
A. John M. Donaldson and Kenneth J. Turner. Formal specification of QoS
properties. In Jan de Meer, Gregor von Bochmann, and Andreas Vogel,
editors, Proc. Workshop on Distributed Multimedia Applications and QoS
Verification, pages 1-14. CRIM, Montreal, Canada, June 1994.

Formal Specification of QoS Properties

A. John M. Donaldson and Kenneth J. Turner 1

Department of Computing Science and Mathematics, University of Stirling.

Abstract. We describe the specification of communication services, with special emphasis being placed on

the use of the Temporal Logic of Actions (TLA) to describe the behaviours involved. We show how, starting

from Message Sequence Charts, this temporal logic may be used to describe The Joint Viewing and Tele Op-

erating Service (JVTOS) and its associated functions; and so lead on to the specification of QoS parameters.

We discuss the approach that was taken to determine the exact nature of the Quality of Service parameters,

and how the method may be used to extend the specification, and probe further aspects of the services and

protocols involved.

Keywords: Message Sequence Charts, User Perception, Temporal Logic, Behaviours, Actions, Liveness.

1. Introduction

The RACE project TOPIC (Toolset for Protocol and Advanced Service Verification in IBC Environments)

comprises work in: verification methodologies for Integrated Broadband Communications (IBC), the use

of verification tools for Quality of Service (QoS) measurement and the provision of a demonstrator for

IBC verfication technology. As part of our participation in the TOPIC project we have been working on the

application of a particular methodology to specify a QoS aspects of the complex multi-media tele-conferencing

Joint Viewing and Tele Operating Service (JVTOS).

As will be seen, our approach to Specification (and Verification) has been to apply Lamport’s Temporal Logic

of Actions [Lam91] but it must be stressed that the content of this paper is not about TLA in itself, but

explains steps that we have taken towards specifying QoS parameters in such a way that our results are both

complementary to work using other more conventional methods (such as LOTOS [E.B87] and SDL [RR89])

and yet able to solve problems which may not suit those particular methods.

1 Ths work has been conducted as part of a Research Fellowship at the University of Stirling, supported by the EC RACE R2088

Project TOPIC. The results presented in this document do not necessarily represent the opinion of the TOPIC consortium.

Correspondence and offprint requests to: John Donaldson, Department of Computing Science, University of Stirling, Stirling,

FK9 4LA, Scotland. Email ajd@compsci.stirling.ac.uk (Paper presented at: The Montreal Workshop on Multimedia Applications

and Quality of Service Verification, Montreal, Canada, June 1994.)

1.1. JVTOS

JVTOS is a service designed to provide audio-visual and desk-top communication in a conferencing session

between two or more service users. In this service, the major participants are:

• The Session Manager (SM) who has the principal supervisory role and also acts as a user.

• The Resource Allocator (RA) is a system module for resource management.

• User(s) (U) who participate in JVTOS sessions.

Current development work in JVTOS [B.M92] is based on the eXtended XTP protocol (XTPX) which has

additional provision for QoS information. The phases are identified are: Call Set-up, Information Transfer

and Call Clearing. The session states identified are: Idle Session, Active Session, Request to Join Active

Session, Request to Leave Active Session and Closed Session.

1.2. Background work

An investigation into the JVTOS service was conducted [Don93] and then a series of of Message Sequence

Charts (MSCs) based on the functions such as Start-A-Session, User-Requests-to-Join and Data-Transfer

identified in [GE93] were prepared.

Having determined the different functions we then considered which broad categories of QoS parameter

required to be specified (e.g. delay, error rate, throughput, failure probability). We looked at the likely

sequences of events taking place within the JVTOS service and prepared descriptions of different types of

signal (Poll, Reply, Control) associated with each phase of the process (Call, Data-Transfer, Clear).

We initially attempted to consider Quality of Service in direct association with MSCs by some form of

annotation that could be used. We even developed a BNF description of the functions, finding that this

approach was accurate to a certain extent but limited in its application against our first expectations. Our

interest from the outset however had been to investigate Quality of Service and to look for ways of specifying

requirements and paying particular attention to :

• providing a specification that is relatively easy to comprehend.

• being able to handle aspects of the service that are not easily achieved through conventional Formal

Description Techniques.

What we have been seeking is not an alternative to existing methods but ways that we can assist in preparing

the way for these techniques and addressing problems that they cannot readily solve.

1.3. The type of problem that we are addressing

We consider a typical JVTOS example where we have two terminals communicating with each other. The

user’s measure of quality will be determined by (for example) the response time to receive the first screen

image and the clarity with which the image is displayed. Figure 1 shows the typical picture of what is going

on where we see that the higher level user perception is supported by a whole series of functions taking

place in order to send an image from one terminal to another. Here we show a signal being compressed

using CODEC (coder/decoder) and JPEG (Joint Picture Expert Group) which compresses entire images.

To study and specify such aspects of the behaviour requires a broad approach ranging from detailed analysis

of QoS/NP functioning at the transport layer and below right up to higher level considerations concerned

with user perception, negotiation and renegotiation.

c o d e c

JPEG JPEG

c o d e c

User 1 User 2

User Perception

Transfer receiver queue

Transfer receiver queue

Camera

Microphone

Fig. 1. Bidirectional Video Transfer

Thus we are interested is looking at ways of relating lower layer operations to performance at the application

layer, and hence to (mathematically) determine user perception. To look at such a problem we have to

consider the underlying functions that are taking place and then reason about the different actions that

make up the behaviour that we are studying.

1.4. The choice of Temporal Logic

At this point we considered Lamport’s Temporal Logic of Actions (TLA) [Lam91] as a way of specifying QoS

aspects of the JVTOS service. This approach was appealing for a number of reasons.

• It is able to provide broad descriptions of behaviours by allowing us to reason about the actions and state

transitions that take place in a concise and straightforward manner that is easy to comprehend.

• Any specification such as this invariably involves long and complicated formulas. However by using a

combination of ordinary mathematics and familiar conventional programming notation, TLA provides a

clean and straightforward presentation; with particular aspects being specified in individual modules.

• By using logic, relatively simple algorithms can be easily and compactly specified.

• Having been developed with concurrency issues in mind, TLA has been shown [ML92] to be well suited

to handling real time issues.

• TLA has also been designed to cope with safety and liveness aspects.

2. JVTOS and QoS Specification

Following our review the basic functions associated with JVTOS and starting with MSCs, we have been able

to describe the corresponding core functions by creation of a series of modules each of which specifies some

particular aspect of the service or its related QoS requirements. What we now have is a comprehensive series

of interrelated modules as shown in figure 2.

As can be seen this scheme covers the wide range of aspects that we have specified to date. We will look at

some specific examples after first noting some of the salient features of TLA.

Functions

StartASession

DelayParams

SessionStatus

Transmission
Modes

FunctionList Signalling

SigParams

QoSParams

VideoParams

ProtocolTimers MathSets

SignalAction

Session

RealTime

SignalTypes

Functions

Delay Modules

SignalFunction

SERVICE

QoS

Fig. 2. The JVTOS Import Scheme

2.1. A brief overview of TLA +

TLA is a logic for reasoning about systems capable of exhibiting concurrent activity and is syntactically

represented by the metalanguage TLA + . In TLA, we consider states and state transitions achieved through

actions in order to describe the behaviours in which we are interested. Predicates are boolean-valued state

functions used to describe actions.

• Actions represent the relationship between old and new states and as such map pairs of states to

booleans.

– [A]f means : A ∨ (f ′ = f) for any action A and state function f .

– 〈A〉f means : A ∧ (f ′ = f) for any action A and state function f .

– Unchanged means : (f ′ = f) for state function f .

• Safety and Liveness Our specification may have some action (Next) which deals with state transitions

(v), and the temporal formula [Next] 〈v〉 asserts that henceforth () actions Next are permissible.

When that formula is conjoined with the predicate Init (which ensures that the system starts in the

correct state), then the assertion Safe can be made :

Safe
∆
= ∧ Init

∧ [Next] v

This temporal formula means that a behaviour starts in a correct initial state, and that every successive

state is correct. This statement is perfectly legal, but it is also satisfied by a system that is allowed

to stutter (effectively do nothing) forever. We therefore have to assert liveness to ensure that we are

specifying a system that progresses.

The formula Safe describes what may not happen - the behaviour may not start in an incorrect state,

and it may not take an incorrect step. The assertion of a liveness property states that something good

will eventually happen. To achieve this the operator (eventually) is used. (is equivalent to ¬ ¬)

Liveness properties are expressed in TLA using the concept of fairness. We can apply two kinds of

fairness to a behaviour.

– Weak Fairness : WF v(A)
∆
= ¬ Enabled〈A〉 v ∨ 〈A〉v

Weak Fairness asserts that either A is infinitely often disabled, or infinitely many actions A occur.

– Strong Fairness : SF v(A)
∆
= ¬ Enabled(A) v ∨ (A)v

Strong Fairness asserts that either A is becomes forever disabled, or infinitely many actions A occur.

WF (Weak Fairness) and SF (Strong Fairness) are used as operators when specifying systems in TLA + .

2.2. The Modular approach

In order to keep specifications neat and simple to follow, TLA + uses modules to specify behavioural prop-

erties which may then be imported into other ones. This is essentially the same as is done with Z schemas

[Spi89] although it should be remembered that in TLA +, there is no notion of type and/or inheritance as

such. Basically importing is used for clarity.

We stated above that we were interested in describing lower layer communications behaviours and relating

SpecFunctOK IntoSession

BehaveA BehaveB BehaveCSpec

IntoSession InitA

ActsA,ActsB,ActsC

InitCBehaveC

StateFcn
[NextC]

(NextC)
StateFcn

SF
[NextA] StateFcn

BehaveA InitA

SF (NextA)
StateFcn

StateFcn

InitB

SF (NextB)

StateFcn
[NextB]

BehaveB

Behaviour Part A Behaviour Part B Behaviour Part C

Perceived Behaviour

Actions A Actions B Actions C

THEOREM :-

Fig. 3. Decomposition in TLA

them to higher level observations and this is achieved in the following manner.

Using TLA we can decompose our overall specification into a series of (possibly atomic) actions such as

may be seen in figure 3 where our overall perceived behaviour has been decomposed into parts A B and C.

These parts will probably be specified in their own individual modules each having a temporal formula of

the general form:

Spec
∆
= ∧ Init

∧ [Next] 〈v〉

∧ SFv(Next)

• Predicate Init - meaning that the behaviour has started in a correct state

• Action Next says that the action will occur or that the system state will stutter forever

• The Temporal operator SF imparts liveness and says that the action Next will proceed or will be disabled.

We may then combine each of these parts and by use of some other derived temporal formula, assert a

theorem to verify that our specification has been correct.

In a similar fashion, the module scheme (figure 2) shows a series of functions and we now look briefly at how

these modules relate to each other.

2.3. Specification using TLA +

Within the scheme there is a function known as VideoTransfer which has an MSC as shown in figure 4 The

system specification (in TLA +) consists of parameters, actions and temporal functions. In our video example

we include the service participants, the type of signals used, system flags and variables. These definitions

are extended by parameters which define sets of variables; and constants such as transmission paths, groups

of QoS parameters in which we are interested and PDU data types. Predicates determine the contents,

system states and ranges of values of variables. The actions specify how these states may be changed and

the temporal functions are used to express the safety and liveness properties of the system. Actions may for

example be described by a using predicates reflecting the signal types coming from the action’s initial state

and leading to the action’s final state along with their appropriate parameters.

Here User 1 is communicating with User 2 in order to transfer video data, and upon receipt of the appropriate

User 2 User 1 S M R A

Closing State

[x,t]

Opening State

Fig. 4. JVTOS - Video Transfer

confirmation that the data has been received, the originator informs the Resource Allocator of the event.

module VideoTransfer

import : SignalTypes, SessionStatus

predicates

User
∆
= U ∈ {U1 ,U2 ,U3}

Svt (Vtr1)
∆
= ∧ tp = 〈U ,U 〉 ∨ 〈SM ,U 〉 ∨ 〈U , SM 〉

∧ snd ∈ {U ∪ {SM }}

∧ rcv ∈ {U ∪ {SM }}

∧ pp = [x, t]

∧ qos = Q_
b 〈Qv〉

∧ pdu = “call”

........ [Other Predicates]

fn(VDatTfr)
∆
= ∧ TfrType = “PPMultiDirectionalStream”

∧ 〈Svt(Vtr1), R vt(Vtr2), I x(Vtr3)〉

The predicate S vt(V tr1) defines aspects of the first video signal sent. Signal type parameters are imported

from module SignalTypes and particular values are assigned here. The transmission path (tp) states that

signals may pass between any of the users themselves and/or with the session manager. The senders (snd)

and receivers (rcv) must be one of those and the polling policy (pp) allows x attempts each with time-out

time t. Quality of Service (qos) is defined in this case as a tuple of the basic parameters (delay, delay

jitter, error rate/burstiness and throughput) with the specifically defined video QoS parameters. The final

conjunction refers to the PDU type (and hence phase) in which the signal is sent.

The other signals in this module are then defined and the final predicate states that in this case there is a

Point-to-Point Multi-directional stream (defined in and imported from module SessionStatus and that the

order of signals is poll attempts, replies and control information to the Resource Allocator.

We have seen the simple list of predicates defining the sequence of signals in a JVTOS function. In the case

of the video signal S vt reference is made to the parameter Q v which are defined (elsewhere) in the module

VideoParams, and imported through the module SignalTypes.

The module VideoParams contains a summary of the Video QoS Parameters wher m num is the num-

ber of measures being made in Video Quality sampling and e num is the number of measures in Time

of Connection studies. S i and R i are the number of sent and received video TPDUs respectively and T j

represents values in a vector of times for successful point to point connection establishment. the time

1. QoVDL - The Quality of TPDU based Video Delivery Loss This is defined as the arithmetical mean value

of the differences between the measured send and received video tpdus along the measured time interval.

2. QoVRF - The TPDU based Receiver Video Frequency is the rate of displayed video tpdus on the receiver

side.

3. QoVCE - The Quality of Video Connection Establishment This parameter is a measure for the video

connection establishment reaction time to a connection request sent by a user.

4. Qv is a tuple of the QoS parameters QoVDL, QoVRF and QoVCE.

module VideoParams

import MathSets, DelayParams

parameters

m num, e num : variables

Ri , Si , Tj : variables

QoVDL
∆
= 1

m num

∑m num

i=1 (Si − Ri)

QoVRF
∆
= 1

m num

∑m num
i=1 (Ri)

QoVCE
∆
= 1

e num

∑e num

i=1 (Tj)

Qv = 〈QoV DL, QoV RF, QoV CE〉

3. Specification leading to Verification

We have seen wher the Video quality parameters fit into the scheme and in figure ?? we diagrammatically

showed user-perception of a onference session. We may (simply) represent this in the form of a Time Sequence

Diagram as shown in figure 5. In this diagram we see that in order to join the session the service has first

Service Conf.

Service Req.

User 1

Service Resp.

Service Ind.

1
Protocol Entity Protocol Entity

2 User 2

First Image

sent

First Image

Received

User

Perception

Fig. 5. Layered view of the User’s perception of establishment delay

to negotiate and establish a connection and then transmit a video picture to the iniator of the request. (for

clarity retries and unsuccessful attempts are not shown her but they are covered in specifications)

Suppose a user switches on a workstation and wishes to join a currently active JVTOS session. What happens

is that the signal is sent requesting the connection and the user knows that the session is functioning when

the first video image is returned to the screen. Within the system itself of course we know that a number of

technical functions have to be performed first.

3.1. Connection Delay

We consider the situation (figure 6) where a Connection request is made. CON.req and the appropriate

CON.ind, CON.resp and CON.conf primitives occur. We take (for our example) a situation where up to x

connection attempts are being made, each with a time-out limit of t out . Furthermore, as soon as polling

attempts commence, then we have stated that the system moves from a “stable” state into an “unstable”

state. Here “unstable” is in the sense that the system has started with some actions, and that following that

initial event, something eventually must happen. We also define a series of states (conf) which are used

to define the current (and future) status of the systen after (any) confirmations have been received. We

21
α

β

∆

δ

δ

α

α 1

1

1

δ

δ2

2
α

12

12

21

2∆

recipdly

delayreply

delaypoll
PDU-DATA

PDU-ACK

Service Ind.

delay

Service Req.

Service Conf.

Service Resp.

Protocol Entity 1 Protocol Entity 2 User 2User 1

Fig. 6. A layered view of Delay

therefore define a TLA + specification of this part of the overall connection behaviour by specifying a module

(Connection constructed in the following manner:

1. import : For the purposes of this example we are assuming that a number of qualities are being imported

from other modules in the specification.

2. variables The variables used to record delay are declared

3. predicates :

• Confirmation states may be : , , or

(means that no confirmation has been received or is expected, and means that polling is

in progress but that no response has been received.

• The system states and signal states may be “stable” or “unstable”.

• The values for delay (figure 6) are :

delaypoll - refers to polling signals (shown as a sum representing aggregate of polling attempts),

recipdly - refers to the recipient system response time and delayreply - refers to the time to send

an or

• Predicate ConInit ensures that the process starts in a correct state.

4. state function : the function vst is defined over an n-tuple of states associated with the process.

5. actions : Action Connect states conditions for the (next) signal to happen (this includes the first at-

tempt).

6. temporal : The formula ConSpec states our requirements that: The behaviour must start in a correct

state, it will always be true that if the action Connect does not proceed then the associated states are

invariant (and that the situation is safe but could stutter forever). The assertion of strong fairness SF

implies that eventually action Connect will be disabled forever or that infinitely many Connect actions

may occur.

module Connection

import : SignalTypes

parameters

delayval, delaypoll, delayreply, recipdly : variables

predicates

conf ∈ { , , }

(sigstate ∈ {“stable”, “unstable”})

delaypoll =
∑x

1 (α1 + δ1 + ∆1 + δ2 + α2)

recipdly = β

delayreply = α 21 + δ21 + ∆2 + δ12 + α12

ConInit
∆
= ∧ sigstate = “stable”

∧ conf =

∧ pdu = “call”

∧ delayval = 0
state function

vst
∆
= 〈sigstate, conf, pdu〉

actions

Connect
∆
= ∧ ((sigstate ′ = “unstable”) ∨ (sigstate ′ = “stable”))

∧ (sigstate = “unstable”)

∧ ((conf =) ∧ (pdu = “call”))

∧ (conf ′ =) ∨ (conf ′ =) ∨ (conf ′ =))

∧ delayval = delaypoll + recipdly + delayreply
temporal

ConSpec
∆
= ∧ ConInit

∧ [Connect] 〈vst〉

∧ SF〈vst〉 (Connect)

3.2. The User’s perception of Delay

When the user initiates the request the responses expected are the manifestations of a properly working

service such as the appearance of the first image. As may be seen the module SendImage (below) is very

similar to the previous module (Connection). The actions involved are differ only in the fact that the phase

(data transfer) is different. The QoS value (delayval) is specified from the constituent delay elements of the

process(imagedelay) and the temporal formula ImageSpec states the requirements for correct functioning

with liveness asserted.

δ

α

∆
δ

3

31

3

31

First Image Sent

First Image Received

3α

Imagedelay

User 1 User 2Protocol Entiy 1 Protocol Entity 2

Fig. 7. Receiving the first Image

module SendImage

import : SignalTypes

imagedelay : variables

predicates

conf ∈ { , , }

sigstate ∈ {“stable”, “unstable”}

imagedelay =
∑x

1 (α3 + δ3 + ∆3 + δ31 + α31)

Init
∆
= ∧ sigstate = “stable”

∧ ((conf =) ∧ (pdu = “data”))

∧ delayval = 0

State Function

vst
∆
= 〈sigstate, conf, pdu〉

actions

NextImage
∆
= ∧ ((sigstate ′ = “unstable”) ∨ (sigstate ′ = “stable”))

∧ (conf =) ∧ (pdu = “call”)

∧ (conf ′ =) ∨ (conf ′ =)

∧ delayval = imagedelay

temporal

ImageSpec
∆
= ∧ ImageInit

∧ [NextImage] 〈vst〉

∧ SF〈vst〉 (NextImage)

3.3. A combined view of delay

Having specified the Connection and SendImage aspects of the user perception of delay, we know that:

• We have already accounted for the connection phase. (section 3.1).

• We have described the sending of the first image (section 3.2).

• We still have to account for the system response to the connection request. This involves a phase change

“call”→ “data” and we have to be careful to observe other aspects of state changes taking place.

• Taking the three “building blocks” of connection, system response and receipt of the first image, we

should be able to prove that the system specification is correct by means of a theorem.

Before specifying the whole combined scenario, we therefore need to specify the link between the connection

phase and the data-transfer phase. This is achieved through the module VideoResponse.

• variables - respdly represents delay experienced while the system responds to the connection request.

• predicates - ReadyToRespond is an inialising predicate ensuring a correct start to this stage. respdly

is only briefly shown here, further work is being directed at specifying the exact nature of this aspect.

• action - ImageResponse represents state changes necessary for normal continuation of the connection.

• temporal - The formula FirstImage asserts that this stage of the process starts in a correct state and

that the correct states for the next (data transfer) phase are satisfied.

module VideoResponse

import

parameter

respdly : variable

predicates

ReadyToRespond
∆
= ∧ respdly = 0

∧ conf = “call”

∧ ((sigstate = “unstable”) ∧ (sigstate = “stable”))

respdly = β 1

action

ImageResponse
∆
= ∧ ((conf =) ∧ (conf ′ =))

∧ ((pdu = “call”) ∧ (pdu ′ = “data”))

∧ delayval = respdly
state function

vst
∆
= 〈sigstate, conf, pdu〉

temporal

FirstImage
∆
= ∧ ReadyToRespond

∧ [ImageResponse] 〈vst 〉

3.4. The overall view

We now combine all three modules to describe the overall behaviour:

1. include : The modules Connection, SendImage and VideoResponse are included with the new naming

Conn, SendI and VidResp respectively.

2. parameter : totdelay is a QoS parameter representing perceiver delay (it is accumulated as part of the

action Next).

3. predicate : UpAndRunning is a predicate which is used to specify the conditions necessary for the be-

haviour to reach a satisfactory state.

4. action : Action Next takes the actions from the previous modules and conjoins them along with a

definition of the total delay.

5. temporal : Formula CheckFunction asserts that the whole behaviour starts in a correct state and

proceeds through the required stages with liveness being asserted in the form of strong fairness.

6. theorem : The final stage is to define a theorem (proof not shown) which states that if the conditions

defined in the predicate CheckFunction have been met, then this this implies that eventually it will

always be true that the system operates correctly (UpAndRunning⇒ “true”).

module PerceivedDelay

include Connection as Conn

include SendImage as SendI

include VideoResponse as VidResp

parameter

totdelay : variable

predicate

UpAndRunning
∆
= ∧ Conn.ConSpec

∧ VidResp.FirstImage

∧ SendI .ImageSpec

action

Next
∆
= ∧ Conn.Connect

∧ VidResp.ImageResponse

∧ SendI .NextImage

∧ totdelay = Conn.delayval + VidResp.delayval + SendI .delayval

temporal

CheckFunction
∆
= ∧ Conn.Init

∧ [Next] 〈vst〉
∧ SF 〈vst〉 (Next)

theorem

SignalCorrect
∆
= CheckFunction ⇒ UpAndRunning

4. Conclusionss

Specifying JVTOS has not been our goal, but by specifying the service in the manner indicated we have

been able to provide a solid base for our work, always being able to simply refer to individual modules as

necessary. Our experience has also shown that, having no type, we may change a single module and are not

required to check through the entire specification.

We are continuing to collaborate with our colleagues in TU-Berlin in order to define and specify JVTOS

QoS parameters. It is our intention to then be able to relate this work to other studies being done elsewhere

where user perception is being studied. In order to achieve this we are developing a calculus to describe the

atomic actions taking place, and with the aid of temporal logic we will build verifyable descriptions of those

actions.

Any mathematical verification involving logic and algorithms built from a variety of disparate sources can

become complicated, requiring the reader to have a deep understanding of the issues being addressed and

the mathematics employed. Clearly any tools to assist with this task are most welcome and we are currently

seeking tools to assist us to achieve our goals. We have recently acquired the TLA prover TLP 2.5 [Eng94]

which is based on the Larch Prover [Gar] and have commenced its evaluation.

In conclusion we have found a relatively simple means of describing fairly complex scenarios by using TLA

and applying it to those areas that interest us. We have found a method that is able to take a broad view

of the JVTOS service by specifying the actions associated with its behaviour. At the same time as this

we are able to reason about timing constraints and assert liveness conditions and yet still be able to give

straightforward representations of measurement requirements. It is our intention now to pursue this line, and

with the aid of verification environment to address many of the areas identified that still require specification

and verification.

Acknowledgements

My thanks are to Professor Ken Turner (University of Stirling) for his counsel and to Dr Peter Ladkin

(University of Nancy) for his invaluable thoughts on TLA. I would also like to thank my TOPIC colleagues

Plamen Simeonov (TUB) and Stefan Leue (University of Berne) for there advice, and the RACE Programme

for funding this work.

References

[B.M92] I.Miloucheva B.Metzler. Multimedia communication platform: Specification of the broadband transport protocol

xtpx. Technical report, Technical University of Berlin / CIO RACE Project, 1992.

[Don93] A. J. M. Donaldson. Specification of quality of service measurement points in jvtos, 1993.

[E.B87] E.Brinksma. An introduction to lotos. North-Holland Publ., Amsterdam, 1987. 7th IFIP WG6.1 International

Workshop on Protocol Specification Verification and Testing.

[Eng94] Urban Engberg. Tlp - the tla proof checker. Technical report, Institute of Mathematics, Aarhus University,

Denmark, 1994.

[Gar] Steve Garland. A guide to lp,the larch prover. Technical report.

[GE93] M.Faloustos N.Magafossis G.Stasinopolus and E.Papachristou. Qos tests for jvtos. basic and extended methods.

Technical report, Intracom / RACE II (R2088) TOPIC/WA1/ICOM, 1993.

[Lam91] Leslie Lamoport. The temporal logic of actions. Technical report, Digital Equipment Research Corporation,

Systems Research Center, 1991.

[ML92] M.Abadi and L.Lamport. An old fashioned recipe for real time. Technical report, Digital Equipment Research

Corporation, Systems Research, 1992.

[RR89] J.R.W.Smith R.Saracco and R.Reed. Telecommunications Systems Engineering using SDL. North Holland, Ams-

terdam, 1989.

[Spi89] J.M. Spivey. The Z notation, A reference manual. Prentice Hall, 1989.

