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Abstract. Creating new services through composition of existing aees at-
tractive option. However, composition can be complex amdise compatibility
needs to be checked. A rigorous and industrially-usabléhogetiogy is there-
fore desirable required for creating, verifying, implertisg and validating com-
posed services. An explanation is given of the approachmtbieCRESS(Com-
munication Representation Employing Systematic Spetifica Formal veri-
fication and validation are performed through automatedstedion to LoTOS
(Language Of Temporal Ordering Specification). Implemioaand validation
are performed through automated translation kEB(Business Process Execu-
tion Logic) and WSDL (Web Services Description Languagdje Bpproach is
illustrated with an application to grid service compositia e-Social Science.

1 Introduction

1.1 Motivation

Workflows have been widely adopted to create new servicesohyposing existing
ones. Grid services are similar to web services, so it is ngirsing that common
mechanisms can be used with both to combine services. Suchasite services are
becoming increasingly common in commercial and scientifigliaations. They can
require complex logic to combine independently designedses. Compatibility with
third-party services can also be an issue.

It is therefore desirable to have a rigorous methodologgfeating and analysing
composed services. However, formal approaches are mestiyated to computer sci-
entists and are hard to sell to industry. This paper reportwark to encourage use of
formal methods in the field of grid and web services:

— an accessible graphical notation is used to describe cataasvices

— formal models are automatically created, validated andiedrwithout requiring
detailed knowledge of formal methods

— implementations are automatically created and deployeé sarvices have been
validated and verified.

1.2 Composing Services

Grid computing allows heterogeneous systems and resotargetgroperate following
the paradigm of SOA (Service Oriented Architecture). Newises can be created by
combining existing ones. The terms ‘composition’, ‘ordin&son’ and ‘workflow’ are



all very similar, and are used interchangeably in this paBeeL (Business Process
Execution Language [1]) is a standardised approach forestcitingvebservices. The
authors and others have investigated techniques for dratiaggrid services.

Service composition raises a number of issues. The logictmbines services can
become complex. Sophisticated error handling may also dpgeined. Compatibility of
component services may be a concern, especially if thecgerare defined using only
WSDL (Web Services Description Language). Since WSDL dlessrjust interface
syntax and not semantics, deeper issues of compatibilityadae.

A methodology is hence desirable for developing composedtsss. Defining com-
positions should be made straightforward since the deeeloay well have a limited
computing background. Verification (‘doing the thing riglghould allow the service
composition to be automatically checked against desiataperties. Once confidence
has been built in the design, implementation and deploystenild be fully automatic.
Validation (‘doing the right thing’) should be possible thg specification (to build con-
fidence in the design) and also after implementation (tokchea-functional properties
such as performance and dependability).

Grid and web services differ in their emphasis on use of ness e.g. for process-
ing, distributed data and specialised devices. Resoureeasften used by grid services
to offer stateful services to clients. It is therefore nseeg to formally model interac-
tions with dynamic resources in grid service compositiar. flexibility, it should also
be possible to dynamically allocate the partners that stdpcomposite service. Part-
ners are third-party services that are combined througlkfieov logic to offer a new,
composite service.

1.3 Service Composition Methodology

Surprisingly little attention has been given to rigorousnpmsition of grid services
(though more has been done on composed web services). Evane ttis has been
studied, formal models are usually developed separataety their implementations. In
contrast, the work reported here is a complete methodolwafyhtandles all aspects of
service creation, from initial design through to systentites This approach is called
CRrEss(Communication Representation Employing Systematic @pation, www.cs.
stir.ac.uk/~kjt/research/cress.himin fact, CREsswas designed for modelling many
kinds of services and has been applied in many domains. kbragd web services,
CRrREsscan be viewed as a workflow language for specifying compasiteviour.

Early work by the authors demonstrated that grid servicepmsition could be
achieved by adapting L. However, there were significant limitations irpBL that
required work-arounds (e.g. for EndPoint References). @ms®d grid services were
also not much more than simple web services, e.g. there wasipyort for service
resources and dynamic partners in the style that grid ssviommonly use. Only for-
mal validation was supported. The new work reported in tlesgnt paper has resulted
in a rounded methodology for orchestrating services. Fbsation has been extended
to deal with full grid services. Formal verification and irapientation validation have
also been added to the methodology.

There are several advantages to this approach. A compesitees need be de-
scribed only once, using an accessible graphical notafioa formal specification and



the implementation code can then be automatically gerg:feden this single descrip-
tion. Automatic formal verification and formal validatioart be used to ensure that the
service composition is functionally correct. Errors at tfesign stage can be cheaply
corrected by modifying how the composition is describedhlementation and deploy-
ment are then fully automatic. Although further checkingghtiappear unnecessary, a
range of practical issues make implementation validatiesirdble. For example per-
formance bottlenecks may arise, or factors such as dep#ifidahd reliability might
need attention. Although the methodology described inghjser supports all aspects
of composing services, the emphasis here is on a new anddlifdicet: how formal
verification and validation can be supported.

1.4 Relationship to Other Work

Specifying Composed Services-ormalisingwebservices has been studied by the for-
mal methods community. LTSA-WS (Labelled Transition Sgst&nalyser for Web
Services [8]) is a finite state method. Abstract service ages and actual service im-
plementations are generated through behavioural moddlseifiorm of state transi-
tion systems. Verification and validation are performed dyparing the two systems.
The approach is limited to handling data types but not thaiues. This restricts the
formal analysis of service composition since data valuesoften used in conditions
that influence behaviour.KEssdiffers in generating the formal model and the service
implementation from a single abstract descriptiorEGSuses LOTOS (Language Of
Temporal Ordering Specification [12]) to model service cosipon, and can therefore
model data types as well as their values.

Temporal business rules have been used to synthesise céenparvice models
[21]. The pattern-based specification languag®PoLs (Property Specification Pat-
tern Ontology Language for Service Composition) expressese rules. Each rule has
a predefined finite state automaton to represent it. A bebealionodel is then gener-
ated by composing the rules using their respective finitee statomata. This can be
further iterated with additional rules until a satisfagtonodel is generated. The pro-
cess model can then be transformed intEB although this aspect appears to be under
development. The approach does not, however, deal withtgla¢s. GREssdiffers in
generating both the implementation and the formal spetificdrom the same €ess
description, dealing fully with data types and values.

WSAT (Web Services Analysis Tool [9]) is used to analyse aadfy composite
web services, particularly focusing on asynchronous conication. Specifications can
be written bottom-up or top-down, finally being translatatbiPromela and model-
checked using SPIN. For composite web services that irtasgnchronously, WSAT
is able to verify the concepts of synchronisability and iszddility. However, the tool
does not support the full range of capabilities found in déads such as BL. A
composite web service specification often deals with eramdting, compensation and
correlation — things that are not yet handled by WSAT.

[4,7] use a process algebraic approach to automate tramstadtween BEL and
Lotos Cressdiffers in that no specification is required of eithep®B. or LOTOS.
Instead a graphical notation, accessible to the non-digtcgupports abstract service



descriptions that are translated inted® and Lotosautomatically. This is an advan-
tage as the service developer may well not be familiar witmegiBPEL or LOTOS

Implementing Composed ServicesVeb service orchestration has been actively stud-
ied and supported in a number of pragmatic developmentsere several implemen-
tations for modelling and executing service workflows.

JOpera [14] is a service composition tool for building newszes by combining
existing ones. It provides a visual composition languagksdso a run-time platform to
execute services. JOpera claims to offer greater flexitalitd expressivity than BEL.
Although JOpera initially focused on web services, supfoorgrid service composition
has also been investigated.

Taverna [13] was developed to model web service workflows ecifipally for
bioinformatics. It introduced &UFL (Simple Conceptual Unified Flow Language) to
model grid applications in a specialised workflow language.

BPEL has been investigated by several researchers for orctiegtgaid services.
[16] developed BEL extensibility mechanisms to orchestrate services bas¢o@al
(Open Grid Service Infrastructure) and WSRF (Web ServicesoBrce Framework
[11]). [22] used specialised constructs to achieve interalpility with WSRF services.
These efforts showed that grid service orchestration wasiple, but restricted.

Since web services may vary dynamically, partner servicag lbecome inconsis-
tent with respect to workflows that rely on themL#eRT (Assertion Language for
BPEL Process Interactions [2]) is a language for expregsiag)-functional properties
of workflows. The continued validity of these properties bermonitored at run time.

OMII-B PEL (Open Middleware Infrastructure InstituteeBL [19]) aims to support
the orchestration of scientific workflows with a multitudesefvice processes and long-
duration process executions. It provides a customisesLngine, and supports a set
of constructs desirable for specification of scientific witmks.

The OMII-BPEL work is the closest to RESS The authors strongly believe that
implementations should be created in standard languages (BVSDL, XSD) which
are already widely used. For example, this allows the usevafiaty of orchestration
engines. Where Ressdiffers from similar BPEL approaches is that it takes a more ab-
stract (and even language-independent) view. Specifitatigpplementation and analy-
sis can therefore be integrated in a single methodology.

2 Background

2.1 Service Composition and Grid Services

SOA (Service Oriented Architecture) treats capabilitiefuoctions as individual ser-
vices. Service composition is a key feature of SOA for creptiew services by com-
bining the behaviour of existing onesPBL (Business Process Execution Language
[1]) is one of the most popular languages for specifying cositewebservices. Al-
though early work on composirgyid services using BEL showed promise, this was
not straightforward. Fortunately, the latest standardBeeL supports WSRF (Web
Services Resources Framework [11]) and is hence apprefoiagjrid services.



WSREF allows a service instance to be associated with anpitniambers and types
of resources. ‘Resource pairs’ are identified by an EPR (BmdReference [20]). Grid
services promote virtual collaboration among users ofifligted systems. A grid en-
vironment can be highly dynamic, with resources, partnedsservices being created,
added, shared and removed over time.

Grid computing initially developed through applicatiomsthe physical sciences.
The trend is now towards use in other areas such as e-SogacB¢which has been
recognised as a promising application of grid computinge @hthors are formalising
support for workflows on the BMES project (Data Management through e-Social Sci-
encewww.dames.org.Qk

To illustrate the methodology for developing workflows sthiaper tackles a com-
mon task performed by social scientists: representingpations in different classifica-
tion schemes. Occupational data researchers are ingiasiaalysing questions such
as how jobs affect social position, social interactiongrais, etc. There are many oc-
cupational classification schemes, some of them intemalt&tandards. As each clas-
sification scheme favours certain types of analysis, odéupe researchers have to
map datasets to particular schemes to perform the analyssmight involve several
intermediate mappings to arrive at the desired encodin@ fesult, translation is of-
ten performed using computer scripts or paper indexes thptlmtween (usually) two
schemes. Sections 3 and 4 discuss how an occupationaktiianservice was rigor-
ously developed using service composition.

2.2 CRESS

CRrREssis a domain-independent graphical notation for descrilsiaryices. ®ESS
takes an abstract approach in which a high-level servicerigtion automatically gen-
erates a formal specification and an executable implenientdh other work, it has
been used to describe a variety of voice services and alss&reltes. RESscan be
used as a graphical workflow notation for grid and web sesvice

CREssservice descriptions are graphical, making the approachsaile to non-
specialists. The focus is on high-level description, &usiing away the technical details
required in an actual implementationREssis designed as an extensible framework
where support for new domains and target languages can leel ikl plug-ins.

The CREssrepresentation for service composition is intentionalbse to BPEL. A
brief description of the subset ofRE ssnotation used in this paper is given here. Refer
to figures 1 and 2 for the examples cited below.

A Cressdiagram typically includes a rule box, numbered nodes, acsltaat link
nodes. A rule box is a rounded rectangle which (for grid ant wervices) defines
variables and their types, as well as dynamic partners. Gongata structures can
be defined, e.g. ‘{...} for records. As an example, the faliog defines two variables
mappinglandmapping2vhose type is a record with two string fields:

{ String job String scheme } mapping1l:allocator, mapping2:allocator
Variables and their types are normally associated with thgrdm that define them. It

is possible to be explicit about this by qualifying a varahlith its owning diagram
(Allocatorin the above).



A rule box can also indicate which other services are reduiay. ‘/ Allocator’ in
the description of theéookupservice shows it depends on tAfocator service.

The activities in a composed service are described in numabglipses. A typical
composition starts witliReceiveas an incoming request that specifies the service, port
and operation names, as well as the input variable. A tygicalposition ends with a
Reply as an outgoing response that returns an output variableanrlta There can be
alternativeReply activities for oneReceive and even sever&leceiveactivities.Invoke
is used to call an external partner by service, port and ¢ipardnvocation specifies
an output variable, an optional input variable, and optidmalts that may be thrown.
Examples of all of these are:

Receivelookup.job.translate schemes (inmehemes

Reply lookup.job.translate codes (outprdde$

Reply lookup.job.translate allocatorError.reason (faliibcatorError.reason
Invoke allocator.job.translate mappingl codel (outmaippinglinputcodel

Faults can be defined with just a nanadidcatorError), with just a value .feasor), or
with both elements.

Other activities includ@erminate (to end behaviourlCompensate(to undo work
following a failure), and~ork/Join (for concurrency). For the latter, a fine degree of
control over concurrency can be specified. In general, eeti¥itg may complete suc-
cessfully or may fail. A join condition such as ‘3&&4’ mearisat activities 3 and 4
must succeed before behaviour continues. Activities akagedrcs can contain assign-
ments such as ‘/ mappingl.jeb- schemes.job’.

Branches in @essdiagrams normally represent choices. A deterministic ahoi
has labels on arcs for conditions that govern which pathlisvfed. A non-deterministic
choice has unlabelled arcs. Event choices are not made iratabt but rather when
some event happens. For exampleCatch .reason branch is followed only when
a fault with someeasonvalue occurs. ACompensationbranch is taken only when a
Compensateactivity is used to undo previous work. Typically, compdimais defined
after aninvoke since a failure may mean that changes already made have tawbee!

3 Formal Specification and Analysis of Composed Grid Service

3.1 Describing Service Composition

The service developer starts by drawingreS sdiagram that describes the logic used
to combine the functions of external service partners. daihi these partners have
already been created by others, though new partner seraigbsalso be created for the
purposes of the orchestration. In a complex developmentyeder of GREssdiagrams
may be defined to realise the orchestratiorRESsalso supports feature diagrams for
common functions that can be added automatically to sedéseriptions.

During the work reported in this paperREsswas extended to treat EPRs (End-
Point References) as first-class values, to support griguress fully, to handle dy-
namic service partners, to formally verify properties, émdalidate implementations.
These aspects are all illustrated using the following examp



Uses
{ String job String scheme1 String scheme?2 } schemes
{ String job String scheme } mapping1, mapping2
{ String code1 String code2 } codes
String code1, code2
| Allocator

Start

~

Catch .reason

1 Receive

TReply
lookup.job.translate lookup.job.translate
_ schemes lookupError.reason

( 8 Terminate )

/ mapping1.job <- schemes.job | mapping2.job <- schemes.job
I mapping1.scheme <- schemes.scheme!  / mapping2.scheme <- schemes.scheme2

3 Invoke 4 Invoke

allocator.job.translate allocator.job.translate
mapping1 code1 mapping2 code2

allocatorError.reason

allocatorError.reason

| codes.code1 <- code1
| codes.code? <- code2

6 Reply
lookup.job.translate
codes

Fig. 1. CREssDescription of The Occupation Lookup Service

The diagrams in figures 1 and 2 show the use REEsto describe an e-Social Sci-
ence workflow. This supports the classification of occupetimentioned in section 2.1.
The services involved in this example are as follows:

Lookup: This is the top-level workflow that takes a request to traesdgjob title into
two occupational schemes. It uses tiocator partner to perform these transla-
tions in parallel, and returns the combined result.

Allocator: This partner service is itself a workflow that takes a reqteestap an occu-
pation into some scheme. It uses Faetorypartner to find a suitable resource (i.e.
aMapperservice) to perform this translation and then return thaipation code.

Factory: This partner service accepts a request to find an occuphti@ssification
translator. It dynamically allocates a resource for periog this task, and returns
a reference to it. If no suitable resource can be allocatéaylais thrown.
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7 Compensate )
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\ mapping.scheme mapperReference/
factoryError.reason
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allocator.job.translate
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- N

/ mapper.job <- mapperReference Catch factoryError.reason

3 Invoke
mapper.job.translate
mapping.job mappedJob
mapperError.reason

~

7 6 Reply N\
allocator.job.translate 9 Terminate
allocatorError. reaso - -

Compensation

factory .job.deallocate
mapperReference

allocator.job.translate
mappedJob

Fig. 2. CREssDescription of The Occupation Allocator Service

Mapper: This partner service is selected dynamically, so it repressclass of transla-
tion services. The given job title is translated into a artir occupational scheme.

Lookup Service The service in figure 1 defines translation logic that makesafs
the partnerAllocator service. Initially the service proceeds along the arc fidtart
to node 1. The service then accepts a request to translaketiélgointo two specified
schemes (node 1). The translations may be automated (eggthan online service)
or may be manual (e.g. requiring a researcher to look up aifitaion scheme). Since
the delay in translation for each scheme is unknown, botistations are performed in
parallel (node 2 to node 5).

Both parallel branches are similar. For example, the laftehbranch copies ttjeb
andschemenames into thenappinglstructure (arc from node 2 to node 3). ThAlko-
cator service is then called to translate this into a job code (r8)d&his service may
give rise to a fault if the translation cannot be performedilff nameallocatorError,
fault valuereasor). Both parallel branches require to complete successheifgre fur-
ther action is taken, as specified by the join condition inenbdAt this point, the two



job codes are combined intacadesstructure (arc from node 5 to node 6). Tiheokup
service ends by sending this to its caller (node 6).

In passing, note thatRESssupports long-running transactions that are fairly com-
mon in grid computing. In the case bbokup the parallel invocations may take as long
as required. This is not desirable if the service instancddootherwise make progress
on other tasks. Resstherefore also allows a one-wawoke that immediately returns
to the calling service. An asynchronous response is matopedReceive

Concurrency requires proper handling of faults. For exaripbne of the parallel
branches fails then the other cannot be left hanging. Thdetwogd error handler (arc
from Start to node 7) catches a fault from either parallel invocatiomeplies to the
caller with the reason why th&llocatorfailed, and terminates the whole workflow.

Allocator Service The service in figure 2 initially proceeds along the arc figtart to
node 1. Here it accepts a request for a particular job mappimgclassification scheme
is extracted inteschemeZarc from node 1 to 2). Since it is necessary to find a suitable
translation service, thEactory partner is called to find one for the particular scheme
(node 2). This returns lapperreference for a suitable service instance. If no suitable
service is found, a fault is thrown.

The Allocator then dynamically sets the reference for Mapperservice, and ex-
tracts the job title intgob2 (arc from node 2 to node 3). When theapperis called to
translate the job title, this dynamic partner is used (ndgdén3normal circumstances,
theAllocator replies with the job code to its caller (node 4).

Various error conditions are handled by #hkocator. If the Factoryinvocation in
node 2 fails, the error is caught in the local scope and retlita the caller (node 5).
A mapping failure in node 3 needs to be handled differenilyc&no fault handler is
defined for this invocation, the global fault handler is uéma fromStart to node 7).
This requires compensation because simply terminating\floeator would leave the
translation resource allocate@ompensatein node 7 requests global compensation.
All subsidiary compensation activities are then calledewerse order of completion.
In this example, there is only one such activity (arc from&@do node 6). The effect
is to deallocate the service instance thatFaetory had allocated (node 6). Following
compensation, théllocator returns the faulreasonto its caller and terminates the
workflow (nodes 8 and 9).

Collectively, figures 1 and 2 define a composite service vaithr partners. However,

a client of the whole translation service sees just a sintdesgrvice; the internal design
of this is intentionally hidden, and could be changed in ffeitu

3.2 Formalising Service Composition

A CRrEessdiagram is automatically translated int@tos (Language Of Temporal Or-
dering Specification [12]), including support for developlefined data types and be-
haviour. (A number of formal approaches to grid or web s@&wisupport only ele-
mentary data types such as booleans and integers.) Seehegibur is represented by
interacting LoTosprocesses. As the focus is on service compositi®g $Sfully spec-
ifies the logic that combines external partner service=$5does not normally have



enough information to specify these partners, and instefidas only their interfaces.
However if a partner service is itself a compositiomESswill specify it fully.

Since partner services are usually defined by others, kegylthat no formal spec-
ification exists of them. Indeed, the design of a partnerisemmay be proprietary and
hidden. The automated interface specifications generatétRlizssare sufficient for
basic compatibility checks of partners. For a more thoroagalysis it is desirable
to have more complete (though still abstract) specificatiminpartner services. These
specifications have to be created manually, by the devetifpiee partner service or by
the developer of the composite service. However, havingradbspecification of all
services is good practice anyway.

Handling of dynamic resources indros has been added for the work reported
here. For static service partners, interactions betweemgposite service and a service
partner are via btosevents that specify the service, port and operation. Foayn
service partners, synchronisation is specified with a nesoprior any interaction. This
is reasonable as an actual implementation also does thetbamge

The Partner type in CRESSIs a unique key that identifies a resource pair. An as-
signment topartner.portis performed prior to invoking a dynamic partner. lotos
this is translated as an assignment to the corresponding/Bfdble. Synchronisation
with a dynamic partner specifies the EPR required. It is oftlrahis that a dynamic
partner instance can be invoked. This approach can alsoduewith web services,
since dynamic web partners operate in an identical fashion.

Figure 3 shows how the various specification elements ardiced in the RESS
methodology. The generated specification of a compositécgenormally dominates
the specifications of the partner services. The compositeols specification that re-
sults is sufficient for use with severabirostools, e.g. loLA (LoTosLaboratory [15]).
However, some bTostools such as CADP (Construction and Analysis of Distridute
Processes [10]) require the specification to be preproddisse

A CRESsSsservice description is rigorously analysed through forwadidation and
verification of the automatically generatetos. Once the composition has been
checked to have the desired properties, an implementaiobe created automatically.

3.3 Validating Service Compositions

Formal validation can be directly performed on the compositecification produced
by CRESS This makes use of a test notation and tool calledviarD (Multiple Use
Scenario Test and Refusal Description [18]). Although Hosirated here, MSTARD
can be used to test partner services as well as service cdopss
As a simple example of validation with ¥ TARD, the following acceptance test
checks the translation of job title ‘nurse’ into the SOC2@0@ SIC92 classifications
(codes ‘3211’ and '95.14’ respectively). The test succeédsis possible to send a
translation request and then to read the expected respdtiseys in MUSTARD are
preceded by a single quote.
test(Nurse_Translation,
succeed
sendlookup.job.translate, schemés(rse,SOC2000SIC92)),
read(lookup.job.translate, codé8g11,95.14))))

10
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Fig. 3. Formal Validation and Verification with RESs

Acceptance tests check only what a system must dosM™RD is also used to
define refusal tests that check what a system must not do.u@@mt behaviour can be
checked as well. In the following test, parallel requestspgmrformed to translate a job
title using different occupational schemes:

test(Parallel_Translation,
succeed
interleave(

sequencé
sendlookup.job.translate, schem&S@ab Driver,SOC2000S1C92)),
read(lookup.job.translate, codégg14,60.22))),

sequencé
sendlookup.job.translate, scheméRfivate DetectivéSIC92;SOC2000)),
read(lookup.job.translate, codég@.60/1,9241))))))

MUSTARD translates such tests int@lros, adds them to the composite specifica-
tion generated by RESS and uses the validation facilities oflLA to formally check
that the specification passes its tests. This is achieveddhrabstract execution of the
specification, constrained by the test behaviours. The &d®tve are simple examples.
In practice, MUSTARD is used for a variety of tests that may include alternatizes;
ditions, non-determinism, variables, wild-card valuesyie dependencies (whether a
particular service is deployed), fixtures (common preasfuetests), and reset actions
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(to put a service into a known state). As will be seen in seclipMUSTARD tests are
used to validate implementations as well as specifications.

Although such validation is formally based, testing is resegily limited. Its main
advantage is that validation is practical; automated wadilich of even a complex service
is performed in seconds or minutes. However, formal vetificas desirable as a com-
plement to this. Rather than showing that the specificatidibés desirable behaviour
on certain test cases, it is preferable to prove properiigeieral for classes of tests.

3.4 Annotating LOTOS

For formal verification of loTOS the toolset of choice is CADP (Construction and
Analysis of Distributed Processes [10]). However, CADPcplaa number of restric-
tions on the form of loTos that it will accept. In particular, data types need to be
extensively annotated. Verification withREssis performed only after a further au-
tomated stage to annotate @1os specification for CADP. This requires a tool that
knows about standarddTosdata types as well as the data types thREEsgenerates.

CADP does not allow parameterised data types, so they musstantiated first.
The authors developed a tool to ‘flatten’ and annotate datastyall data types are
collapsed into one, and CADP pragmas are created. CADP a¢&swbt support infinite
sorts. Annotations in the form of speciabLos comments are therefore added to a
specification prior to verification, e.g. to identify consttor operations and external
implementations of data types.

CADP can verify a loTos specification through model checking. Abstract data
types with infinite values have to be limited to a finite rangeverification. Most data
types in grid and web services have finite (although posséte) ranges whose size
may depend on the programming language or platform. Se@rakslibrary data
types such aBlumberhave an infinite range.

In previous work, finite ranges were manually specified fee€sdata types (e.g.
Char, Number Tex). In the work reported here, the automated annotation ttsol a
deals with restricting ranges. C implementation skeletyesreated automatically for
user-defined data types (e.g. record structuresRES3. For the occupation transla-
tion example, C skeleton files are created automaticallyCfesstypes likeschemes
andmapping As it happens, this particular example does not need argiapmple-
mentations for data types — CADP supplies default impleatants. However, specific
implementations can be created manually to replace theiliefzes.

Roughly speaking, eachREssdiagram node corresponds to @tosprocess. A
LoTosprocess communicates using events at gates. Processasmsyise their com-
munications at gates, which may be selectively hidden frataraal view. Processes
may run independently in parallel or may synchronise onifipaates.

FactoryandMapperare normal partners, and are instantiated insideAMlaator
where they are used. Thdlocatoris actually instantiated twice: once insideokup
where it is used, and again at the global level. This is bexAllscator is a compos-
ite service that can be used in its own rightR&sourcepartner implicitly represents
the set of dynamic resources that may be allocated byrdleeory. In implementation
terms, this is called the ‘resource home’. IRESsthis is a ‘phantom partner’, and is
instantiated at the global level for use by all services.
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3.5 \Verifying Service Compositions

Verification allows general properties to be checked, wérexalidation can check only
specific cases (though these are usually selected to beiticalaynes). Model check-
ing requires a finite (though possibly large) state space sarwill not be practicable
in some cases. Validation can deal with very large or infisttge spaces. The two
techniques are therefore complementary, and help to etisar¢he methodology for
service developmentis both rigorous and practical.

Service properties are verified using the notation and tatéd Q_.ovE (CRESS
Language-Oriented Verification Environment). This supgdne high-level formula-
tion of properties, and provides a simple way of using theaoterification tools. To
some extent, COVE is oriented towards the needs of verifying grid or web sawic
Verification is normally undertaken only by specialists. fifoin with the pragmatic
aims of (REss CLOVE is designed for use by those with limited knowledge of for-
mal methods. For example, common properties of serviceawdomatically checked,
and property templates are also supported. This allowsdh®adh specialist the verify
correctness of service descriptions.

The specification patterns repositogyafterns.projects.cis.ksu.edbuilds on the
fact that verification properties are often common acroseynagplication domains.
This makes it possible to develop template properties #rabe supported by different
formal methods [6]. CoVE supports this approach by embedding and extending these
properties, using the @ToSs representations developed by Mateesswn.inrialpes.
fr/vasy/cadp/resources/ evaluator/rafmc.htnih addition, G OVE supports common
properties such as freedom from deadlock and livelock, disasspecialised properties
that are appropriate for services.

As examples, the following properties are desirable foratteupational translation
service in figures 1 and 2:

— The service should always be available, i.e. free from deddl(a safety property).

— If the service receives a request, it must able to accept areguest at a future
point (a liveness property).

— For correct service requests, the client should receivértimslated job title or a
fault due to partner failure.

— For incorrect service requests (an unknown job title orsifecmtion scheme), the
service must throw a fault to the client.

— If no translation resource exists, the service must throauét fo the client.

As a concrete example, the following.GVE property deals with service requests
and responses. A request to translate an occupation musysaliglobal’) obtain the
translated occupation code, or else a lookup fault withiagtnessage. ‘?’ means any
value of the given type. If this property does not hold of tkevice description, the
cause of the failure is analysed.

property (General_ Response,
responséglobal,
signal(lookup.job.translate,?schemes),
or(
signal(lookup.job.translate,?codes),
signal(lookup.job.translate,lookupError,?string))))
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The Nurse_ Translatiortest in section 3.3 checks only one translation. The fol-
lowing CLOVE property asserts that translating job title ‘nurse’ inte 8#0C2000 and
SIC92 classifications should always yield the correct tesul

property (Nurse_ Response,
responséglobal,
signal(lookup.job.translate,schemes('Nurse,'SOC2000, 2)%9
signal(lookup.job.translate,codes(’3211,'95.14))))

Common service properties are automatically verified withmaving to be speci-
fied explicitly. In addition, service-specific propertidsel the above can be formulated
by the developer. The KOVE notation is intended to be more accessible than the un-
derlying formalism [i-calculus). CoOVE is also designed to be similar to W TARD,
allowing the developer to verify and validate services inailar way. Although these
example properties are simple, they are typical of servérdigation practice. COVE
also supports other types of property, e.g. for safety enlass (reachability).

Behind the scenes, l©VE automatically translates the properties int@alculus
[5] — a temporal logic that allows branching-time propestie be checked. OVE then
invokes CADP to carry out property verification. The goalV¥erifying CRESSservice
descriptions is to make this as ‘push button’ as possibleeaally since the service
developer may not be a computing specialist. In fact it issfide for the developer to
create composed services without leaving tie €sdiagram editor. A service compo-
sition can be described graphically, validated, verifiethlemented and deployed from
within this graphical tool.

The CADP tools used for verification areA€EsSAR (behaviour compiler), G-
SAR.ADT (data type compiler) and EvaluatorAESAR.ADT generates a C header file
from the LoTosspecification, including references to the C skeleton fikrsegated by
CRESS CAESAR is then used to generate a BCG (Boundary Components Graph) fo
the specification. The Evaluator tool verifies propertiea gpecification in bTos or
BCG form. Verification steps are defined by an automatedtseriften in SVL (Script
Verification Language). Desirable properties include dmadfreedom, consistency of
service behaviour, and reachability of service states.

The CREssspecification generated from figures 1 and 2 was verified agtirse
properties after some corrections. For example, the aiglascription had deadlocks
due to an error in dealing with requests with an invalid oatigmal scheme. As a result
the system, could not proceed and did not respond to thet cbgnest.

4 Implementing and Deploying Composed Grid Services

The main emphasis of this paper is on formal aspects, so tbenated implementation
will be described only briefly. TheameCRESSsdescription as used for specification
is automatically implemented through translation inteeB/WSDL and is packaged
for deployment. Services that are part of the compositie ltlaeir interfaces and data
types generated in WSDL and XSD respectively. TieB WSDL interface, WSDL
catalogue, deployment descriptor and common definitioesatomatically generated
for the composite service and its partnereESsgenerates outline implementations of
partners that are completed manually for use in the finalémgintation.
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Service orchestration (fdrookupandAllocator in this example) is performed by
the ActiveBPEL engine (www.activebpel.org The composed service is automatically
created and deployed as @B. archive. If orchestration makes use of partaeb
services, these are also deployed in ActiveB. More typically, the partners agrid
services Factory and Mapperhere). These are automatically packaged and deployed
as grid service archives using the Globus Toolkivv.globus.ory

ActiveBPEL, Globus Toolkit, the composite service and its partnersatarun on
one system, though more typically they are distributedsTiidefined by a €ess
configuration diagram (not shown here) that defines theilmeatnd deployment char-
acteristics of all services. The running implementatiamtt&n be validated again using
thesameMUSTARD tests as were used for the specification (section 3.3). lticpéar,
this evaluates non-functional properties such as perfoceadependability and relia-
bility. This time, MUSTARD is translated into an intermediate form that is suitable for
use in testing an implementation.IMr (MUSTARD interpreter) executes these tests in
a similar kind of way as bLA does for LoTos However, MNT has additional capa-
bilities for evaluating an implementation. For exampleah perform stress testing by
running many tests concurrently or sequentially to cheg@mentation performance.

5 Conclusion

The GrREssmethodology for composing services has now been roundetb dwzndle
all the key characteristics of grid services. For exammeyise resources, EndPoint
References and dynamic partner assignments are now fultfléachin both the specifi-
cation and implementation phases ¢{€3s Formal validation of the generateeLos
specifications was already possible usingArRD. New work has added automatic
verification of desirable specification properties, allogvproperties of a composite ser-
vice to be proven in general. Automatic validation of the eyated implementation is
also now possible, using MT to check (non-)functional characteristics.

Verification through model checking requires a finite stqtece. This is a reason-
able restriction since the data types of an actual grid serwplementation are finite.
Though the state space can grow very large, the size of it eaobstrained by using
subsets of data values and by choosing significant valuegfdication. However, val-
idation still has a useful role. For example, it can be usdt mfinite state spaces, can
check specific interesting cases, and can be used for $ér&tfisy the implementation.

Support for automated formal analysis will be further imgd. It is planned to
allow data types to be annotated irEsswith regard to useful ranges and interesting
values. A possible approach here is to use PCL (Parametesti@orn Language [17])
to specify significant values for validation and verificatid his would allow Mus-
TARD test cases to be automatically defined. A rigorous methgydior developing
composite grid services has been presented. This uses essdite graphical notation
and a high degree of automation to make it attractive to itmgu&n occupational clas-
sification service has been used to explain how interactiatis dynamic resources
and dynamic partners are supported §ESS Abstract GRESsdescriptions are auto-
matically translated into &Tosfor formal verification of desirable properties and for
formal validation of significant test cases. These are arposh button’ procedures.
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The CRESsdescriptions can then be automatically translated intdémpntations with
confidence. The same WA TARD tests can again be used to check the characteristics of
these implementations.
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