing ma:same dehumidifier on twiceignore as harmless

chine off (duplicate actions)

h | (Sundaythen washing mazpossible dehumidifier onand|change policy i

chine offyand 11AM

washing machine on (may €
ceed power use or noise limit

Maower use/nois
important

1]

Mondayand 7:30AM

possible immerser onand air
conditioning on (may exceg
power use limit)

change policy it
ghower use impor
tant

Fig. 8. Possible Conflicts and Likely User Reactions

21

4 Conclusion

It has been argued that policies offer a practical way ofrahig end users to specify
how a home automation system should react to changing c#tainoes. The Ho-
mer system has been briefly introduced, along with the palysyem that supports
this. The Homeric policy language has been described, dsas/¢he approach to
offline conflict detection. A substantial worked example slagwn how the system
deals with conflicts as policies are defined. The subsequeaugon of policies
should be conflict-free.

The approach is independent of the application domain, ¢hecds and the user’s
language. The key to achieving this is that components sty Homer the de-

vices they support. Although Homer has been designed atelltésr home au-

tomation, the generality of the approach means that it sheeilapplicable to other
domains as well. However, one limiting factor may be thaflciranalysis assumes
a centralised system and hence complete knowledge of @i¢mlin a distributed

setting (e.g. telephony) this would not hold. Alternatiygeoaches to policy con-
flict such as [17] could therefore be needed.

Homer allows control, monitoringnd programming of the home. The system ar-
chitecture offers easy extension for new devices, aut@ailgtiintegrating these
with the policy system. Homer also supports a wide varietgxdérnal user inter-
faces [8]. Homeric reflects the requirements expressed éng fisr home manage-
ment policies [6]. An extensive evaluation has been cawoigdnto the usability of
Homeric policies [7]. This has demonstrated that ordinasrs are able to grasp the
policy-based approach, and can successfully write pgli@econtrol their homes.
In particular, the use of perspectives has proven to be ssftde Techniques and
tool support have also been developed for handling condlittsng policies as they
are defined.

The Homer system has been evaluated in a laboratory sdi#torger has also been
used by independent developers to create components fodeewes (the Mi-
crosoft Kinect and various multimedia interfaces). As tlextrmajor step, it is
planned to deploy Homer into realistic home settings soiteatsability and de-
pendability can be assessed.

Various technical developments are planned for the fuithough Homer sup-
ports policy perspectives, these have not been fully dgeelan the current in-
terfaces. Work is ongoing to extend the current iPad andnPBlapplications, and
also to create more comprehensive support using AndrotdoAgh offline conflict

analysis is handled, online analysis and distributed axrfindling could also be
desirable. It is planned to add the capability to explaingyatonflicts in the same
kind of way that expert systems explain their recommendatio

Other extensions include enhancing the basic support fsoseand actuator fu-

22

sion, so a more comprehensive solution will be investigétsithg macro events
and actions, or along the lines of [15]). It would be desieabl support fuzzy poli-
cies so that the system can deal with uncertain informagog (it will probably
be cold tonight’ and ‘the usanayhave fallen’). A library of pre-defined policies
would be a useful future addition. For convenience in de§jr@nvirons, likely de-
faults for known device types will be added.

Acknowledgements

Claire Maternaghan was financially supported by the S¢vitiormatics and Com-
puter Science Alliance and the University of Stirling.

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

G. A. Campbell and K. J. Turner. Policy conflict filteringrfcall control. In L. du
Bousquet and J.-L. Richier, editorBroc. 9th Int. Conf. on Feature Interactions
in Software and Communications Systemages 83-98. 10S Press, Amsterdam,
Netherlands, May 2008.

S. Keoh, K. Twidle, N. Pryce, E. Lupu, A. S. Filho, N. Dulay. Sloman, S. Heeps,
S. Strowes, and J. Sventek. Policy-based management fgrdeodor networks. In
Proc. 4th Int. Workshop on Wearable and Implantable Bodys&eNetworks pages
92-98, Aachen, Germany, Mar. 2007.

M. Kolberg, E. H. Magill, and M. E. Wilson. Compatibilitissues between services
supporting networked applianceslEEE Communications Magazind1:136-147,
Nov. 2003.

A. F. Layouni, L. Logrippo, and K. J. Turner. Conflict det®n in call control using
first-order logic model checking. In L. du Bousquet and JRIchier, editorsProc.
9th Int. Conf. on Feature Interactions in Software and Comitations Systempages
66-82. 10S Press, Amsterdam, Netherlands, May 2008.

E. C. Lupu and M. Sloman. Conflicts in policy-based dmsited systems management.
IEEE Trans. on Software Engineeringb(6):852—-869, Nov. 1999.

C. Maternaghan. How do people want to control their hormieéhnical Report CSM-
185, Computing Science and Mathematics, University ofiSgy UK, Dec. 2010.

C. Maternaghan. Can people program their home? TechReport CSM-191,
Computing Science and Mathematics, University of Stirlidé(, Apr. 2012.

C. Maternaghan and K. J. Turner. Pervasive computing Home automation
and telecare. In S. I. A. Shah, M. llyas, and H. T. Mouftah,tadi Pervasive
Communications Handboplpages 17.1-17.25. CRC Press, Boca Raton, Florida,
USA, Nov. 2011.

23

[9] M. Nakamura, H. Igaki, and K. Matsumoto. Feature intéats in integrated services
of networked home appliances. In S. Reiff-Marganiec and MR{an, editorsProc.
8th Int. Conf. on Feature Interactions in Telecommunicai@and Software Systems
pages 236-251. I0S Press, Amsterdam, Netherlands, JuBe 200

[10] M. Nakamura, H. lgaki, Y. Yoshimura, and K. Ikegami. Gafering online feature
interaction detection and resolution for integrated s®wiin home network system.
In M. Nakamura and S. Reiff-Marganiec, editoRroc. 10th Int. Conf. on Feature
Interactions in Software and Communications Systguages 191-206. 10S Press,
Amsterdam, Netherlands, June 2009.

[11] G. Russello, C. Dong, and N. Dulay. Authorisation ananftiot resolution for
hierarchical domains. IWorkshop on Policies for Distributed Systems and Networks
Institution of Electrical and Electronic Engineers Préésw York, USA, 2007.

[12] M. H. ter Breek, S. Gnesi, C. Montangero, and L. Semingtdating policy conflicts
by model checking UML state machines. In M. Nakamura and #f-Rlarganiec,
editors,Proc. 10th Int. Conf. on Feature Interactions in Softwarel @ommunications
Systemspages 59-74. 10S Press, Amsterdam, Netherlands, June 2009

[13] K. N. Truong, E. M. Huang, and G. D. Abowd.A®P: A magnetic poetry interface for
end-user programming of capture applications for the hdmBl. Davies, E. Mynatt,
and |. Siio, editorsProc. Ubiquitous Computinghumber 3205 in Lecture Notes in
Computer Science, pages 143-160. Springer, Berlin, Gefrisapt. 2004.

[14] E. P. K. Tsang. Foundations of Constraint SatisfactiorAcademic Press, London,
1993.

[15] K. J. Turner. Device services for the home. In K. Drira,i A Kacem, and M. Jmaiel,
editors,Proc. 10th Int. Conf. on New Technologies for Distributedt&mnspages 41—
48. IEEE Computer Society, Los Alamitos, California, USAaywR010.

[16] K. J. Turner. Flexible management of smart hom&mbient Intelligence and Smart
Environments3(2):83-110, May 2011.

[17] K. J. Turner and L. Blair. Policies and conflicts in catintrol. Computer Networks
51(2):496-514, Feb. 2007.

[18] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, Tra, P. Perry, and J. Ireland.
Policy support for call control.Computer Standards and Interface3(6):635—-649,
June 2006.

[19] F. Wang and K. J. Turner. Policy conflicts in home cargeys. In L. du Bousquet
and J.-L. Richier, editord®roc. 9th Int. Conf. on Feature Interactions in Software and
Communications Systepsages 61-76. IMAG Laboratory, University of Grenoble,
France, Sept. 2007.

[20] M. Wilson, M. Kolberg, and E. H. Magill. Considering sideffects in service
interactions in home automation — An online approach. In W.Bbusquet and
J.-L. Richier, editorsProc. 9th Int. Conf. on Feature Interactions in Software and
Communications Systenmages 172-187. 10S Press, Amsterdam, Netherlands, May
2008.

24

