
Kenneth J. Turner. Device Services for The Home. In Khalil Drira, Ahmed Hadj Kacem and
Mohamed Jmaiel, editors, Proc. 10th Int. Conf. on New Technologies for Distributed Systems,
pages 41-48, IEEE Computer Society, Los Alamitos, California, USA, June 2010,
ISBN 978-1-4244-7066-2

Device Services for The Home
Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
Email: kjt@cs.stir.ac.uk

Abstract—An approach is presented for flexible support of de-
vices in smart homes, meeting the needs of both home automation
and telecare. Device services are introduced as a generalisation
of sensor fusion, allowing ready customisation of how sensor
inputs and actuator outputs are mapped to each other. Low-
level management of devices is supported, but integrated with
the high-level use of goals and policies. A range of typical device
services is used to illustrate the approach.

Keywords—Device Management, Home Automation, Policy-
Based Management, Sensor Fusion, Telecare.

I. I NTRODUCTION

The goal of this work is to flexibly support devices in the
home, with applications to home automation and telecare.

A. Motivation

Home automation aims to let the user control a variety of
devices around the home. Telecare aims to provide automated
support to those receiving care at home. Both applications
can be underpinned by a similar infrastructure, although the
specific devices and services needed for each will vary.

The author has demonstrated that goals and policies offer
a convenient way of managing the home [15], [17]. ACCENT

(Advanced Component Control Enhancing Network Technolo-
gies, www.cs.stir.ac.uk/accent) is an approach and toolset for
managing systems through goals and policies. The approach
is intentionally high-level and user-oriented. However, flexible
support is also needed at a lower, device-oriented level.

A common approach is sensor fusion, wherein the infor-
mation from multiple sensors is combined to achieve a more
accurate understanding of what is happening. This is useful
but limited. The aim of the work in this paper has been to
significantly generalise this idea to achieve several objectives:

• It is desirable to offer actuator fusion as well as sensor
fusion. In general, it should be possible to define a flexible
mapping among sensor inputs and actuator outputs.

• It should be easy to define and alter the logic of such a
mapping. Many home systems require specialised knowl-
edge and reprogramming to achieve an effect like this.

• Device control is required both within the home and
(securely) from a remote location.

• Flexible device support should integrate well with goals
and policies.

Collectively these capabilities are referred to as device ser-
vices. The approach takes a service-oriented view of devices
and interlinks their capabilities.

B. Background

1) Home Automation:Device control underlies home au-
tomation. Many standards have evolved in this area. IR (In-
frared, www.irda.org) is used to control many kinds of do-
mestic appliances. KNX (Konnex Association, www.knx.org)
derives from earlier work on EIB (European Installation Bus)
that is widely used in building management. UPnP (Universal
Plug and Play, www.upnp.org) is an extension of the plug-
and-play concept into the world of networked devices. X10
(www.x10europe.com) is widely used to control appliances
using existing mains cabling, plus support for wireless control.

The work in this paper is independent of particular devices
and protocols as this level of operation is essentially a solved
problem. A harder question is how to abstract from device
details for a uniform interface to higher levels of control.

Many commercial packages support home automation,
e.g. Cortexa (www.cortexa.com), Girder (www.promixis.com),
HAI (www.homeauto.com) and HomeSeer (www.homeseer.
com). These packages offer a degree of programmability,
though this is usually at a low level and requires specialised
knowledge of the package and the devices.

The work in this paper does not aim to compete with well-
established commercial solutions. Rather it is focused on new
techniques such as a flexible device framework.

2) Telecare:The world population is gradually ageing, with
the percentage of older people (over 65) expected to rise by
2050 to 19.3% worldwide, and much higher in some countries
[7]. Although the population is ageing, older people are gen-
erally healthier and more active than in previous generations.
It is beneficial for older people to live independently in their
own homes as long as possible. The impracticability and cost
of providing sufficient care homes also makes this a necessity.
This situation has been recognised by governments in all
developed countries, where many national programmes are in
place to promote the use of telecare technologies.

Telecare uses computer-based systems that support delivery
of care to the home. They can give the user advice, identify
situations that may need intervention, reassure family members
and informal carers, and relieve professional carers of low-
level monitoring tasks. Telecare systems should be appropri-
ate (from different stakeholder viewpoints), customisable (for
specific user needs), flexible (offering a range of solutions),
and adaptive (as care needs and conditions evolve).

Unfortunately, most telecare solutions are proprietary and
relatively fixed. Changing functionality often needs specialised
technical knowledge and reprogramming. Telecare standards
are also immature due to the relative newness of the area.

Because telecare is an emerging discipline, this paper has
the potential to have more impact. In particular, its emphasis

on adaptable device control is particularly relevant.
3) Component Frameworks:A variety of frameworks have

been developed to allow flexible combination of components.
Approaches include ADLs (Architecture Description Lan-
guages [12]), OSGi (originally Open Services Gateway initia-
tive, www.osgi.org), SCA (Service Component Architecture,
www.osoa.org), SOA (Service Oriented Architecture [10]) and
SODA (Service-Oriented Device Architecture [6]).

BPEL (Business Process Execution Language [2]) is widely
used for orchestrating web services. A business process (i.e.
composite web service) exchanges messages with partner web
services, considered as service providers. A business process
is itself a web service with respect to its users. Web services
have communication ports where operations are invoked. An
unsuccessful operation gives rise to a fault.

The work in this paper incorporates several aspects of the
component frameworks mentioned above. OSGi is used as the
framework within which device services live. The approach re-
flects the principles of SOA. Although SCA has been evaluated
as a flexible way of interconnecting home components [11],
OSGi remains the main focus. As discussed in section III-B,
the architectural concept of a filter is supported within the
approach.

OSGi was originally conceived for use in a home environ-
ment, so it is hardly surprising that it is suitable for the author’s
purpose. However, several researchers have sought to extend
its applicability. [9] enriches the SODA approach by dealing
with data semantics. [8] focuses on self-configuration of home
devices and personalisation of services offered to the user.

Sensor fusion has been studied as a general approach for
sensor networks, but has found applications in home care. [5]
describes middleware that is particularly designed for usein
assisted living. [13] also address sensor fusion in home care,
but emphasising the role of visual (camera) input.

The work in this paper generalises the sensor fusion idea
significantly. Actuator fusion ought also to be supported, since
it is often desirable to map one actuator output to many. Taking
this idea further, it should also be possible to map between
sensor inputs and actuator outputs in a flexible manner.

4) Other Work: The CRESS approach has affinities with
other work. A CRESS feature is similar to the idea of a
pointcut in aspect-oriented programming, which has been used
for feature design [3]. Device services are also a form of
pervasive/ubiquitous computing (e.g. [1]). However, context
awareness is handled at the policy rather than device level.

C. Structure of The Paper

Section II describes the methodology and notation of the
service-oriented approach called CRESS(Communication Rep-
resentation Employing Systematic Specification). The archi-
tecture and concepts of device services are explained in sec-
tion III. Section IV illustrates the approach through examples
of device services. Finally, section V rounds off the paper.

II. CRESS

CRESS (Communication Representation Employing Sys-
tematic Specification, www.cs.stir.ac.uk/∼kjt/research/cress.

CRESS

Service

Description

Formal

Service

Specification

Executable

Service

Implementation

automated

translation

automated

validation

automated

translation

automated

performance

evaluation

automated

verification

Fig. 1. CRESSDevelopment Methodology

html) is a notation and set of tools for rigorous development
of many kinds of services. For the work reported here, CRESS

has been adapted to create device services.

A. CRESSMethodology

The general CRESSdevelopment methodology is illustrated
in Fig. 1. The designer describes services using a graphical
notation that is general-purpose and easy to learn. Although
several graphical editors can be used, the preferred one
is CHIVE (CRESS Home-grown Interactive Visual Editor,
www.cs.stir.ac.uk/∼kjt/software/graph/chive.html). This is well
integrated with CRESS, e.g. the user can directly validate,
verify and implement services from within the editor.

Having created a service description, the designer can then
formally validate this. This is achieved through automatic
translation to a formal specification, e.g. using the LOTOS

standard (Language Of Temporal Ordering Specification).
Formal validation is then performed using tests expressed in
the MUSTARD language (Multiple-Use Scenario Testing And
Refusal Description [14]). Validation is pragmatic – it canbe
performed quickly even if the state space of the specification
is very large. For more precise analysis, the designer can also
formally verify properties of a service. Again, this requires
automatic generation of a formal specification. Verification is
performed using properties expressed in the CLOVE language
(CRESSLanguage-Oriented Verification Environment [16]).

Once confidence has been built in the service design,
its implementation and deployment are automated. For web
services, for example, a complex set of implementation files
is generated. These make use of the standards for BPEL
(Business Process Execution Language) and WSDL (Web
Services Description Language). Although services are rig-
orously developed, issues such as performance may arise in
an implementation. The designer is therefore able to evaluate
the functional and non-functional correctness of a service
implementation. This re-uses thesameMUSTARD tests as were
checked against the specification. The MINT tool (MUSTARD

Interpreter) is also able to perform load tests and to check for
consistency of performance.

BPEL is an effective way of orchestrating lower-level device
services. However BPEL requires highly specialised knowl-
edge, even using commercial design tools such as ActiveVOS
Designer. CRESS creates code automatically for BPEL, but
more importantly the high-level CRESS notation also allows
automatic formal verification and validation.

B. CRESSNotation

A CRESS diagram is a directed graph. In BPEL terms,
this defines an executable business process. Someone who
knows BPEL will find the CRESS representation familiar,
but more compact. Numbered nodes (ellipses) contain actions
(activities) for device services. Arcs between nodes may be
labelled with expression guards or event guards. Expression
guards decide which path is followed, dependent on some
condition. Event guards introduce behaviour conditional on
an event. Assignments may be used at the end of nodes and
arcs in the form /variable<− expression.

CRESS names are in simple or hierarchic form. Opera-
tion names have the formatservice.port.operation. Simple
variables have the types defined by XSD (XML Schema
Definition, e.g.Double d, String s). Record types defined in
braces{...} are accessed in the formstructure.field.

Device services make extensive use of the predefinedDevice
type. This is a structured type with fieldsinstance, periodand
params. These are mapped to/from the event fields described
in section III-A. As a convenient short-hand, fields of this type
can be accessed using ‘‘’ (e.g.‘paramsmeansdevice.params,
while ‘instance3meansdevice3.instance).

The subset of CRESS activities appearing in this paper is
explained below; CRESSsupports much more than is described
here. As usual, ‘?’ means optional.

Deviceoperation output input?This is a syntactic conve-
nience for calling a device service in the home (see
Invoke), but also hides internal details such as device
service naming.

Empty No action. TheEmpty label is usually omitted, leav-
ing just an empty ellipse. This kind of node is useful for
joining other nodes and for introducing local handlers.

Finish Used to indicate the end of a template diagram.
Fork Used to introduce parallel paths; further forks may be

nested to any depth.
Invoke operation output input?Used for external services

outside the home. An asynchronous (one-way) invocation
sends only an output. A synchronous (two-way) invoca-
tion exchanges output and input with a partner service.

Join condition? EachFork is matched byJoin. By default,
only one of the parallel paths leading toJoin need termi-
nate successfully. However, an explicit join condition may
be defined over termination of parallel activities. This
uses the node numbers of immediately prior activities.
For example, 1&&(2||3) means that node 1 and either
node 2 or 3 must terminate successfully. In turn, this
means that their prior activities must also succeed.

Receiveoperation inputTypically used at the start of a busi-
ness process to receive a request for service. An initial
Receivecreates a new instance of the process, though a
later Receivemay be used for input from other services.
An initial Receiveis usually matched by aReply for the
same operation.

Reply operation outputTypically used at the end of a busi-
ness process to provide some output.

Start Used to indicate the first node of a diagram. It is
normally omitted unless the initial node is ambiguous.

Throw fault Reports a fault to be caught by a handler.

The kinds of handlers used in this paper deal with events
and faults. A handler can be global, scoped (applying to all
nodes following an empty one), or local to aDevice/Invoke.

Catch fault This introduces a separate flow for dealing with
the specified fault.

Timeout period This introduces a separate flow for dealing
with an alarm event.

Besides activity nodes, CRESS diagrams can also contain
rule boxes (rounded rectangles) and connector labels (e.g.
Start, Finish). Among other things, a rule box defines types,
declarations, use of other diagrams, and macros. Thus:

Uses String reply / SPEECH
Surgery <- ′′01786-832-210′′

declares a variablereply of type String, and use of the
SPEECH diagram.Surgery is a macro that expands to a
telephone number. (Rule boxes also support a range of other
capabilities not illustrated in this paper.)

III. D EVICE SERVICES

The device services architecture is presented. Events are
sent between ‘devices’ of all kinds (including services) and
a policy server that handles high-level control of the home.
An event transformer is used for flexible mapping of device
events using graphically-defined logic.

A. Device Service Architecture

The basic architecture followed in this work is that of
OSGi. Components are therefore OSGi bundles that typically
register services (e.g. for control of devices). This service-
oriented approach makes it easy for components to use other
components in a loosely coupled way. Services could, in
principle, call each other directly. However, they are designed
to communicate via an event bus (mediated by the OSGi Event
Admin service). This further decouples components, allowing
them to register only for events they are interested in.

The high-level device architecture is shown in Fig. 2. The
home components are generically called ‘devices’, though
this covers a variety of possibilities. Devices that provide
inputs would conventionally be called sensors (e.g. medicine
dispensers, motion detectors, video cameras). Devices that act
on outputs would conventionally be called actuators (e.g. door
locks, gas shut-off valves, video recorders). In a domestic
setting, the term ‘appliance’ would also be used (e.g. CD
player, microwave oven, TV). More significantly, ‘devices’can
also be software services (e.g. data logging, text messaging,
weather forecasting).

Two components are distinguished in the architecture: the
event transformer (low-level services that transform device
events, see section III-B) and the policy server (high-level
services that manage the home).

A variety of components have been developed for use in
the home. Categories of home devices include appliances (e.g.
DVD, fan, light, TV), communications facilities (e.g. email,
messaging, speech input/output), environment monitoring(e.g.
humidity, temperature, weather), multimodal interfaces (e.g.

ActuatorSensor

Policy
Server

Event
Transformer

Service

Event In Event Out Event In/Out

Event In/OutEvent In/Out

Fig. 2. Device Architecture

audio, gesture, touch, video), security (e.g. alarms, flood-
ing, RFID), and telecare (e.g. bed-wetting, epileptic seizure,
medicine dispenser).

Device input/output events (device in, device out) have a
uniform structure with the following fields:

message type:the type of device input or output (e.g.active,
off, reading).

entity name: the entity associated with a device message (e.g.
door, message, movement). Some message types imply a
unique entity (e.g.system logger), so the entity name can
be omitted.

entity instance: the particular instance of an entity associated
with a device message (e.g.front, hall, outside). Some
entities may have only a single instance (e.g.central
heating system), so the entity instance can be omitted.
Entity instances may also identify groups (e.g.all doors,
upstairs windows).

message period:the interval or time to which an event ap-
plies. For example, a temperature input would have period
15 if it was measured during the last 15 minutes, or21:30
if it was measured at 9.30PM. For output, the same values
could start a video recording in 15 minutes or at 9.30PM.
The period is normally omitted, meaning ‘now’.

parameter values: the device parameters. For example, this
might give the reading for a temperature input, or the
dimming percentage for a light output. The parameter
values may be omitted if not relevant to the event.

B. Event Transformation

In normal operation, devices cause input events that trigger
the policy server. This results in actions that are sent to
devices via output events. A home automation policy might
be: ‘when the front door is opened, turn on hall and lounge
lights, play the user’s favourite music, and activate climate
control’. A telecare policy might be: ‘when the user is late in
taking medicine, speak a reminder in the relevant room; if the
medicine is still not taken, alert a neighbour by text message’.

However, flexibility is desirable in handling device events.
The event transformer can filter and modify events before
they are seen by the policy server. Policies can be written
to use the raw device events or the ones created by the event
transformer. Possible patterns for event transformation include
the following. Further combinations are possible, e.g. a service
that reacts to an input event by generating both input and
output events, or a service that ignores certain input events.

in → in: input events are mapped to input events. This is
normally called sensor fusion, the idea being that raw

input from several sensors can be combined to produce
higher-level, synthetic triggers.

out → out: output events are mapped to output events. This
should be termed actuator fusion, the idea being that
synthetic actions can be mapped to several raw actuator
outputs.

in → out: input events are mapped to output events. This
supports low-level, device-oriented services (as opposed
to the high-level, user-oriented services supported by
goals and policies).

out → in: output events are mapped to input events. This lets
policy actions trigger execution of further policies.

Event transformations could be coded in a conventional
programming language. However, this would negate the goal
of making it possible to change system functionality without
detailed technical knowledge and programming. Event logicis
therefore described using the CRESS design notation. This is
automatically translated into BPEL for execution by a system
that may be in the home or outside it.

Home components have an OSGi event interface, whereas
BPEL processes have a web service interface. The event trans-
former therefore maps bidirectionally between OSGi events
and web service calls. As a more precise description of the
device architecture, Fig. 3 shows the relationship among the
various components. Here, the event logic consists of BPEL
processes created from CRESSdiagrams. Note that events are
normally handled by the event logic exclusively or not at all.
With this usage, the event transformer sees only certain events
and acts as a filter on these. However, it is sometimes useful
for the event logic to process events that are also acted on
by the policy server or a sensor/actuator service. This allows
event logic to act as a monitor, and to supplement normal
event processing with further events.

Actuator/
Service

Sensor/
Service

Policy
Server

Event
Transformer

Event
Out

Event
In/OutEvent

Logic

Web
In/Out

Event
In

Fig. 3. Event Handling

The approach also offers a beneficial capability: device
events can be handled by any external web service. This
allows remote entities (e.g. a mobile phone or a PC) to control
the home, and to receive information about significant home
events (e.g. a low-temperature alarm or an intruder alert).
Exposing home control to external entities is, of course, a
risk so the web interface is secured.

IV. SAMPLE DEVICE SERVICES

To illustrate the approach, a variety of small examples are
given of device services. These have mainly been chosen to
show some capabilities of the notation.

A. CRESSDiagrams

CRESSsupports three kinds of diagrams: configuration, root
and feature. A configuration diagram is used to describe the

Fig. 4. Door Root Diagram

services provided in some domain. For device services, this
defines service characteristics. A configuration might state:

Deploys -b2 -r . / DOOR DOOR ALL DOOR LIGHT
HOME home urn:Home localhost:8181/axis
DOOR door urn:Door localhost:8080/active-bpel

The first line gives deployment parameters (‘-b2’ means BPEL
version 2, ‘-r .’ means repeat all behaviour on termination)
and the door services to be deployed. This is followed by
one line per service that gives the service name, namespace
prefix, namespace URI, and deployment URL. In this case,
the HOME service (i.e. OSGi) is deployed on the local host
at port 8181, while the DOOR service (including its features)
is deployed on the local host at port 8080. In fact, services can
be deployed on any system. In particular, device services can
exist remotely and need not live on the OSGi home gateway.

CRESS supports the concept of feature that is common in
other areas such as telephony. A root diagram describes the
basic capability of a service. For device services, each class
of device has its own root diagram. An example for doors is
given in Fig. 4.

In this example, the rule box declares variabledeviceof type
Device. All device services make use of adevicevariable to
convey device details, notably the instance (e.g. ‘front’ door,
‘hall’ light) and parameter values (e.g. heating temperature,
spoken input). Features modify the root diagram, so they share
the same variables. If one feature modifiesdevice(e.g. to cause
output to a different actuator), this must not interfere with other
features. For this reason, it is normal for features to use their
own copies ofdevice.

The root behaviour of a door essentially lists all the input
and output events associated with doors; at root level, no
action is taken on these. Root diagrams for other devices
(e.g. fall detection, speech) are similar in style. CRESS has
two kinds of feature diagrams (spliced, template) that can be
used to add functionality to a root diagram. A spliced feature
defines a diagram that is effectively cut-and-pasted into the
root diagram. This kind of feature tends not to be modular and
so is not normally used. For device services, template diagrams
are more appropriate. These add modular functionality to a

Fig. 5. Fall Detection Feature

root diagram by specifying triggering activities (i.e. events).
In a template feature, the triggering activity has the same

form as in the root diagram (e.g. ‘Receive door.in.open’).
A node number ending with ‘+’ means that the feature is
appended to the corresponding root node. (Note that root and
feature node numbers need not match.) A template feature
has a unique trigger node, and must have a unique final node
(conventionally shown asFinish). All the remaining diagrams
in this section are template features.

Feature interaction is a well-known problem in telephony,
whereby different features can unexpectedly interfere with
each other [4]. Care must therefore be taken over features for
device services to ensure that this does not happen. For this
reason, features typically define their own variables. Feature
interaction is possible (and can be detected) in CRESS. Apart
from a re-design to avoid interactions, CRESS also supports
feature priorities to ensure predictable results.

B. Fall Detection Feature (in→ in)

Fig. 5 is a fall detection feature that adds to the basic FALL
service. This performs sensor fusion by combining a raw fall
signal with a movement signal to determine if a fall requires
attention. Node 1 is a trigger for a fall detector message
(reception of an ‘active’ fall input event). After a 30 second
delay (node 2), an empty node introduces a receive activity
(node 3) and an event handler. If a movement detector reports
activity (node 3), it is assumed that the user has not had a
serious fall. If there is no movement within the following 30
seconds, a fall alert event is generated (node 4). ADevice
activity like this communicates with the OSGi home platform).
Both alternatives lead to the finish of the feature. (BPEL
restrictions require the generated code to be more complex
than the diagram suggests.)

C. Door Locking Feature (out→ out)

Fig. 6 is a feature that adds to the basic DOOR service,
allowing all doors to be locked with a single policy action. This
is an example of actuator fusion. If the target door is ‘all’,the

devicevalue is copied todevice1anddevice2(arc from node 1
to 2). Thelock operation leads to parallel branches (node 2);
parallelism avoids fixing on which door is locked first. One
branch sets thedevice1instance to ‘front’ and requests that this
door be locked, the other operates ondevice2for the ‘back’
door. Both parallel branches then join (node 5). The condition
on this (3&&4) means that both nodes 3 and 4 must terminate
successfully for the feature to complete successfully. Although
not shown, aCatch fault handler could be introduced to deal
with one or bothlock operations failing.

Fig. 6. Door Locking Feature

D. Frost Warning Feature (out→ in)

Fig. 7 is a feature that can trigger other policies when the
heating is turned off in frosty conditions. If the heating is
turned off (node 1), the outside temperature is read using
device1as specification andstatusas the result (node 2). A
read operation returns the most recent setting for a device
(here, the outside temperature). In general a device statusis a
string, so it is converted to a numeric temperature in Celsius
(assignment in node 2). If the temperature is 0 or less, a
frost alert is generated. This is an input event to the policy
server that can trigger further policies (e.g. to monitor the
house plumbing for freezing conditions). This is an exampleof
handling an action within the event logic as well as in another
component: turning off heating is performed as normal by an
actuator, but the event logic also reacts to this event.

E. Entry Light Feature (in→ out)

Fig. 8 is a feature that switches on an entry light when a door
is opened at night. In fact, this (and the next example) could
be defined as policies. If a service is low-level and device-
oriented, it is more natural to specify it as a device feature.

Fig. 7. Frost Warning Feature

If a service is high-level and user-oriented, it is preferable to
specify it as a user-defined policy. The feature is triggeredby
a door being opened (node 1). An empty node then introduces
a choice of paths. If the hour is between 10PM and 8AM,
device3 is set to device. A further empty node introduces
checks on which door was opened: if the front door, then
the hall light is turned on; if the back door, then the kitchen
light is turned on; otherwise no action is taken.

Fig. 8. Entry Light Feature

F. Lounge Environment Feature (in→ out)

Fig. 9 is a feature that, when someone opens the door to
the lounge, turns on the light if necessary and sets the heating.
Again, this is a feature that could be specified as a policy but
would be less natural in that form. When a door is opened
(node 1), it is checked whether it is the lounge door. If so,
two parallel branches are followed (node 2); the parallelism
here allows independent behaviour. The lounge light level is

read intostatus, and this is converted from a string into a
numeric level (node 3). If this is less than 10% of normal,
the lounge light is turned on (node 4). In parallel, the lounge
heating is set for 21 Celsius (node 5). Because of the check
on light level, node 4 may not be executed. As a result, only
the second parallel path is required to succeed (as expressed
by the join condition ‘5’ in node 6).

Fig. 9. Lounge Environment Feature

G. Speech-Based Help Feature (in→ out)

Fig. 10 is a more complex feature that provides speech-
based advice to the user (Bob in this case). This feature
relies on speech recognition and synthesis software from
the University of Edinburgh. Because this feature supportsa
dialogue and uses an external web service, it could not be
defined as a policy.

When the user makes a verbal request (node 1), it is checked
if this is for the weather or for help; any other reply means
the user is asked to repeat the request (node 9). For weather,
an external weather forecast is requested for today’s outlook
(node 2). An Invoke like this causes interaction with an
external service (and not the home platform). The outlook is
then spoken to the user (node 3). For help, the user is queried
as to the person who should be alerted (node 5). If a friend, a
text message is sent asking for a call to Bob (node 6). If the
doctor, a synthesised message is sent to the surgery reporting
that Bob is ill (node 7). If the user does not specify either
person, a general alarm input event is raised for action by the
policy system (node 8).

H. Realising Services

As noted in section II-A, device services are automatically
verified, validated and realised. These aspects can be explained

only briefly here.
Verification is achieved by automatically translating CRESS

diagrams into LOTOSand then model-checking desirable prop-
erties. Normally this would require highly specialised knowl-
edge of logics and tools (µ-calculus and CADP for LOTOS).
Instead, CRESSmakes verification accessible through the high-
level approach of CLOVE. This can verify a wide range of
properties: freedom from deadlock, livelock and starvation;
safety and liveness; and service-specific characteristics. As a
small example, the following property must hold for Fig. 10:if
a weather forecast is requested, this must eventually be spoken
(a string here). As a global property, this response must be
obtained in all behaviours of the service. Strings are preceded
by ‘′’, and any value of a type by ‘?’.

property(Weather Response,
response(global,

signal(speech.in.text,′weather),
signal(speech.out.text,?string)))

Verification can be time-consuming and impracticable for
complex services. Formal validation using MUSTARD is also
offered as a practical alternative. The following small example
is an acceptance test that checks the service in Fig. 9. Initially
a door open event is sent for the lounge. One parallel branch
reads a request for the lounge light level, sends back a response
of 8.3%, and expects a request for the lounge light to be turned
on. The other parallel branch expects a request for the lounge
heating to be set to 21 degrees.

test(Lounge Entry Low Light,
succeed(

send(door.in.open, Device(′lounge,?Text,?Text)),
interleave(

sequence(
read(light.in.read, Device(′lounge,?Text,?Text)),
send(light.in.read, ′8.3)),
read(light.out.on, Device(′lounge,?Text,?Text))),

read(heating.out.on, Device(′lounge,?Text,′21)))))
As well as being automatically formalised, CRESSdiagrams

are automatically compiled into code (BPEL, WSDL and
deployment descriptors for device services). These are auto-
matically deployed for execution by the ActiveBPEL engine
(www.activebpel.org). MUSTARD scenarios are then used to
evaluate implementation performance under load conditions.

V. CONCLUSION

It has been argued that the concept of sensor fusion should
be extended for flexible support of device inputs and outputs.
This permits actuator fusion, and also allows low-level, device-
oriented services to be defined. These complement the high-
level, user-oriented services supported by goals and policies.
Although a feature or policy might sometimes be used for the
same purpose, in practice the choice of which is usually clear.

OSGi input/output events are mapped to/from BPEL calls.
A separate BPEL engine reacts to these events, providing
device services to the home platform. Device services can map
input/output events in all combinations.

Event logic is described using CRESS. This provides a
simple graphical notation that is automatically formalised,
validated, verified and implemented. This supports flexible
management of smart homes for both home automation and

Fig. 10. Speech-Based Help Feature

telecare. Detailed technical knowledge and programming skills
are not required to create device services. Although it is
intended that end users (and their carers) define policies,
creating device services is more appropriate for technicians
who manage devices in the home.

The entire home system described in this paper has been
evaluated in a lab setting, and also in a typical home. The
response time of a device service is around one second.
This offers adequate performance since only significant device
events are considered (e.g. open, shut) and not frequent device
signals (e.g. every movement). An extended trial of the whole
approach is about to start in homes operated by Midlothian
Council in Scotland.

ACKNOWLEDGEMENTS

The author thanks Claire Maternaghan (University of Stir-
ling) who wrote a number of the device bundles. The work
was conducted in the context of the MATCH project (Mo-
bilising Advanced Technologies for Care at Home, www.
match-project.org.uk, supported by the Scottish Funding
Council under grant HR04016).

REFERENCES

[1] I. Amundsonet al.. OASiS: A service-oriented middleware for perva-
sive ambient-aware sensor networks. Technical Report ISIS-06-0706,
Vanderbilt University, 2006.

[2] A. Arkin et al., editors. Web Services Business Process Execution
Language. Version 2.0. OASIS, Billerica, Apr. 2007.

[3] L. Blair and J. Pang. Feature interactions – Life beyond traditional
telephony. In M. H. Calder and E. H. Magill, editors,Proc. 6th Feature
Interactions in Telecommunications and Software Systems, pp. 83–93.
IOS Press, May 2000.

[4] E. J. Cameronet al.. A feature-interaction benchmark for IN and beyond.
IEEE Comms. Magazine, 31(8):18–23, Aug. 1993.

[5] L. Coyle et al.. Sensor fusion-based middleware for assisted living. In
C. Nugent and J. C. Augusto, editors,Proc. 4th Int. Conf. on Smart
Homes and Health Telematics, pp. 281–288. IOS Press, Jun. 2006.

[6] S. de Deugdet al.. SODA: Service-oriented device architecture.
Pervasive Computing, 5(3):94–98, 2006.

[7] L. A. Gavrilov and P. Heuveline. Aging of population. In P. Demeny
and G. McNicoll, editors,The Encyclopedia of Population, pp. 27–50.
MacMillan, Jan. 2003.

[8] P. Gouvas, T. Bouras, and G. Mentzas. An OSGi-based semantic service-
oriented device architecture. In R. Meersman, Z. Tari, and P. Herrero,
editors,Proc. On the Move to Meaningful Internet Systems, LNCS 4806,
pp. 773–782. Springer, Nov. 2007.

[9] J. E. López de Vergaraet al.. An autonomic approach to offer services in
OSGi-based home gateways.Computer Communications, 31(13):3049–
3058, Aug. 2008.

[10] B. Margolis and J. L. Sharpe.SOA for The Business Developer. MC
Press, 2007.

[11] C. Maternaghan and K. J. Turner. A component framework for telecare
and home automation. InProc. 7th Consumer Communications and
Networking Conference. IEEE Press, Jan. 2010.

[12] N. Medvidovic and R. N. Taylor. A framework for classifying and
comparing architecture description languages. InProc. 6th. European
Software Engineering Conference/Proc. 5th. Symp. on the Foundations
of Software Engineering, pp. 60–76, Zurich, Sep. 1997.

[13] A. M. Tabar, A. Keshavarz, and H. Aghajan. Smart home care
network using sensor fusion and distributed vision-based reasoning. In
R. Cucchiara, J. K. Aggarwal, and A. Prati, editors,Proc. 4th Int.
Workshop on Video Surveillance and Sensor Networks, pp. 145–154.
ACM Press, Oct. 2006.

[14] K. J. Turner. Validating feature-based specifications. Software Practice
and Experience, 36(10):999–1027, Aug. 2006.

[15] K. J. Turner and G. A. Campbell. Goals for telecare networks.
In A. Obaid, editor, Proc. 9th Int. Conf. on New Technologies for
Distributed Systems, pp. 270–275. Montreal, Jul. 2009.

[16] K. J. Turner and K. L. L. Tan. A rigorous methodology for composing
services. In M. Alpuente, B. Cook, and C. Joubert, editors,Proc. Formal
Methods for Industrial Critical Systems 14, LNCS 5825, pp. 165–180.
Springer, Nov. 2009.

[17] F. Wang and K. J. Turner. Towards personalised home caresystems. In
I. Maglogiannis, editor,Proc. 1st Int. Conf. on Pervasive Technologies
related to Assistive Environments, pp. L2.1–L2.7, ACM Press, Jul. 2008.

