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Challenges in Testing

» These include:
o Scale
o Concurrency
o Distribution
o The oracle problem.

» Potential solution, model-based testing:

o Automate testing on the basis of a formal
model or specification.
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Model Based Testing

o We only observe interactions between the
system under test (SUT) and its environment.

e 10 reason about test effectiveness we
assume:

* The behaviour of the SUT can be expressed in the
same language as the model.
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Models for distributed and

networked systems

» Such systems typically:
o Have states and actions
o Are concurrent

> |f we take a black-box view, the last issue
IS less important
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Formal languages

> Typically use states and transitions
between states triggered by actions.

» Many can be seen as one of:

o Finite state machines

o Labelled transition systems (and input output
transition systems)

» Former less general but the models are
easier to analyse.
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Multi-port systems

» Physically distributed interfaces/ports.
> A tester at each port.

tester tester

/ SUT
tester
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Distributed testing

» Mainly focus on the simplest approach:

> The testers cannot communicate with one
another

> There is no global clock

> Observations are ‘local’
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Motivation

o Initially just testing/test generation.

o The discussion will be around both
* testing and
* implementation/conformance relations.

o [esting from:

* input output transition systems and possibly
o deterministic finite state machines
« nhondeterministic finite state machines
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Testing and
Observations
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Global Traces

> A global trace is a sequence of inputs and
outputs.
» \We assume there are m ports and:

« X, Will denote an input at port p (from X))

o (Vi,-0s¥) €Y, Y=(Y U{-})x...x(Y,{-}), will be
an output

> A global trace is an element of (X x Y)*
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Consequences

> Each tester observes only the interactions (/ocal
trace) at its port

Tester1 SUT Tester 2

s

T vs

> The tester at port 1 observes x,yx,y, and the
tester at 2 observes y, only.
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What the testers observe

» Given global trace z, the tester at p
observes a local trace n,(z) .

Tester 1 Tester 2
~ X1
Y1
o \Q‘
~ X1
/ Y1
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Controllability problems

» The following test has a controllability
problem: introduces nondeterminism into

testing.
g tester SUT tester

T
//
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Observability problems

» The following look the same

tester Spec tester tester SUT tester
\ \
Y1 Y1
&A
X4
&’ \
A/y/

> Testers/users cannot ‘map’ output to input
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Equivalent global traces

» Since we only observe local traces:

o Global traces z and z' are indistinguishable if
their projections are identical: the local traces
are the same.

o We denote this: z~Z’
> The following are equivalent under ~
o X4/(Y1,Y2)X4/(Y1,-)

o Xq/(y1,)X4/(Y1, ¥2)
» Both have x,y.x,y, at port 1 and y, at 2.
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Problem: Test effectiveness is not
monotonic

» Example: x, detects a fault but x,x, does
not.

tester SUT tester tester Spec tester
\ \
2 Y1
wA
&’
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Two approaches to defining

Implementation relations
> \We might have:

o Agents at ports are entirely ‘independent’:

* No external agent can receive information
regarding observations at more than one port

o Or the local traces observed at the ports can
be ‘brought together’ later.
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Differences

> Specification

TeSter 2 Tester 1

Tester 1

.
/

T~z

> SUT

.
/

Tester 2

Tz

Tester 1 SUT Tester 2

.
/

T~z
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Using an external network

> If we connect the testers using an external
network, sometimes we can overcome

controllability and observability problems.
tester SUT tester tester SUT tester

\
/

\.
—>
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But

> If a system has physically distributed
interfaces then the implementation relation
should reflect this:

« Even if we can connect the testers, we should
be careful that we do not give the verdict fail
when the behaviour is acceptable in use.

e The users will only observe local traces.
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Past research

» Mainly on testing from a deterministic finite
state machine (DFSM):

o Generating test sequences that do not suffer
from controllability and/or observability
problems

o Adding coordination messages (possibly
adding a minimum number).
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Problems/issues

> A DFSM can have transitions that can’t be
executed without controllability problems.

> Test generation algorithms place
conditions on the DFSM — they are not
general.

» The methods test against the ‘traditional’
iImplementation relation — aiming to do too
much?

» Using DFSMs is restrictive.
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The solution

» We need a good understanding of what it
means to distinguish two models with
distributed ports.

> This gives us new implementation
relations.

» \We want to test against these.
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Input Output Transition
Systems (IOTSs)



The models

> These are labelled transition systems in
which we distinguish between input and
output.

» \We have states and transitions between
the states.
» Notation:

o Normally we precede the name of an input by
? and the name of an output by !.
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Internal events and quiescence

> We have two special types of events:

 Internal events (1) are state transitions that do
not require input and do not produce output.

o A state s is quiescent if from s output cannot
be produced without first providing input.

o If s is quiescent then we add a self-loop
transition from s with label .

Networked and Distributed
Systems



A simple example

> A (very) simple coffee machine

?1 /\?2

ltea l l Icoffee

> \We have not shown the self-loops for
guiescence.
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|IOTS models

> |[OTS models are more general than
FSMs:

o They can be infinite state models
 Input and output need not alternate
o There can be internal (unobservable) actions.

> \We assume:
o |IOTSs are input enabled
o We can observe quiescence
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Implementation relations

» There iIs a standard implementation
relation (for testing) called ioco

> It requires:

> If 0 Is a (suspension) trace of the specification
s and the implementation can produce output
lo after o then s must be able to produce
output lo after o
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Correct implementations?

?1 /\ 3
ltea l l lchoc

?1/\?1 ?1/

?
ltea l l Icoffee !tea l 21 /\?1
Itea l
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Two equivalent processes

» We cannot distinguish the following:

> Note: assume processes completed to
make them input-enabled.
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Issue

> When can we ‘bring together’ local
observations’?

> In this example not after ?i,!o, or ?i,lo,
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When do we make observations?

> For an FSM we observe the projections of
input/output sequences - we can ‘stop’
after an input/output sequence.

» When can we ‘stop’ when considering
|OTSs? Possibly:

o Whenever we have quiescence.

» We can then ‘bring together local traces’

Networked and Distributed
Systems



An implementation relation

dioco
> We say that | dioco s if:

o For every trace z of i that can take i to a
quiescent state, there is some trace z' of s
such that z' ~ z.

> This means:

o Ifi has a ‘run’ z that ends in quiescence then
s has a specified behaviour that is ‘equivalent’
to z.
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dioco does not imply ioco

> Example:

?i4 ?i4
lo, lo,
lo, lo,
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Result

> If s and | are input enabled then:
o 110cO s iImplies that i dioco s

> Normally IOTS implementations are
required to be input enabled.

> So:

o For input enabled specifications we have that
dioco is weaker than ioco.
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Test cases

> These can be defined as processes that
can interact with the SUT.

» \We can have:
o A global tester that interacts with every port
o One local tester for each port.

> In our context, we cannot implement a
global tester (but we can map it to a set of
local testers).
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Controllability

> A local tester observes only the events at
its port.

> As a result, if it has to supply an input then
it can only know when to do this on the
basis of its observations.
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A controllablility problem

» The tester at port 2 does not know when to send
its input.

tester SUT tester
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The effect of nondeterminism

» We might have pairs of allowed traces with
prefixes like the following:

tester Spec tester tester Spec tester
— X
P

k \)(15
%&A AW/ %
4

VA
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Choice

> A tester makes a choice based on its
observations.

> This is the notion of ‘local choice’.

> Also studied in the context of Message
Sequence Charts (e.g. non-local choice
pathologies).

> Difference in problems considered and our
problem has additional ‘structure’
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Defining controllability

> A test case t is controllable if each tester

can make ‘local choices’

 there should not be two prefixes z and z’ of traces
that can be produced using t that look the same to
a tester at port p and yet this tester should behave
differently after these.

> Result:

o We can decide in polynomial time whether a
test case is controllable.
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Additional implementation
relations?
> In dioco we assume traces can be brought
together at the end of testing.

» We have allowed the use of test case with
controllability problems.

> S0, there are alternative implementation
relations.
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An example

» We can require that local traces are not
brought together.

> Makes sense if this corresponds to
expected usage.

> We require:

o For every trace z of the implementation and
port p there is a trace z' of the specification
such that ,(z)=n,(z')
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Can be weaker

> Specification and implementation

. 2, .
?i4 \ ?iy
v v

v v v

> Looks ok if we cannot bring together local
traces.

Networked and Distributed
Systems



Can be stronger

» NO quiescence:

<O lo, <O lo,

> Suggests: only allowing traces ending in
guiescence is problematic.
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Additional alternatives

> Instead of only considering quiescent
traces we could:

o Combine (conjoin) the previous two
Implementation relations.

o Consider infinite traces.
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Using infinite traces

> \We can compare the infinite traces of the
implementation with those of the
specification.

» This is an answer to ‘when do we bring
together local traces'.

> In practice we will have to define
conservative decision procedures for
oracles.
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Other Types of Models
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The following are equivalent

> 10,10, l0,!0,

> lo,lo,lo,, l0,!0410,

> ...

> (!01)1000!02, '02('01)1000
> ...

» When does this stop being reasonable?
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One possible approach

> \We could include time in our model.

> Problem:
o Local clocks need not synchronise.

» We might have e.g.:
o bounds in drift,
« information about time taken by messages,
o messages between testers

> This is future work.
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Using scenarios

> An alternative:

o Allow the users and testers to effectively
synchronise at certain points.

> We can
e Consider scenarios and;

« add explicit synchronisation points in a
specification.
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Adding probabilities

> Some systems have probabilistic
requirements.

» \We can add probabilities to transitions.

> It is straightforward to extend |IOTSs to
probabilistic IOTSs.

Networked and Distributed
Systems



A Generative Approach

> In a state s the sum of probabilities of transitions
leaving s add up to 1.

> The implementation relations are similar to dioco
— we just add requirements regarding
probabillities.

> However, if we have inputs and outputs this
approach requires us to have probabilistic
information regarding the environment.
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A reactive/generative approach

> |Instead we can assume that:

e There is no probabilistic information regarding
inputs from the environment (a reactive
approach).

o In state s, the sum of the probabilities of
outputs from the SUT (including 0) is 1:
outputs are generative.
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Probabilities of observations

» Consider the following

ltea

! Icoffee

> What is the probability of observing !coffee
after 71,71,
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The problem

» We can have races between events at
different ports.

> We have no probabilistic information
regarding the outcome of these races.
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Possible solutions

> Two alternatives:

o Outlaw such situations (effectively say that we
know nothing about the probabillities).

o Assume that the (unknown) environment has
such probabilities and define corresponding
Implementation relations.
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Finite State Machines
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Finite State Machines

* The behaviour of M in state s, is defined by the set
of input/output sequences (traces) from s,

@ 53

K a/0 b/0
b/1
b/1 a/0 a/l
a/l b/0

@ %
b/1 a/0
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An implementation relation for

distributed systems
> We say that DFSM N conforms to DFSM M if:

o Every global trace of N is indistinguishable from a
global trace of M.

> Equivalently:

o For every global trace z of N there is a global trace z’
of M such that z ~ Z'.
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Conformance is weaker than
equivalence

» This also shows that it is not an equivalence

relation (second can have output y,).
Xl/(yp')
SZ X,/(-, ¥2)
X/(¥1,7)

Conforms to
Sl 7 Xy/(=,Y’5) Sl
Xl/(YIa')

h 537 X/ (= ¥"5)

> |Is the first an acceptable design for second?
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Key components of testing

» When testing from an FSM we want to be
able to:
o Reach states
o« Distinguish states (and machines)

o Check output against the specification (oracle
problem).

Networked and Distributed
Systems



The Oracle Problem

» For DFSMs this:

o Can be solved in polynomial time for
controllable test sequences

o Otherwise is NP-hard

> For NFSMs:

o NP-hard even for controllable testing
o Polynomial if we restrict further
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Reaching and distinguishing
states

> Problem

o Is there a strategy for each tester that leads to
testing taking the FSM to a particular state (or
distinguishes two states)?

> This problem is undecidable.

» Decidable for controllable testing from a
DFSM (result does not hold for NFSMs).
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Controllable testing
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Distinguishing states

> If we restrict ourselves to controllable testing we
need.

e X causes no controllability problems from s and s’

o X leads to different sequences of interactions, for s
and s’, at some port.

» We say that x locally s-distinguishes s and s'.

> If no input sequence locally distinguishes s and
s’ they are locally s-equivalent.
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Testing Is weaker

« We cannot locally s-distinguish s, and s,
but x,X, locally distinguishes them.

X2/(_9 Y2)

Xl/(YIa_)
ssl ) " s,
Xl/(YIa'
X2/(YI9 Y2) Xz/(yl,_)
XZ/(': YZ) X /(y _ v
1 1>
TSJ - 53

Xl/(YIa_)

Networked and Distributed
Systems



Distinguishing two states

» Given port p and states s, and s, of a m-port
FSM M with n states:

e S, and s, are locally s-distinguishable by an input
sequence starting at p if and only if they are locally s-
distinguished by some such input sequence of length
at most m(n-1).

» This bound is ‘tight'.

> The sequences can be found in low-order
polynomial time.
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Minimality

> Two possible definitions:

e Def 1. ADFSM is locally s-minimal if it has no
locally s-equivalent states.

e Def 2: ADFSM M is locally s-minimal if no
DFSM with fewer states is locally s-equivalent
to M.

> For initially-connected, completely

specified, single-port DFSMs, these are
the same.
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Minimal DFSMs are not always
locally s-minimal

> We have seen that s, and s, are locally s-
equivalent

/(-
X/ y2) X1/(¥15-)

?sl ) ~ S,

Xl/(YIa')

Xo/(¥15 Y2)

/(-
X/ ) X1/(¥1-)

§S4 > S3

Xl/(YIa')
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Merging s-equivalent states

» A smaller acceptable design?

/(- /(-
Xy/(=, ¥2) x/(¥1,-) Xo/(=, Y2)

s, s, s,

Xl/(YIa_

Xl/(YI:')
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Minimising: smallest FSM

> Even smaller:

XZ/(': YZ)

sﬁ
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Consequences

» We had two alternative definitions.

e Def 1. ADFSM is locally s-minimal if it has no
locally s-equivalent states.

e Def 2: ADFSM M is locally s-minimal if no
DFSM with fewer states is locally s-equivalent
to M.

> For multi-port DFSMs these differ.
> Def 2 is ‘better’?
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Canonical FSMs

» Given DFSM M, we can find:

« Maximal M
e Minimal M

ax that is locally s-equivalent to M
that is locally s-equivalent to M

min

> We can find them efficiently.
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Results

> DFSM N is locally s-equivalent to DFSM M
if and only if N is a reduction of M

max-*

> The set of DFSMs that are s-equivalent to
a DFSM M forms a bounded lattice.
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Refinement and testing

» We now know that:

FSM M > FSMM___

s-equivalence \ / reduction

Implementation N
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Summary: controllable testing

> Benefits of restricting to controllable test
sequences for DFSMs
o Oracle problem can be solved in polynomial
time
o Have unigue ‘min’ and ‘max’ machines

o Can test against ‘'max’ model for reduction
using traditional methods

o Could develop from ‘max’ model?
» However: limits testing
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Future work

Generating test cases to satisfy a test criterion.
Generating complete test suites.

Minimising an FSM.

Testing using coordination messages but the ‘new’
Implementation relations

Timed models.

Enriching models with data, stochastic time, ...
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Conclusions

> |If a system has distributed interfaces/ports
then we have different implementation
relations.

> This can affect testing but also
development.

» We get new notions of e.g. a design being
minimal.

> The effect is even greater for
nondeterministic models/systems.
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Questions?
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