
Kenneth J. Turner. Analysing Interactive Voice Services
(pre-publication version), Computer Networks, 45:665-685,
Copyright Elsevier Science Publishers, Amsterdam, March 2004.

Analysing Interactive Voice Services

Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, UK

Abstract

IVR (Interactive Voice Response) services are increasingly prevalent in automated tele-
phone enquiry systems. VoiceXML (Voice eXtensible Markup Language) has become one
of the leading languages for IVR. The nature of IVR services is introduced, along with an
explanation of how they are represented in VoiceXML. However a VoiceXML description
is at a low level, so it is difficult to gain an overview of the service that is offered. There is
also no rigorous way to check the integrity of an IVR application.

CRESS (Chisel Representation Employing Systematic Specification) is a graphical no-
tation for describing services in an abstract, language-independent manner. For this paper,
IVR services are described with CRESS and translated into LOTOS (Language Of Tempo-
ral Ordering Specification) for automated analysis. Because of the infinite state space, it
is not practicable to formally verify the generated specifications. Instead, the focus is on
more practical solutions. The properties of a specificationare checked by including ob-
server processes to monitor undesirable situations like repeatedly prompting the user for
input. MUSTARD (Multiple-Use Scenario Test And Refusal Description) is introduced as
a language for defining scenario-based tests of services. The approach is illustrated with
sample tests of IVR services. It is seen how MUSTARD helps to build confidence in an IVR
application.

The paper also introduces a feature concept for IVR, and discusses feature interaction in
this context. General categories of IVR feature interaction are presented. It is shown how
CRESSand MUSTARD combine to help discover interactions among IVR features.

Key words: Feature, IVR (Interactive Voice Response), LOTOS (Language Of Temporal
Ordering Specification), Service, VoiceXML (Voice eXtensible Markup Language)

Email address:kjt@cs.stir.ac.uk (Kenneth J. Turner).

Preprint submitted to Elsevier Preprint 7 January 2004

1 Introduction

1.1 Interactive Voice Response

IVR (Interactive Voice Response) services have been developed during the past
decade to provide a more satisfactory alternative to touch-tone systems. Touch-tone
enquiry systems (‘press 2 for sales’) are often disliked by users due to their inflex-
ible and crude interfaces. IVR allows users to do what they expect in a telephone
call, namely to speak and to listen. IVR is convenient for users on the move, who
may have little more than a mobile telephone. Although WAP (Wireless Access
Protocol) is intended to provide web browsing for mobile users, it has seen only
limited use. Some categories of users (e.g. the partially sighted or those without
Internet access) are also disadvantaged if information is provided only via the web.

Although IVR is not new, it was initially supported by a variety of proprietary solu-
tions. VoiceXML (Voice eXtensible Markup Language [30]) has been an important
development in the standardisation of IVR. There are competing standards for IVR,
but VoiceXML seems to have attracted the most support. The basic idea of Voice-
XML is that users ‘fill in’ fields of forms by speaking in response to prompts. Voice-
XML platforms usually include sophisticated support for TTS (Text To Speech, i.e.
synthesised speech output) and STT (Speech To Text, i.e. speech recognition). The
completed information is then typically submitted to a program or database for fur-
ther processing. VoiceXML lends itself to a wide variety of applications such as
news and sports information, telephone banking, sales enquiries and orders, and
travel bookings. For an application such as banking, VoiceXML could provide a
voice-based front-end to an existing bank system. There could also be other front-
ends to the same system, e.g. for web browsing or WAP access.

1.2 Developing Interactive Voice Services

As an application of XML, VoiceXML is textual in form. However most commer-
cial packages (e.g. Covigo Studio, Nuance V-Builder, VoxeoDesigner) provide a
graphical representation. VoiceXML has a nested, hierarchical structure that most
packages reflect in graphical form. Some representations emphasise the relation-
ship among VoiceXML elements, e.g. the flow of control among the fields of a
form. Commercial packages are (not surprisingly) very close to VoiceXML since
their aim is direct support of scripting with VoiceXML. As a programming lan-
guage, VoiceXML focuses on how an IVR service is realised andnot what it does.
It can therefore be difficult to get a clear overview from VoiceXML of an IVR
service.

It is easy, and even common, to write VoiceXML scripts that have implicit loops

2

and complicated logic. To some extent, VoiceXML encouragesthis because its form
interpretation algorithm requires multiple passes through a form. The consequences
of certain VoiceXML constructs may not be immediately obvious, e.g. they may
cause an indefinite loop.

VoiceXML adopts a pragmatic and programmatic approach to development. There
is no way to formally check or analyse a VoiceXML script. Instead, VoiceXML
must be debugged using traditional software engineering methods.

VoiceXML applications are essentially single scripts, though these can be made up
from a number of individual documents (i.e. files). VoiceXMLsupports uncondi-
tional transfers (goto) and subroutine-like calls (subdialog) to other documents.
However there is no equivalent of a feature. In fact, VoiceXML does not even use
the term service.

In telephony, services are often composed from self-contained features. A feature
is an additional function that is triggered automatically (e.g. call diversion or call
blocking). From the developer’s point of view, a feature is triggered by certain con-
ditions and is not explicitly called at some point in the callprocessing code. Fea-
tures can therefore easily add supplementary capabilitiesto basic call processing.
The value of features has been amply demonstrated in the IN (Intelligent Network).

CRESS(Chisel Representation Employing Systematic Specification) is a front-end
for defining and formalising services. CRESSwas initially based on the industrial
notation Chisel developed by BellCore [1]. However, CRESS has been consider-
ably extended since its beginnings. In particular, it supports the notion of plug-in
domains: the vocabulary and concepts required for each application area are de-
fined separately. CRESShas been demonstrated on services from the IN (Intelligent
Network [24]), Internet telephony [25,27], and IVR (Interactive Voice Response
[27,28]).

CRESSaims to combine the advantages of an accessible graphical notation, anal-
ysis via translation to formal languages, and realisation via translation to imple-
mentation languages. That is, the same service diagrams canbe used for multiple
purposes. CRESSis neutral with respect to the target language. For formal analysis,
CRESS diagrams are automatically translated to LOTOS (Language Of Temporal
Ordering Specification [11]) or to SDL (Specification and Description Language
[13]); see [28] and [26] respectively. For implementation,CRESSdiagrams are au-
tomatically translated to Perl (for SIP services) or to VoiceXML (for IVR services);
see [25] and [27,28] respectively.

For IVR services, CRESSis intended to complement existing VoiceXML platforms.
In particular, CRESSoffers the following:

• CRESS is a platform-independent graphical notation for a substantial (but not
complete) proportion of IVR applications. A CRESS service is represented at

3

a more abstract level than VoiceXML, making it easier to gainan overview of
the service. VoiceXML is merely a target language for CRESS, so it should be
possible to translate CRESSdiagrams into other IVR languages.

• CRESSsupports features and services. These are not directly recognised in IVR,
so their addition provides useful extra capabilities. Without features, IVR appli-
cations have to explicitly call supplementary capabilities.

• It can be difficult to check whether a realistic IVR application will behave cor-
rectly in all circumstances (e.g. will not stop prematurelyor loop indefinitely).
Through translation to a formal language, CRESSsupports rigorous analysis of
IVR services. CRESS is also accompanied by a scenario-based testing language
that is used to validate IVR applications. The same approachalso contributes to
detecting feature interactions.

• VoiceXML is not formally defined. Some concepts are only vaguely described
(e.g. event handling) and some are loosely defined (e.g. the semantics of ex-
pressions and variables). Through translation to a formal language, CRESScon-
tributes to a more precise understanding of VoiceXML.

1.3 Relationship to Other Work

Graphical notations for services are, of course, fairly common. Although it has a
graphical form, SDL (Specification and Description Language [13]) is a general-
purpose language that was not designed particularly to represent communications
services. MSCs (Message Sequence Charts [12]) are higher-level and more straight-
forward in their representation of services. UCMs (Use CaseMaps [2]) have been
used to describe communications services graphically. However none of these ap-
proaches has support for specific domains, and they cannot betranslated into a
range of languages. Perhaps surprisingly, there does not appear to have been other
work on graphical or formal specification of IVR services.

As noted earlier, there are a number of commercial tools for VoiceXML. These
offer rather more complete support for IVR than CRESS. However they are focused
on VoiceXML only, and do not offer any kind of formal analysis. Their (graphical)
representations of services are very close to VoiceXML, so they are useful only to
specialists. Figure 1 is an example of what VoiceXML looks like in a commercial
tool; this corresponds to theDonationservice described by CRESSin figure 2.

Commercial VoiceXML tools do not support rigorous analysisof IVR services.
The translation of CRESSinto LOTOSor SDL gives formal meaning to IVR service
descriptions. The translation provides access to any analytic technique based on
these languages. Among these, the author’s own approach [23] is one of several
that might be used.

Feature interaction in telephony is a much studied issue (e.g. [7]). The basic prob-

4

Fig. 1. Partial Screenshot of Nuance V-Builder (Version 1.2)

5

lem is that independently designed features can interfere with each other. It has
been shown that feature interactions occur in a variety of other domains such as
building control [15], email [5,9], Internet telephony [14,25], lift control [17], mo-
bile communication [32], multimedia [4,22], policies [19], and the web [31]. The
work reported here shows how feature interaction can arise with IVR.

1.4 Overview of The Paper

The new contributions made by this paper are the applicationof CRESS to IVR
services and features, the rigorous analysis of IVR applications, and the analysis
of feature interactions in IVR. Section 2 introduces IVR andits realisation using
VoiceXML. Section 3 gives an overview of the CRESSnotation as used to describe
IVR services. Section 4 describes how IVR services are analysed, including the
use of observer processes and a specialised test notation. Section 5 discusses the
nature of feature interaction in IVR, and shows how CRESScan be used to discover
feature interactions.

2 Interactive Voice Response using VoiceXML

2.1 Interactive Voice Response Systems

As an example of IVR, the following hypothetical dialogue might occur with a
telephone banking system:

System: You have called the Automated Phone Bank.
What would you like to do?

User: Silence
System: You can ask for your balance, request a statement, orclose your account
User: My balance please
System: What is your account number?
User: Four eight five six seven one
System: There is no account with this number, please try again
User: Four three five six seven one
System: What is the PIN for this account?
User: Five three eight one
System: Your balance is seven hundred and fifty one dollars.

Do you wish another service?
User: No thanks
System: Thank you for calling, goodbye

6

Commercial packages allow for a variety of natural languages to be used in both
speech synthesis and speech recognition. The core logic of an IVR script can be
the same, independent of the user’s language. Speech synthesis is not too difficult,
though it is harder to achieve acceptable emphasis and intonation. Text to be spoken
by an IVR system is usually annotated to indicate these aspects. The pronunciation
of unusual words and phrases can be also given using the markup grammar. Al-
though synthesis can produce natural-sounding speech, serious applications usually
make use of pre-recorded human speech.

Speaker-independent speech recognition is very difficult except for limited vocab-
ularies. (An IVR system must be able to deal with any caller.)Where IVR gains is
that the system does not need to recognise unpredictable speech. In answer to the
first banking question above, for example, the system needs to deal with only a lim-
ited variety of replies. The grammar used to define these can allow for reasonable
variations such as ‘current balance’ or ‘check my balance’.The speech recogniser
will choose the best match between the user’s input and the grammar. Pre-defined
grammars deal with common input formats such as currency amounts, dates, pure
numbers, telephone numbers, times and yes/no answers. Script-defined grammars
allow arbitrary inputs using BNF-like definitions.

IVR applications can usually invoke external programs, such as scripts in other
languages, calls to web server pages, or code to interrogatea database.

2.2 VoiceXML Scripts

VoiceXML (Voice eXtensible Markup Language [30]) is the major language used to
write IVR applications. VoiceXML has built on earlier languages for IVR. To give
an idea of VoiceXML, the following is a simplified extract of what the telephone
banking application might look like.

<?xml version=′1.0′?> <!−− XML −−>

<!DOCTYPE vxml PUBLIC> <!−− VoiceXML definition−−>

<vxml version=′1.0′> <!−− VoiceXML −−>

<form> <!−− form −−>

<property name=′timeout′ value=′3′/> <!−− input timeout 3 secs−−>

<block> <!−− start-of-form code−−>

<audio> <!−− audio output−−>

You have called the Automated Phone Bank.
</audio>

</block>

<catchevent=′nomatch′ count=′3′
> <!−− third no match?−−>

<audio> <!−− audio output−−>

Sorry− too many attempts, goodbye
</audio>

7

</catch>
<field name=′action′> <!−− field for action−−>

<prompt> <!−− audio prompt−−>

What would you like to do?
</prompt>
<option>balance</option> <!−− balance option−−>

<option>statement</option> <!−− statement option−−>

<option>close</option> <!−− close option−−>

<filled> <!−− field completed−−>

<if cond=′action ==′′balance′′ ′/> <!−− balance action?−−>

<gotonext=′#balance′/> <!−− to balance form−−>

<elseifcond=′action ==′′statement′′ ′/> <!−− statement action?−−>

<gotonext=′#statement′/> <!−− to statement form−−>

<else/> <!−− close action−−>

<gotonext=′#close′/> <!−− to close form−−>

</if>
</filled>

<catch event=′help noinput′> <!−− help or no input?−−>

<audio> <!−− audio output−−>

You can ask for your balance, request a statement, or close your account
</audio>

<reprompt /> <!−− repeat form input−−>

</catch>
</field>

...
</form>

</vxml>

A VoiceXML document can contain one or more forms (or menus).At various
points, including the start of aform , ablock can be used for executable code such
asaudio output and assignments. Aproperty is a platform-defined variable such as
the timeoutfor user input. A VoiceXML script cancatch events such asnomatch
(unrecognised user input) subject to an optional conditionor retry count. A field
with simple alternatives can list itsoption values. Aprompt requests user input.
Once a field has beenfilled (the user has provided matching input), the value as-
signed to its field variable can be used for further processing. In the above, the value
of action is used to determine the URL togoto; the ‘#’ notation is borrowed from
HTML to reference a label. If the field is not filled in as expected, ahelp event (the
user asked for assistance) or anoinput event (the user did not speak) is caught and
used to trigger areprompt . This has the effect of scanning the form from the top,
usually causing the most recent field to be prompted for again.

VoiceXML supports a hierarchical event model. Event handlers may be defined at
four levels: platform, application, form, field. Platform handlers provide fall-back
support, though they are usually too general to be useful. Application handlers gov-

8

ern all forms in an application. Form handlers allow their fields to share common
event handling. Finally, fields usually define handlers for events of specific inter-
est. A script maythrow an event, transferring control to a matching handler. As
well as those mentioned above, standard events includecancel(the user cancelled
processing),error (a run-time error occurred), andexit (the user asked to exit).
Although VoiceXML does not considerfilled to be an event, it behaves like one.
Besides standard events, programmer-defined events may be constructed from sev-
eral parts (e.g.balance.failure.PIN). Normally this would be caught by a handler
for this exact event. But if there is nothing to match, a handler for balance.failure
(or failing thatbalance) may deal with the event. If no handler matches, the appli-
cation terminates.

Events are also implicitly associated with a prompt count that is incremented each
time a field is entered. This may be used to vary the response toan event. In fact
this is more complex than it seems. Suppose event handlers are defined for counts
1 (the default), 2 and 4. The first is activated on count 1, the second on counts
2 or 3, and the last on count 4 or higher. A condition may also beimposed on an
event handler being activated, e.g. because several handlers could apply. VoiceXML
does not define what happens if conditions overlap – in fact the behaviour is non-
deterministic.

In order to interwork with a web server, a VoiceXML script cansubmit values
to a URL. This may return dynamically-created VoiceXML (e.g. to announce the
result) that allows execution to continue. VoiceXML can also enter an embedded
script that uses ECMASCRIPT (JAVA SCRIPT) to perform arbitrary computations.
In fact, VoiceXML shares variables and expressions with ECMASCRIPT. A Voice-
XML document cangoto another one, or can call it as asubdialog (like a subrou-
tine).

3 Formalising Interactive Voice Response Services

3.1 The CRESSNotation

CRESS is a graphical notation for describing the possible behaviour of a service.
State is intentionally implicit in CRESSbecause this allows more abstract descrip-
tions to be given. Arcs between states may be guarded by eventconditions or by
value conditions. CRESShas explicit support for defining and composing features.
CRESSalso has plug-in vocabularies that adapt it for different application domains.
These allow CRESSdiagrams to be thoroughly checked for syntactic and static se-
mantic correctness.

Ultimately, CRESSdeals with a single diagram. However it is convenient to con-

9

struct diagrams from smaller pieces. A multi-page diagram,for example, is linked
through connectors. More usefully, features are defined in separate diagrams that
are automatically included by either cut-and-paste or by triggering. A CRESSdia-
gram is a directed, possibly cyclic graph. If the graph is cyclic, it may not be pos-
sible to determine the initial node uniquely. In such a case,an explicitStart node
is given. Comments may take several forms: text between parallel lines, hyperlinks
to files, and audio commentary.

Nodes in a diagram (shown as ovals) contain events and their parameters (e.g.Sub-
mit donate.jsp′′amount charity′′). A node is identified by a number followed op-
tionally by a symbol to indicate its kind. For example, the first node of a template
feature is marked ‘+’ if it is appended to the triggering node, or ‘–’ if it is pre-
fixed. A node number is followed by ‘!’ to prevent feature templates from match-
ing the node. Events may be signals (input or output messages) or actions (like
programming language statements). ANoEvent (or empty) node can be used to
connect other nodes. An event may be followed by assignmentsseparated by ‘/ ’
(e.g./ timeout<− 3).

The arcs between nodes may be labelled by guards. These may beeither value
conditions (imposing a restriction on the behaviour) or event conditions (that are
activated by dynamic occurrence of an event). Event conditions are distinguished
by their names (e.g.NoInput , triggered when the user does not respond to a Voice-
XML prompt).

A CRESSdiagram may contain a rule box (a rounded rectangle) that defines gen-
eral rules and configuration information. A rule box typically declares the types of
diagram variables (e.g.Uses Valuecharity, amount). A rule box may define con-
figuration information like parent diagrams, chosen features and translator options.
Definitions can be given of macros with optional parameters.Rule boxes have yet
other uses [24,25,27] that are not so applicable to IVR.

The main CRESS diagram defines the root behaviour. Although this may be the
only diagram, CRESSsupports feature diagrams that modify the root diagram (or
other features). A spliced (plug-in) feature is inserted into a root diagram by cut-
and-paste. The feature indicates how it is linked into the original diagram by giving
the insertion point and how it flows back into the root diagram. This style of feature
is appropriate for a one-off change to the original diagram.

It is usually preferable to use a template (macro) feature that is triggered by some
event in the root diagram. The triggering event is given in the first node of the fea-
ture. Feature execution stops on reaching aFinish (or empty) node. At this point,
behaviour resumes from the triggering node in the original diagram. A template
feature is statically instantiated using the parameters ofthe triggering event. The in-
stantiated feature may be appended, prefixed or substitutedfor the triggering node.

10

3.2 Sample Interactive Voice Services in CRESS

As an example of CRESSfor IVR, suppose the imaginary Charities Bank requires a
service for telephone donations to charity. Figure 2 shows the CRESSroot diagram
for this sample application. This defines the application variablescharity(UNICEF,
WWF, Red Cross) andamount(the donation in US dollars). AWelcomemessage
is defined as a macro for general use.

The root application asks the caller to state the charity andthe amount, for submis-
sion to thedonate.jspweb page. If the user asks for help or says nothing following
a prompt, an explanation is given and the user is reprompted.A currency amount is
read as a string whose first three characters give the currency code (e.g.′′USD′′). If
the user says another currency (e.g.′′UKL ′′ means pounds sterling), the user is re-
prompted for the amount.Retry in node 7 first clears the value entered foramount,
otherwise the field would be ignored on the reprompt because it has already been
filled.

Speech output may contain markup. Variable values are interpolated as, for ex-
ample,$charity. The current options list is interpolated with$enumerate. Speech
is emphasised with$emph(text). The pronunciation of a word may be given with
$sub(loch,lough)that substitutes the first word for the second. Text may be spo-
ken according to a particular class of expression, e.g.$class(phone,467423)or
$class(number,467423).

Suppose that Charities Bank has a range of applications besides the donation ap-
plication in figure 2. There might, for example, be separate applications to enquire
what charities are supported, to ask for a statement of the donations made to date,
or to request a tax relief statement. It would be desirable toensure a consistent
treatment of all these applications. For example, there should be the same default
handling of events and a common introduction. It would also be worthwhile to re-
quest confirmation before anything is submitted to a web server. There is therefore
a case for common features.

Figure 3 is theIntroductionfeature that defines an introductory environment for all
Charities Bank applications. The feature is placed just after theStart node in the
root diagram (as indicated by the ‘+’ after the triggering node number); aStart node
is implicit prior to figure 2 node 1. Introductory messages (including that of the
Welcomemacro) are spoken before executing application-specific code. Common
handlers are defined for various events. Although an application is likely to deal
with NoInput andNoMatch on a per-field basis, figure 3 ensures that after three
such failures the user is disconnected. Figure 3 also definesa platform property:
here the timeout for no input is set to three seconds (timeout<− 3).

Although theIntroductionfeature defines a specific input timeout, it could be useful
to have a feature that disables timeouts for any application. Figure 4 defines theWait

11

1 Audio "Please

make your donation"

2 Option charity

"Which charity?"

"UNICEF WWF ’Red Cross’"

8 Audio "Choose

from $enumerate"

9 Reprompt

Catch "Help NoInput"

3 Request amount

"How many dollars?"

Currency

6 Audio "Choose an

amount in US dollars"

7 Retry

4 Audio "You donated

$amount to $charity"

Filled

ElseSubString(amount,0,3) =

"USD"

Filled

Uses Value charity, amount

Welcome <- "Welcome to Charities Bank"

5 Submit donate.jsp

"amount charity"

Catch "Help NoInput"

Fig. 2. CRESSRoot Diagram for Charity Donation Application

7 Audio "Not

recognised - try again"

8 Reprompt

6 Audio "Sorry - too

many attempts"

5 Audio "Thank you

for calling - goodbye"

4 Audio "Sorry - an

internal error occurred"

NoMatch
Catch "NoInput

NoMatch" 3
Error

Exit

2 Audio Welcome

1+ Start

/ timeout <- 3

Finish

3 Audio "Say Help

or Exit at any time"

Fig. 3. CRESSFeature Diagram to introduce Charities Bank Applications

12

1+ Start

Finish

/ timeout <- 0

Fig. 4. CRESSFeature Diagram to disable Input Timeout

1+ Start

Finish

/ bargein <- false

Fig. 5. CRESSFeature Diagram to disable Prompt Barge-In

2 Request account

"Say your account number"

Digits?length=6

3 Audio "Charged to

account $account"

Filled

5 Audio "Please

say your six-digit

account number"

6 Reprompt

Catch "Help NoInput NoMatch"

Uses Value account 1- Submit U V

Finish

U URL

V Variables

4! Submit

"account.jsp" account

Fig. 6. CRESSFeature Diagram for Account

feature that setstimeoutto zero. Figure 5 is also a generic feature that disables user
barge-in, i.e. interruption of a prompt.

Figure 6 defines theAccountfeature that asks the user to supply an account number.
This feature could be generic, and not just for the CharitiesBank. The feature is
triggered before other information is submitted to a web server, i.e. the charity and
amount in the case of a donation. The trigger is aSubmit action (node 1), being
executed just before it (as indicated by the ‘–’ after the triggering node number).
The account number is submitted to theacount.jspweb page. Help is provided as
required for theaccountfield. The digit string grammar may define a specific length
(6 for account), or may define a minimum and maximum number of digits.

Figure 7 is a similar featurePIN that asks the user for the Personal Identification
Number to access an account. As an example of speech markup,$subis used to say
PIN as a word rather than as P-I-N.

13

2 Request pin

"Say your $sub(pin,PIN)"

Digits?length=4

3 Audio "Your

$sub(pin,PIN) is $pin"

Filled

5 Audio "Please say

your four-digit Personal

Identification Number"

6 Reprompt

Catch "Help NoInput NoMatch"

Uses Value pin 1- Submit U V

Finish

U URL

V Variables

4! Submit "pin.jsp" pin

Fig. 7. CRESSFeature Diagram for PIN

2 Request confirm

"Do you wish to proceed?"

Boolean

Filled

5 Audio "Please

say Yes or No"

6 Reprompt

Catch "Help NoInput NoMatch"

3 Clear

Else

Uses Value confirm 1- Submit U V

Finish

confirm

4 Reprompt

U URL

V Variables

Fig. 8. CRESSFeature Diagram for Confirmation

Figure 8 is another generic feature.Confirmasks for confirmation before final sub-
mission of information. Since theAccount, PIN andConfirmfeatures are triggered
by the sameSubmit action, feature priorities ensure that they are applied in this
order.

3.3 Translating CRESS

The CRESStoolset is written largely in Perl for portability, comprising about 14,000
lines of code and six main tools. Including test scenarios, there are about 600 sup-
porting files for all domains and target languages.

For IVR, CRESS diagrams are automatically translated into VoiceXML. On the

14

CRESS VoiceXML

Audio message audio message

Clear variables clear with namelistvariables

Menu variable prompt choices menu name variable, prompt , choice
values

Option variable prompt options field namevariable, prompt , option val-
ues

Prompt message prompt message

Reprompt reprompt

Requestvariable prompt grammar field name variable, type grammar,
prompt

Retry Undefine current field variable, re-
prompt

Submit URL variables submit to URL the namelistvariables

Fig. 9. CRESS-VoiceXML Correspondence

whole, the translation is straightforward. Figure 9 shows the main correspondence
between CRESSand VoiceXML. Forms (and menus) are prominent in VoiceXML
since this focuses on structural issues. However CRESS emphasises the flow of
control, and so does not give the same prominence to them. Instead, fields are
introduced implicitly (withMenu, Option andRequest). The flow of control in
VoiceXML can be complex and implicit, e.g. a reprompt goes back to the start of a
form and then selects the first available unfilled field. A CRESSdiagram can reflect
the same implicit flow, or can indicate this explicitly. CRESSincludes theRetry ac-
tion for re-inputting the current field – something that VoiceXML does not directly
support.

The general principles for formalising CRESS appear in [24]. Broadly speaking,
inputs and outputs are treated the same in LOTOS: they are translated as events
(usually) or as process calls (where paths converge on a node). Inputs require spe-
cial treatment in SDL as they are permitted only at the beginning of a state transi-
tion. Alternative inputs of the same signal or variable needa complex translation.
Outputs are converted straightforwardly into SDL.

For IVR services specifically, translation into LOTOSand SDL is described in [28]
and [26] respectively. The major aspect of IVR that needs a specialised translation
is event handling. Although this occurs dynamically in IVR since event names can
be constructed during execution, event dispatching needs to be defined statically
in LOTOS or SDL. Fortunately, it is possible to determine the hierarchy of event
handlers at translation time. The event dispatcher reflectsthis hierarchy, passing

15

an event to the relevant process (LOTOS) or label (SDL). Actions such as those in
figure 9 are domain-dependent, so their translation into LOTOS or SDL is specific
to IVR. Speech is not, of course, rendered directly in LOTOSor SDL but as strings
carried in event parameters.

4 Analysing Interactive Voice Response Services

4.1 Analysis in General

An IVR application can be executed like any script. Some commercial packages
allow VoiceXML to be run in an offline IDE, while others require the script to be
run by an online environment. In either case, debugging follows typical program-
ming practice. This is, of course, time-consuming and risksundetected errors. Since
CRESSdiagrams can be translated into LOTOS and SDL, this offers new possibili-
ties for automated analysis. For illustration, this paper concentrates on what can be
done with LOTOS.

There is, of course, nothing special about the LOTOS generated by CRESS. Any
standard LOTOS technique can be used for validation such as step-by-step simula-
tion, symbolic execution, rapid prototyping and testing. Any standard LOTOS tech-
nique can be used for verification such as equivalence checking, model checking
and theorem proving.

The main problem in formal analysis of the generated LOTOS is that the state space
is usually infinite in two ways: events carry infinite sorts (such as speech strings),
and behaviour may recurse indefinitely. As a result, verification is impracticable
using standard temporal logics like CTL (Computation Tree Logic [3]) or LTL
(Linear Temporal Logic [18]), and standard model-checkerslike SPIN [10].

A number of solutions might be adopted:

• A symbolic transition system could be generated, allowing analysis of a finite
transition system using symbolic model-checking. Although [6] is a promising
basis for this, the work has not yet progressed to the point where automated
analysis is feasible.

• Symbolic on-the-fly test generation could be used [20], though again this tech-
nique is not yet usable for IVR services.

• Event values could be restricted when the state space is generated. The Parameter
Constraint Language of [29] allows the specifier to define interesting parameter
values as annotations on events. These are translated into parallel constraint pro-
cesses that limit the state space. The programming interface for CADP (Cæsar
Aldébaran Development Package [8]) also allows the specifier to selectively enu-

16

merate sorts during state space generation. Unfortunatelyneither approach is
particularly suitable for IVR services since the restriction on values is context-
dependent.

• Observer processes can be placed in parallel with the main behaviour to check
for undesirable conditions. The state space can then be generated, stopping if an
observer process forces deadlock due to violation of a required property. This is
a practical solution that is explored in section 4.2.

• Validation (i.e. testing) can be used to check correct behaviour. Since the tests
are concrete and finite, validation is a practical solution that is explored in sec-
tions 4.3 and 4.4.

4.2 Verification using Observer Processes

The idea of observer processes is well established. In fact,the approach resembles
that of model-checking except that properties are formulated as observer processes.

The LOTOS specification generated by CRESS for VoiceXML has the user and a
web server as its environment. The top-level structure of the behaviour is as follows:

Hide RecoIn (* hide recogniser signals *)
(

Application [Reco,Serv,User] (* VoiceXML application *)
|[Reco]| (* synchronised on recogniser messages *)

Recogniser [Reco,User] (* VoiceXML recogniser *)
)

|| (* synchronised on all messages *)
Observer [Reco,Serv,User] (* VoiceXML observer *)

TheObserverprocess synchronises on all events at gatesReco(messages to/from
the speech recogniser),Serv (messages to the web server) andUser (messages
to/from the user). By default, theObserverprocess permits any events at these
gates. This requires care to make sure that accidental deadlocks are avoided. Fortu-
nately the variety of event structures is small, so it is practicable to ensure that all
possible events are handled.

Specific conditions can be checked with observer processes.For example, an easy
mistake with an IVR application is to loop indefinitely instead of giving up after a
certain number of user attempts. The following observer process counts how many
times the sameRequestfor input is repeated. If it reaches a certain limit, the be-
haviour deadlocks. Since all observer processes are synchronised with the main
behaviour, the whole specification deadlocks at this point.

ProcessRecogniserPrompt [Reco] (* repeated prompt up to limit *)
(prompt:Text, count,limit:Nat) :Exit :
Reco !Request ?promptNew:Text ?grammar:Grammar (* allow request ... *)

17

[(promptNew Eq prompt) Implies (count Lt limit)]; (* to limit if same *)
(

[promptNew Eq prompt]> (* same prompt? *)
RecogniserPrompt [Reco] (prompt, count + 1, limit) (* incr.count *)

[promptNew Ne prompt]> (* different prompt? *)
RecogniserPrompt [Reco] (promptNew, 1, limit) (* set countto 1 *)

)
EndProc

Many variations on this are used.Menu andOption inputs are checked in the same
way. A limit can be placed on the total number of prompts in anyone session, and
not just on repetitions of the same prompt. Relationships between events can also
be checked, for example to ensure that there is noSubmit to the web server if the
user invokesCancelor Exit .

The state space is generated up to a certain depth for the specification including
observer processes. If any deadlocks are found, the trace upto that point is used to
identify the cause of the problem. For example, if a prompt count limit is met it can
be seen which field is being repeatedly requested.

Consider theDonationapplication in figure 2. Does it contain an infinite loop? An
observer process likeRecogniserPromptabove was defined to check for repeated
Option inputs beyond a limit of 3. The specification was then explored to a depth
of 15 using anExpandfunction of LOLA (LOTOSLaboratory [16]). This discovers
several deadlocking traces such as the one below. (For readability, text strings are
given rather than their actual, rather ugly representationin LOTOS.)

User !Audio !′′Please make your donation′′; (* get introductory message *)
User !Audio !′′Which charity?′′; (* get charity prompt *)
User !Tone ?input:Text; (* provide invalid touch tone *)
User !Audio !′′Input was not recognised′′; (* get error message *)
User !Audio !′′Which charity?′′; (* get charity prompt *)
User !Event ?eventEvent; (* cause invalid user event *)
User !Audio !′′Input was not recognised′′; (* get error message *)
User !Audio !′′Which charity?′′; (* get charity prompt *)
User !Voice ?input:Text; (* select invalid charity *)
User !Audio !′′Input was not recognised′′; (* get error message *)

This sequence arises because the user gives three incorrectinputs in a row. Now that
the prompt has been repeated up to the limit, it is no longer permitted and the spec-
ification deadlocks. In fact, figure 2 allows this prompt to bere-issued indefinitely.
The application needs to be modified to prevent this.

18

4.3 Validation using Scenario-Based Tests

Use of observer processes requires LOTOS to be written. However the goal of
CRESS is to allow non-specialists to define and investigate services. It is thus nec-
essary to hide the underlying formalism. Desirable properties of a service should
be expressed using a neutral language. The idea is to characterise the expected
behaviour of a service using scenarios, much as use-case scenarios are used in soft-
ware engineering. Of course, a scenario-based approach canachieve only limited
validation of a service. However it is practical (even for aninfinite state space) and
conforms to software engineering practice.

CRESSis therefore complemented by its culinary counterpart MUSTARD (Multiple-
Use Scenario Test And Refusal Description). As the name suggests, MUSTARD

is used to define scenario-based tests of what a service must do. However, as is
common in testing it is also important to check what a servicemust not do: its
refusals. Refusal-based testing is more stringent in checking that a specification is
not too loose in its behaviour. MUSTARD is an elaboration of the ANTEST language
developed for ANISE (Architectural Notions In Service Engineering [23]).

Similar to CRESS, MUSTARD is used to formulate tests independently of the actual
language used for testing. MUSTARD must therefore be translated into a partic-
ular test realisation. In the work reported here this is LOTOS, though MUSTARD

should be capable of translation into MSCs (for use with SDL), TTCN (Tree and
Tabular Combined Notation), etc. Although MUSTARD could have been a graph-
ical notation like CRESS, the requirements for expressing tests are quite different
from those for expressing services. MUSTARD was therefore designed as a textual
language that emphasises combinations of simpler sub-tests.

The MUSTARD translator is mainly written in theM4 macro language [21], with
a Perl wrapper that automates the validation procedure. Each service or feature is
associated with a MUSTARD file that defines the tests to be performed on it. This
allows all services and features to be validated with a single command. For exam-
ple, theConfirm feature in figure 8 is validated as follows using theTestExpand
function of LOLA:

Testing Confirm Accept ... Pass 1 succ 0 fail 0.9 secs
Testing Confirm Incorrect ... Pass 1 succ 0 fail 0.4 secs
Testing Confirm Retry ... Pass 1 succ 0 fail 0.4 secs

A test ought to Pass. A scenario might legitimately be passedin multiple ways,
in which case the number of succ(essful) paths is reported. If all possible paths
lead to failure, this is reported as Fail. If some paths are successful and some are
not (usually due to non-determinism), the test is reported as Inconclusive. In the
case of a refusal test, success means that the test does not perform the undesirable
behaviour.

19

If a test has one or more failure paths, these are reported. However, failure is dis-
covered in LOTOS terms. The LOTOS traces are therefore be translated back into
the MUSTARD notation before being reported. This preserves the language inde-
pendence of the approach.

The tests formulated using MUSTARD are used to check the specification of an
IVR application, determining if it has unexpected or undesirable behaviour. The
same tests can also be used as scripts to evaluate the live IVRapplication, e.g. after
compilation of the CRESSdescription into VoiceXML. This is potentially more sys-
tematic than the ‘Wizard of Oz’ procedures that are often used, wherein an expert
tester exercises the behaviour of the live application.

4.4 The MUSTARDTest Notation

Figure 10 summarises the MUSTARD test notation. The simplest behaviour in-
volves the environment (user or web server) receiving a signal (recv) or sending
one (send). More complex tests combine these. At the topmost level, a successful
test leads to the internal success event (OK). For example, a test of theDonation
behaviour in figure 2 might be:

test(Donation1, % donation test
succeeds(% successful sequence

recv(Audio,Please make your donation), % get introductory message
recv(Audio,Which charity?), % get charity prompt
send(Voice,WWF), % select WWF
recv(Audio,How many dollars?), % get amount prompt
send(Voice,$50), % select $50
recv(Audio,You donated $50 to WWF), % get confirmatory message
recv(Server,donate.jsp,$50,WWF))) % get server request

A complete test like this could be overly prescriptive because it insists on behaviour
that is not crucial to the test. This is particularly important for a feature, where the
focus should be on testing the feature and not its surrounding behaviour. For this
reason,wait is provided as an alternative torecv so that other behaviour is ignored
until the required one. The above test, for example, could besimplified to its basic
elements:

test(Donation2, % donation test
succeeds(% successful sequence

wait(Audio,Which charity?), % get charity prompt
send(Voice,WWF), % select WWF
wait(Audio,How many dollars?), % get amount prompt
send(Voice,$50), % select $50
wait(Server,donate.jsp,$50,WWF))) % get server request

20

M USTARD Meaning

% text comment

decides(behaviour,...) provides behaviours as non-deterministic
(system-decided) alternatives

depends(condition,test,...) if first condition holds then do first test, else
check later condition/test pairs

exits(behaviour,...) executes behaviours in sequence and then exits

fails(behaviour,...) executes behaviours in sequence and then stops

interleaves(behaviour,...) interleaves behaviours in parallel

offers(behaviour,...) provides behaviours as deterministic (user-
decided) alternatives

present(feature) checks if feature is present

recv(signal,parameters) environment receives signal with given param-
eters

refuses(behaviour,...) executes behaviours in sequence, but the last be-
haviour must not happen

send(signal,parameters) environment sends signal with given parameters

sequences(behaviour,...) executes behaviours in sequence

succeeds(behaviour,...) executes behaviours in sequence, then causes
the internal success event and stops

test(name,behaviour) define test with given name and behaviour

wait(signal,parameters) absorbs events, continuing on occurrence of
given signal with given parameters

Fig. 10. Summary of MUSTARD Notation

In order to ground a partial test like this, it is still necessary to provide some key
inputs such as the choice of charity and amount.

Suppose theConfirm feature in figure 8 is to be tested for the user agreeing to
proceed. The following waits for the confirmation prompt, and then issues a user
agreement.

test(Confirm1, % confirmation test
succeeds(% successful sequence

wait(Audio,Do you wish to proceed?), % get confirm prompt
send(Voice,Yes))) % agree

21

Rather than usesucceeds, it is possible to construct a successful test from more
basic behaviours. Thesequencesoperator yields a sequence of steps that can then
lead to success. The elements of a sequence can be compound behaviours built with
other operators. A choice can be provided to the environmentwith offers. In such
a case,exits may be used to allow a sequence to continue.

The following test ofConfirmchecks what happens if the user does not answer Yes
or No. As an (artificial) example of constructing a successful sequence, an inner
sequencesis used with an outersucceeds. After the confirmation prompt the user
may ask for help, say nothing, or say the wrong thing. The usershould then be
reprompted. Agreeing terminates the test successfully.

test(Confirm2, % confirmation test
succeeds(% successful sequence

sequences(% follow sequence
wait(Audio,Do you wish to proceed?), % get confirm prompt
offers(% offer alternatives

exits(send(Event,Help)), % ask for help
exits(send(Event,NoInput)), % say nothing
exits(send(Voice,Eh?))), % say wrong thing

recv(Audio,Please say Yes or No), % advise user
recv(Audio,Do you wish to proceed?), % get confirm prompt
send(Voice,Yes)))) % agree

Other operators can be used for more complex tests. For generality concurrent tests
may be formulated usinginterleaves, though this finds little use in IVR testing. A
system choice can be made usingdecides, unlikeoffers which leaves the choice up
to the user. Conditional tests make use ofdepends, with conditions being arbitrary
boolean expressions. A common form of conditional test usespresent to check if
a given feature has been deployed. The following offers alternative tests depending
on whether theDonationor Order root diagram is present.

test(Multiple, % multiple tests
depends(% conditional dependency

present(Donation), % donation root diagram?
..., % donation test

present(Order), % order root diagram?
...)) % order test

Refusal tests are the most stringent, as they say what must not happen. The overall
behaviour is defined byrefuses. This contains initial steps that must happen. The
final (possibly composite) behaviour that must not happen isintroduced byfails.
The following allows a donation up to the point at which the user does not agree to
proceed. Following this, the donation request must not be sent to the server. That
is, the complete test must not allow a sequence leading to this server request.

test(Confirm3, % confirmation test
refuses(% refusal sequence

22

wait(Audio,Which charity?), % get charity prompt
send(Voice,Red Cross), % select Red Cross
wait(Audio,How many dollars?), % get amount prompt
send(Voice,$30), % select $30
wait(Audio,Do you wish to proceed?), % get confirm prompt
send(Voice,No), % disagree
fails(% failure sequence

wait(Server,donate.jsp,$30,Red Cross))) % get server request

With these building blocks, complex tests can be formulatedin MUSTARD. Each
root diagram or feature diagram is associated with a set of scenarios and refusals
that characterise its behaviour. The tests are automatically applied when a feature
is deployed, whether in isolation or in combination with other features.

As an indication of how MUSTARD is translated into LOTOS, the following is the
automatic translation of testConfirm2above:

ProcessConfirm2 [Serv,User,OK] :NoExit : (* confirm test *)
Wait1 [Serv,User] (* wait for confirm prompt *)

>> (* followed by *)
(

User !Event !Help; (* user asks for help *)
Exit (* continue *)

(* or *)
User !Event !NoInput; (* user says nothing *)
Exit (* continue *)

(* or *)
User !Voice !′′Eh?′′; (* user says wrong thing *)
Exit (* continue *)

)
>> (* followed by *)

User !Audio !′′Please say Yes or No′′; (* advise user *)
User !Audio !′′Do you wish to proceed?′′; (* get confirm prompt *)
User !Voice !′′Yes′′; (* agree *)
OK; (* success event *)
Stop (* stop behaviour *)

Where (* local definition *)
ProcessWait1 [Serv,User] :Exit : (* wait for confirm prompt *)

Serv ?par1:Text ?par2:Values; (* ignore server message *)
Wait1 [Serv,User] (* continue waiting *)

(* or *)
User !Audio ?par1:Text; (* get audio output *)
(

[par1 Eq′′Do you wish to proceed?′′] > (* confirm prompt? *)
Exit (* exit local process *)

(* or *)

23

[par1 Ne′′Do you wish to proceed?′′] > (* not confirm prompt? *)
Wait1 [Serv,User] (* continue waiting *)

)
(* or *)

User !Event ?par1:Event; (* ignore user event *)
Wait1 [Serv,User] (* continue waiting *)

(* or *)
User !Tone ?par1:Text; (* ignore user tone *)
Wait1 [Serv,User] (* continue waiting *)

(* or *)
User !Voice ?par1:Text; (* ignore user voice *)
Wait1 [Serv,User] (* continue waiting *)

EndProc (* Wait1 *)
EndProc (* Confirm2 *)

5 Feature Interaction in Interactive Voice Response Services

5.1 Categories of IVR Feature Interaction

It has been seen how the integrity of an IVR application can bechecked through
the use of observer processes and tests. The term ‘feature’ is used loosely in the
following to mean any addition to the base application, as well as to mean a CRESS

feature diagram. The addition of further features to an IVR application can lead to
interactions in much the same way as for telephony. However the nature of inter-
actions is rather different for IVR. The following categories of feature interactions
can be identified:

(1) IVR applications can initiate phone calls, e.g. an ordering application might
set up a call to a sales assistant. Such calls may suffer from the kinds of in-
teractions known from telephony; for example call screening might interfere
with call forwarding. It is also possible for the use of a database or web server
to cause interactions through conflicting demands on the underlying resources.
All these interactions are strictly external to IVR and are not considered fur-
ther here.

(2) Platform properties may be defined hierarchically. For example, the input
timeoutdefined in figure 3 may be overridden within a field by a local fea-
ture. From the user’s point of view this would be an observable change in
behaviour, e.g. the input timeout might be shortened or evendisabled. Other
platform properties such asbargein, fetchtimeoutandnospeechtimeoutcould
similarly lead to conflicts.

(3) Two features may also change an application variable inconsistently, leading
to differing behaviour. The goal of theAccountfeature in figure 6 is to obtain

24

a literal account number. A separate feature might normalise an account num-
ber, e.g. validating a check digit or setting an account number into a standard
format. The resulting account number would then depend on which features
were triggered and in which order.

(4) In general the outcome of feature application could depend on the order in
which features are invoked. Without a defined ordering or prioritisation, fea-
tures could interfere with each other.

(5) Event handlers are defined in a hierarchy. When an event occurs, the IVR inter-
preter looks upwards in the hierarchy for the appropriate handler. For example,
consider figures 2 and 3. If there is no input in response to thecharityprompt
(figure 2 node 2), execution follows the field handler (figure 2node 8). How-
ever after three failures to input, the generic handler willbe invoked (figure 3
node 6). A consequence of this is that a feature may unexpectedly override
the usual handling of an event. It may do so at either a more local or a more
global level. Non-determinism could arise if a feature added an event handler
whose condition overlapped with an existing event handler.

(6) Several input grammars may be active at the same time. This is particularly
true for what are called mixed-mode initiative forms that donot require the
user to input in a fixed order. For example, at some point the user might be al-
lowed to give a name or a date of birth. Provided the grammars do not overlap,
this is not problematic. However grammars may overlap, e.g.2500 might be
interpreted as an amount (currency grammar) or as a PIN (digit string gram-
mar). Such a situation could arise through design of the baseapplication, but
is unlikely as the consequences would be obvious to the designer. More real-
istically, overlapping grammars could arise because a feature adds a new field
to an existing mixed-mode form. The effect is that feature interaction would
cause non-deterministic behaviour.

(7) An indirect interaction arises with responses using DTMF (Dual-Tone Multi-
Frequency, i.e. touch-tone). VoiceXML allows these in place of voice input,
e.g. 1 might select the first choice from a menu. By default, DTMF digits are
allocated in sequence to choices. If a feature introduces another choice earlier
in the menu, the numbering of later choices will be altered.

5.2 Feature Interaction Detection inCRESS

CRESS takes a conventional view of feature interaction. If a feature behaves dif-
ferently in the presence of another feature, then the two areconsidered to interact.
From a theoretical point of view, it should be checked whether the specification of
Root⊕Feature1agrees (in the sense of some formal equivalence) with the specifi-
cation ofRoot⊕Feature1⊕Feature2with respect to the behaviour ofFeature1.

As discussed in section 4.1, complete verification of IVR specifications is imprac-
ticable. CRESS must therefore rely on more pragmatic means. The relationship

25

2 Request restart

"Start over again?"

Boolean

Filled

3! Submit donate.jsp

"amount charity"

Else

Uses Value restart 1- Clear

Finish

restart

Catch "NoInput NoMatch"

Fig. 11. CRESSFeature Diagram for Restart

checked by CRESSis that tests ofFeature1still pass in the presence ofFeature2. Of
course this is a weak form of consistency checking, but if thescenarios reflect the
key behaviour of a feature then it is reasonably thorough. Although it is common in
feature interaction work to consider only pairs of features, CRESSis normally used
to check for consistency in the presence ofall other features.

The tests formulated using MUSTARD therefore play a double role: to build confi-
dence in the correctness of an IVR service or feature, and to check for interactions
among IVR features. All features are deployed with a base application, then the
tests of each feature are automatically run. This is able to find problems in a rea-
sonable timescale (minutes).

Of the categories of IVR interaction identified in section 5.1, (1) has already been
ruled out of scope. Category (2) is problematic (with LOTOS and SDL at least).
Timing-related properties cannot be checked without choosing a target language
that supports a notion of real time. Dialogue-related platform properties can also
be impossible to check, e.g. determining whether barge-in can occur requires non-
atomic events. However, categories (3) to (7) all cause changes in application func-
tionality and can be detected by CRESS.

Reconsider the Charities Bank application in section 3.2. If a feature such asCon-
firm (figure 8) clears the form, the user must re-input all information again. It may
be decided that this is a drastic action that should not be taken without user con-
firmation. A newRestartfeature is therefore added to prompt the user before any
Clear action is taken. Figure 11 prompts the user for confirmation of a restart. Only
if the user positively agrees does clearing take place, otherwise the donation details
are submitted and the whole application exits.

This seems like a useful addition. However testing of theConfirm feature then
reports the following:

Testing Confirm Accept ... Pass 1 succ 0 fail 1.3 secs

26

Testing Confirm Incorrect ... Pass 1 succ 0 fail 0.4 secs
Testing Confirm Retry ... Fail 0 succ 1 fail 0.5 secs

followed by a diagnosis of the failing behaviour:

recv(Audio,Please make your donation)
recv(Audio,Which charity?)
send(Voice,Red Cross)
recv(Audio,How many dollars?)
send(Voice,$15)
recv(Audio,You donated $15 to Red Cross)
recv(Audio,Do you wish to proceed?)
send(Voice,No)
recv(Server,donate.jsp,$15,Red Cross)
<failure point>

The failing test is the following one forConfirm:

test(Retry, % retry confirmation
succeeds(% successful sequence

wait(Audio,Which charity?), % get charity prompt
send(Voice,Red Cross), % select Red Cross
wait(Audio,How many dollars?), % get dollars prompt
send(Voice,$15), % select $15
wait(Audio,Do you wish to proceed?), % get confirm prompt
send(Voice,No), % disagree†
wait(Audio,Which charity?), % get charity prompt
send(Voice,UNICEF), % select UNICEF
wait(Audio,How many dollars?), % get dollars prompt
send(Voice,$70), % select $70
wait(Audio,Do you wish to proceed?), % get confirm prompt
send(Voice,Yes), % agree
wait(Server,donate.jsp,$70,UNICEF))) % get server request

The problem is thatConfirmexpects all form fields to be input again if the user de-
cides not to proceed. However theRestartfeature allows the user to cancel such an
action (following the point marked† above); submission to the web server can pro-
ceed after all. As a result, the original donation data may besubmitted byRestart
in contradiction toConfirm. Clearly these two features interact and must be re-
designed.

6 Conclusion

The nature of IVR services and their representation in VoiceXML have been ex-
plained. CRESS has been introduced as a general graphical notation for services,
with particular emphasis on IVR. CRESS is formalised through translation to lan-

27

guages like LOTOS (the focus of this paper) and SDL. However CRESS can also
be translated for implementation into languages like VoiceXML (the focus of this
paper) and Perl.

CRESSoffers the following benefits for IVR development:

• platform and language independence
• support of features and services
• formal definition of services
• rigorous analysis of applications.

The use of observer processes has been illustrated as a meansof monitoring unde-
sirable situations in an IVR service. The MUSTARD scenario-based test language
has also been introduced with reference to IVR.

CRESSadds the concepts of service and feature to IVR. The nature offeature inter-
action for IVR has been discussed, including a general categorisation of the kinds
of feature interaction that may arise. The use of MUSTARD to detect interactions
has been explained, with an example to make the ideas more concrete.

CRESSscales satisfactorily in the following senses:

• Although a single large diagram could be drawn of an entire application, features
are normally defined in their own diagrams. It is therefore practicable to handle
many features.

• Validation using observer processes is modular when the processes monitor in-
dependent conditions. However a composite observer process is needed when
conditions depend on shared events.

• Validation using scenario-based tests is modularised through scenarios for each
individual feature. Scenarios have to be linked only when they depend on the
presence of other features. Validating scenarios for one feature does not incur
much of a performance penalty in the presence of multiple other features.

• Validating an IVR application normally requires only one user. However, check-
ing for telephony interactions (e.g. among IN features) requires multiple users.
Validation time then depends on the square of the number of users (which is an
acceptable degree of variation).

CRESShas now proven itself in three domains: Intelligent Networks, Internet tele-
phony, and now IVR. It has shown itself to be flexible, expressive, and able to
support feature description and interaction detection.

28

Acknowledgements

Nuance Corporation kindly provided an academic licence foruse of Nuance V-
Builder TM in this work.

References

[1] A. V. Aho, S. Gallagher, N. D. Griffeth, C. R. Schell, and D. F. Swayne. SCF3/Sculptor
with Chisel: Requirements engineering for communicationsservices. In K. Kimbler
and W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications and
Software Systems, pages 45–63. IOS Press, Amsterdam, Netherlands, Sept. 1998.

[2] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. M. S. Logrippo, J.Sincennes, B. Stepien,
and T. Ware. Feature description and feature interaction analysis with use case maps
and LOTOS. In M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Interactions
in Telecommunications and Software Systems, pages 274–289. IOS Press, Amsterdam,
Netherlands, May 2000.

[3] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic ofbranching time.Acta
Informatica, 20:207–226, 1983.

[4] L. Blair and J. Pang. Feature interactions – Life beyond traditional telephony.
In M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Interactions in
Telecommunications and Software Systems, pages 83–93. IOS Press, Amsterdam,
Netherlands, May 2000.

[5] M. Calder and A. Miller. Generalising feature interactions in email. In D. Amyot
and L. Logrippo, editors,Proc. 7th. Feature Interactions in Telecommunications and
Software Systems, pages 187–204. IOS Press, Amsterdam, Netherlands, June 2003.

[6] M. Calder and C. E. Shankland. A symbolic semantics and bisimulation for full
LOTOS. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,Proc. Formal Techniques for
Networked and Distributed Systems (FORTE XIV), pages 184–200. Kluwer Academic
Publishers, London, UK, Sept. 2001.

[7] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and
H. Velthuijsen. A feature-interaction benchmark for IN andbeyond. IEEE
Communications Magazine, pages 64–69, Mar. 1993.

[8] J.-C. Fernández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.
CADP (CÆSAR ALDÉBARAN Development Package): A protocol validation and
verification toolbox. In R. Alur and T. A. Henzinger, editors, Proc. 8th. Conference
on Computer-Aided Verification, number 1102 in Lecture Notes in Computer Science,
pages 437–440. Springer-Verlag, Berlin, Germany, Aug. 1996.

[9] R. J. Hall. Feature interactions in electronic mail. In M. H. Calder and E. H. Magill,
editors,Proc. 6th. Feature Interactions in Telecommunications andSoftware Systems,
pages 67–82. IOS Press, Amsterdam, Netherlands, May 2000.

29

[10] G. Holzmann and D. Peled. The state of SPIN. In Proc. 8th International Conference
on Computer Aided Verification, volume 1102 ofLecture Notes in Computer Science,
pages 385–389, Berlin, Germany, 1996. Springer-Verlag.

[11] ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS
– A Formal Description Technique based on the Temporal Ordering of Observational
Behaviour. ISO/IEC 8807. International Organization for Standardization, Geneva,
Switzerland, 1989.

[12] ITU. Message Sequence Chart (MSC). ITU-T Z.120. International
Telecommunications Union, Geneva, Switzerland, 2000.

[13] ITU. Specification and Description Language. ITU-T Z.100. International
Telecommunications Union, Geneva, Switzerland, 2000.

[14] J. Lennox and H. Schulzrinne. Feature interaction in internet telephony. In
M. H. Calder and E. H. Magill, editors,Proc. 6th. Feature Interactions in
Telecommunications and Software Systems, pages 38–50. IOS Press, Amsterdam,
Netherlands, May 2000.

[15] A. Metzger and C. Webel. Feature interaction detectionin building control systems by
means of A formal product model. In D. Amyot and L. Logrippo, editors,Proc. 7th.
Feature Interactions in Telecommunications and Software Systems, pages 105–121.
IOS Press, Amsterdam, Netherlands, June 2003.

[16] S. Pavón Gomez, D. Larrabeiti, and G. Rabay Filho. LOLA user manual (version
3R6). Technical report, Department of Telematic Systems Engineering, Polytechnic
University of Madrid, Spain, Feb. 1995.

[17] M. C. Plath and M. D. Ryan. Plug-and-play features. In K.Kimbler and W. Bouma,
editors,Proc. 5th. Feature Interactions in Telecommunications andSoftware Systems,
pages 150–164. IOS Press, Amsterdam, Netherlands, Sept. 1998.

[18] A. Pnueli. A temporal logic of concurrent programs.Theoretical Computer Science,
13:45–60, 1981.

[19] S. Reiff-Marganiec and K. J. Turner. A policy architecture for enhancing and
controlling features. In D. Amyot and L. Logrippo, editors,Proc. 7th. Feature
Interactions in Telecommunications and Software Systems, pages 239–246. IOS Press,
Amsterdam, Netherlands, June 2003.

[20] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation.
In Proc. Integrated Formal Methods 00, number 1945 in Lecture Notes in Computer
Science, pages 338–357. Springer-Verlag, Berlin, Germany, Nov. 2000.

[21] R. Seindal. GNUm4(version 1.4). Technical report, Free Software Foundation, 1997.

[22] S. Tsang, E. H. Magill, and B. Kelly. An investigation ofthe feature interaction
problem in networked multimedia services. InProc. 3rd. IEEE Communication
Networks Symposium, pages 58–61. Institution of Electrical and Electronic Engineers
Press, New York, USA, July 1996.

30

[23] K. J. Turner. Validating architectural feature descriptions using LOTOS. In K. Kimbler
and W. Bouma, editors,Proc. 5th. Feature Interactions in Telecommunications and
Software Systems, pages 247–261. IOS Press, Amsterdam, Netherlands, Sept. 1998.

[24] K. J. Turner. Formalising the CHISEL feature notation. In M. H. Calder and E. H.
Magill, editors,Proc. 6th. Feature Interactions in Telecommunications andSoftware
Systems, pages 241–256. IOS Press, Amsterdam, Netherlands, May 2000.

[25] K. J. Turner. Modelling SIP services using CRESS. In D. A. Peled and M. Y. Vardi,
editors,Proc. Formal Techniques for Networked and Distributed Systems (FORTE
XV), number 2529 in Lecture Notes in Computer Science, pages 162–177. Springer-
Verlag, Berlin, Germany, Nov. 2002.

[26] K. J. Turner. Formalising graphical service descriptions using SDL. In R. Reed and
J. Reed, editors,SDL 2003, number 2708 in Lecture Notes in Computer Science, pages
183–202. Springer-Verlag, Berlin, Germany, July 2003.

[27] K. J. Turner. Representing new voice services and theirfeatures. In D. Amyot
and L. Logrippo, editors,Proc. 7th. Feature Interactions in Telecommunications and
Software Systems, pages 123–140. IOS Press, Amsterdam, Netherlands, June 2003.

[28] K. J. Turner. Specifying and realising interactive voice services. In H. König,
M. Heiner, and A. Wolisz, editors,Proc. Formal Techniques for Networked and
Distributed Systems (FORTE XVI), number 2767 in Lecture Notes in Computer
Science, pages 15–30. Springer-Verlag, Berlin, Germany, Sept. 2003.

[29] K. J. Turner and Qian Bing. Protocol techniques for testing radiotherapy accelerators.
In D. A. Peled and M. Y. Vardi, editors,Proc. Formal Techniques for Networked
and Distributed Systems (FORTE XV), number 2529 in Lecture Notes in Computer
Science, pages 81–96. Springer-Verlag, Berlin, Germany, Nov. 2002.

[30] VoiceXML Forum. Voice eXtensible Markup Language. VoiceXML Version 2.0.
VoiceXML Forum, Jan. 2003.

[31] M. Weiss. Feature interactions in web services. In D. Amyot and L. Logrippo, editors,
Proc. 7th. Feature Interactions in Telecommunications andSoftware Systems, pages
149–156. IOS Press, Amsterdam, Netherlands, June 2003.

[32] P. Zave and M. Jackson. New feature interactions in mobile and multimedia
telecommunications services. In M. H. Calder and E. H. Magill, editors,Proc. 6th.
Feature Interactions in Telecommunications and Software Systems, pages 51–66. IOS
Press, Amsterdam, Netherlands, May 2000.

31

