Kenneth J. Turner. Device Services for The Home. In Khalil Drira, Ahmed Hadj Kacem and
Mohamed Jmaiel, editors, Proc. 10th Int. Conf. on New Technologies for Distributed Systems,
pages 41-48, IEEE Computer Society, Los Alamitos, California, USA, June 2010,

ISBN 978-1-4244-7066-2

Device Services for The Home

Kenneth J. Turner
Computing Science and Mathematics, University of StirliSgirling FK9 4LA, UK
Email: kjt@cs.stir.ac.uk

Abstract—An approach is presented for flexible support of de- B. Background

vices in smart homes, meeting the needs of both home automatti 1) Home AutomationDevice control underlies home au-

and telecare. Device services are introduced as a generali®n . dards h ived in thi
of sensor fusion, allowing ready customisation of how senso fomation. Many standards have evolved in this area. IR (In-

inputs and actuator outputs are mapped to each other. Low- frared, www.irda.org) is used to control many kinds of do-
level management of devices is supported, but integrated ti mestic appliances. KNX (Konnex Association, www.knx.org)
the high-level use of goals and policies. A range of typicalavice derives from earlier work on EIB (European Installation Bus
services is used to Hllustrate the approach. . . that is widely used in building management. UPnP (Universal
Keywords—Device Management, Home Automation, Policy- Pl d P . tensi f th |
Based Management, Sensor Fusion, Telecare. ug an ay, WWW.upnp.org) IS an exiension o . € plug-
and-play concept into the world of networked devices. X10
(www.x10europe.com) is widely used to control appliances
using existing mains cabling, plus support for wirelesstamn
The work in this paper is independent of particular devices

The goal of this work is to flexibly support devices in théjmd protocols as this Ieve] of .operation Is essentially ae;bll
home, with applications to home automation and telecare. problem. A harder question is how to abstract from device
' details for a uniform interface to higher levels of control.

Many commercial packages support home automation,
e.g. Cortexa (www.cortexa.com), Girder (Www.promixisrgo
HAI (www.homeauto.com) and HomeSeer (www.homeseer.
Home automation aims to let the user control a variety @bm). These packages offer a degree of programmability,
devices around the home. Telecare aims to provide automatieolugh this is usually at a low level and requires specidlise
support to those receiving care at home. Both applicatioksowledge of the package and the devices.
can be underpinned by a similar infrastructure, although th The work in this paper does not aim to compete with well-
specific devices and services needed for each will vary. established commercial solutions. Rather it is focusedewm n
The author has demonstrated that goals and policies offeehniques such as a flexible device framework.
a convenient way of managing the home [15], [L7EQENT 2) Telecare:The world population is gradually ageing, with
(Advanced Component Control Enhancing Network Technolghe percentage of older people (over 65) expected to rise by
gies, www.cs.stir.ac.uk/accent) is an approach and tbédse 2050 to 19.3% worldwide, and much higher in some countries
managing systems through goals and policies. The appro&th Although the population is ageing, older people are-gen
is intentionally high-level and user-oriented. Howevesxible erally healthier and more active than in previous genematio
support is also needed at a lower, device-oriented level. It is beneficial for older people to live independently inithe
A common approach is sensor fusion, wherein the infopWn homes as |0ng as pOSSible. The ImpraCtlcablllty and cost
mation from multiple sensors is combined to achieve a mopé Providing sufficient care homes also makes this a negessit
accurate understanding of what is happening. This is useflis situation has been recognised by governments in all
but limited. The aim of the work in this paper has been t@eveloped countries, where many national programmes are in

significantly generalise this idea to achieve several dbjes: Place to promote the use of telecare technologies. _
Telecare uses computer-based systems that support gieliver

o It IS desirable to qﬁer actuator fus!on as we_II as Sensgk care to the home. They can give the user advice, identify
fu5|on.. In general, it shou]d be possible to define a flexiblg, | tions that may need intervention, reassure family begm
:T]aﬁp"}g r;mong sensdorf.mputsdan:j act#atlor _OUtF;UtS' hand informal carers, and relieve professional carers of low

» lt:shou I\/(T easa/ to define and alter the o_g'l(_: odskuc l&vel monitoring tasks. Telecare systems should be appropr
mdapplnga any nome s_ystems rhe_quwe spef?a Isl'ek EPV&'e (from different stakeholder viewpoints), customisafibr
€dge and reprogramming to ac Ieve an € ect like this pecific user needs), flexible (offering a range of solulions

« Device control is required bo_th within the home an nd adaptive (as care needs and conditions evolve).
(secyrely) fer a remote Iocatpn. , Unfortunately, most telecare solutions are proprietarg an

¢ FIeX|bIe_ d_eV|ce support should integrate well with goalFelatively fixed. Changing functionality often needs spésed
and policies. technical knowledge and reprogramming. Telecare stasdard

Collectively these capabilities are referred to as deviee sare also immature due to the relative newness of the area.
vices. The approach takes a service-oriented view of dsvice Because telecare is an emerging discipline, this paper has
and interlinks their capabilities. the potential to have more impact. In particular, its emjzhas

I. INTRODUCTION

A. Motivation

on adaptable device control is particularly relevant. CRESS

3) Component FrameworksA variety of frameworks have automated 1 Dssirx;;n
been developed to allow flexible combination of components. translation
Approaches include ADLs (Architecture Description Lan- automated automated
guages [12]), OSGi (originally Open Services Gatewayaniti validation translation
tive, www.osgi.org), SCA (Service Component Architecture / automated
www.0s0a.org), SOA (Service Oriented Architecture [10j)la Fonal |1 Verfication Executable
SODA (Service-Oriented Device Architecture [6]). SDS;EL'Z:OH Imps;r::étion
BPEL (Business Process Execution Language [2]) is widely
used for orchestrating web services. A business process (i. pae‘;tgr"r:;fge

composite web service) exchanges messages with partner web
services, considered as service providers. A businessesssoq:ig. 1

is itself a web service with respect to its users. Web sesvice)) _
have communication ports where operations are invoked. AHNI) is @ notation and set of tools for rigorous development

unsuccessful operation gives rise to a fault. of many kinds of services. For th_e work r.eported hereg€s

The work in this paper incorporates several aspects of @S been adapted to create device services.
component frameworks mentioned above. OSGi is used as the
framework within which device services live. The approash rA. CREssMethodology
flects the principles of SOA. Although SCA has been evaluatedThe general @essdevelopment methodology is illustrated
as a flexible way of interconnecting home components [1if Fig. 1. The designer describes services using a graphical
OSGi remains the main focus. As discussed in section lll-Botation that is general-purpose and easy to learn. Althoug
the architectural concept of a filter is supported within thseveral graphical editors can be used, the preferred one
approach. is CHIVE (CRESS Home-grown Interactive Visual Editor,

OSGi was originally conceived for use in a home envirorwww.cs.stir.ac.ukfkjt/software/graph/chive.html). This is well
ment, so it is hardly surprising that it is suitable for théteu’'s integrated with @Ess e.g. the user can directly validate,
purpose. However, several researchers have sought todextesrify and implement services from within the editor.
its applicability. [9] enriches the SODA approach by deglin Having created a service description, the designer can then
with data semantics. [8] focuses on self-configuration oho formally validate this. This is achieved through automatic
devices and personalisation of services offered to the usertranslation to a formal specification, e.g. using thetbs

Sensor fusion has been studied as a general approachstandard (Language Of Temporal Ordering Specification).
sensor networks, but has found applications in home caje. flormal validation is then performed using tests expressed i
describes middleware that is particularly designed for inse the MusTARD language (Multiple-Use Scenario Testing And
assisted living. [13] also address sensor fusion in home, caRefusal Description [14]). Validation is pragmatic — it che
but emphasising the role of visual (camera) input. performed quickly even if the state space of the specifinatio

The work in this paper generalises the sensor fusion idmavery large. For more precise analysis, the designer cmn all
significantly. Actuator fusion ought also to be supporténces formally verify properties of a service. Again, this reqsr
it is often desirable to map one actuator output to many.fiakiautomatic generation of a formal specification. Verificatie
this idea further, it should also be possible to map betweperformed using properties expressed in theo@e language
sensor inputs and actuator outputs in a flexible manner. (CrRessLanguage-Oriented Verification Environment [16]).

4) Other Work: The CRESsS approach has affinities with Once confidence has been built in the service design,
other work. A QRess feature is similar to the idea of aits implementation and deployment are automated. For web
pointcut in aspect-oriented programming, which has beed usservices, for example, a complex set of implementation files
for feature design [3]. Device services are also a form &f generated. These make use of the standards for BPEL
pervasive/ubiquitous computing (e.g. [1]). However, extt (Business Process Execution Language) and WSDL (Web
awareness is handled at the policy rather than device levelServices Description Language). Although services are rig

orously developed, issues such as performance may arise in
C. Structure of The Paper an implementation. The designer is therefore able to etalua
the functional and non-functional correctness of a service

Se_ction_ Il describes the methodology and _notgtion of ﬂ?l%plementation. This re-uses tkameM USTARD tests as were
service-ariented approach calleg€ss(Communication Rep- checked against the specification. Thenw tool (MUSTARD

resentation Employing Systematic Specification). The ifard?nterpreter) is also able to perform load tests and to check f
tecture and concepts of device services are explained in Sg

) . X 8nsistency of performance.
tion Ill. Section IV illustrates the approach through exdmsp BPEL is an effective way of orchestrating lower-level devic
of device services. Finally, section V rounds off the paper.

services. However BPEL requires highly specialised knowl-
edge, even using commercial design tools such as ActiveVOS
Il. CRESS Designer. @ESS creates code automatically for BPEL, but
CREss (Communication Representation Employing Sysnore importantly the high-level €=ss notation also allows
tematic Specification, www.cs.stir.ac.ukjt/research/cress. automatic formal verification and validation.

evaluation
CrEssDevelopment Methodology

B. CressNotation Throw fault Reports a fault to be caught by a handler.

A CRrEss diagram is a directed graph. In BPEL terms, The kinds of handlers used in this paper deal Wi'_[h events
this defines an executable business process. Someone @R faults. A handler can be global, scoped (applying to all
knows BPEL will find the GESS representation familiar, N°des following an empty one), or local toleviceInvoke.
but more compact. Numbered nodes (ellipses) contain actidgatch fault This introduces a separate flow for dealing with
(activities) for device services. Arcs between nodes may be the specified fault.
labelled with expression guards or event guards. Expnessibmeout period This introduces a separate flow for dealing
guards decide which path is followed, dependent on some with an alarm event.
condition. Event guards introduce behaviour conditional o Besides activity nodes, KESs diagrams can also contain
an event. Assignments may be used at the end of nodes and boxes (rounded rectangles) and connector labels (e.g.
arcs in the form hariable <— expression Start, Finish). Among other things, a rule box defines types,

CRESS names are in simple or hierarchic form. Operadeclarations, use of other diagrams, and macros. Thus:
tion names have the formagerviceport.operation Simple Uses String reply / SPEECH
variables have the types defined by XSD (XML Schema Surgery <-""01786-832-210"

Definition, e.g.Double d, String s). Record types defined in declares a variableeply of type String, and use of the
braces{...} are accessed in the forstructure.field SPEECH diagramSurgery is a macro that expands to a

Device services make extensive use of the predefirexice telephone number. (Rule boxes also support a range of other
type. This is a structured type with fielifsstance periodand capabilities not illustrated in this paper.)
params These are mapped to/from the event fields described
in section IllI-A. As a convenient short-hand, fields of thipé I1l. DEVICE SERVICES
can be accessed usirig {e.g.' paramsmeanglevice.params
while ‘ instance3meansdevice3.instange

The subset of €ESs activities appearing in this paper is
explained below; @esssupports much more than is describei
here. As usual, ‘?’ means optional.

The device services architecture is presented. Events are
sent between ‘devices’ of all kinds (including servicesyl an
policy server that handles high-level control of the home.
n event transformer is used for flexible mapping of device

_ _ _ o . events using graphically-defined logic.
Device operation output input?This is a syntactic conve-

nience for calling a device service in the home (see . .)
Invoke), but also hides internal details such as devidd Device Service Architecture
service naming. The basic architecture followed in this work is that of
Empty No action. TheEmpty label is usually omitted, leav- OSGi. Components are therefore OSGi bundles that typically
ing just an empty ellipse. This kind of node is useful foregister services (e.g. for control of devices). This sEFvi
joining other nodes and for introducing local handlers. oriented approach makes it easy for components to use other
Finish Used to indicate the end of a template diagram. components in a loosely coupled way. Services could, in
Fork Used to introduce parallel paths; further forks may berinciple, call each other directly. However, they are destd
nested to any depth. to communicate via an event bus (mediated by the OSGi Event
Invoke operation output inputUsed for external servicesAdmin service). This further decouples components, atgwi
outside the home. An asynchronous (one-way) invocatitinem to register only for events they are interested in.
sends only an output. A synchronous (two-way) invoca- The high-level device architecture is shown in Fig. 2. The
tion exchanges output and input with a partner servicehome components are generically called ‘devices’, though
Join condition? Each Fork is matched byJoin. By default, this covers a variety of possibilities. Devices that previd
only one of the parallel paths leadingdoin need termi- inputs would conventionally be called sensors (e.g. medici
nate successfully. However, an explicit join condition maglispensers, motion detectors, video cameras). Devicésitha
be defined over termination of parallel activities. Thisn outputs would conventionally be called actuators (eogrd
uses the node numbers of immediately prior activitiekocks, gas shut-off valves, video recorders). In a domestic
For example, 1&&(2/3) means that node 1 and eithesetting, the term ‘appliance’ would also be used (e.g. CD
node 2 or 3 must terminate successfully. In turn, thiglayer, microwave oven, TV). More significantly, ‘devicesin
means that their prior activities must also succeed. also be software services (e.g. data logging, text mesgagin
Receiveoperation inputTypically used at the start of a busi-weather forecasting).
ness process to receive a request for service. An initialTwo components are distinguished in the architecture: the
Receivecreates a new instance of the process, thougtewent transformer (low-level services that transform devi
later Receivemay be used for input from other servicesevents, see section IlI-B) and the policy server (highileve
An initial Receiveis usually matched by Reply for the services that manage the home).

same operation. A variety of components have been developed for use in
Reply operation outputTypically used at the end of a busi-the home. Categories of home devices include applianogs (e.
ness process to provide some output. DVD, fan, light, TV), communications facilities (e.g. emai

Start Used to indicate the first node of a diagram. It isnessaging, speech input/output), environment monitqergy
normally omitted unless the initial node is ambiguous. humidity, temperature, weather), multimodal interfacesy(

Event
Transformer

Policy
Server

input from several sensors can be combined to produce
higher-level, synthetic triggers.

Event‘tln/Out Eventj‘m/om out — out: output events are mapped to output events. This
x ‘ S\ should be termed actuator fusion, the idea being that
Event | In EventJ Out Event gIn/Out synthetic actions can be mapped to several raw actuator
_ outputs.
Sensor] Actuator] Service -| in — out: input events are mapped to output events. This
I I I supports low-level, device-oriented services (as opposed

to the high-level, user-oriented services supported by
goals and policies).
audio, gesture, touch, video), security (e.g. alarms, floo@ut — in: output events are mapped to input events. This lets
ing, RFID), and telecare (e.g. bed-wetting, epileptic etz policy actions trigger execution of further policies.
medicine dispenser). Event transformations could be coded in a conventional
Device input/output eventsi¢vice in, device ouf) have a programming language. However, this would negate the goal
uniform structure with the following fields: of making it possible to change system functionality withou
message type:the type of device input or output (e.active detailed technical knowledge and programming. Event legic
off, reading. therefore described using theREssdesign notation. This is
entity name: the entity associated with a device message (e@/tomatically translated into BPEL for execution by a syste

door, messagemovement Some message types imply d4hat may be in the home or outside it. _
unique entity (e.gsystem loggdr so the entity name can Home components have an OSGi event interface, whereas

be omitted. BPEL processes have a web service interface. The event trans
entity instance: the particular instance of an entity associatefprmer therefore maps bidirectionally between OSGi events
with a device message (e.font, hall, outsidg. Some and web service calls. As a more precise description of the
entities may have only a single instance (ecgntral device architecture, Fig. 3 shows the relationship amoeg th
heating systejn so the entity instance can be omittegvarious components. Here, the event logic consists of BPEL

Entity instances may also identify groups (eafj.doors ~ Processes created fronrR€ssdiagrams. Note that events are
upstairs windowps normally handled by the event logic exclusively or not at all

message period:the interval or time to which an event ap-With this usage, the event transformer sees only certaintgve
plies. For example, a temperature input would have perié‘(']‘d acts as a filter on these. However, it is sometimes useful
15if it was measured during the last 15 minutes2ar30 for the event logic to process events that are also acted on

if it was measured at 9.30PM. For output, the same valulY the po_Iicy server or a sen;or/actuator service. Thiswallo
could start a video recording in 15 minutes or at 9.30PNgvent logic to act as a monitor, and to supplement normal

The period is normally omitted, meaning ‘now’. event processing with further events.
parameter values: the device parameters. For example, this

Fig. 2. Device Architecture

) . . . Web Event
might give the reading for a temperature input, or the Event |moutl Event [moutf policy
dimming percentage for a light output. The parameter Logic |~ |Transformer | Server

values may be omitted if not relevant to the event.

B. Event Transformation

A
Event Event
In Out ¥y

Sensor/
Service

Actuator/
Service

In normal operation, devices cause input events that trigge
the policy server. This results in actions that are sent 3. Event Handling

devices via output events. A home automation policy might '.I'he approach also offers a beneficial capability: device

be: ‘when the front door is opened, tumn on hall and loungg,ents can be handled by any external web service. This
lights, play the user's favourite music, and activate Ctenay o s remote entities (e.g. a mobile phone or a PC) to contro

control’. A telecare policy might be: ‘when the user is late iy, home, and to receive information about significant home
vents (e.g. a low-temperature alarm or an intruder alert).

taking medicine, speak a reminder in the relevant room;ef th,

medicine is still not taken, alert a neighbour by text meesagExposing home control to external entities is, of course, a
However, flexibility is desirable in handling device eventsisk so the web interface is secured.

The event transformer can filter and modify events before

they are seen by the policy server. Policies can be written IV. SAMPLE DEVICE SERVICES

to use the raw device events or the ones created by the evemnto jllustrate the approach, a Variety of small examp|es are

transformer. Possible patterns for event transformaticlude given of device services. These have main|y been chosen to

the following. Further combinations are possible, e.g.réise show some capabilities of the notation.

that reacts to an input event by generating both input and

output events, or a service that ignores certain input eventA. CREssDiagrams

in — in: input events are mapped to input events. This is CRESSsupports three kinds of diagrams: configuration, root
normally called sensor fusion, the idea being that raand feature. A configuration diagram is used to describe the

~" 1+ Receive fall.in.active
device

Uses Uses |
Device device | FALL)

" 1Receive door.in.open
device

Receive door.in.shu

Timeout 30

" 3Receive door.outlock
device

~~ 3 Receive movement.in.active™ 4 Device alertin fall >

device A device)
S A —~ oV

N

Finish

4 Receive door.outunlock
device

) . Fig. 5. Fall Detection Feature
Fig. 4. Door Root Diagram

. . . . , , root diagram by specifying triggering activities (i.e. at®.
services provided in some domain. For device services, thi n a template feature, the triggering activity has the same
defines service characteristics. A configuration mightestat form as in the root diagram (e.gReceive door.in.open’)

a(e)ﬁ)\}l(l)zysh-bz L D|_(|30R DOIOR_IhAth_glOS?/R_'UGHT A node number ending with ‘+' means that the feature is
ome urn:Home localhost: axis :
DOOR door urn-Door localhost-8080/active-bpel appended to the corresponding root node. (Note that root and
o . s Eature node numbers need not match.) A template feature
The first line gives deployment parameters (‘-b2’ means BP
3as a unique trigger node, and must have a unique final node

version 2, ‘-r .’ means repeat all behaviour on terminatio . L - :
i o onventionally shown aBinish). All the remaining diagrams
and the door services to be deployed. This is followed . .
IN_this section are template features.

one line per service that gives the service name, r]amesDaCl‘::‘eature interaction is a well-known problem in telephony.

prefix, namespace URI, and deployment URL. In this case : . .
. . o hereby different features can unexpectedly interfereh wit
the HOME service (i.e. OSGi) is deployed on the local hos
. S - each other [4]. Care must therefore be taken over features fo
at port 8181, while the DOOR service (including its featiires, "~ : . .
. : device services to ensure that this does not happen. For this
is deployed on the local host at port 8080. In fact, serviegs c . . : :
. . . reason, features typically define their own variables. teat

be deployed on any system. In particular, device servicas ca L ' .

; . . interaction is possible (and can be detected) REES Apart
exist remotely and need not live on the OSGi home gatew

. ?()m a re-design to avoid interactionsREss also supports
CRESS supports the concept of feature that is common 9 R PP

other areas such as telephony. A root diagram describes %%ture priorities to ensure predictable results.

basic capability of a service. For device services, eackscla
of device has its own root diagram. An example for doors B. Fall Detection Feature (in- in)

given in Fig. 4. Fig. 5 is a fall detection feature that adds to the basic FALL
In this example, the rule box declares variatitwiceof type service. This performs sensor fusion by combining a raw fall
Device All device services make use ofdevicevariable o sjgnal with a movement signal to determine if a fall requires
convey device details, notably the instance (e.g. ‘fromod attention. Node 1 is a trigger for a fall detector message
‘hall’ light) and parameter values (e.g. heating tempew®atu reception of an ‘active’ fall input event). After a 30 secon
spoken input). Features modify the root diagram, so theseshgelay (node 2), an empty node introduces a receive activity
the same variables. If one feature modifiesice(e.g. to cause (node 3) and an event handler. If a movement detector reports
output to a different actuator), this must not interferdwather activity (node 3), it is assumed that the user has not had a
features. For this reason, it is normal for features to us& thserious fall. If there is no movement within the following 30
own copies ofdevice seconds, a fall alert event is generated (node 4DeVice
The root behaviour of a door essentially lists all the inpctivity like this communicates with the OSGi home platfyrm
and output events associated with doors; at root level, Beth alternatives lead to the finish of the feature. (BPEL

action is taken on these. Root diagrams for other devicgsstrictions require the generated code to be more complex
(e.g. fall detection, speech) are similar in stylRESshas than the diagram suggests.)

two kinds of feature diagrams (spliced, template) that can b

used to add functionality to a root diagram. A spliced featur _

defines a diagram that is effectively cut-and-pasted in@ tfy- DOOr Locking Feature (out: out)

root diagram. This kind of feature tends not to be modular andFig. 6 is a feature that adds to the basic DOOR service,
so is not normally used. For device services, template diagr allowing all doors to be locked with a single policy actiomig

are more appropriate. These add modular functionality toiaan example of actuator fusion. If the target door is ‘dlie

heating outoR™

devicevalue is copied taevicelanddevice2(arc from node 1 Uses

to 2). Thelock operation leads to parallel branches (node 2); Device device1 device ~_~
parallelism avoids fixing on which door is locked first. One g‘;ﬂﬁfiﬁs —
branch sets thdevicelinstance to ‘front’ and requests that this /HEATING) | device1 <- device

door be locked, the other operates device2for the ‘back’ - I instance1 <- "outside"
door. Both parallel branches then join (node 5). The cooliti
on this (3&&4) means that both nodes 3 and 4 must terminate

successfully for the feature to complete successfullyh@ugh device1 status
not shown, eCatch fault handler could be introduced to deal

with one or bothlock operations failing.

temp <=0 Else

1 Receive door.out.l
device

@ Finish
Fig. 7. Frost Warning Feature

‘instance = "all" \

| devicel <- device Else If a service is high-level and user-oriented, it is prefézab
| device2 <- device specify it as a user-defined policy. The feature is triggdred

a door being opened (node 1). An empty node then introduces
v

a choice of paths. If the hour is between 10PM and 8AM,
I"instance1 <-"front" | “instance2 <- "back"

Uses
Device device1, device2
/DOOR

~ 3 Device alertin frost
device

device3is set todevice A further empty node introduces
checks on which door was opened: if the front door, then
the hall light is turned on; if the back door, then the kitchen
light is turned on; otherwise no action is taken.

~Z Device door.outlock
device2

_ 5Join 3834)

3 Device door outlock ™
device1

Uses

~"1+ Receive door.in.open™
device /

Device device3
/DOOR

Finish
Fig. 6. Door Locking Feature hour >= 22 || g \
hour <= 08 Else
. . | device3 <- devi

D. Frost Warning Feature (outs in) evice evice

Fig. 7 is a feature that can trigger other policies when the
heating is turned off in frosty conditions. If the heating is
turned off (node 1), the outside temperature is read using “instance = "front" ‘instm

devicelas specification andtatusas the result (node 2). A
read operation returns the most recent setting for a device
(he_re, the .Ol_,ItSide temperature). In g.eneral a device_ s'tatms. ~3 Device lightouton
string, so it is converted to a numeric temperature in Cslsiu device3 .
(assignment in node 2). If the temperature is O or less, a —_—

frost alert is generated. This is an input event to the policy \) Finish
server that can trigger further policies (e.g. to monitoe th

house plumbing for freezing conditions). This is an exangple Fig. 8. Entry Light Feature

handling an action within the event logic as well as in anothe

component: turning off heating is performed as normal by gn Lounge Environment Feature (in out)
actuator, but the event logic also reacts to this event.

/"instance3 <- "hall" | instance3 <- "kitchen"

Fig. 9 is a feature that, when someone opens the door to
]) the lounge, turns on the light if necessary and sets therfgati
E. Entry Light Feature (in— out) Again, this is a feature that could be specified as a policy but
Fig. 8 is a feature that switches on an entry light when a doaould be less natural in that form. When a door is opened
is opened at night. In fact, this (and the next example) couldode 1), it is checked whether it is the lounge door. If so,
be defined as policies. If a service is low-level and devicéwo parallel branches are followed (node 2); the parafielis
oriented, it is more natural to specify it as a device featurkere allows independent behaviour. The lounge light lesel i

read intostatus and this is converted from a string into aonly briefly here.

numericlevel (node 3). If this is less than 10% of normal, Verification is achieved by automatically translating&€ss
the lounge light is turned on (node 4). In parallel, the loaingliagrams into lIoTosand then model-checking desirable prop-
heating is set for 21 Celsius (node 5). Because of the chemities. Normally this would require highly specialised Wiho
on light level, node 4 may not be executed. As a result, onbgdge of logics and toolsutcalculus and CADP for ©T0S).

the second parallel path is required to succeed (as expredsstead, REssmakes verification accessible through the high-
by the join condition ‘5’ in node 6). level approach of Cove. This can verify a wide range of
properties: freedom from deadlock, livelock and starvagtio
safety and liveness; and service-specific characterigissa
small example, the following property must hold for Fig. if0:

a weather forecast is requested, this must eventually deespo
/DOOR (a string here). As a global property, this response must be
\ ° - obtained in all behaviours of the service. Strings are glede

- by ’, and any value of a type by ‘?".

‘instance = "lounge" Else property(Weather_Response,

response(global,

signal(speech.in.text,'weather),
signal(speech.out.text,?string)))

Verification can be time-consuming and impracticable for
complex services. Formal validation usinguBITARD is also
offered as a practical alternative. The following smallrapée
is an acceptance test that checks the service in Fig. Sallpiti
a door open event is sent for the lounge. One parallel branch
reads a request for the lounge light level, sends back amespo
of 8.3%, and expects a request for the lounge light to be turne
on. The other parallel branch expects a request for the Bung
heating to be set to 21 degrees.

test(Lounge_Entry_Low_ Light,

Uses
Device device4
String status

1+ Receive door.in.open™\
device

Double level

| device4 <- device

device status I paramst <- 21
N /IeveI <- number(status

5 Device heating.out.on
device4

succeed(
send(door.in.open, Device('lounge,?Text,?Text)),
interleave(
Finish sequence(
read(light.in.read, Device('lounge,?Text,?Text)),
Fig. 9. Lounge Environment Feature send(light.in.read, '8.3)),
read(light.out.on, Device(’lounge,?Text, ?Text))),
G. Speech-Based Help Feature {in out) read (heating.out.on, Device('lounge,?Text,'21)))))

Fig. 10 is a more complex feature that provides SpeeCh_As well as being automatically formalisedREssdiagrams

based advice to the user (Bob in this case). This feat e automatically_compiled int_o code_(BPEL, WSDL and
relies on speech recognition and synthesis software fr&ﬁp!oyment descriptors for de_wce serwces): These are- aut
the University of Edinburgh. Because this feature suppaa:rtsm""t'c"’\IIy deployed for execution by the ActiveBPEL engine

dialogue and uses an external web service, it could not %ww.actl_vebpel.org)._ MSTARD scenarios are then ”Se_“?' to
defined as a policy. evaluate implementation performance under load condition

When the user makes a verbal request (node 1), it is checked
if this is for the weather or for help; any other reply means V. CONCLUSION
the user is asked to repeat the request (node 9). For weathel has been argued that the concept of sensor fusion should
an external weather forecast is requested for today’s okitlobe extended for flexible support of device inputs and outputs
(node 2). Anlinvoke like this causes interaction with anThis permits actuator fusion, and also allows low-leveVice-
external service (and not the home platform). The outlook igiented services to be defined. These complement the high-
then spoken to the user (node 3). For help, the user is queriegel, user-oriented services supported by goals andipslic
as to the person who should be alerted (node 5). If a friendA&though a feature or policy might sometimes be used for the
text message is sent asking for a call to Bob (node 6). If thame purpose, in practice the choice of which is usuallyrclea
doctor, a synthesised message is sent to the surgery reporti OSGi input/output events are mapped to/from BPEL calls.
that Bob is ill (node 7). If the user does not specify eithes separate BPEL engine reacts to these events, providing
person, a general alarm input event is raised for action by ttievice services to the home platform. Device services cgn ma

policy system (node 8). input/output events in all combinations.
o) Event logic is described using REss This provides a
H. Realising Services simple graphical notation that is automatically formalise

As noted in section Il-A, device services are automaticallalidated, verified and implemented. This supports flexible
verified, validated and realised. These aspects can beieggla management of smart homes for both home automation and

Uses
Device device1
String reply

| SPEECH

1 Receive speech.in.ex
device

| device1 <- device

Friend <-"07890-123-456"
Surgery <-"01786-833-210"

/

“params = "weather"
| period <- "today"

2 oke weather.met.foas
period outlook
—— >

| "params1 <- outlook reply = "Friend"

Device sms.out.tt
device1

evice speech .out
device1

Finish

Fig. 10. Speech-Based Help Feature

“params = "help"
| “params1 <- "tell whom?"

5vice speech.out.ry
device1 reply
reply = "Doctor"

/“instance1 <-Friend / ‘lnstance1 <:|Surger.y" I params1 <-"
| "params1 <-"call Bob" / params1 <-"Bob s ill

evice phone.outt
device1

telecare. Detailed technical knowledge and programmiiilg sk [5]
are not required to create device services. Although it is
intended that end users (and their carers) define poIicie@
creating device services is more appropriate for techmicia

who manage devices in the home.

The entire home system described in this paper has been

(7]

evaluated in a lab setting, and also in a typical home. Thg]
response time of a device service is around one second.
This offers adequate performance since only significanicgev
events are considered (e.g. open, shut) and not frequeicedev[9]
signals (e.g. every movement). An extended trial of the whol
approach is about to start in homes operated by Midlothim]

Council in Scotland.

ACKNOWLEDGEMENTS

[11]

The author thanks Claire Maternaghan (University of stif?!
ling) who wrote a number of the device bundles. The work

was conducted in the context of theAvcH project (Mo-
bilising Advanced Technologies for Care at Home,

w3l

match-project.org.uk, supported by the Scottish Funding

Council under grant HR04016).

REFERENCES

[1] I. Amundsonet al. OASIS: A service-oriented middleware for perva-

sive ambient-aware sensor networks. Technical Report-0818706,
Vanderbilt University, 2006.

[2] A. Arkin et al, editors. Web Services Business Process Executi

Language Version 2.0. OASIS, Billerica, Apr. 2007.
L. Blair and J. Pang. Feature interactions — Life beyoratlitional

(3]

telephony. In M. H. Calder and E. H. Magill, edito®roc. 6th Feature

Interactions in Telecommunications and Software Syst@ms83—93.
10S Press, May 2000.

[4]
IEEE Comms. Magazine31(8):18-23, Aug. 1993.

[14]

[15]
ol

[17]

E. J. Cameroret al.. A feature-interaction benchmark for IN and beyond.

\

Else
| "params1 <- "say weather or help"

evice speech.outt \
device1

Else
check on Bob"

8 Device alertin.alarm
device1

L. Coyle et al. Sensor fusion-based middleware for assisted living. In
C. Nugent and J. C. Augusto, editolBroc. 4th Int. Conf. on Smart
Homes and Health Telematjcpp. 281-288. 10S Press, Jun. 2006.

S. de Deugdet al. SODA: Service-oriented device architecture.
Pervasive Computings(3):94-98, 2006.

L. A. Gavrilov and P. Heuveline. Aging of population. In Bemeny
and G. McNicoll, editorsThe Encyclopedia of Populatipmpp. 27-50.
MacMillan, Jan. 2003.

P. Gouvas, T. Bouras, and G. Mentzas. An OSGi-based s@sanvice-
oriented device architecture. In R. Meersman, Z. Tari, anHe®rero,
editors,Proc. On the Move to Meaningful Internet Systehi$CS 4806,
pp. 773-782. Springer, Nov. 2007.

J. E. Lopez de Vergaret al. An autonomic approach to offer services in
OSGi-based home gatewaySomputer Communication81(13):3049—
3058, Aug. 2008.

B. Margolis and J. L. SharpeSOA for The Business DevelopeMC
Press, 2007.

C. Maternaghan and K. J. Turner. A component frameworkiélecare
and home automation. IRroc. 7th Consumer Communications and
Networking Conferencd EEE Press, Jan. 2010.

N. Medvidovic and R. N. Taylor. A framework for classifyy and
comparing architecture description languages.Ptac. 6th. European
Software Engineering Conference/Proc. 5th. Symp. on thmdations
of Software Engineeringop. 60-76, Zurich, Sep. 1997.

A. M. Tabar, A. Keshavarz, and H. Aghajan. Smart homeecar
network using sensor fusion and distributed vision-basadoning. In
R. Cucchiara, J. K. Aggarwal, and A. Prati, editofoc. 4th Int.
Workshop on Video Surveillance and Sensor Netwopks 145-154.
ACM Press, Oct. 2006.

K. J. Turner. Validating feature-based specificatioBsftware Practice
and Experience36(10):999-1027, Aug. 2006.

K. J. Turner and G. A. Campbell. Goals for telecare nekso
In A. Obaid, editor, Proc. 9th Int. Conf. on New Technologies for
Distributed Systemsp. 270-275. Montreal, Jul. 2009.

K. J. Turner and K. L. L. Tan. A rigorous methodology fasmposing
services. In M. Alpuente, B. Cook, and C. Joubert, editBrec. Formal
Methods for Industrial Critical Systems 1UNCS 5825, pp. 165-180.
Springer, Nov. 2009.

F. Wang and K. J. Turner. Towards personalised home sgt&ms. In

I. Maglogiannis, editorProc. 1st Int. Conf. on Pervasive Technologies
related to Assistive Environmentgp. L2.1-L2.7, ACM Press, Jul. 2008.

