
Koon Leai Larry Tan and Kenneth J. Turner. Automated Analysis and
Implementation of Composed Grid Services.
In Dimitrios Dranidis and Ilias Sakellariou, editors,
Proc. 3rd South-East European Workshop on Formal Methods
pages 51-64, Thessaloniki, Greece, November 2007.

Automated Analysis and Implementation of Composed
Grid Services

Koon Leai Larry Tan and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK
klt | kjt @cs.stir.ac.uk

Abstract. Service composition allows web services to be combined intonew
ones. Web service composition is increasingly common in mission-critical ap-
plications. It has therefore become important to verify thecorrectness of web
service composition using formal methods. The compositionof grid services is a
similar but new goal. We have previously developed an abstract graphical nota-
tion called CRESSfor describing composite grid services. We have demonstrated
that it is feasible to automatically generate service implementations as well as
formal specifications from CRESSdescriptions. The automated service imple-
mentations use orchestration code in BPEL, along with the service interfaces and
data types in WSDL and XSD respectively for all services. CRESS-generated
BPEL implementations currently do not use WSRF features such as implicit end-
point references for WS-Resources and interfacing to standard WSRF port types.
CRESS-generated formal models use the standardised process algebra LOTOS.
Service behaviour is modelled by processes, while service data types are mod-
elled as abstract data types. Simulation and validation of the generated LOTOS

specifications can be performed. In this paper, we illustrate how CRESScan be
further extended to improve its generation of service compositions, specifically
for WSRF services implemented using Globus Toolkit 4. We also show how to
facilitate use of the generated LOTOSspecifications with the CADP toolbox.

1 Introduction

Grid computing is one of the leading forms of distributed computing. It enables inter-
operability between disparately owned and heterogeneous resources in a standardised
manner. The SOA (Service-Oriented Architecture) nature ofGrid Services encourages
creation of new and composite services. This allows existing services to be combined
into new ones. This activity, commonly known as service orchestration, requires com-
plex behaviour which usually involve interactions betweentwo or more services. There
is much interest in the practical realisation of grid service orchestration. In contrast,
however, the rigorous analysis of such complex and usually critical behaviour has not
received much attention. A major issue is that formal models(where they are used at
all) are developed separately from the implementation. This paper reports on work that
aims to bridge the model-implementation gap to allow for automated (formal) analy-
sis as well as implementation of composed grid services. Theapproach also supports
orchestration of grid and web services. The work reported here uses CRESS(Communi-
cation Representation Employing Systematic Specifications). It is an extension of work
reported in [16, 17], with a new emphasis on formal analysis.

2 Background

The scope of this paper covers a number of different technical areas and tools. This
section provides a high-level background for the general reader.

2.1 Grid Services

OGSA (Open Grid Services Architecture) defines the characteristics and capabilities
of the Grid. This includes virtualised resource access, building virtual organisations,
distributed and parallel computing, and security.

Grid applications are usually implemented as services to exploit the benefits of
service-oriented architecture. One of the widely adopted approaches is to treat grid
services as extensions of web services. This means that theyinteract via message ex-
changed using SOAP (Simple Object Access Protocol). The requirement for grid ser-
vices to be stateful led to the initial work on OGSI (Open GridServices Infrastructure);
this is not very compatible with web services. Further developments led to WSRF (Web
Service Resource Framework). This is a collection of interrelated standards defined by
OASIS that are compatible with web services. In this paper, we use WSRF-based ser-
vices as grid services.

Although there are numerous solutions to building grid applications and systems,
the WSRF specifications are the most popular open standards.Globus Toolkit 4 (GT4)
is a widely used toolkit that implements WSRF. In the work reported here, GT4 was
used for supporting development of grid services.

2.2 Service Orchestration

Service composition or orchestration was a significant factor in the design of the SOA
paradigm. Numerous solutions were originally developed for orchestrating web ser-
vices. BPEL4WS (Business Process Execution Language for Web Services) was the
combined results of several organisations working to standardise service orchestration.
BPEL4WS was later renamed WS-BPEL [1] by OASIS, and is established astheway
of composing web services.

Because of similarities with web services,grid service composition with WS-BPEL
has also been considered [2, 10]. WS-BPEL was originally designed for web services,
and was little influenced by the various evolutions of grid service standards for OGSI
and WSRF. Our preliminary investigations [12] demonstrated that it was possible to
orchestrate grid services using ActiveBPEL version 2, an implementation of BPEL.
Technical issues, workarounds and limitations were highlighted in our work.

The timely convergence and compatibility of WSRF and web services encouraged
us to study further the feasibility of composing grid services using BPEL. WS-BPEL 2
incorporated specifications that are compatible with WSRF,such as WS-Addressing
2004/08, thereby making interoperability with grid services easier. WS-BPEL 2 has
been implemented by several open-source BPEL engines, suchas ActiveBPEL ver-
sion 3 and WEEP (Workflow Engine Enactment Project [10]). Thework in this paper
used ActiveBPEL 3 to support grid service orchestration.

2.3 Occupational Data Matching

Social scientists often make use of occupational information. Several well-known occu-
pational classification schemes are used to code occupational information. Most occu-
pational analyses use these standard classifications. The choice of classification scheme
usually differs, as different classifications may favour particular type of analysis.

Most datasets capture occupational information using a single classification scheme.
Occupational data researchers usually have to translate occupational variables to the
classifications required by the analysis process in order toanalyse their data. Aggregate
occupational datasets, which contain summary data for occupational position, are often
linked by social scientists to microsocial survey datasets. There can be several inter-
mediate translations involved when no direct mapping exist. Hence there exist many
translation procedures for dealing with various formats. Despite having occupational
data and mapping resources, social scientists rarely achieve effective resource sharing
due to lack of a standardised framework for resource discovery, dissemination and data
formats.

The authors have worked on the GEODE project (Grid-Enabled Occupational Data
Environment) whose primary objective is to use grid computing to vitalise occupational
matching procedures and make them discoverable and accessible in a uniform manner.
Researchers can link mimicrosocialurvey datasets to aggregate occupational resources,
and they can easily map between classification schemes. GEODEwas the source of the
challenges addressed in this paper.

2.4 LOTOS

LOTOS (Language Of Temporal Ordering Specification [7]) is a standardised formal
technique used to specify concurrent and distributed systems. In contrast to other for-
mal techniques, LOTOS supports the integrated formalisation of both behaviour and
data types. This offers the advantage of modelling systems where behaviour can be in-
fluenced by the state of data. Rigorous analysis can then be used to validate and verify
a LOTOSspecification, while simulation can be used for rapid prototyping.

There is a wide range of tools for performing formal analysisof LOTOS specifica-
tions. TOPO/LOLA can be used to execute system behaviour anddata type operations.
CADP (Construction and Analysis of Distributed Processes [6]) is a well-known toolset
that supports a wide range of formal analyses (for LOTOSand other formal languages).
CADP allows desired temporal logic properties to be verified. These properties can be
expressed using the regular alternation-free modalµ-calculus, and are verified against
designated LOTOS specifications by various CADP tools such asSVLandEvaluator.
Properties such as deadlock freedom, safety, liveness and fairness can be verified. The
toolset also has other useful features such as comparing thebehaviour of specifications,
and reducing the model state space of specifications.

2.5 CRESS

CRESS is a domain-independent graphical notation that was developed for describing
services. CRESSsupports the specification of web and grid service composition. It takes

an abstract approach in which a high-level service description in CRESSis used to auto-
matically generated a formal specification as well as an actual implementation. The im-
plementation of a composite grid service is generated in BPEL. Services that are part of
the composition have their service interfaces and data types generated in WSDL (Web
Service Description Language [18]) and XSD (XML Schema Definition) respectively.
These interfaces are used in the execution of the BPEL specification. Since CRESSfo-
cuses on servicecomposition, the implementation and configuration of individual grid
services is provided manually. The individual services areautomatically incorporated
along with the generated code. The formalisation of a composite grid service in LOTOS

is fully automated. Service behaviour is represented by interacting LOTOS processes.
Data types, including complex types (as in XSD), are generated as abstract data types.
We have previously validated the LOTOSspecifications generated from CRESSservice
diagrams [14]. The emphasis in this paper is new work on verification of the generated
specifications.

Specifications are drawn graphically in CRESSusing nodes, arcs and labels. This ap-
peals to both technical and non-technical users: the focus is on high-level description,
abstracting away the technical details required in the actual implementation. CRESSis
designed as an extensible framework where support for new domains and target lan-
guages can be added like plug-ins.

2.6 Relation to Other Work

Web service orchestration has been actively studied and supported by pragmatic devel-
opments. There are numerous implementations for modellingand executing of work-
flows. We cite some of the well-known ones that also support grid applications below.

JOpera [9] is a service composition tool for building new services through com-
bining existing services. It provides a visual compositionlanguage and also a run-time
platform to execute services. JOpera claims to offer greater flexibility and expressive
constructs than BPEL. Although initially focused on web services, support for grid ser-
vice composition has also been investigated.

Taverna [8] was developed to model web service workflows specifically for the
bioinformatics domain. It introduced SCUFL (Simple Conceptual Unified Flow Lan-
guage) to allow grid applications to be modelled in a specialised workflow language.

OMII-BPEL (Open Middleware Infrastructure Institute BPEL[2]) aims to support
the orchestration of scientific workflows which can involve amultitude of service pro-
cesses and long-duration process execution. It provides a customised ActiveBPEL en-
gine, and supports a set of constructs that are desirable forthe specification of scientific
workflows.

CRESSwas designed for modelling many kinds of services, and has applications
in many domains. For grid and web services, CRESS can be viewed as a workflow
language for the specification of composite behaviour. In contrast to other approaches,
CRESS generates implementation code in standard languages (BPEL, WSDL, XSD,
LOTOS) which are already widely adopted and implemented. This also means that the
generated code can be deployed in various vendor implementations that conform to
these standards.

Prior to the standardisation of WS-BPEL 2 there have been investigations into using
BPEL to compose grid services. [11] developed BPEL extensibility mechanisms to or-
chestrate OGSI and WSRF services. [19] makes use of proprietary constructs to achieve
interoperability with WSRF services. Work based on CRESSdemonstrated the possibil-
ity of using standard WS-BPEL to orchestrate grid services,though some workarounds
were necessary [12]. Further empirical work has been carried out with CRESSand WS-
BPEL 2, leading to improvements in CRESSfor specifying grid services (and also state-
ful web services).

Formalisation ofwebservices has received considerable attention. LTSA-WS (La-
belled Transition System Analyser [5]) is a finite state method. Abstract service scenar-
ios and actual service implementations are generated through two behavioural models
in the form of state transition systems. Verification and validation are performed by
comparing the two systems. The limitation of this formal approach is that it can handle
data types but not their values. This impacts on the formal analysis of service compo-
sition as data values can be used to model conditions that influence the behaviour of
a system. CRESSdiffers by generating the formal model and service implementation
from an abstract description. CRESSuses LOTOS to model service compositions, and
can therefore model data types as well as their values.

[3, 4] use a process algebraic approach in automated translation between BPEL and
LOTOS. CRESSdiffers in that there is no specification of BPEL or LOTOS required.
Instead a graphical notation, comprehensible to the non-specialist, supports abstract
service descriptions that are translated into BPEL and LOTOSautomatically. This is an
advantage as service development may well involve personnel who are not trained in
either BPEL or LOTOS.

3 Specifying Grid Service Composition

A full description of the CRESSnotation can be found in [15]. Not all CRESSconstructs
are used in this paper. An example of the interactions between BPEL and grid services
is given to illustrate the technical aspects of communicating with grid (WSRF) services.

3.1 CRESSNotation

A high-level overview of the CRESSnotation is given here. A CRESSdiagram shows
the flow among activities, drawn as ellipses. Each activity has a number, one or more ac-
tions, and some parameters. The arcs between ellipses represents the flow of behaviour.
Note that CRESSdefines flows and not state machines; state is implicit.

Choice of flow can be indicated by label on an arc. An arc may be labelled with a
value guard or an event guard to determine if it will be traversed. If a value guard holds,
then the behaviour may follow the path designated by the arc.An event guard defines
a possible path that is enabled only once the corresponding event occurs. Assignments
can also be specified as labels on the arcs.

CRESSactivities in grid service composition deal, among other things, with grid
service inputs (Receive), responses (Reply), and invocations of external partner ser-
vices (Invoke). Grid service operations are namedpartner .port .operation, e.g.dou-

blemap.dmap.xtoz. As required, operations are followed by an input parameter, an out-
put parameter, and one or more faults.

A CRESSrule-box is drawn as a rounded-edge rectangle. It defines variables, but
also aspects that do not explanation here. CRESS supports a range of types for web
and grid services. Simple variables have types likeNatural n, Integer i, andString s.
CRESSsupports aReferencetype for endpoint references that bind a service instance
to a particular resource (known as a WS-Resource).

Structured types can be defined in a rule box using ‘[...]’ forarrays and ‘{...}’ for
records (i.e. structures). The following defines variablesmapData, mapXData, mapY-
Data, andmapZData. Their type is a record with fields: an integeroccPos, and an array
of elements with typedataset. The latter is an array of elements with typerecordData,
which is an array ofvariableDatastrings.

{ Integer occPos
[[String variableData] recordData] dataset

} mapData, mapXData, mapYData, mapZData

Array elements are accessed by index, e.g.mapXData.dataset[1].

3.2 Occupational Data Matching using Grid Services

The example used in this paper (figure 1) illustrates a simplified yet still typical activity
of occupational matching required by social scientists. Ituses a subset of CRESScon-
structs for orchestrating grid services to combine the behaviour of occupational match-
ing grid service partners.

The scenario assumes two existing grid service partners that perform occupational
matching, but differ in requirements and outputs. The first occupational matching grid
servicexmapyrequires occupation information to be in theClassOccXscheme; it out-
puts mapped occupation results according to theClassOccYscheme. The value ofocc-
Posin mapXDataindicates the index location ofrecordDatain theClassOccXscheme.
It outputs variablemapYDatawhoseoccPosvalue indicates its location in theClas-
sOccYscheme.

The second serviceymapzis similar toxmapy. It requires input in theClassOccY
scheme, and outputs results in theClassOccZscheme. The service interface of the
ymapzis purposely implemented differently to demonstrate interaction with stateful
grid services. Invoking themapDataoperation (node 3) returns an endpoint reference
(EPR) that is used to retrieve the matching results (node 4).

The orchestrated servicedoublemapcombines these two services to map occupa-
tional information fromClassOccXto ClassOccZ. It performs a check for an invalid
occupational position in the scheme. (In this case, simply anegative number is in-
valid.) The deployment ofdoublemapbehaves as a new service with the capability
of mapping between occupational classifications. The partner services it uses are hid-
den from the clients ofdoublemap. Nodes 1 and 5 define the input and output when
doublemap.dmap.xtozis invoked. Note that themapDatavariable is not explicitly used
in the orchestration. Its use is explained in section 4.

A CRESSconfiguration diagram (figure 2) is required for defining deployment de-
tails such as service namespace, service endpoints, relations with service partners, and

possible definitions of resource properties for grid services. TheDeploysclause lists
the CRESS translator options. Service partners are specified prior tothe ‘/’; the ser-
vices to be deployed appear after this. CRESSgenerates WSDL files for all the given
services, and includes the WSDL of the service partners (XMAPYandYMAPZ). All
services, such asXMAPY, have a namespace prefix (‘xmapy’), a namespace URI (Uni-
form Resource Name ‘urn:XMapY’), and a base URI where they are deployed (‘local-
host:8880/wsrf’). In this example, all the services were deployed on the local computer
on port 8880 (for grid services) and port 8080 (for the orchestrated service). However,
they can be deployed anywhere in the network. As it happens, this example does not
use resource properties (indicated by ‘-’).

3.3 Translating CRESSService Descriptions

The CRESS diagrams (doublemap, configuration) hold all the information needed to
automatically generate a LOTOS specification and a BPEL implementation. Figure 3
compares the translations of this example. The figure shows non-commented lines of
code for data types, behaviour, service stubs, and the number of generated files.

– The fixed code is the framework common to all grid applications. This is substantial
in LOTOS as it contains many pre-defined complex data types from the CRESS

library.
– Translation to LOTOS results as a single specification file. Translation to BPEL

yields many files: one BPEL file per service, one WSDL per service/partner, one
Java file per data type, and several deployment files.

– Code for external partners (xmapy, ymapz) has to be manually written.

In other grid service examples, the LOTOS specification is rather smaller than the
corresponding BPEL/WSDL implementation. This is because of the very expressive
constructs in LOTOSṠection 5.2 explains the reason for the rather larger LOTOSspeci-
fication in this example.

The LOTOS specification and BPEL implementation have been made available at
http://www.cs.stir.ac.uk/~klt/doublemap/doublemap.zip.

4 Translating Service Compositions to BPEL

Translating CRESSdescriptions of web and grid services to BPEL is described in[15,
16]. BPEL and WSDL are specialised languages, resulting in complex and large imple-
mentations, so only a high-level description is given here.

The CRESSphilosophy is that the service designer should notneedto know about
the target languages(BPEL and WSDL) in order to implement a composite service.
However implementations for grid service partners (in Java) have to be provided.

4.1 Implementation Structure

The automatically-generated implementation consists of aset of service files for three
services: two grid service partners and a BPEL process. For the composite service,

Fig. 1. CRESSDescription of TheDoublemapService

Fig. 2. CRESSService Configuration

Target Fixed Code Generated Code Partner Code Total
Files TypesBehaviourFilesBehaviour

LOTOS 1925 1 1617 113 2 76 3768
BPEL/WSDL 15 25 1438 148 10 537 2138

Fig. 3.Comparison of LOTOSand BPEL/WSDL Translations (files, lines of code)

its BPEL specification, WSDL (inclusive of service partners) and deployment files are
created and bundled for deployment. For grid services, a WSDL service interface, Java
implementation, and deployment descriptor are created perpartner. CRESSwill use a
Java implementation if one has already been written (otherwise a simple default imple-
mentation is generated). These files are bundled as grid service archives. As illustrated
in figure 4, the BPEL processdoublemapis deployed to the ActiveBPEL platform for
service orchestration, while grid service partnersxmapyandymapzare deployed to the
GT4 platform for execution. GT4 and ActiveBPEL communicateto allow the BPEL
process to invoke the grid service partners. In principle, it should be possible to run
GT4 and ActiveBPEL in the same Tomcat container. However this is not currently pos-
sible due to incompatibilities between the versions of the Axis SOAP engine they use.
This problem will be resolved as the two evolve to use compatible versions. In practice,
the scenario of BPEL orchestrating services in disparate systems is common anyway.

Translation of CRESSdata types into BPEL, WSDL and XSD is relatively straight-
forward. Simple CRESStypes become XSD simple types, and structured CRESStypes
become XSD complex types. In BPEL, access to complex data types is via XPath
queries. The assignment and guard constructs in CRESS are translated to XPath ex-
pressions. However the way BPEL uses variables differs, depending on whether they
are used in messages or in expressions. CRESShandles this automatically, creating dif-
ferent definitions and code depending on the way variables are employed.

A grid service (WSRF) uses the ‘document/literal’ wrapped SOAP style which com-
plies with the WS-Interoperability standard. Unlike RPC style, using ‘document/literal’
loses the operation names and thus relies on the data messagestructure to determine
which operation should be invoked. As a consequence operations that uses the same
message/parameter type cannot be distinguished. This is illustrated in [17]. This was the
reason whymapDatatawas defined in our example with a ‘document/literal’ wrapped
style, the data structure having the same name as the operation.

Fig. 4. Occupational Data Matching Service Deployment

5 Formal Analysis of Service Composition

The work reported in this paper has added the capability of verifying CRESS-generated
LOTOSspecifications using the CADP toolset. [13] describes how CRESSfor web and
grid services is translated into LOTOS.

CRESShas a set of predefined abstract data types for the specification of web and
grid service composition. CRESSdata types are mapped onto the base BPEL, WSDL
and XSD types such asxsd:integerandxsd:string. The translation supports the defi-
nition of structures and arrays. These map onto complex types and arrays (occurs) in
the implementation. BPEL simple types correspond to a limited range of LOTOS types.
BPEL boolean corresponds to LOTOSBool, BPEL natural to LOTOSNat, and variations
of BPEL string to LOTOSText. Other numeric types in BPEL correspond to LOTOStype
Number.

5.1 Validation

In principle, the LOTOSspecification can be verified. However the complex data types
and infinite data values make model checking rather impracticable. The authors have
instead previously made use of rigorous validation (i.e. formally-based testing). Prior
to the work presented here, scenario-based validation was the only means of analysing
service specifications. This made use of MUSTARD (Multiple-Use Scenario Test and
Refusal Description [14]) as a language-independent and tool-independent approach.
This expresses use case scenarios that are translated into an appropriate target language
(LOTOS here), and are automatically validated against the specification. Though vali-
dation is practicable, there are properties such as deadlock freedom that are better ex-
pressed and checked using verification. This was the motivation behind the new work,
aiming to benefit from both formal verification and formal validation.

5.2 Tool Support for LOTOS Verification

CADP (Construction and Analysis of Distributed Processes [6]) has been used as to ver-
ify the generated LOTOS specifications. A LOTOS specification has to respect several
restrictions for use with CADP. For example, definitions of abstract data types may not
use formal sorts, operations or equations; these are incompletely specified types known
parameterised types in LOTOS. Instead, CADP requires all types to be specified con-
cretely. Constructor operations have to be identified for CADP. Verifying specifications
is achieved through model checking. Hence, data types that are infinite have to be made
finite in the external (C code) implementations. CADP-specific annotations are required
on the LOTOSspecification. We have automated as far as possible the task of making a
CRESS-generated specification ready for verification.

CADP supports pragmas (specialised LOTOS comments) to annotate sort names,
constructor operations, and data function names. These annotations are used by CADP
in its translation of LOTOS to executable form.

The LOTOS specifications generated by CRESS contain parameterised types and
actualisations (i.e. instantiations) of these; for example, this is how specific arrays are
handled. To make the specification compatible with CADP, flattening of the actualised

data types is necessary to remove the specification of parameterised types. We have
developed a tool that uses the TOPO/LOLA toolset to produce aflattened and annotated
version of the data types.

Data types in web and grid services have finite ranges (e.g.xsd:integer); this de-
pends on the programming language and platform used. This restriction does not apply
to LOTOStypes such asNumber, which have an infinite range. Finite constraints have to
be imposed on these data types for verification to be feasible. Though it can be achieved
in LOTOStypes by specifying each and every value, it is more practical to do so via con-
straints on the external C implementations. At the same time, it is possible to simplify
types such asStringandNumberby representing them with simple C types likechar*
anddoublerespectively. As a result, the implementation of various operations is much
simpler than its formalisation. As an example withNumber, the value ‘3.142’ can be
handled directly in the C implementation. The LOTOS equivalent isNumber(+, t(3),
t(1)∼4∼2), which is less readable. These simplifications make it easier to express veri-
fication properties, and these properties are also closer tothe intended implementation.
Our new work has created C implementations of the LOTOS typesBool, Char, Nat,
NumberandText. These C implementations comprise macros and functions that define
the sorts, their constructor operations, and operations where the equations are compli-
cated. (The implementations created by CADP for simple operations can be used as
automatically generated.)

Data types in CRESS-generated LOTOSare automatically annotated. This does not
imply that the resultant specification is ready for verification. User-defined data struc-
tures still have to be annotated by hand as they are dynamic, and C implementations may
still have to be manually generated if required. However, the effort required in annota-
tion is greatly reduced by the tool, requiring limited effort to achieve a fully annotated
specification.

Figure 5 outline the structure of the flattened and annotatedLOTOS specification.
The flattening process results in a single type with the same name as the specification.
This data type contains all sorts, operations and equationsthat were specified in the
CRESS-generated version. All the process definitions are preserved by the flattening.
The mapping of CRESSnames in figure 1 to LOTOSnames should obvious.

5.3 Verification

Now that the fully annotated LOTOS specification has been created, various tools in
CADP can be used to verify desirable properties. TheCaesar.adtand Caesartools
were used along with the external implementations to generate a full C implementation
for model checking and state space exploration. TheSVLandEvaluatortools were used
to verify properties against the specification. An SVL script was written to generate the
state space from the LOTOSspecification. Desirable properties of the system were then
expressed using the regular alternation-freeµ-calculus, and were verified against the
state space:

– A web/grid service should have no deadlock in its behaviour.This can be specified
as ‘every state must have a successor state’. More specifically, the system must
arrive at a state to accept incoming requests after a finite number of steps.

SpecificationGSSystem (* orchestrated grid service *)

Library ... (* imported library types *)

Type GSSystemIs (* specific types *)
Sorts (* sorts of values)

operation (*! implementedby ... *) ... (* grid operation values *)
port (*! implementedby ... *) ... (* grid port values *)
mapdata (*! implementedby ... *) ... (* mapdata values *)
number (*! implementedby ... *) ... (* number values *)

Opns (* operations on values *)
mapdata(*! implementedby ... constructor *) ... (* mapdataconstructor *)
number(*! implementedby ... constructor external *) ... (*number constructor *)
...

Eqns (* equations defining operations *)
...

Behaviour (* overall specification behaviour *)
Hide xmapy,ymapzIn (* hide partner gates *)

(
XMAPY [xmapy] (* xmapy partner *)

|||
YMAPZ [ymapz] (* ymapz partner *)

)
|[xmapy,ymapz]| (* synchronised with partners *)

DOUBLEMAP [doublemap,xmapy,ymapz] (* orchestration process *)

ProcessXMAPY ... (* xmapy partner *)
ProcessYMAPZ ... (* ymapz partner *)
ProcessDOUBLEMAP_1 ... (* doublemap node 1 *)
...
ProcessDOUBLEMAP_ event ... (* doublemap event handler *)

Fig. 5.Flattened and annotated LOTOSspecification structure

– Every request received bydoublemapshould result in a result or a fault. This was
expressed by saying there no behaviour sequence should violate this property.

– Inputs containing a negative occupation position value must not result in a success-
ful result.

– Each occupational value must result in the correct mapped value.

Initial verification results showed that the system did not meet the fourth condi-
tion. By examining the counterexample generated byEvaluator, the manually written
specification ofymapzwas found to be incorrect. There was an error in specifying the
mapping of one particular occupational value, resulting inan incorrect mapped value.
Though in practice this might have been found through validation, this would have re-
quired an exhaustive set of tests that explored the entire state space.

6 Conclusion

It has been seen that grid service orchestration can be achieved using CRESS. Occu-
pational data matching activities have been used as a realistic example to illustrate the
approach.

A single CRESSdescription of a composite grid service is automatically translated
into a formal specification and a deployable implementation. This bridges the gap be-
tween formal specification and implementation, and encourages verification of system
behaviour prior to implementation. It can help reduce the cost of development in two
ways: new composite services can be quickly developed and readily deployed, and the
system behaviour can be checked to detect errors at design time.

Rigorous validation of CRESSdescriptions was already possible using MUSTARD.
This is done by specifying test cases and checking them against the specification. A
new ttechniquehas now been developed to automatically convert a LOTOSspecification
for use with CADP. Minimal manual effort is required to achieve this. Temporal proper-
ties can now be specified and verified against the specification. Though the verification
works by constraining the state space of the system, global properties such as deadlock
can now be checked. Important properties can be verified to establish confidence in the
service description. Although validation cannot be used toestablish desirable system
properties, it is still useful for dealing with infinite state spaces.

CRESS currently supports static service partner endpoints. It isplanned extend
CRESS to support dynamic service endpoints. Interactions with WS-Resources (usu-
ally dynamic) will have a direct impact on the configuration of service endpoints in
CRESS. The appropriate interaction with WS-Resources must be considered. It is also
desirable to extend the CRESS coverage to the rest of the WSRF interfaces such as
WS-ResourceLifeTime, WS-ServiceGroups and WS-BaseFaults.

Techniques for verifying CRESS-generated specifications have yielded favourable
results. C implementations have been developed for CRESSlibrary types. Coupled with
automated annotation for CADP, formal verification of CRESSdescriptions is now a
practical task. There is still some limited user involvement in annotating user-defined
data types. However, these user-defined data types are basedon the CRESSlibrary data
types. It will be possible to fully annotate their specifications.

Suggestions have been made as to how CRESScan be enhanced to improve its sup-
port of orchestrated grid services, and to further automatethe process of making a LO-
TOSspecification ready for verification. For grid services, it has hopefully been demon-
strated that CRESSis a useful approach for service orchestration and formal analysis.

References

1. Asaaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron Goland, Neelakantan Kartha,
Canyang Kevin Lie, Satish Thatte, Prasad Yendluri, and AlexYiu, editors. Web Services
Business Process Execution Language. Version 2.0. Organization for The Advancement of
Structured Information Standards, Billerica, Massachusetts, USA, April 2007.

2. B. Butchart N. Cameron L. Chen B. Wassermann, W. Emmerich and J. Patel (2007). Sedna:
A BPEL-based environment for visual scientific workflow modelling.

3. Antonella Chirichiello and Gwen Salaün. Encoding abstract descriptions into executable
web services: Towards A formal development. InProc. Web Intelligence 2005. Institution of
Electrical and Electronic Engineers Press, New York, USA, December 2005.

4. Andrea Ferrara. Web services: A process algebra approach. In Proc. 2nd. International
Conference on Service-Oriented Computing, pages 242–251. ACM Press, New York, USA,
November 2004.

5. Howard Foster.A Rigorous Approach to Engineering Web Service Compositions. PhD thesis,
Imperial College, London, January 2006.

6. Radu Mateescu Hubert Garavel, Frédéric Lang. An overviewof CADP 2001. InEuropean
Association for Software Science and Technology (EASST) Newsletter, volume 4, pages 13–
24. August 2002.

7. ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A
Formal Description Technique based on the Temporal Ordering of Observational Behaviour.
ISO/IEC 8807. International Organization for Standardization, Geneva, Switzerland, 1989.

8. Tom Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood,
Tim Carver, Kevin Glover, Matthew R. Pocock, Anil Wipat, andPeter Li. Taverna: A tool for
the composition and enactment of bioinformatics workflows.Bioinformatics, 20(17):3045–
3054, 2004.

9. Cesare Pautasso. JOpera: An agile environment for web service composition with visual unit
testing and refactoring. InProc. IEEE Symposium on Visual Languages and Human Cen-
tric Computing. Institution of Electrical and Electronic Engineers Press, New York, USA,
November 2005.

10. Globus Alliance Project. Workflow Enactment Engine Project. http://weep.gridminer.org/
index.php/About_WEEP, July 2007.

11. Aleksander Slomiski. On using BPEL extensibility to implement OGSI and WSRF grid
workflows. InProc. Global Grid Forum 10, Berlin, Germany, March 2005. Humboldt Uni-
versity.

12. Koon Leai Larry Tan and Kenneth J. Turner. Orchestratinggrid services using BPEL and
Globus Toolkit 4. In Madjid Merabti, Rubem Pereira, Carol Oliver, and Omar Abuelma’atti,
editors,Proc. 7th PGNet Symposium, pages 31–36. School of Computing, Liverpool John
Moores University, Liverpool, UK, June 2006.

13. Kenneth J. Turner. Formalising web services. In Farn Wang, editor,Proc. Formal Techniques
for Networked and Distributed Systems (FORTE XVIII), number 3731 in Lecture Notes in
Computer Science, pages 473–488. Springer, Berlin, Germany, October 2005.

14. Kenneth J. Turner. Validating feature-based specifications. Software Practice and Experi-
ence, 36(10):999–1027, August 2006.

15. Kenneth J. Turner. Representing and analysing composedweb services using CRESS. Net-
work and Computer Applications, 30(2):541–562, April 2007.

16. Kenneth J. Turner and Koon Leai Larry Tan. Graphical composition of grid services. In
Didier Buchs and Nicolas Guelfi, editors,Rapid Introduction of Software Engineering Tech-
niques, pages 1–16, Switzerland, September 2006. University of Geneva.

17. Kenneth J. Turner and Koon Leai Larry Tan. A rigorous approach to orchestrating grid
services.Computer Networks, 51(15):4421–4441, October 2007.

18. World Wide Web Consortium.Web Services Description Language (WSDL). Version 1.1.
World Wide Web Consortium, Geneva, Switzerland, March 2001.

19. Matthew Zager. SOA/Web Services - Business Process Orchestration with BPEL. http:
//webservices.sys-con.com/read/155631_1.htm, December 2005.

