Formal Testing of
Distributed Systems

R. M. Hierons

Brunel University, UK
rob.hierons@brunel.ac.uk
http://people.brunel.ac.uk/~csstrmh

Networked and Distributed
Systems



Work With

> Mercedes Merayo
» Manuel Nunez

> Jessica Chen
» Hasan Ural

Networked and Distributed
Systems



Challenges in Testing

» These include:
o Scale
o Concurrency
o Distribution
o The oracle problem.

» Potential solution, model-based testing:

o Automate testing on the basis of a formal
model or specification.

Networked and Distributed
Systems



Model Based Testing

o We only observe interactions between the
system under test (SUT) and its environment.

e 10 reason about test effectiveness we
assume:

* The behaviour of the SUT can be expressed in the
same language as the model.

Networked and Distributed
Systems



Models for distributed and

networked systems

» Such systems typically:
o Have states and actions
o Are concurrent

> |f we take a black-box view, the last issue
IS less important

Networked and Distributed
Systems



Formal languages

> Typically use states and transitions
between states triggered by actions.

» Many can be seen as one of:

o Finite state machines

o Labelled transition systems (and input output
transition systems)

» Former less general but the models are
easier to analyse.

Networked and Distributed
Systems



Multi-port systems

» Physically distributed interfaces/ports.
> A tester at each port.

tester tester

/ SUT
tester

Networked and Distributed
Systems




Distributed testing

» Mainly focus on the simplest approach:

> The testers cannot communicate with one
another

> There is no global clock

> Observations are ‘local’

Networked and Distributed
Systems



Motivation

o Initially just testing/test generation.

o The discussion will be around both
* testing and
* implementation/conformance relations.

o [esting from:

* input output transition systems and possibly
o deterministic finite state machines
« nhondeterministic finite state machines

Networked and Distributed
Systems



Testing and
Observations

Networked and Distributed
Systems



Global Traces

> A global trace is a sequence of inputs and
outputs.
» \We assume there are m ports and:

« X, Will denote an input at port p (from X))

o (Vi,-0s¥) €Y, Y=(Y U{-})x...x(Y,{-}), will be
an output

> A global trace is an element of (X x Y)*

Networked and Distributed
Systems



Consequences

> Each tester observes only the interactions (/ocal
trace) at its port

Tester1 SUT Tester 2

s

T vs

> The tester at port 1 observes x,yx,y, and the
tester at 2 observes y, only.

Networked and Distributed
Systems



What the testers observe

» Given global trace z, the tester at p
observes a local trace n,(z) .

Tester 1 Tester 2
~ X1
Y1
o \Q‘
~ X1
/ Y1

Networked and Distributed
Systems



Controllability problems

» The following test has a controllability
problem: introduces nondeterminism into

testing.
g tester SUT tester

T
//

Networked and Distributed
Systems



Observability problems

» The following look the same

tester Spec tester tester SUT tester
\ \
Y1 Y1
&A
X4
&’ \
A/y/

> Testers/users cannot ‘map’ output to input

Networked and Distributed
Systems



Equivalent global traces

» Since we only observe local traces:

o Global traces z and z' are indistinguishable if
their projections are identical: the local traces
are the same.

o We denote this: z~Z’
> The following are equivalent under ~
o X4/(Y1,Y2)X4/(Y1,-)

o Xq/(y1,)X4/(Y1, ¥2)
» Both have x,y.x,y, at port 1 and y, at 2.

Networked and Distributed
Systems



Problem: Test effectiveness is not
monotonic

» Example: x, detects a fault but x,x, does
not.

tester SUT tester tester Spec tester
\ \
2 Y1
wA
&’

Networked and Distributed
Systems



Two approaches to defining

Implementation relations
> \We might have:

o Agents at ports are entirely ‘independent’:

* No external agent can receive information
regarding observations at more than one port

o Or the local traces observed at the ports can
be ‘brought together’ later.

Networked and Distributed
Systems



Differences

> Specification

TeSter 2 Tester 1

Tester 1

.
/

T~z

> SUT

.
/

Tester 2

Tz

Tester 1 SUT Tester 2

.
/

T~z

Networked and Distributed
Systems




Using an external network

> If we connect the testers using an external
network, sometimes we can overcome

controllability and observability problems.
tester SUT tester tester SUT tester

\
/

\.
—>

Networked and Distributed
Systems



But

> If a system has physically distributed
interfaces then the implementation relation
should reflect this:

« Even if we can connect the testers, we should
be careful that we do not give the verdict fail
when the behaviour is acceptable in use.

e The users will only observe local traces.

Networked and Distributed
Systems



Past research

» Mainly on testing from a deterministic finite
state machine (DFSM):

o Generating test sequences that do not suffer
from controllability and/or observability
problems

o Adding coordination messages (possibly
adding a minimum number).

Networked and Distributed
Systems



Problems/issues

> A DFSM can have transitions that can’t be
executed without controllability problems.

> Test generation algorithms place
conditions on the DFSM — they are not
general.

» The methods test against the ‘traditional’
iImplementation relation — aiming to do too
much?

» Using DFSMs is restrictive.

Networked and Distributed
Systems



The solution

» We need a good understanding of what it
means to distinguish two models with
distributed ports.

> This gives us new implementation
relations.

» \We want to test against these.

Networked and Distributed
Systems



Input Output Transition
Systems (IOTSs)



The models

> These are labelled transition systems in
which we distinguish between input and
output.

» \We have states and transitions between
the states.
» Notation:

o Normally we precede the name of an input by
? and the name of an output by !.

Networked and Distributed
Systems



Internal events and quiescence

> We have two special types of events:

 Internal events (1) are state transitions that do
not require input and do not produce output.

o A state s is quiescent if from s output cannot
be produced without first providing input.

o If s is quiescent then we add a self-loop
transition from s with label .

Networked and Distributed
Systems



A simple example

> A (very) simple coffee machine

?1 /\?2

ltea l l Icoffee

> \We have not shown the self-loops for
guiescence.

Networked and Distributed
Systems



|IOTS models

> |[OTS models are more general than
FSMs:

o They can be infinite state models
 Input and output need not alternate
o There can be internal (unobservable) actions.

> \We assume:
o |IOTSs are input enabled
o We can observe quiescence

Networked and Distributed
Systems



Implementation relations

» There iIs a standard implementation
relation (for testing) called ioco

> It requires:

> If 0 Is a (suspension) trace of the specification
s and the implementation can produce output
lo after o then s must be able to produce
output lo after o

Networked and Distributed
Systems



Correct implementations?

?1 /\ 3
ltea l l lchoc

?1/\?1 ?1/

?
ltea l l Icoffee !tea l 21 /\?1
Itea l

Networked and Distributed
Systems



Two equivalent processes

» We cannot distinguish the following:

> Note: assume processes completed to
make them input-enabled.

Networked and Distributed
Systems



Issue

> When can we ‘bring together’ local
observations’?

> In this example not after ?i,!o, or ?i,lo,

Networked and Distributed
Systems



When do we make observations?

> For an FSM we observe the projections of
input/output sequences - we can ‘stop’
after an input/output sequence.

» When can we ‘stop’ when considering
|OTSs? Possibly:

o Whenever we have quiescence.

» We can then ‘bring together local traces’

Networked and Distributed
Systems



An implementation relation

dioco
> We say that | dioco s if:

o For every trace z of i that can take i to a
quiescent state, there is some trace z' of s
such that z' ~ z.

> This means:

o Ifi has a ‘run’ z that ends in quiescence then
s has a specified behaviour that is ‘equivalent’
to z.

Networked and Distributed
Systems



dioco does not imply ioco

> Example:

?i4 ?i4
lo, lo,
lo, lo,

Networked and Distributed
Systems



Result

> If s and | are input enabled then:
o 110cO s iImplies that i dioco s

> Normally IOTS implementations are
required to be input enabled.

> So:

o For input enabled specifications we have that
dioco is weaker than ioco.

Networked and Distributed
Systems



Test cases

> These can be defined as processes that
can interact with the SUT.

» \We can have:
o A global tester that interacts with every port
o One local tester for each port.

> In our context, we cannot implement a
global tester (but we can map it to a set of
local testers).

Networked and Distributed
Systems



Controllability

> A local tester observes only the events at
its port.

> As a result, if it has to supply an input then
it can only know when to do this on the
basis of its observations.

Networked and Distributed
Systems



A controllablility problem

» The tester at port 2 does not know when to send
its input.

tester SUT tester

Networked and Distributed
Systems



The effect of nondeterminism

» We might have pairs of allowed traces with
prefixes like the following:

tester Spec tester tester Spec tester
— X
P

k \)(15
%&A AW/ %
4

VA

Networked and Distributed
Systems



Choice

> A tester makes a choice based on its
observations.

> This is the notion of ‘local choice’.

> Also studied in the context of Message
Sequence Charts (e.g. non-local choice
pathologies).

> Difference in problems considered and our
problem has additional ‘structure’

Networked and Distributed
Systems



Defining controllability

> A test case t is controllable if each tester

can make ‘local choices’

 there should not be two prefixes z and z’ of traces
that can be produced using t that look the same to
a tester at port p and yet this tester should behave
differently after these.

> Result:

o We can decide in polynomial time whether a
test case is controllable.

Networked and Distributed
Systems



Additional implementation
relations?
> In dioco we assume traces can be brought
together at the end of testing.

» We have allowed the use of test case with
controllability problems.

> S0, there are alternative implementation
relations.

Networked and Distributed
Systems



An example

» We can require that local traces are not
brought together.

> Makes sense if this corresponds to
expected usage.

> We require:

o For every trace z of the implementation and
port p there is a trace z' of the specification
such that ,(z)=n,(z')

Networked and Distributed
Systems



Can be weaker

> Specification and implementation

. 2, .
?i4 \ ?iy
v v

v v v

> Looks ok if we cannot bring together local
traces.

Networked and Distributed
Systems



Can be stronger

» NO quiescence:

<O lo, <O lo,

> Suggests: only allowing traces ending in
guiescence is problematic.

Networked and Distributed
Systems



Additional alternatives

> Instead of only considering quiescent
traces we could:

o Combine (conjoin) the previous two
Implementation relations.

o Consider infinite traces.

Networked and Distributed
Systems



Using infinite traces

> \We can compare the infinite traces of the
implementation with those of the
specification.

» This is an answer to ‘when do we bring
together local traces'.

> In practice we will have to define
conservative decision procedures for
oracles.

Networked and Distributed
Systems



Other Types of Models

Networked and Distributed
Systems



The following are equivalent

> 10,10, l0,!0,

> lo,lo,lo,, l0,!0410,

> ...

> (!01)1000!02, '02('01)1000
> ...

» When does this stop being reasonable?

Networked and Distributed
Systems



One possible approach

> \We could include time in our model.

> Problem:
o Local clocks need not synchronise.

» We might have e.g.:
o bounds in drift,
« information about time taken by messages,
o messages between testers

> This is future work.

Networked and Distributed
Systems



Using scenarios

> An alternative:

o Allow the users and testers to effectively
synchronise at certain points.

> We can
e Consider scenarios and;

« add explicit synchronisation points in a
specification.

Networked and Distributed
Systems



Adding probabilities

> Some systems have probabilistic
requirements.

» \We can add probabilities to transitions.

> It is straightforward to extend |IOTSs to
probabilistic IOTSs.

Networked and Distributed
Systems



A Generative Approach

> In a state s the sum of probabilities of transitions
leaving s add up to 1.

> The implementation relations are similar to dioco
— we just add requirements regarding
probabillities.

> However, if we have inputs and outputs this
approach requires us to have probabilistic
information regarding the environment.

Networked and Distributed
Systems



A reactive/generative approach

> |Instead we can assume that:

e There is no probabilistic information regarding
inputs from the environment (a reactive
approach).

o In state s, the sum of the probabilities of
outputs from the SUT (including 0) is 1:
outputs are generative.

Networked and Distributed
Systems



Probabilities of observations

» Consider the following

ltea

! Icoffee

> What is the probability of observing !coffee
after 71,71,

Networked and Distributed
Systems



The problem

» We can have races between events at
different ports.

> We have no probabilistic information
regarding the outcome of these races.

Networked and Distributed
Systems



Possible solutions

> Two alternatives:

o Outlaw such situations (effectively say that we
know nothing about the probabillities).

o Assume that the (unknown) environment has
such probabilities and define corresponding
Implementation relations.

Networked and Distributed
Systems



Finite State Machines

Networked and Distributed
Systems



Finite State Machines

* The behaviour of M in state s, is defined by the set
of input/output sequences (traces) from s,

@ 53

K a/0 b/0
b/1
b/1 a/0 a/l
a/l b/0

@ %
b/1 a/0

Networked and Distributed
Systems



An implementation relation for

distributed systems
> We say that DFSM N conforms to DFSM M if:

o Every global trace of N is indistinguishable from a
global trace of M.

> Equivalently:

o For every global trace z of N there is a global trace z’
of M such that z ~ Z'.

Networked and Distributed
Systems



Conformance is weaker than
equivalence

» This also shows that it is not an equivalence

relation (second can have output y,).
Xl/(yp')
SZ X,/(-, ¥2)
X/(¥1,7)

Conforms to
Sl 7 Xy/(=,Y’5) Sl
Xl/(YIa')

h 537 X/ (= ¥"5)

> |Is the first an acceptable design for second?

Networked and Distributed
Systems



Key components of testing

» When testing from an FSM we want to be
able to:
o Reach states
o« Distinguish states (and machines)

o Check output against the specification (oracle
problem).

Networked and Distributed
Systems



The Oracle Problem

» For DFSMs this:

o Can be solved in polynomial time for
controllable test sequences

o Otherwise is NP-hard

> For NFSMs:

o NP-hard even for controllable testing
o Polynomial if we restrict further

Networked and Distributed
Systems



Reaching and distinguishing
states

> Problem

o Is there a strategy for each tester that leads to
testing taking the FSM to a particular state (or
distinguishes two states)?

> This problem is undecidable.

» Decidable for controllable testing from a
DFSM (result does not hold for NFSMs).

Networked and Distributed
Systems



Controllable testing

Networked and Distributed
Systems



Distinguishing states

> If we restrict ourselves to controllable testing we
need.

e X causes no controllability problems from s and s’

o X leads to different sequences of interactions, for s
and s’, at some port.

» We say that x locally s-distinguishes s and s'.

> If no input sequence locally distinguishes s and
s’ they are locally s-equivalent.

Networked and Distributed
Systems



Testing Is weaker

« We cannot locally s-distinguish s, and s,
but x,X, locally distinguishes them.

X2/(_9 Y2)

Xl/(YIa_)
ssl ) " s,
Xl/(YIa'
X2/(YI9 Y2) Xz/(yl,_)
XZ/(': YZ) X /(y _ v
1 1>
TSJ - 53

Xl/(YIa_)

Networked and Distributed
Systems



Distinguishing two states

» Given port p and states s, and s, of a m-port
FSM M with n states:

e S, and s, are locally s-distinguishable by an input
sequence starting at p if and only if they are locally s-
distinguished by some such input sequence of length
at most m(n-1).

» This bound is ‘tight'.

> The sequences can be found in low-order
polynomial time.

Networked and Distributed
Systems



Minimality

> Two possible definitions:

e Def 1. ADFSM is locally s-minimal if it has no
locally s-equivalent states.

e Def 2: ADFSM M is locally s-minimal if no
DFSM with fewer states is locally s-equivalent
to M.

> For initially-connected, completely

specified, single-port DFSMs, these are
the same.

Networked and Distributed
Systems



Minimal DFSMs are not always
locally s-minimal

> We have seen that s, and s, are locally s-
equivalent

/(-
X/ y2) X1/(¥15-)

?sl ) ~ S,

Xl/(YIa')

Xo/(¥15 Y2)

/(-
X/ ) X1/(¥1-)

§S4 > S3

Xl/(YIa')

Networked and Distributed
Systems



Merging s-equivalent states

» A smaller acceptable design?

/(- /(-
Xy/(=, ¥2) x/(¥1,-) Xo/(=, Y2)

s, s, s,

Xl/(YIa_

Xl/(YI:')

Networked and Distributed
Systems



Minimising: smallest FSM

> Even smaller:

XZ/(': YZ)

sﬁ

Networked and Distributed
Systems



Consequences

» We had two alternative definitions.

e Def 1. ADFSM is locally s-minimal if it has no
locally s-equivalent states.

e Def 2: ADFSM M is locally s-minimal if no
DFSM with fewer states is locally s-equivalent
to M.

> For multi-port DFSMs these differ.
> Def 2 is ‘better’?

Networked and Distributed
Systems



Canonical FSMs

» Given DFSM M, we can find:

« Maximal M
e Minimal M

ax that is locally s-equivalent to M
that is locally s-equivalent to M

min

> We can find them efficiently.

Networked and Distributed
Systems



Results

> DFSM N is locally s-equivalent to DFSM M
if and only if N is a reduction of M

max-*

> The set of DFSMs that are s-equivalent to
a DFSM M forms a bounded lattice.

Networked and Distributed
Systems



Refinement and testing

» We now know that:

FSM M > FSMM___

s-equivalence \ / reduction

Implementation N

Networked and Distributed
Systems



Summary: controllable testing

> Benefits of restricting to controllable test
sequences for DFSMs
o Oracle problem can be solved in polynomial
time
o Have unigue ‘min’ and ‘max’ machines

o Can test against ‘'max’ model for reduction
using traditional methods

o Could develop from ‘max’ model?
» However: limits testing

Networked and Distributed
Systems



Future work

Generating test cases to satisfy a test criterion.
Generating complete test suites.

Minimising an FSM.

Testing using coordination messages but the ‘new’
Implementation relations

Timed models.

Enriching models with data, stochastic time, ...

Networked and Distributed
Systems



Papers (FSMs)

B. Sarikara and G. Von Bochmann, Synthesis and Specification Issues
in Protocol Testing, IEEE Transactions on Communications, 32 4, pp.
389-395: 1984.

R. Dssouli and G. von Bochmann. Error detection with multiple
observers, Protocol Specification, Testing and Verification V, pp. 483-
494: 1985.

R. Dssouli and G. von Bochmann,. Conformance testing with multiple
observers, Protocol Specification, Testing and Verification VI, pp. 217-
229: 1980.

J. Chen, R. M. Hierons, and H. Ural. Overcoming observability problems
in distributed test architectures, Information Processing Letters, 98, pp.
177-182: 2006.

R. M. Hierons and H. Ural. The effect of the distributed test architecture
on the power of testing, The Computer Journal, 51 4, pp. 497-510:
2008.

R. M. Hierons: Canonical Finite State Machines for Distributed Systems,
Theoretical Computer Science, 411 2, pp. 566-580: 2010.

R.M. Hierons: Reaching and Distinguishing States of Distributed
Systems, SIAM Journal of Computing (to appear)

Networked and Distributed
Systems



Papers (IOTSs)

R. M. Hierons, M. G. Merayo, and M. Nunuez. Implementation relations
for the distributed test architecture, 20th FIP International Conference
on Testing Communicating Systems (TestCom 2008), LNCS 5074, pp.
200-215: 2008.

R. M. Hierons, M. G. Merayo, and M. Nunez. Controllable test cases for
the distributed test architecture, 6th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2008),
LNCS volume 5311, pp. 201-215: 2008.

R. M. Hierons and M. Nunez: Scenarios-based Testing of Systems with
distributed Ports, The 10th International Conference on Quality Software
(QSIC 2010), 2010.

R. M. Hierons and M. Nunez: Testing probabilistic distributed systems,
30th IFIP Formal Techniques for Networked and Distributed Systems
(FORTE 2010), LNCS, 2010.

Networked and Distributed
Systems



Conclusions

> |If a system has distributed interfaces/ports
then we have different implementation
relations.

> This can affect testing but also
development.

» We get new notions of e.g. a design being
minimal.

> The effect is even greater for
nondeterministic models/systems.

Networked and Distributed
Systems



Questions?

Networked and Distributed
Systems



