
Journal of Ambient Intelligence and Smart Environments 3 (2011) 83–110 83
IOS Press

Flexible Management of Smart Homes
Kenneth J.Turner∗

Computing Science and Mathematics,
University of Stirling,
Stirling FK9 4LA,
UK

Abstract. An approach is presented for flexible management of smart homes, covering both home automation and telecare. The
aim is to allow end users to manage their homes without requiring detailed technical knowledge or programming ability. This
is achieved at three levels: managing home components and their interactions, stating policies for how the home system should
react to events, and defining high-level goals for what the user wishes to achieve. The component architecture is based onOSGi
(Open Services Gateway initiative). Policies and goals areformulated in the APPEL language (Adaptable and Programmable
Policy Environment and Language), and supported by the ACCENT policy system (Advanced Component Control Enhancing
Network Technologies). At run-time, high-level goals leadto selection of an optimal and conflict-free set of policies.These in
turn determine how the home should react to various events. The paper closes with an evaluation of the approach from the points
of view of functionality and usability.

Keywords: Component Framework, Home Automation, Goal Refinement, Open Services Gateway initiative, Policy-Based
Management, Sensor Network, Telecare

1. Introduction

The goal of this work is to support flexible man-
agement of devices in the home, with applications in
home automation and telecare. A framework is pro-
posed for control over devices and services at multiple
levels. The background to the work is given in areas
such as home automation, telecare, component frame-
works, and policy-based management.

1.1. Motivation

Home automation aims to let the user control a va-
riety of devices around the home. Telecare aims to
provide automated support to those receiving care at
home. It is a contention of this paper that both as-
pects can be underpinned by a similar infrastructure,
although the specific devices and services needed for
each will vary.

Many commercial solutions exist for home automa-
tion. However, these generally operate at a fairly low

* E-mail: kjt@cs.stir.ac.uk

level (being oriented towards controlling particular de-
vices). Although there are standards for communicat-
ing with devices, there is little standardisation at a
higher, service-oriented level. The situation for tele-
care is, if anything, worse. At present, telecare man-
ufacturers usually follow their own proprietary ap-
proaches at both device and service levels. The func-
tionality of home automation systems and telecare sys-
tems tends to be relatively fixed. Where alteration is
possible, it usually requires specialist expertise and re-
programming. It can thus be difficult to achieve higher-
level, flexible, user-oriented control over the home.

The motivation of this work is to make it easier to
define how homes should react to user needs. This is
realised at three levels:

– At component level, devices and services are in-
tegrated into a flexible component architecture
that makes addition, change and removal easy.
In addition, more complex services can be cre-
ated from simpler devices and services. This is
achieved through visual design of higher-level de-
vice services.

1876-1364/11/$17.00 © 2011 – IOS Press and the authors. All rights reserved

84 Kenneth J. Turner / Flexible Management of Smart Homes

Goal
System

Policy
System

Event
Logic

Component
Infrastructure

policies

events

events

events

Fig. 1. System Architecture

– At policy level, rules can be defined for how the
house should react to events. These policies are as
device-independent and protocol-independent as
possible. Policies are defined by wizards that are
designed for non-technical users.

– At goal level, users can define high-level aims for
how they wish their home to behave. This is the
highest, user-oriented level of control.

These three different levels are targeted at different
kinds of users. Although end users might define (and
have been observed to define) simple device services,
this level is intended more for use by the technically-
minded (e.g. system integrators). Policies are intended
for use by ordinary users, but mainly through sim-
ple parameterisation and extension of template policies
provided in a library. It is believed that end users can
make best use of goals as these are formulated in terms
that users can relate to. The associated library of poli-
cies enables goals to be realised automatically without
users having to deal with implementation details.

The paper gives a broad overview of the approach
in the three areas of components, policies and goals.
The aim is to present the key principles behind these.
Although user interfaces are touched on, they are not
the main focus of the work.

1.2. System Architecture

The high-level system architecture is shown in fig-
ure1. This has the following layers:

Goal System:This is the primary level at which users
are expected to interact with the system. Goals are
high-level objectives such as staying comfortable
in the home, remaining safe, or eating well. When
external events happen, the goal system chooses
an optimal set of policies to react to them.

Policy System:This is a secondary level at which
users might interact with the system. However, it
is expected that users will have limited involve-
ment with policies such as simply filling in a few
parameters (e.g. the number to call if the user
falls). The policy system receives triggers (e.g.
house temperature is low, back door is unlocked)
and responds with actions dictated by the rules
(e.g. turn heating on, lock back door).

Event Logic: Event logic can optionally be used to fil-
ter and manipulate triggers and actions. As an ex-
ample of a synthetic trigger, a fall alert may not
be reported unless the fall detector signals a pos-
sible fall and the user remains motionless. As an
example of a synthetic action, a message to a user
might be tried in several ways (as a text message,
then as an email message).

Component Infrastructure: This includes all the
home components along with the system infras-
tructure provided by the OSGi platform (Open
Services Gateway initiative). Components may
be low-level drivers (e.g. for appliance control)
or higher-level functions (e.g. for weather fore-
casts). The infrastructure exchanges signals and
messages with external devices (which may in-
clude external services).

The following high-level walk-through illustrates
how all the elements of the system interwork. As an
example of home automation, imagine that the main
rooms have temperature sensors, and that there is con-
trol over window opening and air conditioning.

Suppose it is a warm summer’s day and it is reported
that the lounge temperature is 25◦C. This will be sent
via a wireless signal to the component that interfaces
such sensors. This will then be converted into an OSGi
event with associated parameters that identify the mes-
sage (reading, temperature, lounge, 25).

Since temperatures will drift up and down due to
external factors such as incoming sunlight, suppose
that the developer has decided to intercept temperature
readings and check for longer-term trends. The tem-
perature message is then picked up by event logic that
checks the temperature against values in the last ten

Kenneth J. Turner / Flexible Management of Smart Homes 85

minutes. If this indicates a steady rise in temperature,
the logic will report an over-temperature event.

The policy system continually monitors incoming
events. If no policy matches a temperature reading,
this will have been ignored. However, suppose several
policies have over-temperature triggers. Policy 1 that
opens the windows for ventilation has the effect of let-
ting in outside air (and hence pollen), increasing the
noise level from outside, and reducing household secu-
rity. Policy 2 that switches on the air conditioning has
the effect of increasing power consumption. Policy 3
that partly closes the curtains to shade the room may
have no particular effect besides cooling the room.

These policies are then passed for consideration to
the goal system. The user might have defined goal 1
for staying comfortable (measured by room tempera-
ture and noise level), goal 2 for saving energy (mea-
sured by power usage), and goal 3 for keeping healthy
(measured by avoiding allergens and eating properly).

The three policies that cool the room are then con-
sidered against these goals. Opening the windows is
positive room for the temperature aspect of the com-
fort goal, negative for the noise aspect of this goal,
but barely affects the energy goal. Using air condition-
ing improves temperature, but seriously affects the en-
ergy goal by using a lot of power. Drawing the curtains
also improves temperature, but barely affects the en-
ergy goal. An optimal choice of policies is then made
according to current circumstances and goal weights.
This might select the policies that open the windows
and draw the curtains.

The selected policies are then returned to the pol-
icy system for execution. Conflict analysis will find
their actions cannot both be performed since opening
the windows will obstruct the curtains. Conflict reso-
lution might then select opening the windows. Finally,
this action is sent via the component infrastructure to
the window opener. The entire sequence of steps, from
temperature reading to window opening, will typically
take a second or so. In other circumstances, or with
changed goal weights, the outcome could be different.

1.3. Related Work

1.3.1. Home Automation
Device protocols underlie home automation. Many

standards have evolved in this area, such as:

– IR (Infrared, www.irda.org) is used to control
many kinds of domestic appliances.

– KNX (Konnex Association,www.knx.org) derives
from earlier work on EIB (European Installation
Bus). It supports a variety of media and devices.
KNX is widely used in building management, in-
cluding domestic applications.

– Lonworks (Echelon Corporation,www.echelon.
com) is a set of networking standards that have
been used in applications such as building man-
agement, home automation and transportation.

– UPnP (Universal Plug and Play,www.upnp.org)
is an extension of the plug-and-play concept into
the world of networked devices.

– X10 (www.x10europe.com) is widely used to
control appliances using existing mains cabling.
There is also some support for wireless control.

The work in this paper aims to be independent of
particular devices and protocols. Device-level commu-
nication is essentially a solved problem. A harder ques-
tion is how to abstract from device details and present
a uniform interface to higher levels of control.

Many commercial packages support home automa-
tion, such as the following:

– Control4 (www.control4.com) offers a framework
for tightly integrating third-party devices. The ap-
proach encourages third parties to make their de-
vices compatible with Control4, and so moves the
effort to the device suppliers.

– Cortexa (www.cortexa.com) is a sophisticated
package for home automation that supports many
kinds of devices. Although it can be programmed
using various kinds of rule editors, these are not
flexible and simple enough for users to have full
control over their homes.

– Girder (www.promixis.com) aims to flexibly man-
age a variety of home devices by defining the
mapping of input events to output events. This
requires specialist technical knowledge and so is
not appropriate for direct use by ordinary users.

– HAI (Home Automation Inc.,www.homeauto.
com) offers a home automation system that ad-
dresses control, safety, entertainment and energy
management. However, this is more oriented to-
wards installation experts than for programming
by home users.

– HomeSeer (www.homeseer.com) is widely used to
control a variety of home devices. It has particu-
lar strengths in allowing control via remote inter-
faces such as PCs and mobile telephones.

www.irda.org
www.knx.org
www.echelon.com
www.echelon.com
www.upnp.org
www.x10europe.com
www.control4.com
www.cortexa.com
www.promixis.com
www.homeauto.com
www.homeauto.com
www.homeseer.com

86 Kenneth J. Turner / Flexible Management of Smart Homes

The work in this paper does not aim to compete with
well-established commercial solutions. Rather it fo-
cuses on new techniques such as a flexible component
framework and user-oriented control over the home.

Location-based services are becoming more pop-
ular. In the main, these are being designed for mo-
bile users. However, some have been applied in office
buildings through use of active badges [20] and ‘sen-
tient computing’ [1]. In future, location-based services
for the home may become more popular (e.g. to allow
media to be played wherever the user is).

Interplay [30] aims to provide high-level control
over the home using pseudo-English. This is supported
by seamless device interconnection over a UPnP net-
work. However, like other systems such as OSCAR

[33], Interplay is focused on handling media.

1.3.2. Telecare
The world population is gradually ageing, with the

percentage of older people (over 65) expected to rise
by 2050 to 19.3% worldwide, and much higher in
some countries [16]. Although the population is age-
ing, older people are generally healthier and more ac-
tive than in previous generations. It is beneficial for
older people to live independently in their own homes
as long as possible. The impracticability and cost of
providing sufficient care homes also makes this a ne-
cessity. This situation has been recognised by govern-
ments in many countries, where national programmes
are in place to promote the use of telecare.

Telecare systems are computer-based systems that
support delivery of care to the home. They can give
the user advice, identify situations that may need in-
tervention, reassure family members and informal car-
ers, and relieve professional carers of low-level mon-
itoring tasks. Telecare systems should be appropri-
ate (for different stakeholder viewpoints), customis-
able (for specific user needs), flexible (offering a range
of solutions), and adaptive (as care needs and condi-
tions evolve). Companies involved in developing tele-
care solutions include Cisco, General Electric, Initial,
Intel, Philips and Tunstall.

Unfortunately, most telecare solutions are propri-
etary and relatively fixed. To change functionality usu-
ally requires specialised technical knowledge and re-
programming. Telecare standards are also in their in-
fancy due to the relative newness of the approach. On-
going work on standardisation includes the following:

– Continua (the Continua Health Alliance,www.
continuaalliance.org) is working towards stan-
dards for interoperability of healthcare systems,

including those used at home (normally called
telehealth). However, telecare includes important
elements of social care as well.

– ETSI (the European Telecommunications Insti-
tute, e.g. Special Task Force 264,portal.etsi.org/
stfs/STFHomePages/STF264/STF264.asp) has
been working towards telecare standards.

– TSA (the Telecare Services Association,www.
telecare.org.uk) is working towards telecare stan-
dards, though these tend to emphasise procedural
rather than technological aspects.

Because telecare is an emerging discipline, the work
in this paper has the potential to have more impact. In
particular, the paper’s emphasis on flexible and adapt-
able control is particularly relevant. Since telecare de-
vices currently follow proprietary protocols, it is nec-
essary to manage these in a device-independent way.

1.3.3. Component Frameworks
A variety of frameworks have been developed to al-

low flexible combination of components. Approaches
include the following:

– ADLs (Architecture Description Languages [29])
focus on how complex systems are put together
out of their component parts. For example, the
pipe-and-filter approach is widely used to create
chains of interacting components.

– Atlas started as an academic project to sup-
port sensor-actuator networks in a plug-and-play,
service-oriented manner [22], but is now avail-
able commercially. Among other applications, the
Atlas middleware has been used for smart homes
and healthcare.

– EasyLiving [8] is designed to support intelligent
environments through dynamic interconnection
of a variety of devices. This middleware sup-
ports mechanisms such as inter-system commu-
nication, location tracking for objects and people,
and visual perception.

– Gaia [36] offers a component architecture based
on CORBA (Common Object Request Broker Ar-
chitecture). This is used to support ‘active spaces’
that rely heavily on contextual information in-
cluding presence.

– Jini (www.jini.org) extends Java for distributed
and federated systems. The architecture sup-
ports service components, service registration,
access control, distributed events and transac-
tions. Although a general-purpose approach, Jini
has found use in the design of home systems [34].

www.continuaalliance.org
www.continuaalliance.org
portal.etsi.org/stfs/STF_HomePages/STF264/STF264.asp
portal.etsi.org/stfs/STF_HomePages/STF264/STF264.asp
www.telecare.org.uk
www.telecare.org.uk
www.jini.org

Kenneth J. Turner / Flexible Management of Smart Homes 87

– OSGi (originally Open Services Gateway initia-
tive, www.osgi.org) provides a framework within
which components called bundles reside. The
overall framework supports common functions
such as a service registry, lifecycle management
and event administration.

– Patch Panel [4] aims to solve component inter-
connection by interposing intermediate logic that
maps between devices. This logic is expressed by
state machines that map events from one device
onto actions at another device.

– SCA (Service Component Architecture,www.
osoa.org) is a service-oriented approach that al-
lows flexible and implementation-independent
‘wiring up’ of components.

– SOA (Service Oriented Architecture [26]) treats
components as loosely coupled services. Compo-
nents are typically realised as web services.

– SODA (Service Oriented Device Architecture,
www.eclipse.org/ohf/components/soda) is an ap-
proach to treat device interfaces in a service-
oriented way. The Service Activator Toolkit and
Development Kit ease the process of developing
OSGi components for devices.

– Speakeasy [14] supports flexible communication
among devices withouta priori knowledge of
each other – so-called recombinant computing.
Two key principles are the use of well-defined and
generic interfaces, coupled with the possibility of
exchanging mobile code to extend these.

The work in this paper incorporates several aspects
of the approaches above. OSGi is used as the frame-
work within which services live. The approach reflects
the principles of SOA. Although SCA has been evalu-
ated as a flexible way of interconnecting home compo-
nents [28], OSGi remains the main focus. As discussed
in section2.3, the architectural concept of filter is sup-
ported within the approach. A home system is likely
to be tightly integrated such that the flexibility of, say,
Patch Panel or Speakeasy is unnecessary. In addition,
neither of these offers user programmability.

OSGi was originally conceived for use in a home
environment, so it is hardly surprising that it is suitable
for the author’s purpose. However, several researchers
have sought to extend its applicability. [25] enriches
the SODA approach by dealing with data semantics.
[17] focuses on self-configuration of home devices and
personalisation of services offered to the user.

1.3.4. Policy-Based Management
Policies have been used in applications such as ac-

cess control, network/system management, and qual-
ity of service. Policies are rules that are automatically
applied when events occur. Most policy languages are
in ECA form (Event, Condition, Action). Examples,
drawn from a large field, include the following:

– Drools (www.jboss.org/drools) is an approach for
enforcing business rules. This is an implementa-
tion of the Sun community standard for a Java
Rules Engine (JSR 94). The rule language does
not make a sharp distinction between events and
conditions. Its focus is more on business logic
than on system control.

– Police [13] follows a traditional policy approach.
It deals particularly with management and con-
flict in a distributed setting. The approach avoids
modality conflicts, but provides mechanisms for
handling domain-specific conflicts.

– Ponder [11] is a well-known policy approach. It
offers a mature methodology for handling poli-
cies in applications such as system management
and sensor networks. Ponder supports policy do-
mains, policy conflicts, and policy refinement.

For the work in this paper, the human aspects of
home care and home automation tend to rule out the
more technically-oriented policy approaches used in
system management. As argued in [43], a different
kind of policy approach is needed for ‘softer’ manage-
ment tasks of the kind found in human-oriented sys-
tems (e.g. telecare).

[24] describes a rule-based system for smart homes.
However, this is a rather heavyweight solution that ex-
pects home devices to be interconnected via an Eth-
ernet. Although the system supports basic ECA rules,
these do not seem to be for definition by end users.

Although it would not be regarded as a policy sys-
tem, Gadgetware [21] aims to achieve a similar ef-
fect. Physical objects are given a digital representa-
tion as eGadgets with ‘plugs’ that make their capa-
bilities available. eGadgets can then be connected via
‘synapses’ that allow their functionality to be chained.
This can achieve some of the effects of a home policy
system (e.g. turning on a desk lamp when someone sits
down to read a book). However, a full policy system is
capable of a much wider variety of control.

Context-aware systems (e.g. [6]) aim to make a sys-
tem reactive to context, and in that sense have some
affinity to policy systems. Gaia [36] aims to create ‘ac-
tive spaces’ from physical spaces supplemented by a

www.osgi.org
www.osoa.org
www.osoa.org
www.eclipse.org/ohf/components/soda
www.jboss.org/drools

88 Kenneth J. Turner / Flexible Management of Smart Homes

context-aware infrastructure. However, context aware-
ness is a separable aspect. Indeed as will be seen, the
policy system described in this paper accepts informa-
tion from an external context system in order to in-
fluence its behaviour. Any third-party system could be
used to provide this information.

This paper follows the approach of ACCENT (Ad-
vanced Component Control Enhancing Network Tech-
nologies, www.cs.stir.ac.uk/accent). This is an ap-
proach and set of tools for managing systems through
policies. Originally developed for controlling Internet
telephony, ACCENT and its accompanying policy lan-
guage APPEL (Adaptable and Programmable Policy
Environment and Language,www.cs.stir.ac.uk/appel)
have now been extended into new domains such as
home management, sensor networks and wind farms.

1.3.5. Goal Refinement
Goal refinement has been investigated for many

years. In artificial intelligence, for example, planning
approaches such as STRIPS (Stanford Research Insti-
tute Problem Solver) go back about 40 years. More re-
cent work includes the following:

– Agent systems often follow a goal-based ap-
proach. As an example, 3APL (Agent Program-
ming Language,www.cs.uu.nl/3apl) defines goals
and beliefs. Plans are created from predefined
rules, using an action base to achieve goals.

– Goal refinement has been treated from a logic per-
spective by several researchers. For example, [5]
uses event calculus for formal refinement of goals
into system operations that achieve them.

– Requirements engineering has also made use
of goal concepts. Approaches such as KAOS

(originally Knowledge Acquisition in Automated
Specification [44]) make use of refinement pat-
terns to decompose goals into subgoals. [37] uses
temporal logic in the refinement of goals into sub-
goals, and then subgoals into policies.

– A few examples exist of goal refinement in tele-
phony. URN (User Requirements Notation [2])
allows system goals to be expressed, and to be re-
lated how the system is designed. Goals for tele-
phony are investigated in [19], which also ad-
dresses the potential for conflicts among goals.

The work in this paper has a deliberately prag-
matic philosophy. Logic-based approaches require
specialised expertise, can involve lengthy computa-
tions that make them unsuitable for real-time use, and
work best offline (i.e. statically).

1.3.6. User Interfaces
User interface design is a broad and intensively re-

searched area. The following gives a brief overview
with particular regard to allowing end users to program
the home. [32] is a classic overview of the area.

– Programming by demonstration has been advo-
cated as a suitable approach. For example, a CAP-
pella [12] allows a situation to be set up and then
an appropriate response to be demonstrated. Al-
though users like this way of defining rules, it can
be tedious or infeasible to create suitable demon-
strations for all possible situations or for rare
events. Alfred [15] uses demonstration to capture
macro-like rules, making particular use of speech
interaction.

– Several projects have investigated the use of tan-
gible programming. ACCORD [35] uses jigsaw-
like pieces to assemble rules. Although the ap-
proach ensures that the rules are meaningful, the
range of possible rules is very restrictive. As
noted by the developers of CAMP [39], this is not
a natural way for users to define how their home
should react. Instead, CAMP allows end users to
define their requirements using words drawn from
a ‘magnetic poetry’ set. This requires natural lan-
guage processing – a major challenge that is al-
leviated by restricting the concepts that can be
expressed. The approach has also been validated
only on capture applications (for audio/video).
Media Cubes [7] have been used to define rules
by placing action requests next to devices (read
from the cube faces using infrared). Again, this is
a device-oriented approach.

– Visual programming languages have been devel-
oped for home control. [23] describes an ap-
proach for ubiquitous computing environments
that allows end users to define rules graphically.
The system is, however, very constrained in what
users can say. iCAP [38] permits new devices to
be added through the user drawing icons for them.
These icons can then be dragged onto a situa-
tion window (thus identifying the conditions of a
rule) or onto an an action window (thus identify-
ing the desired system output). A useful feature
is the ability to simulate and thus predict the ef-
fect of rules. OSCAR [33] provides a visual en-
vironment for selecting and interconnecting com-
ponents. However, this has so far focused almost
exclusively on handling media in the home (au-
dio, graphics, video).

www.cs.stir.ac.uk/accent
www.cs.stir.ac.uk/appel
www.cs.uu.nl/3apl

Kenneth J. Turner / Flexible Management of Smart Homes 89

Nearly all of these approaches are strongly device-
oriented and rule-oriented. This has been criticised
(e.g. by [39]) as not being particularly natural for end
users. Instead, it has been argued that high-level goals
should be used. ACHE [31] is closer in philosophy to
the work reported in this paper. However, the goals
supported by ACHE are very restricted (user comfort
and cost) and the emphasis is on the system learning
how best to meet these goals.

1.4. Structure of The Paper

Section2 discusses the architecture and components
of the home system, including how events are han-
dled. Section3 introduces the policy system that al-
lows user-defined control without specialised technical
knowledge or programming. Section4 discusses how
home users can define high-level goals rather than low-
level policies. Section5 evaluates the functionality and
usability of the approach. Section6 rounds off the pa-
per with a summary of the work.

2. Component Level

The architecture and components of the home sys-
tem are presented. Events are sent between ‘devices’
of all kinds (including services) and the policy server
that handles high-level control of the house. An event
transformer is used for flexible mapping between de-
vice events using visually-defined logic.

2.1. Component System Architecture

The basic architecture followed in this work is that
of OSGi. Components are therefore OSGi bundles that
register services (e.g. for control of devices). This
service-oriented approach makes it easy for compo-
nents to use other components in a loosely coupled
way. The home services could, in principle, call each
other directly. However, they are designed to commu-
nicate via an event bus (mediated by the OSGi Event
Admin service). This further decouples components,
allowing them to register only for events they are in-
terested in.

The high-level component architecture is shown in
figure2. The home components are generically called
‘devices’, though this covers a variety of functions.
Devices that provide inputs would conventionally be
called sensors (e.g. medicine dispensers, motion detec-
tors, video cameras). Devices that act on outputs would

ActuatorSensor

Policy
Server

Event
Transformer

Service

Event In Event Out Event In/Out

Event In/OutEvent In/Out

Fig. 2. Component Architecture

conventionally be called actuators (e.g. door locks, gas
shut-off valves, video recorders). In a domestic set-
ting, the term ‘appliance’ would also be used (e.g. CD
player, microwave oven, TV). More significantly, ‘de-
vices’ can also be software services (e.g. data logging,
text messaging, weather forecasting).

Two components are distinguished in the architec-
ture: the event transformer (low-level services that
transform device events, see section2.3) and the pol-
icy server (high-level services that manage the home,
see sections3 and4).

Device input and output events (device in, de-
vice out) have a uniform structure with the following
fields (identified by argument number when used by
the policy system):

message type (arg1):the type of device input or out-
put (e.g.activity, on, open, reading).

entity name (arg2): an optional entity associated with
a device message (e.g.door, message, motion).
Some messages imply a unique entity (e.g. alog
message implies a system-wide logger), so the
entity name can be omitted.

entity instance (arg3): an optional instance of an en-
tity associated with a device message (e.g.front,
email, hall). Some entities may have only a single
instance (e.g. a central heating system), so the en-
tity instance can be omitted. Entity instances may
also identify groups (e.g. all digital TVs, all up-
stairs windows)

message period (arg4):an optional interval or time
to which an event applies. For example, a temper-
ature input might have period15 if it was mea-
sured during the last 15 minutes, or21:30 if it
was measured at 9.30PM. For output, the same
values could be used to start a video recording in
15 minutes or at 9.30PM. The period is normally
omitted, meaning ‘now’.

90 Kenneth J. Turner / Flexible Management of Smart Homes

parameter values (arg5):an optional device parame-
ter list. For example, this might give the reading
for a temperature input, or the dimming percent-
age for a light output. The parameter values may
be omitted if not relevant to the event.

Components are interoperable at the event and ser-
vice level, using common OSGi mechanisms. This re-
quires the components to respect certain interface stan-
dards, notably the use of device event information as
above. The standard OSGi service registry is some-
what limited, e.g. components can be discovered only
by name (though abbreviation is possible). For use in
the home, more comprehensive and semantically based
techniques are needed.

A set of modular ontologies has been created for
describing concepts, terms and their relationship in a
home context [42]. The base ontology specifies basic
concepts in the home environment such as device, ser-
vice and user. Each of these is then elaborated in a core
ontology that relates the basic concepts and defines at-
tributes. Generic ontologies define the concepts and re-
lationships needed for rich service descriptions. This
allows inferences to be drawn automatically, e.g. a hall
lamp is a kind of light, offers a lighting service, and is
located near the front door. Protocol ontologies add the
specific characteristics of protocols such as UPnP and
X10. Finally, a home ontology describes networked
components used in home automation and telecare.

This collection of ontologies supports semantically
based discovery of components. The approach can dis-
cover what components do and also how to use them.
Suppose a component needs to increase the lounge
lighting level. A query for this function will cause
the component registry to reason using its ontological
knowledge. This might indicate use of an X10 compo-
nent, identifying a particular X10 address and that this
lamp can be dimmed as well as turned on or off.

2.2. Home Components

A variety of components have been developed for
use in home automation and telecare. Examples in var-
ious categories are as follows:

appliances: wired and wireless equipment in the
home. Examples of appliances controlled via the
mains are: fan, heating, light, oven. Examples of
appliances controlled via infrared are: air condi-
tioning, camera, DVD and TV.

communication: services for communication. Exam-
ples of services are: email, message display, SMS
(Short Message Service), and speech input/output
(using code from the University of Edinburgh).

environment: wireless devices used for environment
information. Supported sensors include those
from Oregon Scientific (www.oregonscientific.
com): humidity, temperature and forecast.

interfaces: user-friendly interfaces (not the traditional
keyboard, mouse, monitor). Touch screens are
used for information display and for easy user in-
teraction (e.g. appointment reminders, house con-
trol, managing media albums). Various ‘Internet
buddies’ are used as they appeal to non-technical
users: the i-Buddy ‘angel’ (www.unioncreations.
com), the Nabaztag ‘rabbit’ (www.nabaztag.com),
and the Tux Droid ‘penguin’ (www.ksyoh.com).
The WiiMote (www.nintendo.com) is used for
gestures, light patterns and sound. The SHAKE

(Sensing Hardware Accessory for Kinaesthetic
Expression, www.dcs.gla.ac.uk/ research/shake)
can communicate using gestures and tactile out-
put (using code from the University of Glasgow).

security: wireless devices used for general secu-
rity. Sensors supported include those from Tun-
stall (www.tunstallhealth.com) and Visonic (www.
visonic.com): alarm (pendant, wrist), movement
detector, pressure mat (bed, chair, floor), reed
switch (cupboard, door, window), RFID reader
(active badge), and other detectors (flood, gas,
smoke). Actuators supported include those from
Tunstall: curtain controller (open, shut) and door
controller (lock, unlock).

telecare: wireless devices used specifically in tele-
care. Sensors supported include those from Tun-
stall: enuresis detectors (bed wetting), epilepsy
detectors, fall detectors, and medicine dispensers
(which report if medicine is not taken).

2.3. Event Transformation

In normal operation, input devices cause events that
trigger the policy server. This results in actions that are
sent to devices via output events. A home automation
example might be: ‘when the front door is opened, turn
on the hall and lounge lights, play the user’s favourite
music, and activate climate control’. A telecare exam-
ple might be: ‘when the user is late in taking medicine,
issue a spoken reminder in the relevant room; if the
user still does not take the medicine, alert a neighbour
by text message’.

www.oregonscientific.com
www.oregonscientific.com
www.unioncreations.com
www.unioncreations.com
www.nabaztag.com
www.ksyoh.com
www.nintendo.com
www.dcs.gla.ac.uk/research/shake
www.tunstallhealth.com
www.visonic.com
www.visonic.com

Kenneth J. Turner / Flexible Management of Smart Homes 91

However, greater flexibility is desirable in handling
device events. The event transformer can filter and
modify events before they are seen by the policy
server. Policies can be written to use the raw device
events or the ones created by the event transformer.
Possible patterns for event transformation are as fol-
lows. (It is also possible for the triggering event to lead
to nothing, meaning that the event should be ignored.)

in → in: an input event is mapped to input events.
This is normally called sensor (data) fusion, the
idea being that raw input from several sensors can
be combined to produce higher-level, more mean-
ingful events. For example, a more accurate pre-
diction of falls might be obtained by combining
fall detector data with movement detector data. If
it is reported that the user has fallen and there is
no movement within the next minute, a fall alert
can be generated. This allows for synthetic input
events, e.g. a macro trigger that reports someone
has entered the house. This might build on raw
sensor inputs that the front door was opened and
there is movement in the porch.

out → out: an output event is mapped to output
events. This allows for synthetic actions, e.g. a
macro action for contacting someone. This might
first trying calling the user’s mobile phone. If the
call is not answered within 10 seconds, a text
message is sent.

in → out: an input event is mapped to output events.
This supports low-level, device-oriented services
that do not require policies (as opposed to the
high-level, user-oriented services supported by
the policy server). For example, if the lounge is
entered, the system should turn on the light if it is
dark and set the room temperature.

out → in: an output event is mapped to input events.
This allows the policy server to trigger the execu-
tion of further policies. Suppose the lounge light
is turned on under policy control because it has
become dark outside. The action to turn on the
light can become a trigger that the lounge is now
brighter. Other policies might react to this by in-
creasing TV brightness and closing the curtains.

Event transformations could be coded in a conven-
tional programming language. However, this would
negate the goal of making it possible to change sys-
tem functionality without detailed technical knowl-
edge and reprogramming. Event transformations are
therefore described in a visual design language (a

Actuator/
Service

Sensor/
Service

Policy
Server

Event
Transformer

Event
Out

Event
In/OutEvent

Logic

Web
In/Out

Event
In

Fig. 3. Event Transformer Role

simple form of programming). This is an adaptation
of CRESS (Communication Representation Employ-
ing Systematic Specification,www.cs.stir.ac.uk/∼kjt/
research/cress.html).

CRESS is a graphical notation and toolset for de-
signing service flows (e.g. for grid, voice or web ser-
vices). A root diagram describes a basic service. This
may be extended by feature diagrams that automati-
cally add capabilities to the basic service. In a home
context, the diagrams describe event logic. A CRESS

compiler automatically converts these diagrams into
BPEL (Business Process Execution Language [3]) and
deploys them into a BPEL engine (ActiveBPEL,www.
activebpel.org).

Home components have an OSGi event interface,
whereas BPEL processes have a web service inter-
face. The event transformer therefore maps bidirec-
tionally between OSGi events and web service calls.
As a more precise description of the system architec-
ture in figure2, figure3 shows the relationship among
the various components. Here, the event logic consists
of BPEL processes created from CRESSdiagrams.

This approach also offers a beneficial capability: de-
vices can be handled by any external web service. This
allows remote entities (e.g. a mobile phone or a PC) to
control the home, and to receive information about sig-
nificant home events (e.g. a low-temperature alarm or
an intruder alert). Exposing home control to external
entities is, of course, a security risk so authentication
is used for web services.

For space reasons, only two small examples of the
approach will be given; see [?] for a more extensive
set of examples. A CRESSdiagram contains numbered
activities in ellipses. These are linked by arcs that can
be governed by value conditions or event conditions.
CRESSoffers a complete methodology for service cre-
ation, including automated specification, verification,
validation, implementation and performance analysis.

Figure 4 shows the logic for the in→ out exam-
ple mentioned above. Node 1 shows reception of a

www.cs.stir.ac.uk/~kjt/research/cress.html
www.cs.stir.ac.uk/~kjt/research/cress.html
www.activebpel.org
www.activebpel.org

92 Kenneth J. Turner / Flexible Management of Smart Homes

Fig. 4. Lounge Control

door open message:Receivemeans message input,
door.in.openis in the formdevice.direction.operation,
anddeviceis a message variable. Such a variable car-
ries the instance, period and parameter fields described
for events in section2.1. The fields of this message can
be used in later activities. As this is common in dia-
grams, a shorthand notation is provided:‘instance, for
example, is short fordevice.instance.

If the door message is from the lounge (arc from
node 1 to 2), two paths are followed in parallel
(node 2). On one path, if the light level is less than
10 lux (arc from node 2 to 3) then the lounge light
is turned on (node 3). On the other path, the device
parameter is set to 21◦C (arc from node 2 to 4) then
the lounge heating is turned on with this setting. Both
paths then join (node 5). Sophisticated control can be
exerted over concurrency by specifying which activi-
ties must succeed. ‘3|| 4’ means that either or both of
the prior paths must be successfully executed.

Figure5 shows the logic for the in→ in example
mentioned above. Node 1 receives a fall detector mes-
sage. After 30 seconds (node 2), a motion input is then
awaited (node 3). If this occurs, it is assumed that the
user has not had a serious fall so the logic terminates
(node 4). If there is no input after 30 seconds (arc from
node 3 to 5), a fall alert event is generated.

3. Policies

The policy system allows user-defined control of the
home without requiring specialised technical knowl-
edge or programming. The structure of a regular policy

Fig. 5. Fall Detection

is explained. Resolution policies are also introduced as
a means of handling conflicts among policy actions.

3.1. Policy System Architecture

The policy system is called ACCENT (Advanced
Component Control Enhancing Network Technolo-
gies,www.cs.stir.ac.uk/accent). This supports a policy
language called APPEL(Adaptable and Programmable
Policy Environment and Language,www.cs.stir.ac.uk/
appel). The foundational work on ACCENT for policies
in Internet telephony is described in [43].

The policy system architecture is shown in figure6.
From its beginnings in Internet telephony, the system
has been extended in a number of ways to support
home control: extensions to the policy language, sup-
port of goals, and detection of policy conflicts. Al-
though the internal structure of the policy system is
complex, the user sees the outer dashed box in figure6
as a single entity.

For historical reasons, and because the system
mostly handles policies, a number of components are
labelled ‘policy’. However, apart from regular poli-
cies, the system also deals with goals, prototype poli-
cies (that achieve goals), resolution policies (to handle
conflicts), and policy variables (used in goals and poli-
cies). System elements have the following functions:

managed system:the home system under control.
policy wizard: a user-friendly interface for defining

and editing goals and policies. A web-based wiz-
ard allows policies to be reviewed and edited
using stylised natural language. However, other
wizards have been developed to make policies

www.cs.stir.ac.uk/accent
www.cs.stir.ac.uk/appel
www.cs.stir.ac.uk/appel

Kenneth J. Turner / Flexible Management of Smart Homes 93

Policy System

Static
Analyser

Dynamic
Analyser

Ontology
Server

Policy
Manager

Policy
Interface

Policy
Store

Managed
System

Policy
Wizard

Policy
Selector

Conflict
Manager

Context
Manager

End
User

System
Admin

Conflict
Analyser

Goal Server

Policy Server

Environ
ment

Fig. 6. Policy System Architecture

easier to use by non-technical people. One is
voice-based (VoiceXML [45]), another uses dig-
ital pen and paper (Anoto) to define policies
through simple forms.

context manager: an interface for providing addi-
tional information about the managed system
(e.g. user diary or household configuration).

policy server: the heart of the policy system. The pol-
icy manager is the interface to the policy store,
isolating the rest of the system from the partic-
ular choice of database. It receives new or up-
dated goals and policies from the policy wizard,
and also contextual information from the context
manager. When goals or prototype policies are
modified, the static analyser is notified. This may
result in changes to the generated policies. The
policy manager is also asked to query the policy
store when event triggers are received. These ar-
rive from the managed system and are passed to
the policy selector. This chooses relevant policies
(i.e. those associated with this trigger and whose
conditions are met). If any triggered policies are
derived from goals, the dynamic analyser is noti-
fied. This produces an optimal set of policies that
are submitted to the conflict manager. Conflicts

among policy actions are detected and resolved.
Finally, an optimal and compatible set of actions
is sent to the managed system.

policy store: an XML database that stores informa-
tion about goals and policies.

conflict analyser: a tool to analyse policies offline for
conflict-prone interactions [10].

ontology server: a generic interface to ontology in-
formation about each application domain [9]. A
domain-specific ontology is used by the policy
wizard to define valid goals and policies. An on-
tology is also used by the offline conflict analyser
and by the goal system.

goal server: the heart of the goal system. The static
analyser is invoked when goals or prototype poli-
cies are added, modified or deleted (see sec-
tion 4.3). The dynamic analyser is invoked when
selecting goal-derived policies (see section4.4).

3.2. Regular Policies

Regular policies define how the home should react
to events. Policies are stored internally as XML. As an
example, figure7 shows a policy that turns on the hall
light with a dim level 60% when there is motion there
between 10PM and 8AM.

94 Kenneth J. Turner / Flexible Management of Smart Homes

<policy document
xmlns:xsi=′′http://www.w3.org/2001/XMLSchema-instance′′

xsi:noNamespaceSchemaLocation=
′′http://www.cs.stir.ac.uk/schemas/appel regular home.xsd′′

>

<policy id=′′Activate hall light on night-time movement′′

owner=′′ken@stirling.org′′

applies to=′′@house4.stirling.org′′

enabled=′′true′′ changed=′′2009-12-03T15:12:43′′
>

<preference>should</preference>
<policy rule>
<trigger arg1=′′activity′′ arg2=′′motion′′ arg3=′′hall′′>

device in(arg1,arg2,arg3)
</trigger>
<condition>
<parameter>time</parameter>
<operator>in</operator>
<value>22:00:00..08:00:00</value>

</condition>
<action arg1=′′dim′′ arg2=′′ light′′ arg3=′′hall′′

arg5=′′60′′
>

device out(arg1,arg2,arg3,,arg5)
</action>

</policy rule>
</policy>

</policy document>

Fig. 7. Hall Light Policy in XML

A policy document can contain one or more policies
(among other things), though usually just one policy.
The policy language is defined by an XML schema, so
some ‘red tape’ is required to identify this.

The attributes of a policy include the following:

id: a descriptive identity for the policy.
owner: the person who defined the policy.
applies to: the optional domain to which the policy

applies. By default, policies apply only to their
owners. However, it is possible to specify a do-
main of applicability. This capability is useful
when defining policies for all occupants of a
house or for a group of houses (e.g. all those oper-
ated bystirling.org). It also allows someone other
than the householder to define policies (e.g. a doc-
tor, social worker or warden might define policies
on behalf of the householder).

enabled: whether a policy is enabled .
changed: when the policy was changed (in XML

date-time format).

The content of a policy consists of:

preference: an optional expression of how strongly a
policy should apply. This information is used in
the case of conflicts (e.g. a policy with amust
preference might be given priority).

policy rule: a rule for the policy. Although policies
normally define only one rule, it is possible to
have several rules (e.g. tried in succession until a
relevant one is found).

trigger: an event trigger for the policy. For home poli-
cies, the triggers are usuallydevice in events that
carry the arguments described in section2.1. To
allow proper XML validation of properties, argu-
ments are named symbolically asarg1, etc. and
are given values as attributes (e.g. message type
activity, entity namemotion, entity instancehall
here). In general, several triggers may be com-
bined withandandor.

condition: an optional pre-condition for execution of
the policy. This usually has the form of a param-
eter (timehere), an operator (in here, meaning in
a range), and a value (22:00:00..08:00:00here,
meaning 10PM to 8AM). In general, several con-
ditions may be combined withand, or andnot.

action: the action to be performed by the policy. For
home policies, the actions are usuallydevice out
events that carry the arguments described in sec-
tion 2.1. The fifth argument in this case is the dim
percentage for the hall light (60here). In general,
several actions may be combined withand, or and
else(and in other subtle ways).

The home user could hardly be expected to write
XML policies such as the one just discussed. Although
tangible interfaces as described in section1.3.6are at-
tractive to users, they are quite restrictive in what can
be stated. Policies are potentially more flexible and
expressive, and therefore lend themselves to different
styles of interface. In fact, the system described in this
paper is agnostic regarding the way policies are for-
mulated. The policy system has a general interface for
storing and retrieving policies; these may be defined
using any convenient interface style.

For the work in this paper, ‘wizards’ make it possi-
ble to write policies in a user-friendly manner. Figure8
shows a web-based wizard that allows policies to be
created using stylised natural language. Two important
advantages of a web-based interface are familiarity to
many users and the ability to enable or modify policies
from any location (e.g. the office or when on holiday).
Each element of a policy can be clicked to edit it. Hov-
ering over a policy element brings up a tool tip that
indicates what it is. Certain structural elements can be
combined (e.g. multiple triggers); the ‘· · ·’ symbol can
be clicked to achieve this.

Kenneth J. Turner / Flexible Management of Smart Homes 95

Fig. 8. Hall Light Policy using Web-Based Wizard

As a further example of a policy wizard, the Apple
iPad has been used to create a more sophisticated and
appealing interface [27]. Figure9 shows a new policy
being defined: when there is movement in the hall, then
the front door opens and closes, the hall light is turned
on for security. This wizard supports the notion of per-
spectives: the same policy can be defined or viewed
from the point of view of locations, devices, individ-
ual people, time or groups (of people, such as family
members or home assistants). Users can thus formu-
late policies in ways meaningful to them instead, for
example, of having to think in device-oriented terms.

Although householders can define their own poli-
cies from scratch, a variety of mechanisms make pol-
icy definition easier:

– The policy system comes with a set of predefined
template policies. There is currently a library of
about 100 home policies. These cover common
situations (e.g. what to do during holidays or if
the user falls). The user can then pick a suitable
template and fill in a few details (e.g. the dates of
a holiday or a person to call).

– Householders need not define their own policies
at all. Other people such as relatives, carers or
wardens can define policies on behalf of individ-
uals or groups (e.g. in sheltered housing).

– Other forms of policy wizard can make defining
policies very easy. For example the digital pen
and paper wizard allows policies to be defined
just by ticking boxes on a form.

The policy system allows a wide variety of policies
to be defined for both home automation and telecare.
These policies cover aspects such as appliance con-

Fig. 9. Hall Light Policy using iPad-Based Wizard

trol (e.g. energy usage), communication (e.g. how to
be contacted), comfort (e.g. room temperatures), enter-
tainment (e.g. favourite programmes), modalities (e.g.
use of speech), reminders (e.g. appointments), secu-
rity (e.g. intruder detection), system aspects (e.g. ac-
cess control), and telecare (e.g. medication alerts).

3.3. Resolution Policies

The approach to static (definition time) handling of
policy conflicts is an extension of earlier work on In-
ternet telephony [10]. The approach to dynamic (run
time) handling policy conflicts is also based on the In-
ternet telephony work [40].

Conflicts are almost inevitable with policies. Typ-
ically, conflicts arise because the policies of differ-
ent people are inconsistent. For home automation,
the householder may wish to reduce heating levels at
night, but a family member may wish better heating if
they are not in bed. For telecare, a resident of sheltered
housing may wish to watch TV at any hour, but the
warden may have a house rule that TVs are switched
off after 11PM. Even the policies defined by one indi-
vidual might be inconsistent, especially if the user de-

96 Kenneth J. Turner / Flexible Management of Smart Homes

fines many policies over time. For example, the user
might have a policy of saving energy but also wish the
house to be warm in winter.

Resolution policies are defined to detect and resolve
conflicts among policy actions. These are specialised
policies that a system designer or administrator rather
than a householder is expected to define. A library of
resolution policies has been created for dealing with
likely conflicts, so little work or no may be needed to
handle these.

Resolution policies are normally created by a wizard
rather than writing XML. The structure of resolution
policies resembles that of regular ones. However, the
triggers of a resolution policy are the actions of a reg-
ular policy. The parameters of these actions are bound
to variables in a resolution policy, and are then used in
the conditions and actions of the resolution. A resolu-
tion policy may have regular actions, but may also use
generic actions to choose among conflicting policies.

Conflict detection is activated in the policy server
once triggered policies and their actions have been
identified. At this point, the policy server considers the
set of proposed actions and filters them for conflict. Al-
though actions are considered pairwise, the procedure
guarantees a unique set of non-conflicting actions that
are then sent to the home system for execution.

As an example of a resolution policy, the following
is triggered when two device output actions are pro-
posed. Rather than giving the somewhat indigestible
XML, its representation by the web-based wizard is:
when

told of device output for message1,entity1,instance1,param1
and

told of device output for message2,entity2,instance2,param2
if

message1,entity1,instance1 is equal to
message2,entity2,instance2

and
param1 is not equal to param2

do apply the stronger policy

There may be conflict if the message type, entity
name and entity instance are the same in both cases
(e.g. both actions wish to dim the hall light). If the pa-
rameter values are different then there is indeed con-
flict (e.g. the dim levels are different). In such a case,
the policy with the stronger preference is followed (e.g.
mustis given priority overshould). This is an exam-
ple of a generic action; other generic actions include
choosing the more recent policy or one defined in a
higher-level domain (e.g. all houses operated bystir-
ling.org, as opposed to one particular house). A reso-
lution may also use regular actions. For example, the

householder might be told of a volume level conflict
and be asked to decide what to do.

Note that conflict detection can be quite subtle. Sup-
pose that two policies wish to send different text mes-
sages to the same person. Superficially this is the same
kind of conflict as above, but in fact both actions
should almost certainly allowed (e.g. one is reporting
that the house is too cold, while the other is report-
ing that a favourite TV programme is starting soon).
In practice, what this means is that resolution policies
may need to be written to handle specific situations
(dimming a light, turning an appliance on or off, send-
ing a message, etc.).

For home systems, many conflicts like this are obvi-
ous (e.g. trying to turn heating on and off at the same
time). The RECAP tool (Rigorously Evaluated Con-
flicts Among Policies [10]) has been adapted to stati-
cally detect conflicts among home policies. It also au-
tomatically generates outline resolution policies .

4. Goals

Users can define high-level goals rather than low-
level policies. Predefined prototype policies are in-
troduced as the basic ingredients for achieving goals.
These prototype policies are used both statically (when
goals are defined) and dynamically (when goals have
to be optimised in response to an event).

4.1. Goals

Compared to having to re-program a home system,
policies offer an easier way of modifying how the sys-
tem should react to circumstances. However, policies
are still relatively technical. As such, end users are
more likely to use and adapt policies from the prede-
fined library than to define new policies from scratch.
Goals are hence supported as a more abstract and user-
oriented way of defining how the home should behave.

Policies could, in principle, exist for all the sensors
and actuators in the home. In a fully automated home,
there could easily be 50 managed devices. With multi-
ple occupants of a home and multiple stakeholders in
telecare, this might mean up to 100 policies for how the
home should react. As it happens, technical scalabil-
ity of the system is not an issue (having been run with
hundreds of policies). However it could be challeng-
ing for home users to manage such a large set of poli-
cies. Goals help here because they are higher-level and

Kenneth J. Turner / Flexible Management of Smart Homes 97

therefore much less numerous (perhaps 10 per home).
Each goal can activate many policies.

The approach to goal definition and refinement is an
extension of earlier work on Internet telephony [41].
The OGRE tool (Optimising Goal Refinement Engine)
performs static and dynamic analysis of goals, result-
ing in execution of the most appropriate policies.

A high-level goal is a user objective for the home
such as making it comfortable or complying with med-
ication. It can be easier for users to identify their goals
(e.g. ‘I wish to be secure’) than it is for them define a
comprehensive set of policies (e.g. ‘alert me if I leave
the house and a window is open’, ‘inform a neighbour
if the house is entered while I am on holiday’).

Goals are defined in terms of subgoals, e.g. comfort
might include aspects such as lighting levels, ambient
noise levels, and room temperatures. These subgoals
are called goal measures, and are the means of as-
sessing how well a goal is achieved. Most approaches
to goal refinement take a logic-based approach (see
section1.3.5). However, the author considers this to
be impracticable on account of its technical difficulty
and run-time inefficiency. Instead, the approach here
takes a numerical approach. This allows (sub)goals to
be given appropriate weights, allows goal refinement
to take current circumstances into account, and allows
goals to be achieved as far as possible (and not neces-
sarily fully in some absolute sense).

A goal measure is a formula over relevant system
variables. Some variables are held per user (or entity),
while others are shared across the system. System vari-
ables fall into the following categories:

uncontrolled variables: not managed by the policy
system, typically being environmental factors
(e.g. energy cost, outside temperature).

controlled variables: managed by the policy system
(e.g. monitoring interval, room humidity).

derived variables: defined in terms of (un)controlled
variables (e.g. cost of a dishwasher cycle, disc
storage space for a recording).

Some variables have a natural measurement (e.g.
temperature in degrees, additive intake in grams).
Other variables have to be placed on a numerical scal-
ing that ranks them (e.g. security, chill risk). System
variables depend on the application domain. They are
therefore defined in the domain ontology, and made
available by the ontology server (see section3.1).

Syntactically, a goal is a simplified form of pol-
icy. There is no trigger because goals always apply.

A goal may have a (compound) condition that uses
general information like time of day or an environ-
ment value. Unlike a policy, a goal has a single action
of the formmaximise(measure)or minimise(measure).
Positive goals aim to maximise their associated mea-
sure, while negative goals aim to minimise their mea-
sure. The web-based policy wizard formulates goals in
stylised natural language, with conveniences such as
drop-down boxes for system variables and sliders for
weights.

Suppose the goal is to minimise household distur-
bance at night. This is expressed as follows using the
policy wizard (and internally converted to XML):

if the hour is in 23:00:00..07:00:00
do minimise household disturbance

The measure of household disturbance then needs to
be broken down into factors such as the ambient noise
level and other residents being active at night. These
are uncontrolled system variables that are used to de-
fine the measure of disturbance such as:

1.5×threshold(noise level, 70) + 0.5×night activity

In general, a goal measure is an arbitrary formula
over system variables. In practice, it is usually defined
as a linear weighted sum. In fact the weights are auto-
matically inferred from typical values of the variables,
so defining a goal simply requires specifying the rel-
evant variables. Thethresholdfunction is used when
a factor should be counted only over a certain level
(here, 70 dB). Theideal function sets a planned value
for some factor (e.g. 21◦C for a room temperature).

In both home automation and telecare, there are of-
ten multiple stakeholders with their own goals. As ex-
amples, the following cover goals for home automation
as well as telecare:

– doctor: minimise allergen exposure (e.g. food ad-
ditives, pollen)

– doctor: maximise medication compliance (e.g.
taking the correct dose of medicine on time)

– family: maximise user activity (e.g. avoiding
sleeping too long or watching too much TV)

– householder: maximise household security (e.g.
detecting intruders, keeping doors and windows
locked)

– householder: minimise home discomfort (e.g.
ambient noise level, room temperature)

– social worker: maximise social contact (e.g. go-
ing out, phoning friends)

– warden: minimise household disturbance (e.g.
noise, night-time activity)

98 Kenneth J. Turner / Flexible Management of Smart Homes

There are normally multiple goals. It is therefore
necessary to combine their individual measures into an
overall evaluation function. Goal refinement into poli-
cies then becomes an optimisation problem: choose the
set of prototype policies that maximises the contribu-
tion to the overall evaluation function.

In general the evaluation function is an arbitrary
formula over goal measures, but is usually a linear
weighted sum. The weights in this function determine
the relative priority of different (and possibly conflict-
ing) goals. They therefore have to be determined by the
user. It has been found that goal achievement does not
critically depend on the choice of weights [41]: they
can be varied over a wide range with minimal impact
on policy selection.

4.2. Prototypes

Goals are not achievable directly as they are high-
level. Instead they are realised through sets of policies.
Regular policies can contribute to goals. However, the
need to manage goal-related policies leads to defining
special prototype policies as the building blocks for
achieving goals. These are very similar to regular poli-
cies, but are considered separately by the goal system.
In fact, the policy system normally uses both regular
and prototype policies.

Defining prototype policies is a specialised task that
a system designer or administrator rather a house-
holder is expected to undertake. A library of proto-
type policies has been created to support typical home
goals. Only a subset of the prototype library is likely
to be used to meet a particular set of goals.

Prototypes define an effect that specifies how they
modify one or more system variables, and thus how
they contribute to goal measures. At definition time,
this identifies the relationships between goals and pro-
totypes. At run time, this is used to determine the set
of policies that optimally satisfy the goals. Prototypes
are also allowed to have parameters that are optimised
at run time by the goal system.

The effect of a prototype is an abstraction of the ac-
tions it can perform. More specifically, an effect is de-
fined in the same terms as a goal measure. As an ex-
ample, the following prototype aims to cool the house
naturally. Suppose a temperature reading is received,
the indoor temperature is above 30◦C, and the outdoor
temperature is below 25◦C. The central heating and air
conditioning are then turned off (in case they are al-
ready operating), and the upstairs windows are opened

for one hour. The web-based policy wizard allows this
to be formulated as follows:
when there is a temperature reading
if

the indoor temperature is above 30
and

the outdoor temperature is below 25
do

turn the central heating off
and

turn the air conditioning off
and

open the upstairs windows for one hour
So far, this is a regular policy. As a prototype, it also
needs to define the abstract effect of this policy. An in-
dividual effect names a system variable, an operator,
and an expression (e.g.indoor temperature -= 4). The
basic operators are ‘=’ (to set a variable), ‘+=’ (to in-
crease it) or ‘-=’ (to reduce it). These are the opera-
tors that have been found most useful, though others
would be possible. Sometimes a prototype has an ef-
fect that is exclusive of other prototypes. For example,
it may be undesirable to have multiple prototypes re-
ducing the indoor temperature at the same time. There
are therefore special exclusive forms of the effect op-
erators: ‘+~’ and ‘-~’. During optimisation, only one
such prototype can appear at a time in combination
with other prototypes.

Returning to the prototype above, this has the ef-
fect of cooling the house (indoor temperature -= 4),
reducing home security (windows are now open,
home security -= 3), increasing pollen levels in the
house (windows are now open,home pollen += 1.5),
and improving home air quality (due to exchange with
outside air,air quality += 1). These kinds of effects
require expert judgment, and so are formulated as part
of the predefined prototype library.

4.3. Static Analysis

Static analysis is performed when a goal or proto-
type is created, modified or deleted. Whether a proto-
type contributes to a goal is determined by comparing
the prototype effects with how the goal measure is de-
fined (i.e. which system variables it uses). A prototype
is considered to contribute to a goal if it affects one or
more system variables involved in the goal measure.
A prototype effect may modify an arbitrarily complex
measure. The sense of the effect is therefore not known
until run time, when it may worsen or improve the
evaluation of including this prototype.

For each prototype, the goals it contributes to are
identified. The prototype is then instantiated as a regu-

Kenneth J. Turner / Flexible Management of Smart Homes 99

lar policy, but specially identified by the list of goals it
contributes to. The rest of the policy system treats this
generated policy just like any other. The policy server
therefore applies the policy at run time exactly as nor-
mal. When a prototype is instantiated as a policy, it re-
tains any parameters for later use in dynamic analysis.

4.4. Dynamic Analysis

Dynamic analysis is performed when an event trig-
ger selects policies that derive from goals. These poli-
cies are then sent to the dynamic analyser; any regular
policies that were selected are later combined with the
optimised policies derived from goals.

The dynamic analyser now chooses the subset of
goal-related policies that optimise the overall goal
evaluation function. Because this is evaluated using the
current values of system variables, the most appropri-
ate set of policies can be selected for the current cir-
cumstances. It also means that the selection of policies
can vary as the system evolves over time. This dynamic
approach is much more flexible than the static, logic-
based techniques used in most other approaches. Be-
sides choosing an optimal set of policies, the dynamic
analyser also optimises the parameters of prototypes
(e.g. a monitoring interval or room temperature).

Because of the way the policy system works (choos-
ing only policies relevant to the current trigger and sys-
tem state), goal refinement normally has to optimise
only a modest set of policies. As a result, the optimi-
sation can be performed efficiently (typically in less
than a second). The policy system works only with sig-
nificant events (e.g. someone has entered a room) and
not with very frequent events (e.g. every time someone
moves). The overhead of the goal/policy system is thus
not a problem.

The optimal selection of policies (and parameters)
is now returned by the dynamic analyser to the pol-
icy server. There, they are combined with other poli-
cies that were already selected but did not derive from
goals. The actions of the entire policy set are then anal-
ysed for conflicts (see section3.3). The end result is an
optimal, conflict-free set of actions to be performed by
the home system.

5. Evaluation

This section considers the three levels of the ap-
proach (components, policies, goals) from the points
of view of functionality and usability.

5.1. Deployment

The entire system is Java-based (apart from third-
party operating system drivers) and has been used on
Microsoft Windows XP with Sun JDK 1.6. The system
uses standard mechanisms defined by OSGi version
4.2, as implemented by Knopflerfish version 2.3 (www.
knopflerfish.org). The web interfaces are supported by
JSPs (Java Server Pages) using Tomcat 5.5. Overall,
this has proved to be a stable platform for develop-
ment, though some problems with the web services in-
terface to Knopflerfish (AXIS) had to be corrected.

Scalability of the system has several facets:

– Since each class of device requires its own com-
ponent bundle, the system has to support many
such bundles. This is not an issue for OSGi, which
is quite capable of supporting hundreds of bun-
dles. The only potential issue is run-time memory
requirements, but Knopflerfish has been observed
to run happily with about 50 mbytes.

– The policy system may also have to cope with
many policies. These are stored in an XML
database with an efficient indexing mechanism,
so use of hundreds of policies is not an issue.
At run time, a trigger has to be matched against
these – initially to select those with matching trig-
gers, and then to select those whose conditions
are met. Indexing allows efficient search of the
database. Policy selection and execution (includ-
ing conflict handling) typically takes around a
second. Optimal selection of policies by the goal
system typically adds a further second (measured
in the case of 15 simultaneous goals). A couple of
seconds in processing is barely noticeable to the
user as there are no hard real time constraints.

– Policies are intended for higher-level triggers that
are significant events (e.g. someone has entered a
room) rather than for lower-level events (e.g. the
movement sensor just recorded motion). As a re-
sult, triggers are relatively infrequent (a few per
minute). The load on the system in handling poli-
cies is thus relatively low.

– Where a large number of policies or goals might
be problematic is from the point of view of com-
prehension and management. Although users can
write and adapt policies, this is a fairly small-
scale activity. Most policies are part of the proto-
type library used to support goals. In practice it
has been found that 5 to 10 goals are sufficient
to capture the key requirements of users. These

www.knopflerfish.org
www.knopflerfish.org

100 Kenneth J. Turner / Flexible Management of Smart Homes

goals also tend to be fairly static and thus do not
need much evolution. The only exception is tele-
care where the end user’s condition and abilities
deteriorate over time, and hence need adjustment
to goals (or policies) on a timescale of months.

Following development of the system described in
this paper, it was deployed in two computing labs
where it has been operational for 18 months. The sys-
tem has been used for lab practicals by computing stu-
dents. Three student projects have also used the sys-
tem as the basis for new developments, involving 14
person-months of effort in total. After lab evaluation,
the system was deployed in two homes where it has
been operational for a combined total of 9 months.

The aim of lab deployment was to check correct
functioning of the system. The later deployment in
user homes was to check aspects such as robustness
and the practicality of remote system management.
During home deployment, the developers took respon-
sibility for defining policies and goals in conjunc-
tion with the end users. Future trials will be more
open-ended, including an expectation that users will
assume more responsibility for configuring how the
home should behave.

Management is a potential problem with home in-
stallation as the homes may be remote from the de-
velopers. It is also not reasonable to require frequent
home visits to correct technical problems. The system
has therefore been installed with a broadband connec-
tion. Since the system is web-based, it can be man-
aged remotely without requiring on-site access. Goals,
policies and device services can be defined remotely as
well as locally.

The main issue with remote access is addressing the
home PC over a standard broadband connection. Al-
though some Internet Service Providers can allocate
a fixed IP address to a broadband router, Dynamic
DNS (Domain Name System) is a more practical solu-
tion that allows a dynamically allocated IP address to
be discovered. For security, remote web access to the
home uses HTTPS and standard authentication.

The home system must run unattended, so all sys-
tem components maintain logs that can be interrogated
remotely. Since the system is still experimental, it sup-
plements and does not replace normal functions of the
home (for home automation) or normal care services
(for telecare). This aspect has been strongly empha-
sised to the partner social service organisations. For
now, alerts generated by the system are not sent to a

call centre. As a decision by the end user, alerts can be
sent to nominated individuals (family or friends).

Informed consent from end users has been obtained
through documents describing what is involved, fol-
lowed up by interviews. An important issue has been
clarifying what data is collected by the system, and
taking adequate precautions as to confidentiality. In
fact, the data collected is inherently anonymous and
essentially concerns only the technical operation of the
system (specifically system logs). This is used by the
developers to monitor correct operation of the system,
and is not exported from the home.

Installation in the home is relatively straightforward.
Wireless devices (e.g. Oregon Scientific, Tunstall, Vi-
sonic) are easy to install, though care has to be taken to
do so unobtrusively and without damaging decoration.
The wireless devices used by the system have a typical
battery life of three years. The only wired devices are
mains-connected (e.g. IRTrans, HomePlug, PlugWise,
X10) and so do not require additional wiring. Infrared
control requires on-site work by the installer to learn
the codes used by the householder’s appliances.

Where possible, the home PC is placed in an unob-
trusive place. It requires nearby power, a direct or WiFi
broadband connection, and wireless connection to de-
vices. The householder may not wish to define ser-
vices, policies and goals locally; others can then do this
remotely. In such a case, the PC can be ‘headless’ (i.e.
only the PC box, without keyboard or mouse). This is
still possible (and desirable) even if local definition is
required, as a web-based interface is supported via an
Archos 5 media tablet (using WiFi).

5.2. Component Level

5.2.1. Functionality Evaluation
The component framework is broadly comparable

to that developed by other projects. However, the ap-
proach described in this paper is unusually flexible.
Components are self-describing in that they identify
the triggers, conditions and actions that they handle.
This makes it easy to add (or remove) components
without having to change the rest of the system (no-
tably the policy server). The value of this has been
demonstrated as new components have been added
(e.g. Oregon Scientific and Tux Droid support).

The main technical issue with components has been
occasionally unreliable support for X10. When the
X10 bundle is (re)started it sometimes fails to commu-
nicate with the attached X10 computer module. This is
due to a combined weakness of the Sun Java serial port

Kenneth J. Turner / Flexible Management of Smart Homes 101

driver and the Prolific USB chip driver for the com-
puter module. The X10 bundle therefore has additional
code to monitor for lockup and force its restart. For-
tunately this problem happens only if the X10 bundle
is quickly stopped and restarted, so it is a rare occur-
rence. However, it does point to the need for an im-
proved Java serial port driver (which has not been up-
dated on Microsoft Windows since 1998).

5.2.2. Usability Evaluation
The author considered several approaches to eval-

uating the usability of creating device services with
CRESS: ‘think aloud’ analysis, heuristic evaluation
with use cases, cognitive walkthroughs with user pro-
files and tasks, theoretical analysis of ‘cognitive di-
mensions’ [18], and empirical evaluation using quan-
titative/qualitative analysis. Given that CRESS is in-
tended to be a practical tool, empirical evaluation
seemed the most appropriate method. At this stage,
only a preliminary evaluation has been conducted.

A mixed empirical evaluation has been conducted
to check the following hypothesis: someone with ex-
perience of software development, with 45 minutes of
training on the approach and the CRESSdiagram ed-
itor, can define device services consisting of at most
four activities, with 80% accuracy, in at most 15 min-
utes per service. This hypothesis reflected the author’s
aspiration that the approach be easy to learn and easy
to use (at least, for relatively straightforward tasks).
The numerical measures were based on the author’s
experience of teaching programming to students.

The author recruited five software developers with-
out previous experience of the device services ap-
proach: two female, three male, average age 25 (range
22 to 31). The participants were given written instruc-
tions to follow in their own time, without training or
advice from the author. A copy of the CRESSdiagram
editor (called CHIVE) was provided for local installa-
tion, along with a ‘palette’ of typical symbols used in
constructing device services.

The instructions began with a three-page explana-
tion of the approach and the CRESS editor, includ-
ing three diagrams that the participants were asked to
study and then to reproduce themselves using the dia-
gram editor. 45 minutes was suggested as appropriate
for this phase, though no time limit was imposed.

In the next part of the instructions, the participants
were given five specific tasks to perform. Each task re-
quired a device service diagram to be drawn (some-
what different from the examples), based on a natural
language description. The participants were asked to

record how long tasks took, and to save their diagrams
on completion (or after 15 minutes if a task was not
completed). The participants were then asked to rate
five statements about the approach on a five-point Lik-
ert scale. They were also given the opportunity to pro-
vide a free-form qualitative evaluation of the exercise.

All collected information was submitted by email to
the author. Task times and questionnaire answers were
collected and analysed. The only metric that needed to
be defined was accuracy. The author scored participant
attempts at service diagrams, comparing these against
previously created sample solutions. Each possible el-
ement was given one mark (e.g. number, name, activ-
ity and parameters for a diagram node). This resulted
in a percentage score for the accuracy of each diagram.

The participants spent an average of 34 minutes
(range 10 to 60) on the familiarisation phase. This
compares favourably with the author’s expectation of
45 minutes. The shortest period (10 minutes) may re-
flect this participant’s preference for learning by doing
rather than extended prior study.

The following describes the five services to be
drawn as diagrams, the number of diagram elements
in the author’s solutions, and participant completion
time and accuracy. These exercises were designed to
demonstrate understanding of key features of the ap-
proach (e.g. use of device input/output, device mes-
sages, timers, concurrency, guards and termination).

Exercise 1: when the front door opens, switch on the
porch light: 15 diagram elements, average time
5.6 minutes (range 3 to 10), average accuracy
85% (range 73 to 100).

Exercise 2: when the front door opens between 12AM
and 6AM, say ‘it is night, go back to bed’, and
turn on the stair and bedroom lights: 35 diagram
elements, average time 8.0 minutes (range 4 to
15), average accuracy 82% (range 47 to 91).

Exercise 3: when the front door opens and there is
movement at the front within 20 seconds, report
that the house is occupied: 19 diagram elements,
average time 6.8 minutes (range 3 to 10), average
accuracy 89% (range 68 to 100).

Exercise 4: when the heating is turned on and the
outside temperature is above 20, report an en-
ergy alert: 11 diagram elements, average time 3.8
minutes (range 1 to 5), average accuracy 100.0%
(range 100 to 100).

Exercise 5: when requested to secure the house, si-
multaneously lock the front and back doors: 25 di-
agram elements, average time 4.4 minutes (range
2 to 8), average accuracy 87% (range 71 to 100).

102 Kenneth J. Turner / Flexible Management of Smart Homes

Overall, participants completed tasks in an average
of 5.7 minutes, with an average accuracy of 88% (com-
pared to the author’s hypothesis of 15 minutes and
80%). The author expected exercises 2, 3 and 5 to be
the most challenging. Indeed exercises 2 and 3 took
the participants longer, but exercise 5 (involving paral-
lelism) was completed quickly. Surprisingly, most par-
ticipants chose to use parallelism in exercise 2 (where
the author’s solution was sequential). An extra, antic-
ipated difficulty with exercise 2 involved the use of
speech output and device parameters (which had in-
tentionally not been illustrated in the familiarisation
examples). For the most inaccurate diagram (exercise
2, 47% correctness), the participant commented that
it was unclear how to create compound conditions or
how to use device parameters. As a result, this diagram
stood out as being rather incomplete.

The commonest errors in diagrams were omitting a
node number (which two participants reasonably ar-
gued should be irrelevant or automatically generated),
omitting an activity name (which one participant rea-
sonably argued should be automatically inferred), and
simple syntax errors (such as using ‘/’ rather than ‘\’
before an assignment).

The participants were asked to rate five statements
about the approach on a scale from 1 (strongly dis-
agree) to 5 (strongly agree). These were designed to
elicit qualitative information about the usability and
comprehensibility of the approach for device services.

Statement 1: I was able to create the service dia-
grams without too much difficulty: average score
3.8 (range 3 to 4).

Statement 2: I found it fairly straightforward to trans-
late the English descriptions into diagrams: aver-
age score 3.2 (range 1 to 4).

Statement 3: I found it fairly straightforward to cre-
ate and edit diagrams usingCHIVE: average
score 3.6 (range 3 to 4).

Statement 4: I think the approach would be usable by
people with experience of software development:
average score 4.0 (range 3 to 5).

Statement 5: I think that the approach could be useful
in practice for controlling devices in the home:
average score 3.2 (range 2 to 5).

The rating of statement 1 suggests that the approach
is usable by the planned type of user, though the di-
agram editor needs technical improvements as noted
elsewhere in this section. The author had expected
statement 2 to be least agreed with, since significant

mental effort is required to translate a natural language
requirement into any formal representation (including
programming languages). Like statement 1, the scor-
ing of statement 3 offers encouragement – though im-
provements to the diagram editor are desirable. The
evaluation of statement 4 suggests that the author has
correctly targeted an appropriate class of users. Based
on the accompanying free-form comments, the lack of
a more positive response to statement 5 appears to re-
flect the need for improvements in the diagram editor
rather than doubt over the general approach.

Given the short time that the participants spent in fa-
miliarisation (average 34 minutes), their performance
impressed the author. Although the limited number of
participants does not allow statistically valid conclu-
sions, the results of the preliminary evaluation are en-
couraging and favour the author’s hypothesis.

Note that this was a knowingly demanding evalua-
tion in the following ways:

– The participants were given only a short writ-
ten briefing and not an extended technical manual
or training course. They had no opportunity for
classroom instruction or one-to-one advice before
undertaking the formal evaluation. This was de-
liberate by the author, to see how readily the ap-
proach could be used with minimal instruction.

– Participants were asked to create diagrams with-
out any way of machine-checking for errors. The
full CRESStoolset (as opposed to the diagram ed-
itor) does, of course, check for syntactic and static
semantic correctness. Indeed, all the syntax errors
in the participant diagrams would have been read-
ily identified and corrected in this way. Not pro-
viding the full CRESStoolset was again a deliber-
ate decision by the author, in order to discover the
extent to which the approach exhibited syntactic
idiosyncrasies that would trip up novices.

An unexpected technical problem with the editor
arose because, on first use, the editor may be unable
to save a diagram. Some participants were therefore
unable to save diagrams in native format, and instead
saved them as image files. This turned out to be a small
technical fault that the author has now corrected.

Several participants complained that text editing
was very awkward. This problem was already well-
known to the author (and in fact was mentioned in the
written briefing to participants). The root cause of this
is the RTFEditorKit (and related classes) in the Sun
Java distribution. This has weaknesses that make text
editing rather unpleasant in some circumstances. This

Kenneth J. Turner / Flexible Management of Smart Homes 103

class has not been updated since its original appear-
ance some years ago. The author has sought in vain for
alternative implementations or to correct the problem
himself. Until this issue is addressed, it would not be
wise to deploy the CRESSeditor more widely.

In their free-form comments, the participants also
provided valuable feedback on how the approach could
be improved. In some cases, the observations arose
from the shortness of the written briefing, e.g. it was
not mentioned that the editor indicated page bound-
aries with gray lines, the syntax of assignments and
conditions was only briefly illustrated, and the expla-
nation of device events was inadequate. These points
can readily be addressed through more extended train-
ing notes. Concrete suggestions that the author will
consider include automatic node numbering, automatic
inference of activity names, and use of a toolbox with
typical device service symbols.

5.3. Policy Level

5.3.1. Functionality Evaluation
The policy system (policy server, policy wizard,

conflict analyser, context manager, ontology server)
had previously been developed for use in Internet tele-
phony, where it had been in use for five years and
was therefore stable. For use in the home, the pol-
icy language was extended with features to make it
particularly suitable for this application (e.g. extended
use of time and expressions, generic device support).
The policy language was also specialised for home
applications, with a new home ontology and a new
schema for defining home policies. The major techni-
cal change was to modify the existing code for use as
an OSGi bundle, which also required use of compo-
nents through the OSGi event interface.

The policy system is broadly comparable to that de-
veloped by other projects. However, the approach dif-
fers in a number of important respects. Unlike other
policy systems that are designed for technical appli-
cations (e.g. access control, quality of service, system
management), use in the home requires more human-
oriented support. For example, the policy wizards were
designed for ordinary users and do not require pro-
gramming (unlike most policy approaches). Further-
more, an effort has been made to make the policy wiz-
ards multi-lingual; they currently support policy defi-
nition using English, French and German.

Detection and handling of policy conflicts are ex-
ternalised through separate resolution policies that are
also defined by a policy wizard. Conflict handling is

flexible, and can make use of preferences and domains
(hierarchical authority levels). Although Ponder [11]
has similar capabilities, the ACCENTapproach was de-
signed for ‘softer’ management tasks such as those re-
quired in the home.

Although the policy server is fully automatic (given
appropriate policy definitions), it can sometimes ap-
pear too automated to the user. A basic simulator al-
lows the user to evaluate the consequences of defined
policies. This can be important if policies evolve over
time, leaving ‘dead wood’ behind that interferes with
newer policies. It is planned to extend simulation so
that the consequences of policies can be checked in
a friendlier manner. This will include an explanation
feature reminiscent of expert systems. This will allow
the user to ask for an explanation of why something
happened in the home (e.g. the heating was turned off
due to the requirement for saving energy). It may also
prove desirable to support fuzzy policies that deal with
necessarily inexact information in the real world (e.g.
it will probablybe a cold night, so extra heatingmay
be required). Support is provided for static (definition
time) and dynamic (run time) detection and resolution
of policy conflicts. However, the former is designed for
use by someone technically-minded. It is intended to
develop a less technical approach that will warn users
of conflicts as policies are defined with a wizard.

5.3.2. Usability Evaluation
Of the various policy wizards, the web-based one

is the most developed and was therefore evaluated.
Broadly the same approach was followed as for the de-
vice service editor (section5.2.2), but modified for the
class of participants involved. At this stage, only a pre-
liminary evaluation has been conducted.

A mixed empirical evaluation was conducted to
check the following hypothesis: someone with basic
Internet experience (web browsing), with 60 minutes
of training on the approach and the policy wizard, can
define home control policies consisting of at most four
clauses, with 90% accuracy, in at most 10 minutes per
policy. At this stage, only a preliminary evaluation has
been conducted. This hypothesis reflected the author’s
aspiration that the approach be understandable and us-
able by ordinary users (at least, for relatively straight-
forward tasks). The numerical measures were based on
the author’s assessment of what would be acceptable
and feasible for end users.

The author recruited five ordinary users without pre-
vious experience of the approach and without a profes-
sional computing background: three female, two male,

104 Kenneth J. Turner / Flexible Management of Smart Homes

average age 55 (range 40 to 70, with three retired).
The (former) occupations of participants were personal
assistant, secretary, teacher, manager, salesman. Each
participant was initially given a verbal briefing (sup-
plemented by a written note), explaining the nature of
the evaluation. The author then visited each participant
with a laptop running the policy wizard. This included
a set of policy templates typical of those required by
householders. The author explained and demonstrated
the approach face-to-face. Participants were shown
how to create three sample policies, and were given the
opportunity to define these policies themselves (with
the author on hand to provide advice).

The participants were then given five specific tasks
to perform. Each task required a home control policy
to be defined, based on a natural language description.
The tasks were somewhat different from the earlier ex-
amples, but could be completed by taking a template
policy and filling in the missing parts. This is typical of
how the policy wizard is expected to be used in prac-
tice. It requires the user to search the template library
for an outline policy that could be adapted. Since tem-
plate policies are largely complete, the number of ele-
ments requiring to be filled in is relatively small.

During this second phase, participants were asked to
save what they had if a task had not been completed
within 10 minutes. The author was present during this
phase to record task times and observations, but stated
that he would not be able to offer help; reassurance
was provided to participants that they should not be
concerned if they could not complete a task.

The participants were then asked to answer rate five
statements about the approach on a five-point Likert
scale. They were also given the opportunity to provide
verbal comments on the approach.

Task times and questionnaire answers were anal-
ysed by the author. The only metric that needed to
be defined was accuracy. Participant attempts at poli-
cies were scored and compared against sample solu-
tions previously created by the author. Each possible
element was given one mark (e.g. condition parame-
ter, operator and value for a policy). This resulted in a
percentage score for the accuracy of each policy.

An average of 41 minutes (range 35 to 46) was spent
introducing participants to the approach and allowing
them to become familiar with the policy wizard. The
familiarisation also allowed time for general discus-
sion about the nature of home automation. The partici-
pant familiarisation time compares favourably with the
author’s expectation of 60 minutes.

The following describes the five home control poli-
cies, the number of elements in the author’s solutions
(though only new elements to be created were scored),
and participant completion time and accuracy. These
exercises were designed to demonstrate understanding
of key features of the approach (e.g. use of triggers,
conditions, time and actions).

Exercise 1: when the front door opens, switch on the
porch light: 8 policy elements, average time 1.6
minutes (range 1 to 3), average accuracy 86%
(range 83 to 100).

Exercise 2: when the front door opens between 12AM
and 6AM, say ‘it is night, go back to bed’, and
turn on the stair and bedroom lights: 16 policy
elements, average time 2.8 minutes (range 2 to 5),
average accuracy 95% (range 75 to 100).

Exercise 3: when the medicine dispenser reports the
user is late in taking medication, send a mes-
sage to 456789 to report ‘Medicine has not been
taken’: 8 policy elements, average time 1.8 min-
utes (range 1 to 2), average accuracy 95% (range
75 to 100).

Exercise 4: never switch on the TV between 10PM
and 8AM : 8 policy elements, average time 4.4
minutes (range 2 to 7), average accuracy 90%
(range 50 to 100).

Exercise 5: when it is Wednesday and 9PM, use the
DVD to record channel 3 for 1 hour: 11 policy
elements, average time 5.6 minutes (range 3 to
10), average accuracy 85% (range 83 to 92).

Overall, participants completed tasks in an average
of 3.2 minutes, with an average accuracy of 90% (com-
pared to the author’s hypothesis of 10 minutes and
90%). The author expected exercises 4 and 5 to be the
most challenging, and indeed these took longer.

An unexpected difficulty arose with exercise 4.
When searching for an appropriate template policy,
several participants first chose the template entitled
‘TV recording’ rather than the intended one of ‘No
night time appliance’. This was understandable as ex-
ercise 4 does indeed ask for a policy about TV use.
On realising this was an inappropriate template, most
participants then went back and found the more suit-
able one. However, one participant decide to stick with
the selected template and had extra work to modify it
as required (explaining why this was the longest at-
tempt at this exercise). Underlying this difficulty is a
key point: the templates need to be clearly described so
that users can quickly find an appropriate one. As the

Kenneth J. Turner / Flexible Management of Smart Homes 105

number of templates grows, this could become more
difficult. An obvious solution that is being considered
is a search facility that allows users to find relevant
templates easily.

Exercise 5 exhibited extra challenges in that two ac-
tion parameters had to be inserted (to define the chan-
nel to be recorded and the recording duration). These
were intentionally not described during familiarisa-
tion, as the author wished to see whether participants
had grasped the idea of filling in all aspects of a policy.
For the most part the participants coped well with this.
However, one participant decided to create this policy
from scratch (which is possible, but had not been ex-
plained during familiarisation). As a result, this indi-
vidual reached the 10-minute time limit and had to stop
with an incomplete policy.

A common error in policies was defining what the
participant thought was reasonable and not what the
written exercise called for (e.g. giving a family mem-
ber’s phone number for reporting lateness in medica-
tion rather than the specified number). Although this
was considered to be a partial error when scoring re-
sults, it is acknowledged that the exercises posed arti-
ficial situations. Another common error was in naming
household objects (e.g. TV vs. television, back door vs.
side door). In practice, the policy system is used with
a configuration that reflects the user’s actual house.
This can include synonyms (e.g. main bedroom, mas-
ter bedroom, double bedroom). However as suggested
by one participant, it would be helpful if drop-down
lists (populated from the configuration) could be used
to give better guidance when defining policies. This
improvement was already planned.

The participants were asked to rate five statements
about the approach on a scale from 1 (strongly dis-
agree) to 5 (strongly agree). These were designed to
elicit qualitative information about the usability and
comprehensibility of policies for home control.

Statement 1: I was able to create the policies without
too much difficulty: average score 3.8 (range 2 to
5).

Statement 2: I found it fairly straightforward to trans-
late the English descriptions into policies: aver-
age score 3.6 (range 2 to 5).

Statement 3: I found it fairly straightforward to cre-
ate policies using the wizard: average score 3.8
(range 2 to 5).

Statement 4: I think the approach would be usable
by people with basic Internet experience: average
score 3.8 (range 2 to 5).

Statement 5: I think that the approach could be useful
in practice for controlling devices in the home:
average score 4.0 (range 2 to 5).

In fact, these ratings were more positive than the
author had expected. Until this evaluation, the author
could not be sure if ordinary users could formulate
rules for managing their homes. Given the short time
that the participants spent in familiarisation (average
41 minutes) and their limited computing experience,
their performance impressed the author. Although the
limited number of participants does not allow statisti-
cally valid conclusions, the results of the preliminary
evaluation are encouraging and favour the author’s hy-
pothesis. Three of the participants expressed enthusi-
asm for the approach, and would be keen to use it in
practice. They also expected that they would become
more adventurous with experience, defining more so-
phisticated or more complex rules.

During each evaluation, and formally at the end of
it, the author noted comments and questions by the
participants. A few participants observed that the ter-
minology and style of the interface tended to be tech-
nical, e.g. ‘rule’ would have been preferred instead
of ‘policy’, ‘predefined rule’ instead of ‘template’,
‘back’ instead of ‘cancel’. One participant also re-
quested greater flexibility in entering dates and times,
e.g. ‘Monday’ instead of ‘Day 1’, and ‘10.30’ instead
of ‘10:30’. Another participant commented that editing
policies requires a mental model of going up and down
a tree (e.g. choosing part of a policy to edit, going into
the detail of this, then returning to the main policy).
This was felt to require a more technical way of think-
ing, though it was accepted that a similar kind of be-
haviour is common during web browsing (e.g. clicking
on a link and then returning to the original page).

At the start of each evaluation, the browser font size
was adjusted to a comfortable value for the partici-
pant. An oddity that emerged is that JavaScript alerts
(used to report incorrect parameter formats or ranges)
still appear in a default font size – too small for some
participants. This is a well-known limitation that af-
fects many browsers (including FireFox 3 and Internet
Explorer 8 as used in the evaluations). At best, there
are complex and awkward work-arounds for this that
require alerts to be reported in a completely different
fashion. The larger font selected by several participants
caused a small difficulty in that it was then necessary to
scroll down to the Save/Cancel/Help buttons. Placing
these at the top of pages would ease this problem.

106 Kenneth J. Turner / Flexible Management of Smart Homes

For the most part, the structure of policies was clear
to the participants. Two participants queried whether
the policy names had any significance; in fact they do
not, being merely identifying strings. All participants
gave meaningful names to their policies. A syntactic
idiosyncrasy of the policy wizard emerged during the
evaluations. The operator must be ‘is’ when a single
condition value is required (e.g. ‘the hour is 09:00’).
However when multiple values are permitted for a list
or range, the operator must be ‘is in’ (e.g. ‘the hour is
in 09:00,12:00,17:00’). This caused considerable con-
fusion on exercise 4 for one participant, who could not
see why the formulation of a time condition was be-
ing rejected. This accounted for the single low score
(50%) of all the participant attempts. This deficiency
is an obvious and readily rectified problem.

One participant requested a more visual form of
wizard in which household objects could be selected
by clicking on a floor plan. In fact, just such an inter-
face is currently under development. The same indi-
vidual also wondered if rules might be too rigid, and
might need to be relaxed on some occasions. This is
a fair observation, and is addressed to the extent that
the policy system can always be overridden – either by
temporarily disabling a rule (a simple mouse click on
the main menu) or by manually overriding the actions
of the policy system.

5.4. Goal Level

5.4.1. Functionality Evaluation
The goal system is a relatively new extension to the

policy system. Also originating in control of Internet
telephony, its adaptation for home use was relatively
straightforward. The main work was in defining a new
home ontology.

Compared to other (logic-based) approaches to goal
refinement, the goal system is unusual in treating re-
finement as an optimisation problem. This has a num-
ber of advantages. Goal refinement is inherently dy-
namic and can thus take current circumstances into
account when determining the most appropriate set
of policies. The numerical approach also means that
goals are achieved on a sliding scale, unlike other ap-
proaches that require complete goal fulfilment.

Goals are currently defined using an extended ver-
sion of the web-based policy wizard. Although this
uses stylised natural language, a new project is under
way to create a friendlier way of defining goals. Goal
weights are defined by the user (graphically). It may be
desirable for the goal system to learn weights automat-

ically (perhaps in the style of ACHE [31]). User feed-
back or demonstration could be used to indicate that a
certain goal should be changed in importance.

5.4.2. Usability Evaluation
At the present stage of development, evaluation of

the goal-oriented approach requires a more theoreti-
cal and conceptual analysis than an empirical one. Sig-
nificant questions include whether users do (or can)
think in terms of goals for their household, whether
they can articulate goals in the way described in this
paper, whether the goal wizard is usable by ordinary
householders, and whether users will understand the
connection between goals and how their house reacts
to circumstances (as dictated by the underlying poli-
cies). As the goal system evolves, these aspects will be
the subject of a future usability study.

6. Conclusion

It has been explained that the aim of this work is
to support flexible management of smart homes, both
in home automation and in telecare. As far as possi-
ble, management of the home is made possible with-
out requiring specialised technical knowledge or pro-
gramming skills. This is achieved at three levels: com-
ponents, policies and goals.

At component level, the architecture is essentially
that of OSGi and makes use of the Event Admin ser-
vice to decouple the home components. Flexible han-
dling of device events is made possible through sep-
arate event logic. This also allows external control of
the home through web services.

At policy level, rules can be defined that react to
home events and lead to home actions. Special reso-
lution policies are used to detect and resolve conflicts
among policy actions. Although the underlying policy
representation uses an XML schema, wizards make it
easy for users to define policies using interfaces such
as stylised natural language and digital forms. Other
conveniences include a policy template library.

At goal level, users can define high-level objectives
for what they wish to achieve. These goals are refined
at run time into an optimal set of policies that best
achieve the combination of goals. The basic ingredi-
ents to achieve goals are predefined prototype policies.
These are like regular policies but define their effects
on goal measures. Goal refinement is treated as an opti-
misation problem that uses numeric goal measures and
an overall evaluation function.

Kenneth J. Turner / Flexible Management of Smart Homes 107

An evaluation has been given of functionality and
usability: for the whole system, for visual design of
device services, for creation of policies, and (briefly)
for definition of goals. This gives some evidence that
the approach is dependable and usable, though specific
improvements have also been identified.

In fact the whole approach is much more general
than just for managing smart homes; its use for In-
ternet telephony, sensor networks and wind farms has
been mentioned. The versatility of the system is a
strength, but it also means that it is not specialised
for any one domain. Several of the improvements sug-
gested by the evaluation (e.g. visual interaction via
a house plan) are appropriate for home management
but would not be so appropriate for other applica-
tions. The multilingual approach also requires the use
of stylised natural language; full natural language pro-
cessing would have been a completely different un-
dertaking. As a result, the author has steered a middle
course between generality/reusability on the one hand,
and specificity/inextensibility on the other hand. How-
ever, there is scope for more domain-specific interfaces
in each kind of application.

Future work will focus on more usable interfaces
and more thorough trials. The digital pen and iPad pol-
icy wizards in section3.2are seen as the most promis-
ing interfaces to develop further. The evaluations so far
have been limited in scope and scale. Future trials will
be more open-ended in nature, allowing users to play a
larger role in defining goals and policies. It will be par-
ticularly interesting to see the extent to which users are
willing to evolve these as their requirements change
and their understanding of the system grows.

Acknowledgements

The author thanks his colleagues at the University
of Stirling for their contributions to this work. Stephan
Reiff-Marganiec undertook the original design of the
policy language and policy system. Lynne Blair imple-
mented policy conflict handling. Feng Wang adapted
the policy server for OSGi and telecare, and worked
on several home components. Gavin A. Campbell im-
plemented goal refinement. Claire Maternaghan con-
tributed to the component framework and library.

The author also thanks his colleagues on the MATCH

project (www.match-project.org.uk) for their collabo-
ration on home care technologies. At the University of
Glasgow, Phil Gray and Marilyn McGee-Lennon pro-
vided advice on evaluating usability of the system dis-

cussed in this paper. Tony McBryan provided code for
interfacing to the SHAKE. At the University of Edin-
burgh, Steve Renals and Maria Wolters arranged a li-
cence to use the Cerevoice speech system, and devel-
oped appropriate ‘voices’ for the MATCH project.

The author is grateful to the anonymous referees for
their thoughtful comments on a draft of the paper.

References

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, A. W. P.
Steggels, A. Ward, and A. Hooper. Implementing a sentient
computing system.IEEE Computer, 34(8):50–56, Aug. 2001.

[2] D. Amyot. Goal-oriented requirement language (GRL) andits
applications. InProc. 31st Int. Conf. on Software Engineering.
IEEE Computer Society, Los Alamitos, California, USA, May
2009.

[3] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland,
N. Kartha, C. K. Lie, S. Thatte, P. Yendluri, and A. Yiu, editors.
Web Services Business Process Execution Language. Version
2.0. Organization for The Advancement of Structured Informa-
tion Standards, Billerica, Massachusetts, USA, Apr. 2007.

[4] R. Ballagas, A. Szybalski, and A. Fox. Enabling control-flow
interoperability in ubicomp environments. In S. K. Das and
M. Kumar, editors,Proc. 2nd Conf. on Pervasive Computing
and Communications, pages 241–252. IEEE Computer Soci-
ety, Los Alamitos, California, USA, Mar. 2004.

[5] A. K. Bandara, E. C. Lupu, J. D. Moffett, and A. Russo. A
goal-based approach to policy refinement. InProc. Workshop
on Policies for Distributed Systems and Networks, pages 229–
239. IEEE Computer Society, Los Alamitos, California, USA,
2004.

[6] J. E. Bardram. The Java context awareness framework
– A service infrastructure and programming framework for
context-aware applications. In H. W. Gellersen, R. Want, and
A. Schmidt, editors,Proc. 3rd Int. Conf. on Pervasive Com-
puting, number 3468 in Lecture Notes in Computer Science,
pages 98–115. Springer, Berlin, Germany, May 2004.

[7] A. F. Blackwell and R. Hague. AutoHAN: An architecture
for programming the home. InProc. Symp. on Human Cen-
tric Computing Languages and Environments, pages 150–157.
ACM Press, New York, USA, Sept. 2001.

[8] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. Ea-
syliving: Technologies for intelligent environments. In P. J.
Thomas and H.-W. Gellersen, editors,Proc. 4th Int. Symp. on
Handheld and Ubiquitous Computing, number 1927 in Lecture
Notes in Computer Science, pages 12–29. Springer, Berlin,
Germany, Sept. 2000.

[9] G. A. Campbell and K. J. Turner. Ontologies to support
call control policies. In N. Meghanathan, D. Collange, and
Y. Takasaki, editors,Proc. 3rd Advanced Int. Conf. on Telecom-
munications, pages 5.1–5.6. IEEE Computer Society, Los
Alamitos, California, USA, May 2007.

[10] G. A. Campbell and K. J. Turner. Policy conflict filteringfor
call control. In L. du Bousquet and J.-L. Richier, editors,Proc.
9th Int. Conf. on Feature Interactions in Software and Com-
munications Systems, pages 83–98. IOS Press, Amsterdam,
Netherlands, May 2008.

www.match-project.org.uk

108 Kenneth J. Turner / Flexible Management of Smart Homes

[11] N. Damianou, E. C. Lupu, and M. Sloman. The Ponder pol-
icy specification language. InPolicy Workshop 2001, number
1995 in Lecture Notes in Computer Science. Springer, Berlin,
Germany, Jan. 2001.

[12] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. A CAP-
pella: Programming by demonstration of context-aware appli-
cations. InProc. Conf. on Human Factors in Computing Sys-
tems, pages 33–40. ACM Press, New York, USA, Apr. 2004.

[13] T. Dursun and B.Örencik. Police: A novel policy frame-
work. In Proc. ISCIS 2003, number 2869 in Lecture Notes in
Computer Science, pages 819–827. Springer, Berlin, Germany,
2003.

[14] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, and
S. Izadi. Recombinant computing and the Speakeasy approach.
In I. F. Akyildiz, J. Y.-B. Lin, R. Jain, V. Bharghavan, and A.T.
Campbell, editors,Proc. 8th Int. Conf. on Mobile Computing
and Networking, pages 279–286. ACM Press, New York, USA,
Sept. 2002.

[15] K. Gajos, H. Fox, and H. Shrobe. End user empowerment
in human centered pervasive computing. In F. Mattern and
M. Naghshineh, editors,Proc. 1st Int. Conf. on Pervasive Com-
puting, number 2414 in Lecture Notes in Computer Science,
pages 134–140. Springer, Berlin, Germany, Aug. 2002.

[16] L. A. Gavrilov and P. Heuveline. Aging of population. InP. De-
meny and G. McNicoll, editors,The Encyclopedia of Popula-
tion, pages 27–50. MacMillan, London, UK, Jan. 2003.

[17] P. Gouvas, T. Bouras, and G. Mentzas. An OSGi-based se-
mantic service-oriented device architecture. In R. Meersman,
Z. Tari, and P. Herrero, editors,Proc. On the Move to Meaning-
ful Internet Systems, number 4806 in Lecture Notes in Com-
puter Science, pages 773–782. Springer, Berlin, Germany, Nov.
2007.

[18] T. R. G. Green and M. Petre. Usability analysis of visual
programming environments: A ‘cognitive dimensions’ frame-
work. Visual Languages and Computing, 7(2):131–174, June
1996.

[19] N. D. Griffeth and H. Velthuijsen. Negotiations in telecommu-
nications systems. Technical Report R2401, Bellcore, Morris-
town, New Jersey, USA, June 1992.

[20] A. Harter and A. Hooper. A distributed location system for the
active office.IEEE Network, 8(1):62–70, Jan. 1994.

[21] A. Kameas, I. Mavrommati, and P. Markopoulos. Comput-
ing in tangible: Using artifacts as components of ambient in-
telligence environments. In G. Riva, F. Vatalaro, F. Davide,
and M. Alcañiz, editors,Ambient Intelligence: The Evolution
of Technology, Communication and Cognition, pages 121–142.
IOS Press, Amsterdam, Netherlands, Jan. 2005.

[22] J. Kind, R. Bose, H.-I. Yang, S. Pickles, and A. Helal. Atlas: A
service-oriented sensor platform. InProc. Workshop on Practi-
cal Issues in Building Sensor Network Applications. Institution
of Electrical and Electronic Engineers Press, New York, USA,
Nov. 2006.

[23] M. Knoll, T. Weis, A. Ulbrich, and A. Brändle. Scripting your
home. InProc. Symp. on Human Centric Computing Lan-
guages and Environments, number 3987 in Lecture Notes in
Computer Science, pages 274–288. Springer, Berlin, Germany,
May 2006.

[24] C. Leong, A. R. Ramli, and T. Perumal. A rule-based frame-
work for heterogeneous subsystems management in smart
home environment.IEEE Transactions on Consumer Electron-
ics, 55(3):1208–1213, Aug. 2009.

[25] J. E. López de Vergara, V. A. Villagrá, C. Fadón, J. M.
González, J. A. Lozanoc, and M.Álvarez-Campana. An au-
tonomic approach to offer services in OSGi-based home gate-
ways. Computer Communications, 31(13):3049–3058, Aug.
2008.

[26] B. Margolis and J. L. Sharpe.SOA for The Business Developer.
MC Press, Woodland, Texas, USA, 2007.

[27] C. Maternaghan. The homer home automation system. Tech-
nical Report CSM-187, Department of Computing Science and
Mathematics, University of Stirling, UK, Dec. 2010.

[28] C. Maternaghan and K. J. Turner. A component frame-
work for telecare and home automation. In S. Balandin,
M. Matuszewksi, J. Ott, and G. Chan, editors,Proc. 7th Conf.
on Computer Communications and Networking, pages N4.1–
N4.5. IEEE Computer Society, Los Alamitos, California, USA,
Jan. 2010.

[29] N. Medvidovic and R. N. Taylor. A framework for classi-
fying and comparing architecture description languages. In
Proc. 6th. European Software Engineering Conference/Proc.
5th. Symposium on the Foundations of Software Engineering,
pages 60–76, Zurich, Switzerland, Sept. 1997.

[30] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song, P. Ku-
mar, P. Nguyen, and K. H. Yi. Interplay: A middleware for
seamless device integration and task orchestration in a net-
worked home. In E. Gregori and A. Hurson, editors,Proc.
4th Conf. on Pervasive Computing and Communications, pages
307–316. IEEE Computer Society, Los Alamitos, California,
USA, Mar. 2006.

[31] M. C. Mozer. The neural network house: An environment that
adapts to its inhabitants. In M. Coen, editor,Proc. AAAI Symp.
on Intelligent Environments, pages 110–114. AAAI Press, Mar.
1998.

[32] B. A. Nardi. A Small Matter of Programming: Perspectives on
End User Computing. MIT Press, Boston, USA, 1993.

[33] M. W. Newman, A. Elliott, and T. F. Smith. Providing an in-
tegrated user experience of networked media, devices, and ser-
vices through end-user composition. InProc. Symp. on Hu-
man Centric Computing Languages and Environments, number
5013 in Lecture Notes in Computer Science, pages 213–227.
Springer, Berlin, Germany, May 2008.

[34] P. Rigole, T. Holvoet, and Y. Berbers. Using Jini to integrate
home automation in a distributed software system. In J. Plaice,
P. G. Kropf, P. Schulthess, and J. Slonim, editors,Distributed
Communities on The Web, number 2468 in Lecture Notes in
Computer Science, pages 185–232. Springer, Berlin, Germany,
Apr. 2002.

[35] T. Rodden, A. Crabtree, T. Hemmings, B. K. J. Humble, K.-P.
Åkesson, and P. Hansson. Configuring the ubiquitous home.
In Proc. 6th Int. Conf. on The Design of Cooperative Sys-
tems, pages 215–230. IOS Press, Amsterdam, Netherlands,
May 2004.

[36] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: A middleware infrastruc-
ture for active spaces.Pervasive Computing, 1(4):74–83, Oct.
2001.

[37] J. Rubio-Loyola, J. Serrat, M. Charalambides, P. Flegkas,
G. Pavlou, and A. L. Lafuente. Using linear temporal model
checking for goal-oriented policy refinement frameworks. In
Proc. Workshop on Policies for Distributed Systems and Net-
works, pages 181–190. IEEE Computer Society, Los Alamitos,
California, USA, 2005.

Kenneth J. Turner / Flexible Management of Smart Homes 109

[38] T. Sohn and A. K. Dey. iCAP: An informal tool for interac-
tive prototyping of context-aware applications. InProc. Int.
Conf. on Human Factors in Computing Systems, pages 974–
975. ACM Press, New York, USA, Apr. 2003.

[39] K. N. Truong, E. M. Huang, and G. D. Abowd. CAMP: A
magnetic poetry interface for end-user programming of capture
applications for the home. In N. Davies, E. Mynatt, and I. Siio,
editors,Proc. Ubiquitous Computing, number 3205 in Lecture
Notes in Computer Science, pages 143–160. Springer, Berlin,
Germany, Sept. 2004.

[40] K. J. Turner. Device services for the home. In K. Drira, A. H.
Kacem, and M. Jmaiel, editors,Proc. 10th Int. Conf. on New
Technologies for Distributed Systems, pages 41–48. Institution
of Electrical and Electronic Engineers Press, New York, USA,
May 2010.

[41] K. J. Turner and L. Blair. Policies and conflicts in call control.
Computer Networks, 51(2):496–514, Feb. 2007.

[42] K. J. Turner and G. A. Campbell. Goals and conflicts in
telephony. In M. Nakamura and S. Reiff-Marganiec, editors,
Proc. 10th Int. Conf. on Feature Interactions in Software and

Communications Systems, pages 3–18. IOS Press, Amsterdam,
Netherlands, June 2009.

[43] K. J. Turner, L. S. Docherty, F. Wang, and G. A. Campbell.
Managing home care networks. In R. Bestak, L. George, V. S.
Zaborovsky, and C. Dini, editors,Proc. 9th Int. Conf. on Net-
works, pages 354–359. IEEE Computer Society, Los Alamitos,
California, USA, Mar. 2009.

[44] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray,
P. Perry, and J. Ireland. Policy support for call control.Com-
puter Standards and Interfaces, 28(6):635–649, June 2006.

[45] A. van Lamsweerde and E. Letier. From object orientation
to goal orientation: A paradigm shift for requirements engi-
neering. InProc. Radical Innovations of Software and Sys-
tems Engineering in The Future, number 2941 in Lecture Notes
in Computer Science, pages 153–166, Berlin, Germany, Mar.
2003. Springer.

[46] VoiceXML Forum. Voice eXtensible Markup Language.
VoiceXML Version 2.0. VoiceXML Forum, Piscataway, New
Jersey, USA, Jan. 2003.

