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Abstract

With ageing, human voices undergo several changes whidygically characterised
by increased hoarseness, breathiness, changes in ddigydatterns and slower speak-
ing rate. The focus of this thesis is to understand the impgageing on Automatic
Speech Recognition (ASR) performance and improve the ASRracies for older
voices.

Baseline results on three corpora indicate that the word eates (WER) for older
adults are significantly higher than those of younger aguitsthe decrease in accura-
cies is higher for males speakers as compared to females.

Acoustic parameters such as jitter and shimmer that megsafttal source disflu-
encies were found to be significantly higher for older aduttswever, the hypothesis
that these changes explain the differences in WER for the g@ageoups is proven in-
correct. Experiments with artificial introduction of glatsource disfluencies in speech
from younger adults do not display a significant impact on WERsanges in funda-
mental frequency observed quite often in older voices hasargimal impact on ASR
accuracies.

Analysis of phoneme errors between younger and older speakews a pattern
of certain phonemes especially lower vowels getting mdextéd with ageing. These
changes however are seen to vary across speakers. Anattartfaat is strongly as-
sociated with ageing voices is a decrease in the rate of BpEgperiments to analyse
the impact of slower speaking rate on ASR accuracies inglibat the insertion errors
increase while decoding slower speech with models trainaelatively faster speech.

We then propose a way to characterise speakers in acouatie bpsed on speaker
adaptation transforms and observe that speakers (edpenales) can be segregated
with reasonable accuracies based on age. Inspired by thikok at supervised hier-
archical acoustic models based on gender and age. Signiiicprovements in word
accuracies are achieved over the baseline results withrsadbls. The idea is then ex-
tended to construct unsupervised hierarchical modelshwdlgo outperform the base-
line models by a good margin.

Finally, we hypothesize that the ASR accuracies can be ingorby augmenting
the adaptation data with speech from acoustically clogestiers. A strategy to select
the augmentation speakers is proposed. Experimentatsesutwo corpora indicate
that the hypothesis holds true only when the amount of edailadaptation is limited
to a few seconds. The efficacy of such a speaker selectidegyris analysed for both
younger and older adults.
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Chapter 1

Introduction

1.1 Motivation

Speech is the most natural form of communication betweerahgmith advances in
Automatic Speech Recognition (ASR) systems, speech as a mi@denmnunication
with computing devices is finding wider acceptance in theetpcToday, use of ASR
can be seenin a large array of applications including iotamvoice response systems
such as telephone banking and ticket booking, dictatiotesys on personal comput-
ers, command and control in automobiles, easy dialing onilmphones, creation of
electronic medical records in health-care organisations e

While use of ASR systems is beneficial for everyone, it coulgdmticularly useful
for older people and especially those with mobility and sismpairments. Easy to
use voice based interactive systems in health-care and-bammenvould make life a
lot easier for them [Mller et al., 2003]. Several initiatives such as MAT@Hind
Gator Tech Smart hous@sare focused on research and development of home care
technologies and thereby to assist in independent livindp@felderly people. These
systems see voice as one of the important modes of intemactio

During the last century the world’s ageing population hasnbgrowing at a stag-
gering rate. According to the United Nations, in 2006, clwsB00 million people in
the world were aged 65 and older. Based on projections, théeuwill increase to
1 billion by 2030, which means one in every 8 of earth’s inkettis will be aged 65
or above|[Kevin and Philips, 2005]. This is a large segmepopiulation and from an

“Mobilising Advanced Technologies For Care at Home' - a ezsh project focused on technologies
for home carewww.match-project.org.uk
2http://www.icta.ufl.edu/gt.htm
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ASR research point of view it is of interest to be able to ctiaeheir voices.

Over the years, there have been numerous studies to undetsia structural
changes in speech production mechanism observed withgagé&hmese studies have
been mainly in speech pathology and speech therapy resaadchesearch associ-
ated with geratology mainly motivated by the need to undecsthe differences be-
tween natural changes in voice with ageing and vocal chaaggsciated with patho-
logical conditions. Deterioration of voice quality with @gg has been widely re-
ported [Linville, 2001; Ramig and Ringel, 1983; Ramig et al.0P0 Ageing also
effects fine motor control capabilities and thereby the tengnovement and speaking
rate. These changes impact the intelligibility of speedmfiolder people. Cognitive
abilities such as fluid intelligence, working memory spad arformation processing
speed tend to decline as people grow olé¢Bman et al.,, 2001]. These cognitive
factors have a large impact on the way older people interabtsgoken dialogue sys-
tems [Wolters et al., 2009]. The impact of ageing on voicdds dependent on several
factors specific to individuals such as their health and meithg, smoking habits and
their profession. These factors increase the variability make it difficult to find a
correspondence between chronological age and vocal ageheAdbove mentioned
changes throw interesting challenges to ASR systems tleat toebe addressed.

ASR systems have been evolving rapidly over the last coupiiecades with ad-
vances in machine learning techniques[Renals and Hain] 20t problem of acous-
tic modeling has been studied and researched from varioapgetives such as making
them robust to variations in background noise, speakemchenistics, dialect and ac-
cent. From an age perspctive, there has been lot of work éoloois acoustic modeling
for children voices|[Gerosa et al., 2009], but there has biesited work on under-
standing the impact of changes in acoustic character@asiesciated with older voices
on ASR systems. Relatively poor recognition accuracies liderovoices have been
reported before [Baba etlal., 2004; Anderson et al., [199%Miibnd Jacobsen, 1996]
but to the best of our knowledge there has not been an in-ctypdly addressing this
problem. In this thesis, we address this problem and pres@ntesearch work and
experimental results focused on the domain of ASR for ageances.

1.2 Objectives

There are several components in an ASR system includingdiwstic models, lan-
guage models, lexicon and decoder. There is scope to adapbéthese components
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in order to make the ASR systems work better for older voidesthis thesis, we
address the problem from an acoustic modeling perspective.

We approach the problem from a two fold perspective. Firdtly of interest to
analyse the changes in glottal source and articulatoryackenistics of older voices
and to analyse the impact of such changes on ASR recognttnacies. Secondly, it
is of interest to understand the improvements in accurgmesible with the state-of-
the-art speaker adaptation techniques and to explore apdbge other strategies for
acoustic modeling targeted towards older voices to enhtédu@caccuracies.

The main objectives of the thesis are outlined as follows:

1. To perform a systematic comparative study of the glottarse parameters of
adult and older voices and to analyse the impact of changasyithose param-
eters on ASR accuracies.

2. To study articulatory changes with ageing.

3. To analyse the impact of slower speaking rate on ASR acasa

4. To report the baseline accuracies for older voices fowectesen corpora.

5. To explore the possibility of speaker clustering basedender and age group.

6. To explore the effectiveness of hierarchical models forowe the accuracies for
older voices.

7. To explore the idea of improving the accuracies for a tasgpeaker by using
speech from other acoustically close speakers.

The approach to address these research objectives andporenesintal results are
explained in detail in the following chapters.

A couple of important factors need to be mentioned beforéh&mgeneral, there
are several disfluencies associated with very old speakersodvarious pathological
conditions. For the purpose of this thesis, we are mainredted in and only investi-
gate the speech of healthy older adults. It is also well knthahchronological ageing
and vocal ageing are weakly correlated. However, in thisish&e categorize speakers
above 60 years of age as older adults.
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1.3 Publications

Some of the ideas and results appearing in this thesis haue fgblished in peer
reviewed conference proceedings and articles during thesemf this research work.
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input from older users in smart environments: Challengespamspectives. In
Proc. HCI International: Universal Access in Human-Compugeraction.
Intelligent and Ubiquitous Interaction Environments, ln@n5615 in Lecture
Notes in Computer Science. Springer, 20@hdpter 4

e Maria Wolters, Ravichander Vipperla, and Steve Renals. Agedteton for
Spoken Dialogue Systems: Do We Need It? In Proceedings efsjp¢ech,
Brighton, 2009. Chapter 7

e Ravichander Vipperla, Steve Renals, and Joe Frankel. Ageicgs. The effect
of changes in voice parameters on ASR performance. EURASImdbon
Audio, Speech and Music Processing, 201Thgpter 5

e Ravichander Vipperla, Steve Renals, and Joe Frankel. Augith@mif adapta-
tion data. Proceedings of Interspeech, Makuhari, 20C8apter §



Chapter 2
Ageing voices

In this chapter, we review the important structural and fiomal changes that occur
in speech production when people grow old. We then reviewipue studies on how
these changes impact voice quality and look at various messised by researchers
to analyse the quality of voice.

2.1 Human speech production mechanism

The human vocal mechanism (Figuiie. ]2.1) consists of theslutig larynx (which
houses the vocal cords), and the vocal tract comprised gfltheynx, the mouth and
the nose.

Depending on the sound that needs to be generated, amiguiaiotor control
mechanisms include positioning the jaw, shaping the tonghaping the lips, posi-
tioning the velum (to control the acoustic flow through thealaavity), control of the
vocal cord vibrations and flow of air in and out of the lungs. a\sis expelled from
the lungs through the trachea, the vocal cords in the larg@mxaused to vibrate by the
air flow. The air flow is thus chopped into quasi periodic psladich are modulated
as they pass through the pharynx cavity, mouth cavity andlmgasity. The combina-
tion of the shape of the vocal tract and the presence/abséwoeal cords vibrations,
result in the production of various sounds [Rabiner and Jub@@3].
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"""" ; Diaphragm

Figure 2.1: Human speech production mechanism

2.2 Changes in the speech production mechanism with
ageing

Several physical and physiological changes occur in a huodres with ageing. Typ-
ical changes include decline in vision and hearing, wealgoi muscles, mobility
restrictions and weakened immune system. Similar to otbdy Iparts, organs in the
human speech production mechanism also undergo age refeiades such as reduc-
tion in the respiratory muscle strength, restricted voclal &djustments during phona-
tion and difficulty in adjustments of tongue and lip shapesylle, 2001]. The rate at
which voices age does not however depend only on the chrgicalcage of a person,
but also on other factors such as lifestyle, physiologicaldition, smoking habits and
profession. Even with the above mentioned factors beingtick between two indi-
viduals, the extent of vocal ageing could differ betweemthdescribed below are
some of the changes seen in the voices showing signs of ageing
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2.2.1 Changes in the Respiratory system

Apart from breathing, the respiratory system plays a ctuola in producing speech.
It acts as the energy source for speech production by foasirtgrough the vocal cords
and the vocal tract resulting in various sounds.

The most significant changes seen in the respiratory systewead people are the
loss of lung elasticity, increase in the stiffness of thesthveall, and decrease in the
respiratory muscle strength [Mahler et al., 1986; Rossilei18P6].

Lung recoil elasticity is the ease with which lungs rebouffig¢rahaving been
stretched during inhalation. A decline in lung elasticibstbeen reported by Mahler
et al. [1986] due to ageing. The loss of lung elastic recdihwage is found to be faster
in males as compared to femalgs [Bode et al., 1976].

Due to the alterations in the muscles of the chest wall, tbeathbecomes increas-
ingly rigid with ageing[Kahane, 1931]. This leads to a regdismovement in response
to the respiratory muscle forces. Due to the degeneratidheofipper and middle re-
gions of the thoracic vertebral column, a pronounced cureadf the back is observed
in some older adults. This phenomenon called Kyphosig;sdlhe shape of the thorax
and may effect the amount of air that can be inhaled and edhale

Several research studies have reported weakening of atsyirmuscles during
old age [Black and Hyatt, 1969; Kahane, 1981]. This leads tlmced respiratory
forces during inhalation and exhalation. A decline in madimespiratory pressure
progressively beyond the age of 65 has been reported by Ereial. [1994]. The
decline is more prominent in males compared to females. @\ifodiaphragm strength
leading to an average reduction of 25% of maximum transdagphatic pressure in
elderly group as compared to younger subjects has also lepented [Tolep et al.,
1995].

While the total lung volume remains unaltered in the oldempbeahe forced ex-
piratory volume and the lung pressure are decreased. Tdus l® a decline in the
amount of air that can be moved in and out of the lungs and fieegfcy with which
it can be moved [Linville, 2004; Ramig etlal., 2001]. The rdtthes decline accelerates
with advancing age [Mahler et al., 1986]. Also the amountiofedt after exhalation
known as ‘Residual volume’ has been found to increase by atfi%tfrom the age of
20 to the age of 70 [Lynne-Davies, 1977].
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2.2.2 Changes in the Larynx

The parts of the larynx that form the vocal apparatus areahggeal cartilages (to
which the vocal folds are attached), the vocal folds thay pl&ey role in phonation,

and the intrinsic muscles that regulate the vocal cord ¢enand the vocal fold open-
ing [Pretterklieber, 2003]. Several anatomical changessaen in these organs with
ageing.

Among the several cartilages in the larynx, the thyroidsad and arytenoid car-
tilages are the most significant from the speech productoomt of view. The thyroid
and cricoid cartilages form the skeleton of the larynx. Arpmdiarytenoid cartilages
are located on the upper edge of the cricoid cartilage. Tlwalvwords are attached
posteriorly to the arytenoid cartilages and anteriorlyhe thyroid cartilages. The
cricoarytenoid joints allow the arytenoid and thus the Vapgaratus to move laterally
or medially. The arytenoids can also glide on the surfachetticoid and move closer
or recede away from each other. The most significant chante icartilages observed
as an individual moves from adulthood to old age is the tongtweof the soft tissue
into bone like structure (ossification). This phenomenarbserved in both males and
females. It occurs at an earlier age and is more prominentalesras compared to
females. Each of the cartilages has its own pattern of oasdit. Arytenoid cartilage
ossifies only partially sparing the vocal process. Significage-related changes have
been reported in the cricoarytenoid joint [Paulsen andnEhn; 1998; Dedivitis et al.,
2001]. Changes include thinning of the joint surface, redugalagen fibers in the
cartilage matrix and surface irregularities. These chage again more prominent in
males compared to females and hamper overall positionabstupl movements of
the arytenoid cartilages. This leads to reduction in theekegnd extent of vocal lig-
ament closure and makes it difficult for vocal fold adjusttseduring phonation. The
result of this is impaired vocal quality and reduced vocéisity due to air leakage
through incomplete vocal fold closure.

The vocal folds have a complex layered structure. They amepcged of five
discrete histological layers: the Epithelium, three Iayemtly called Lamina Propria
and the Thyroarytenoid muscle. The thin layer of Epitheliforms the protective
covering for the vocal folds. The epithelial cells are botogether firmly and form
a smooth lining reducing the friction to the air flow. The sdjogal layer of Lamina
Propria is a thin layer made of elastin fibres. This layer carstoetched in several
directions. The intermediate layer which is formed of etasihd collagen fibres is
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more densely packed and can only be stretched in antergieqpor direction. The
deep layer is formed on collagen fibres and is least strekeh@his layer protects the
vocal cords from over extension. The Thyroarytenoid mubekebelow the Lamina
Propria. They are mainly concerned with pulling together ttiyroid and arytenoid
cartilage, thus relaxing the vocal folds.

Several changes in the structure with ageing alter the lsbaracal properties of
the vocal folds![Linville) 2001]. Glandular changes in theyihgeal mucosa (the mu-
cous lining of larynx)|[Linville, 2004] cause drying of th@iéhelial tissue, increasing
the stiffness of vocal cord cover. This increase in covéingtss leads to instability of
vocal fold vibration. Some investigations [Hirano et aB89] have reported thicken-
ing of laryngeal epithelium progressively with age. Tissage at varying rates and to
varying extents [Kahane and Hammans, 1987] and substatrigitural changes need
to occur before observing noticeable changes in voice.

In the Lamina Propria, several age related changes havedmsemented in all
the three layers. The thickness of the superficial layeessalHirano et all, 1989] and
atrophy and degeneration of the elastic fibres in the laygbkan observed [Sato and
Hirano, 1997]. Changes seen in the intermediate layer iecthiohning of the layer,
decrease in the density of the fibres, atrophy of the fibreschadges in the contour
of the layer [Linville, 2001]. The fibrous protein loses eiaity and the layer stiffens.
The deep layer thickens with an increase in the collagendib&ich morphological
changes in the fibres of the vocal folds contribute partilthe ageing of the voices.

The thyroarytenoid muscle also displays atrophy with agei@hanges in mus-
cle fibres have been reported [Sato and Tauchi,|1982]. A dserm thyroarytenoid
muscle activity has been reported [Baker etlal., 1998] inrofgieakers than young
speakers. This affects the fine control of the position ofity¢enoid joint and thereby
the fine control of pitch of the voice.

Intrinsic laryngeal muscles are responsible for controthe&f vocal cords. The
tension in the vocal cords is regulated by the cricothyroubate. The opening (ab-
duction) of the vocal fold opening (called Rima Glottidisg@ntrolled by the posterior
cricoarytenoid muscle and the closing (adduction) is adlettl by the lateral cricoary-
tenoid and thyroarytenoid muscles. Regressive changestermghg have been re-
ported in all these muscles with ageing [Rideet al., 1993; Bach et al., 1941]. The
changes include accumulation of fats, degeneration of ladibers and unusual vari-
ations in the cross sectional areas [Linville, 2001]. Assule precise control of the
vocal cord tension and complete abduction/adduction ectl.
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2.2.3 Changes in the vocal tract

The human vocal tract consists of all the organs above thal ¥olds that are involved
in speech production. It is comprised of the pharynx (thrdhe oral cavity, the nasal
cavity, soft palate (velum) and the articulators viz., thiegue and the lips. The human
speech production mechanism can be viewed as a sourcesfidel. The lungs in
conjunction with vocal cords act as the source and expeh#irthe vocal tract. De-
pending on the presence or absence of the vocal cord vibsatibe source is either
voiced or unvoiced. This quasi periodic air then resonatee pharynx, oral and
nasal cavities to generate a rich timbre. The vocal tract #uts as the filter.

The vocal tract can be broadly thought to be comprised oétlgsonating cavities,
the pharynx, and the oral and nasal cavities. The pharymxddvied in the production
of all speech sounds. The pharynx can change shape to adimitent and thus alter
the resonance patterns. The pharynx can be constricted,cambe raised or lowered.
The position of the velum also alters the shape of the pha&aaincavity. The velum
controls the flow of air into the nasal cavity. During the protlon of nasal sounds
such as /m/ and /n/, the velum is moved forward to open theaassgge through the
nasal cavity. The oral cavity is the most flexible among thredlcavities in varying
the shape. The resonating property of the oral cavity dependhe position of the
temporomandibular joint, the shape of the tongue and tisealijl the position of the
velum.

Thinning of pharyngeal epithelium and degeneration of thepngeal muscles has
been reported with ageing [Linville, 2001]. However thebarges in the pharynx are
not found to be extensive.

The temporomandibular joint (TMJ) is the joint at which tlagvjis hinged to the
skull. It is used in controlling the position of the jaw andnke influences the oral
resonance during speech production. Jaw movement hasificsignrole to play in
articulation of certain phonemes as well as in the co-ddtmn of adjacent phonemes.
With ageing, degenerative changes are observed in the TMihfi¢in, 2000]. Dis-
placement of the TMJ disk is commonly observed leading taneetng of the articu-
lating surface. Xue and Hao [2003] have reported increasedal tract dimensions in
older speakers. The vocal tract volume of older speakeraiiicplar is significantly
higher compared to the younger speakers. This could ledustoges in the resonance
patterns in older voices.

The tongue plays a major role in speech production. It is flestble and can be
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moved up, down, forward and backward. By adjusting the shaffeedongue and the
position of the tongue tip, the oral cavity’s shape is moditifecting the resonance
patterns and hence the sound produced. Significant chaage$ben reported in the
tongue with ageing [Rother etldl., 2002]. Decrease in theit@ss of epithelium and
glandular atrophy have been reported in people over 50 péage [Nakayama, 1991].
However the most significant change in the tongue that aftbetspeech production is
the atrophy of the tongue muscles. From ultrasound obsengtdecline in the tongue
motor skills in the elderly in comparison to young adults &vegported by Koshino
et al. [1997]. A decline in tongue strength has also beenrtegan older individuals
[Crow and Ship; 1996]. These changes in the tongue couldtatiecarticulatory
patterns.

Other changes observed in the mouth with ageing includeofossal mucosa (the
mucous membrane that covers all the structures inside diecavity other than the
teeth), decline in the salivary function leading to oralrkygs and degeneration and
loss of tooth. These changes could also have a small impageech production.

2.2.4 Neuromuscular control

Age related changes also take place in the peripheral arichteervous system that
have implications for speech production. One of the chang#se peripheral neural
system is the decline of motor neurons. This loss in the matds has been impli-
cated as the primary mechanism for muscle atrophy and lossmfactile strength in
the muscles [Doherty et al., 1993]. An average loss of 25%amsuhas been reported
from the second to the tenth decade of life. However this édswrotor units is par-
tially compensated by increase in the size of the motor @hiisg with the slowing of
contractile speed. This affects various muscles involvetthé speech production and
is a possible cause of the slower speaking rate observedén spheakers.

Age related memory impairment is commonly observed in élderople [Hedden
and Gabrieli 2004]. In particular reduction in working many and the associated
difficulty in refreshing recently processed informationvé@amplications on speech
production behavior and interaction styles.
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2.3 Acoustic effects of ageing

Several studies have been made to understand the effeatiofamn various acoustic
parameters of speech. These studies have been mainly ieldheffspeech pathology
to differentiate normal voice changes due to ageing frorhglagical vocal conditions
affecting elderly patients. Most of these studies [Ramig Ribel,|1983; Ramig
et al., 2001 ] Linville| 2000; Edward, 1959] have indicatbdttspeakers experience
certain changes, mainly deterioration, of vocal acousiipuat as they age.

To analyse the voice quality, different parameters of speggnal have been pro-
posed and widely used. This section provides a brief dasmnif the parameters
that have been used in this thesis. Some of these parametéras the fundamen-
tal frequency, jitter and shimmer relate to the charadiesi®of the glottis and hence
can be treated as source related parameters. Other parsnseteh as formant fre-
guencies and speaking rate relate to the shape and moveméet wocal tract and
are thereby treated as filter related parameters. Althdugdetparameters have been
primarily used to differentiate between healthy voices thade suffering from patho-
logical conditions, they have also been used to study thegehan voice quality with
ageing. These parameters are typically measured on sedtaihnonations of few sec-
onds in duration recorded in noise free sound booths.

2.3.1 Average fundamental frequency

Among the several parameters affected by ageing, the avémagamental frequency
(Fo) has been one of the most extensively studied parametetBouijh there is no
general agreement on the trend, it appears ®&chand Miller,[2007; Linville, 2000]
that in females, the fundamental frequency remains fawlystant until menopause,
and later decreases. A drop of approximately 10-15 Hz isrgbde This is attributed
to the thickening of laryngeal mucosa. while in malggdecreases until a certain age
around 60 years and increases after that significantly. Memthe experiments in
[Xue and Deliyski, 2001; Endres et al., 1971] indicate fhateduces significantly for
both the males and females. A decrease of 40-60 Hig imas been reported for both
males and females.



Chapter 2. Ageing voices 13

2.3.2 Fundamental frequency variation and Amplitude varia  tion

Older voices are generally associated with tremor and ase@ hoarseness. These
characteristics are related g and amplitude instability. Measures of standard de-
viation of the fundamental frequency and its amplitude,idaté gross stability of
voice over time. These measures tend to increase with ageoformales and fe-
males [Linville,[2000]. Thd standard deviation more than doubles between young
adulthood and old age for men while an increase of over 70%bban observed in
older women’s voices. These observations are also confiexeerimentally by Xue
and Deliyski [2001]; Bruckl and SendImeier [2003].

2.3.3 Jitter

Jitter is the cycle to cycle variation of the pitch period, ithe average of the absolute
distance between consecutive periods. It is measurgseo.

) 1 N—-1
Jitter(absolute = N_1 Zl ITi — Tita| (2.1)
=

whereT; is the extractedr period length and N is the number of extractedpitch
periods [Boersma, 2001].

A relative measure for frequency perturbations known asefJiocal’ is often
used. It is the ratio of pitch period variation from cycle ke to the average pitch
period. It is expressed as a percentage.
ez 2isa [T Tl

N2 T
The other measures of jitter that are averaged over largabauof pitch periods

Jitter(Local) = (2.2)

are as follows:

¢ Relative Average Perturbations (Jitter RAHhe average absolute difference
between a period and the average of it and its two neighbdurslied by the
average period.

e Five point Period Perturbation Quotient (Jitter PPQ5The average absolute
difference between a period and the average of it and itsdlosest neighbours,
divided by the average.

¢ Difference of differences between periods (Jitter DDH)e average absolute
difference between consecutive differences between catige periods, divided
by the average period.
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Increased jitter with age has been observed in both malefcamales. But it has
been suggested by Ramig and Ringel [1983]; Linville [2001} draplitude pertur-
bation measures may be better discriminators of age thde-tycycle variations.
Jitter is caused by the instability of the vocal folds. Witfeang, due to physiological
changes and deterioration in health, the vocal folds makareaausing jitter, but if
the older person is in a healthy condition, the differenc@itter from a young adult
does not differ too much_[Linville, 2001]. Though Jitter magt be a clear indicator
of chronological age, it does provide some acoustic cuasdicate ageing.

2.3.4 Shimmer

Shimmer is the variability of the peak-to-peak amplitudel@tibels. It is the ratio of
amplitudes of consecutive periods. It is expressed as

A|+1
Shimme(dB) = 1 Zx |20log(—— (2.3)

whereA, is the peak-to-peak amplitude in the period &hs the number of extracted
fundamental frequency periods.

Relative shimmer (Shimmer Locad) defined as the average absolute difference
between the amplitudes of consecutive periods, dividedheyatverage amplitude, ex-
pressed as a percentage.

ShimmefLocal) = ﬁ Zi’}ll,\LAi — Al (2.4)
N 2i—1A

Similar to the Jitter measurements, Shimmer is also medsweveraging over

larger number of periods.

e Three point Amplitude Perturbation quotient (Shimmer APQ®e average ab-
solute difference between the amplitude of a period and\beage of the am-
plitudes of its neighbours, divided by the average ampditud

e Five point Amplitude Perturbation Quotient (Shimmer APQHR)e average ab-
solute difference between the amplitude of a period and\beage of the am-
plitudes of it and its four closest neighbours, divided by diverage amplitude.

¢ Difference of difference between amplitudes (Shimmer DIDIRg average abso-
lute difference between consecutive differences betweemplitudes of con-
secutive periods.
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Shimmer has been found to have a strong correlation with§ge.and Deliyski
[2001] found the mean shimmer in older voices to be 0.48 dBenthe value was 0.19
dB for younger speakers. Amplitude perturbations have ladsm reported to increase
with age by Ramig and Ringel [1983]; Linville [2000]; Bruckl aBéndimeier [2003];
Bruckl [2007]. Shimmer levels increase with age indepenaértealth and fitness
variables, and hence serves as a good indicator of ageing.voi

2.3.5 Breathiness

Another voice quality associated with ageing is increasezhthiness. In general
women are judged to be breathier than men. Breathiness iglthtw be due to the
incomplete glottal closure during closed phase of the ptoopaycle. The nearly sinu-
soidal shape of the breathy glottal waveforms is respoasdrlincrease in the relative
amplitude of the first harmonic. It has also been observeHilol, 1982] that breathy
signals tend to have more high-frequency energy than ntymphabnated signal. An-
other property of breathy signals are that they are lessgieriespecially in mid and
high frequencies where aspiration noise is large [Hillanblret al., 1994].

Harmonic to Noise Ratio (HNR) measures the signal to noise mata periodic
waveform and acts as a good indicator of voice quality. Ibimputed as the logarithm
of the ratio of the energy of the signal in the periodic parthi® noise. It is measured
in decibels/[Boersma, 1993]. HNR was found to be a sensitidexrof vocal function
[Ferrand, 2002] and a significant lowering of the HNR valueseweported in older
voices.

A measure that correlates well with breathiness in voice igs€al Peak Promi-
nence (CPP) proposed by Hillenbrand and Houde [1996]. Thstreep is a Fourier
analysis of the logarithmic amplitude spectrum of a sigiéhen the log amplitude of
the spectrum contains regularly spaced harmonics, thedf@uralysis of the spectrum
then captures the periodicity in the spectrum and will shgyeak at a quefrency cor-
responding to the spacing between the harmonics. The aépstik reflects both the
level of harmonic structure in the signal and the overall onge of the signal. To nor-
malise for overall amplitude, a linear regression line isaiated relating quefrency to
cepstral magnitude. The CPP measure is the difference intadglin dB) between
the cepstral peak and the value of the regression line aefhstral peak (Figule 2.2).
CPP is computed on frames of 10 ms and averaged over all thedramnan utterance.
CPP values for breathy voices are lower than those for noroieé\since the cepstral
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peak is expected to be smaller in breathy voices due to logemddic structure in

higher frequencies of the spectrum.
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Figure 2.2: Cepstral peak prominence

A smoothed version of CPP called CPPS is computed similarlly oime addi-
tional smoothing. For CPPS, a frame size of 2ms is used ingitd@ms and two

levels of smoothing are applied. First the cepstrum is @extacross time by replac-
ing an unsmoothed cepstrum at a time frame with the averaiggetifand the adjacent

cepstral frames. A second level of smoothing is then apjtlied running average of

the cepstral magnitude across quefrency for each cepstraéf
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2.3.6 Sound pressure level

Increase in sound pressure level in conversational speesbéden observed in males
over 70 years of age, while no noticeable changes have bessrwald in females
[Linville| 2001]. Typically with ageing there is a decline hearing capabilities. Peo-
ple usually adjust the sound level based on feedback froemnat coupling of sound
production and sound perception. Increase in voice souesspre level with ageing
is believed to be a compensation mechanism to overcome Hrengdoss. However
increase in speech intensity has been observed even forspieakers with no hearing
loss.

Experiments comparing long term spectral amplitudes cfrodaiults with those of
younger adults [Linville, 2002] show a significant increasamplitudes at 160 Hz and
frequencies above 6000 Hz. These findings were associatledwieased breathiness
in the voices.

2.3.7 Speech rate

Older speech is characterised by a lower speech rate. Tleeitayof the speech rate is
due to the degeneration of the muscles and reduced efficaribg peripheral motor
system. It has also been suggested that older speakersrdétily slow down their
speech in response to the restrictions in the functionafithe articulators in order to
be more intelligible.

The speech rate is related to segment duration, number ofesgg per unit time
and duration and frequencies of pauses. The number of spaéslisyllables, phonemes,
sub-phonemes etc) per second generally decrease with elgigd and Miller, ' 2007].
Several studies have reported a decrease of 20-25% in spatecin older speak-
ers reading and speaking rates. Increase in vowel and camisdarations and an
increase in pause durations and frequencies [Bruckl andliSeret, 2003] Linville,
2001; Sclitz and Miller, 2007] have been reported. Speech rate reductionagéh
has been found to be more prominent in men than in women.

Perceptual tests on age recognition [Harnsberger et @§]2uggests that speak-
ing rate is used as a strong cue in distinguishing older gysdiom younger speakers.
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Automatic Speech Recognition

Automatic speech recognition systems attempt to transergpeech signal to a string
of words. Given the intrinsic variability in speech due tffetiences in environment,
speaker accent, gender, age, and emotions, this is noighstoaward task. Decades
of research have not yet been able to make machine basecsgeegnition com-
parable to human performance. However, state-of-the-8R Bystems achieve good
recognition accuracies on constrained tasks includinglgiimsolated word recognition
tasks on few hundred words and continuous speech recagoitidarger vocabularies
of the order of 50000 words.

Several models, theories and algorithms from Mathemaios)puter science and
Linguistics form the basis on which the current ASR systerasailt. Digital signal
processing technigues, probabilistic models, machinmileg techniques, finite state
automata, formal logic and grammar representations, Egeguinguistic and phonetic
knowledge find their way into the design of various compos@fhthe speech recog-
nition systems.

3.1 ASR architecture

In order to be able to recognise the input speech, it is firgtpatrised into a sequence
of equally spaced discrete feature vectoms shown in Figure 3.1. Given the observed
feature vectors, the basic decision rule used to hypothésespoken word sequence
‘W' is given by

W = arg maxP(w|O) (3.1)
w

18
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where,
O =1{04,0,...,07} is the sequence of speech feature vectors (observations).
P(w|O) is the probability of a word sequeneegiven the observation sequende

Time Overlapping
windows

BV 9990 099UV

Amplitude

-«

ﬂﬂ

Figure 3.1: Parametric representation of speech

To keep the computation tractable, equafion 3.1 is rewritiging Bayes’ rule as
follows:

W = argmaxP(w|O) = arg max{ Pw)P(O[W) } (3.2)
w w P(O)
where,
P(w) is the a-priori probability of the word sequenee
P(OJw) is the probability of observing parameter vect@rgiven the word sequence

W

State-of-the-art ASR systems (Figure.]3.2) are built addhis mathematical for-
mulation. The probability of a word sequeneéw) is computed from language mod-
els. Acoustic models are used in the computation of theitiked P(O|w). The lex-
icon acts as a map between the words in the language modeharsdith word units
that comprise the acoustic models. The feature extractmoule assumes the task of
converting the speech signal into discrete parameter rg&cto
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Figure 3.2: Automatic speech recognition system

3.1.1 Feature extraction

A speech signas(t) captured from a microphone is typically processed through a
Analogue to Digital (A/D) converter to get a sequence of Sasgn| representing the
original speech. The goal of the feature extraction modsl® iextract meaningful
features from this signal such that the features provide

1. a compact representation of the original signal.

2. good discrimination capacity between different speecimds.
3. robustness against noise.

4. minimal variations due to speaker characteristics

Several prominent features of the speech signal, speedigion and speech per-
ception are taken into consideration in the design of feagxtraction techniques for
ASR.

1. The speech production mechanism can be represented asca fitter model,
where the air pushed from the lungs with or without vocal falorations can
be treated as the source with the vocal tract acting as adhgping this source
signal. Figuré_3]3 illustrates the speech signal, its spacthnd the frequency
response of the vocal tract. The vocal tract’'s shape leadsstmance at certain
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frequencies known as the formants. By varying the shape ofdbal tract, the
frequencies of the formants can be controlled thereby géingrvarious sounds.
It is hence of interest to model the underlying vocal traetphto represent the
speech signal.

2. The spectral slope of the speech signal is found to be inegaiower frequen-
cies have higher amplitude compared to higher frequencies.

3. Though speech is a non-stationary signal, it is a reas@t@bssume stationarity
over short durations of 20-30 msecs.

4. The human ear frequency resolution is non-linear witheesto frequency. The
relation between actual frequency and the perceived freguis logarithmic in
nature as reported in [Stevens etlal., 1937].

5. The human ear response is also non-linear in sensitvayplitude/sound pres-
sure at different frequencies. [Robinson and Dadson, 1$86:226:| 2003]

Several feature extraction techniques inspired by audaod perceptual models
combined with machine learning techniques to reduce thedsmonality and to re-
duce the correlation across dimensions in the feature $a&ebeen proposed to date.
Some of the earliest feature extraction techniques werdbas linear prediction anal-
ysis where the vocal tract’s spectral response is modeleoh @dl-pole filter and the
filter coefficients formed the feature vector. Approachesedaon analysing the speech
signals in the frequency domain proved to be more effeclite. Cepstrum (spectrum
of log spectrum) was proposed [Bogert etlal., 1963] as antaféetool for homomor-
phic speech signal processing. State-of-the-art featdraation techniques viz., Mel
Frequency Cepstral coefficients (MFCC) [Mermelstein, 197&i$and Mermelstein,
1980] and Perceptual Linear Prediction coefficients (PIH&rimansky, 1990] use the
cepstral analysis. Instead of using a fixed frame lengthgeesh analysis, other ap-
proaches using variable frame length and rate [Bridle and Byd®82] and wavelets
have been tried with limited success.

MFCCs and PLPs, as implemented in HTK [Young et al., 2006] haenlused in
this thesis. Both these methods are based on mel filter bahks@a@LPs incorporate
properties of human ear perception into the feature extragirocess. Figure 3.4
shows a block diagram representing the various steps iestotvthe MFCC and PLP
generation. The motivation and the process involved in stghis described below.
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3.1.1.1 Windowing

In order to do frequency analysis of a signal, it needs to aeostary. As discussed
above, a speech signal is assumed to be stationary oveirsieovals of time. Hence a
sliding window approach is used, with overlapping adja¢emhes as shown in figure
3.3 . Typically a window size of 25 msec and a frame shift of I&mare used.

M‘W

4

Framen] Frame [n+1]

Frame [n+2] - - -

WW\MMM

Frame Shift

-
Window Size

Figure 3.5: Windowing or Short time analysis of speech signal

3.1.1.2 Pre-emphasis

The speech signal is typically preprocessed before thebigature extraction. Any
DC offset introduced by the A/D converter is first removed.e ®ignal is then pre-
emphasised to boost the signal signal strength in the hifginerants, using a high
pass filter:

H(z = 1-kz! (3.3)
(0<k<1)

The pre-emphasis coefficiektis typically chosen close to 1 and a value 03D
has been used for all the experiments in this thesis.
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3.1.1.3 Conversion to frequency domain

Using rectangular windowing is equivalent to convolving gpeech signal with a sinc
function which introduces overtones of the signal at highegiuencies. To avoid this,
a smoothing window function is applied [Harris, 1978]. Ased cosine (hamming
window) is often used in speech processing due to its captcinaximally suppress
the overtone frequencies.

§n] = <o.54— 0.46 cos( NZT_[” 1> ) sin| (3.4)

Each frame is then converted to frequency domain using ther&e Fourier Trans-
form.

3.1.1.4 Filterbank analysis

To replicate the human ear resolution of the frequenciesinisilogarithmic in nature,
the frequency domain signal is transformed from a linealestaa logarithmic mel
scale[Stevens et al., 1937].

f
fme1 = 1127 l0g, (1+ ﬂ)) (3.5)

This is achieved in practice using triangular overlappingdews as shown in Figure
[3.6. The energy in each frequency bin;) is accumulated by weighting the spectral
amplitude of the original signal by the value of the correspog triangular filter at
that frequency. This gives a lower dimensional feature ore@dqual to the number
of frequency bins). The width of the windows increase as teguency increases in
correlation to the mel scale. This approach is particulefficient, since it provides a
larger bin for higher frequencies where the energy is low.

3.1.1.5 Cepstral analysis

The goal of cepstral analysis is two fold:

1. The mel filter bank coefficients are not decorrelated dubdmverlapping fre-
guency bins. We would however like the feature vectors tmbependent across
dimensions.

2. The melfilter bank coefficients represent the frequenayamments of the speech
signal which is mathematically a convolution of the glogalrce signal and the
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Figure 3.6: Filter bank illustration (using 9 bins for a signal sampled at 16KHz)

vocal tract channel response. It is desirable to somehopwresp the glottal
source characteristics as much as possible and only captirecal tract for-
mants.

Conversion to Cepstral domain involves a discrete cosinafivam on the log of
the mel filter bank coeffientsry;).

N
G = \/%gl(log m,-)cos(%(j — O.5)i> (3.6)

This can be viewed as projecting the signal onto an orthddmesis. Hence the
resulting coefficients are decorrelated. Convolution intime domain is equivalent to
multiplication in frequency domain, and this multiplicatibecomes a simple addition
in log frequency. Hence by subtracting the cepstral meaherldg cepstral domain,
the glottal source characteristics can be suppressed as wel

3.1.1.6 Equal loudness

Inspired by the studies on human auditory system [RobinsdriDatson, 1956], the
signal is pre-emphasized according to the equal loudness<of the human ear re-
sponse. Usually a piecewise linear approximation of the@Blqudness curves is used
in this process. This scaling is applied to the mel filterbaokfficients as imple-
mented in HTK. In the original proposal of PLP_[Hermansky90Pp the frequencies
are warped using a bark scale instead of mel scale.
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3.1.1.7 Cube root amplitude scaling

The amplitude of the speech signal and perceived loudnesedrlinearly related.
An empirical relationship between the two was proposed ievéhs, 1957] called the
psychophysical power law or Stevens law. As per this law,®goot compression is
applied to the energy in all the frequency components initheas

As a result of this step, the variations in the spectral angbéis reduce and this
gives an additional advantage in the following linear pcédn step since the signal
can be modeled by a lower order filter.

3.1.1.8 Linear prediction analysis

An all pole filter model is used to compactly represent theaVd@ct frequency re-

sponse.
1

H(Z) = 1+ Zipzlz_i

An all pole filter is a good model to represent speech sincdidje energy formants

(3.7)

can be captured by the location of the poles on the frequexisy b practice, a filter
of the order of 10 to 15 is sufficient to efficiently model theesph signal. In linear
prediction analysis we attempt to compute the coefficiantsf the filter such that
the mean square error between the original speech ssimand the predicted signal
§n] is minimised over all the speech samples in the current frahamalysis. Using
an autocorrelation method, this optimisation problem campdsed as the problem of
solving M equations with M unknowns [Makhoul, 1975] whichsi@(n®) complexity.
A more efficient method known as Levinson-Durbin method fhsan, 1947] that
exploits the Toeplitz structure of the autocorrelation nmas commonly used due to
its betterO(n?) computational complexity.

3.1.1.9 Energy and differential coefficients

After the MFCC/PLP feature extraction, the log of the energyhaf signal in the
current frame is usually appended to the features. Thraughe feature extraction,
all the processing has been done under the assumption ttiatfreane/window of
speech is independent of others. However, this is not trueereTis a high degree
of correlation between speech frames close to each othecaftre this dynamics
in speech signal, additional first and second order diftgaknoefficients computed
using the static features from the set of adjacent framesalaceusually appended to
the static features.
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3.1.2 Acoustic models

Acoustic models aim to compactly represent the speech sasthathematical mod-
els. In practice, models are usually built at the phonemel |&khese phoneme models
can be concatenated to model a word or an utterance.

In fact the speech signal cannot be assumed to be statioremryéthin a phoneme
unit since each phoneme realisation can be approximatesbasiing of the phoneme,
steady state and the end of the phoneme. Hence under themssuthat the signal
is stationary in each of these phases, a phoneme model tallyptomprised of three
models which are tied together into one unit using an ovamgcHidden Markov
Model (HMM). HMMs provide an excellent framework to capttine variations in the
phoneme realisations and durations.

The standard approach to train the HMMs is based on Expectdaximisation
using maximum likelihood criterion as proposed lin [Dempseal.,' 1977]. More
recently, discriminative training criteria using Maximuitutual Information [Nor-
mandin, 1991] and minimum bayes’ risk based Minimum PhorergPovey and
Woodland/ 2002] have been proposed. In this thesis, we ese#ximum likelihood
criterion to train the models which will be discussed in mdegail in the following
sections.

3.1.2.1 Hidden Markov models for acoustic modeling

The basic theory of Hidden Markov models was proposed in @04 [Baum and
Petrie, 1966]. It is essentially a Markov model in which thate sequence is not
observable. It provides a good framework to model an obbés\tame series in which
the underlying system generating the observations canduereesl to lie in a finite set
of states.

Some of the earliest acoustic models using HMMs were builtleity [Baker,
1975] and IBM [Jelinek, 1976]. Due to the elegant framewosytprovide, HMMs
have been adopted as a standard modeling technique fortiganaslels.

HMMs can have a variety of configurations based on the allotrausitions be-
tween states. In speech processing, as explained abovesevene state to model
a segment of a phoneme (either beginning, middle or endifgjs enforces an or-
dering for state transitions in the HMM and hence a constleft-to-right HMM is
typically used.

The structure of a three state left to right HMM is shown in Etgure[3.7.
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t 0 t+1 0 t+2 0 t+3 time

Figure 3.7: Three state left-right HMM

A HMM is specified by

1. The number of emitting states in the HMM". For ease of implementation,
two dummy states one for ‘Entry’ and one for ‘Exit’ are appeddvhich are
used to concatenate HMMs together into larger context M@vrdt or utterance
level HMMs. Each emitting state contains a probability dgrfsinction such as
a multivariate Gaussian or a Gaussian mixture model.

2. Transition probabilitiesd;j’ which capture the probability of transition from
statei to statej. i.e., a; = P(q+1 = jlot = i) where,q indicates the state
occupied at timé. &;j terms must obey the conditiop'j\'zla;j =1. At every
instance of time, there is a change in state from the curtate o one of the
states having a nonzero transition probability from theenirstate.

3. Emission probability densitidsj(o) that capture the probability of observing
feature vectoo, emitted from statg at timet. i.e.,bj(o) = P(o(t)|q: = j). The
state output distribution modeled by a multivariate Gaasslistribution is given

by
bi (o) = 1 o 2(0—1)'Z o —py)
(2m"[Z;]

where,|; andZ; are the mean and the covariance of the Gaussian respectively

4. The initial state distributiongt that capture the probability of a state occurring
attimet =1, i.e.,s =P(q1=1)
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Thus a HMM is specified by the triplét= (A, B, 7).
In order to be able to use HMMs to represent the acousticgpttosving assump-
tions are made

1. The speech waveform is stationary over segments of tenever the duration
of feature extraction window.

2. The probability of a state is only dependent on its previstate.
3. The transition between states is instantaneous.

4. The probability of an observation being generated is defyendent on the cur-
rent state and independent of the previous states and aliser

T
P(O|Ql7QZ>aQT,)\): I_!P(Ot|CIt,)\) (38)
t—

Though not completely true, these assumptions allow theefivaglof speech in the
mathematical framework of HMMs. Elegant algorithms foririnag the HMMs and
recognition of speech using those HMMs have been developed.

3.1.2.2 The three problems of Hidden Markov models

We briefly review the three central problems in the HMM thedryese are discussed
in detail by Rabiner [1989].

Problem 1: Evaluation

Given a sequence of observatidDs= 010;..071, this problem deals with the com-
putation of the likelihood of a given HMMA() generatingO i.e., P(O[A). Since the
state sequencg = q10p..q7 is hidden, the likelihood is computed by marginalising
over all possible state sequences.

P(OIA) = S P(Olg,\)P(q]A) (3.9)
q
where,
P(O|g,A) = b, (01)bg,(02) ... by, (OT) (3.10)
P(gA) = Ty, 801028003 - - - Agr 107 (3.11)

If there areN states in the HMM, the number of possible state sequencEsime
steps isNT, and hence the evaluation of the likelihood in equafioh 3i@githe naive
approach has complexity (T N') which is computationally infeasible.
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In order to make this calculation tractable, taking advgataf the Markovian as-
sumption, recursive forward or backward procedures ard.Ugariablesa and3 are
introduced in these two procedures respectively, whichusexl to accumulate the
statistics as explained below and hence avoid the need lioatgpcalculations.

Forward procedure
The forward variable (i) is defined as

at(i):P(017027"~70t7q'[:”)\> (312)

l.e., the probability of observing the partial sequengeo; and occupying stateat
timet.
Using induction g (i) can be computed as follows:

1.
a1(i) =mbi(o), 1<i<N (3.13)
2.
. N .
ar+1(f) = [.Zlat(')a” bj(0t+1)
i=
for t=12,...T—1 1<j<N (3.14)

3. The likelihoodP(OJA) can be computed by marginalising thevariables at time

T over all the states. N

P(OA) = _;aT(i) (3.15)

With this approach the computational complexity is of théesO(N>T) which is
a significant improvement over the naive approach.

Backward procedure

Similar to the forward procedurdl(O|A) can also computed using a backward
procedure using a variab[g(i) which is defined as the the probability of observing
the sequence from time instarice 1 to T given the occupancy of stai®f the model
A at timet.

B(i) = P(0t+1,0t+2,---,07 |Gk = i,A) (3.16)

The recursive formulation for likelihood computation ugithe backward proce-
dure is as follows:
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1.
Bri)=1, 1<i<N (3.17)

2.

N

Be(i) = Z ajjbj(0t+1)Bt+1(j)

=1

for t=T-1T-2,....,1 1<i<N (3.18)
3. And N

P(OA) = _ZW bi(01)Ba (i) (3.19)

The computational complexity using the backward procedsigdso of the order
O(N?T). Hence both the procedures are equally efficient to solvevhkiation prob-
lem.

Problem 2: Decoding
This is the problem of identifying the state sequence thaiimiaes the likelihood
of an observation sequence given the model i.e,

argmaxP(O,q|A) where ge Q (3.20)
q

This search problem can be efficiently solved using Viterbcatling [Viterbi,
1967]. It is a dynamic programming approach which builds ¢beplete solution
from optimal sub solutions.

Let & (i) be the likelihood of the partial observation sequeogcen;, generated by
the best state sequence ending in Statdimet.

& (i) = mc?-XP(QLQZ- .Gt =1,01,02...0t|A) (3.21)
By recurrent property, the value dfat timet + 1 for state j can be computed by:
&1(j) = max(&(i)aij ) bj(r) (3.22)

As the Viterbi algorithm builds the solution step by steps ihlso essential to keep
track of the best predecessor state at each time instang. iffformation is stored in
Wi (i) which denotes the best preceding state for current stdtémet. The algorithm
to find the optimal state sequence is as follows:
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1. Initialisation

d1(i) = mibi(o1) (3.23)
Wu(i) = O (3.24)

2. Build optimal sub solutions iteratively
Fortimeinstances=2toT — 1, update thés and)s for each statg¢(1 < j <N)

using:
&(j) = miaX(&_1<i)aj)bj(q) (3.25)
W(j) = argmaxd 1(i)aij) (3.26)
for 1<i<N

3. Termination
Find the state at tim& that has the maximum cumulative likelihood score.

p* = miaxéT(i) (3.27)
oqr = argmar(i) (3.28)

for 1<i<N

4. Backtrack

Having found the best statg at timeT, the best state sequence explaining the
observation dat® can be found by backtracking the states storedl variable.

G =Wa(g) for t=T-1T-2..1 (3.29)

Problem 3: Learning

This is the problem of training the models from the obseoragequences such
that the models generalise well to unseen data of similarreate., find the model
parameterd (A, B, 1) that maximise®(O|\).

The procedure employed in training the models is to star it initial model
Ao and update the parameters iteratively until the differeéndée likelihoodP(O|A)
between two successive iterations becomes negligible.

The initial models are usually built using either
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1. a segmental K Means approach, where the observationrsent® split equally
among all the states in the HMM and the parameters estimaited,

2. a flat start approach where all the observation vectorsised to estimate the
parameters of one global model which is then used as the seeel for all the
units.

Starting from such initial models, the parameters are thmaated iteratively in
a maximum likelihood sense using Baum-Welch re-estimati®ewm et al.| 1970]
process.
Let v (i) be the probability of occupying stateat timet given the observation
sequenc® and the modea.
P(ck =1i,0/A) o (i) Be (i)

V(i) = p(a = i|O,A) = PON 5 an(i)di) (3.30)

Let&; (i, j) be the joint probability of occupying staitat timet and occupying state
j attimet + 1 given the observation sequer@and the modeh.

P(CIt = iaqt-i-l = J7O|)\)
P(O[A)

Et(ia J) = P(qt = i7qt+1: J|O7)\) =

ot (i)aij bj (0r+1)Brr1(J)
P(O[A)

(3.31)

(3.32)

Summingy (i) fromt =1 to T gives the expected number of times stiaikeoccu-
pied and summing it over= 1 to (T — 1) gives the expected number of times there
is a transition from state Similarly summingg; (i, j) overt =1 to (T — 1) gives the
expected number of transitions from state statej.

The Baum-Welch re-estimation formulae to update the modealpeaters assuming
Gaussian densities are:

Bo= i) (3.33)
5 _ ZtT:]lEt(ia j) 3.34
R o
o S w(i)og 3.35
S IR (8:39)

5, - T ) (3.36)
S (i)
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3.1.2.3 Extensions

Gaussian mixture models

Using single Gaussians to model each state of the HMM woujdyiran assump-
tion that all the data used to model a state is unimodal. Hewiena large dimensional
space, this assumption is not appropriate. So modifyingaisemption of the under-
lying data distribution from unimodal to multimodal, siegbaussians are replaced by
Gaussian Mixture Models (GMM) and the emission probabilignsity of statg is
given by:

M;
bj(o) = XijN(Ot;Ujmyzjm) (3.37)
m=1

whereM; denotes the number of mixture components in the GMM modedtate
andwjm, Wjm and j, denote the weight, mean and variance ofrfi& component in
statej.

The re-estimation formulae for the HMM parameters are medliéis follows:

The termy (i) is modified toy (i, k) which accounts for the probability of occupying
mixture componerkin state at timet given the observation sequer@and the model

o () Be (i) H Wik AC (Or; ik, Zik) (3.38)

R
FIL 1 0 (D)Be(i) ] LMo 1 Wim?C (Ot Him, Zim)
Using v (i, k) the formulae for computation of the weight, mean and vagamic
each mixture component are given by:

w SEa (i, k) 339

M ST M w(im) (3:39)

. — Z;I—:lyt(hk)ot 3.40

M= STk (3.40)

s _ lewi,k)T(ot—gk)(ot—nk)/ 3.41)
>i—1 Yt(i,K)

While training the GMM-HMM based systems, the number of conguts in the
GMM cannot be determined in advance. The usual approachsgtbthe training
process with one Gaussian per state, and then repeatedhatr@ split the available
mixture components till the likelihood of the model is maised for a small devel-
opment set disjoint from the training set. Mixture sizes 6fté 32 components are
typically used in most of the state-of-the-art acoustic ete(Hain et al., 2008].
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Triphone context

To overcome the variability in the phoneme pronunciatiorisoduced due to co-
articulation effect with adjacent phonemes, triphone nwdee usually preferred in
large vocabulary systems. Hence for each phoneme, instdaying a single 3 state
HMM, multiple HMMs with different left and right contexts atrained. Triphones are
usually represented &s— P+ R whereL andR are the left and right context respec-
tively for the phonemé.

Example: HMM for the word monotoni¢ would be comprised of concatenation of fol-
lowing monophone HMMsm aa n ax t aa n ih k
Using Triphone HMMs it would be comprised of:
sil-m+aa m-aa+n aa-n+ax ax-t+aa aa-n+ih ih-k+sil

Here two different HMMs are used for ‘aa’ depending on ther@tim context to the lef
and right.

—

Triphones can have word-internal or crossword context figpat al., 2006]. In
word internal triphones, the left and right context are fedito the word boundaries in
the transcript. In such cases, the boundary phonemes hiveranof the left or right
context as shown in the example below. Crossword contekidnes on the other hand
use context from adjacent words for boundary phonemes.| theakxperiments pre-
sented in this thesis, unless otherwise specified, crossvamtext dependent triphones
have been used.

Transcript: This is speech

Monophone sequenceill th ih s sp ih s sp s p iy ch sil

Word Internal context dependent triphones: th+ih th-ih+s ih-s sp ih+s ih-s
Sp stp s-ptiy p-iy+ch iy-ch sil

Crossword context dependent triphon@ssil-th+ih th-ih+s ih-s+ih sp s-ih+s
ih-s+s sp s-s+p s-p+iy p-iy+ch iy-ch+sil sil

State tying

When we use triphones instead of monophones, the total nuofdéMMs in-
crease cubically. For instance the number of monophondsei€MU phoneme set
that we use in the experiments is 41 and the number of trighooeering all the left-
right contexts is 68921. This increase in the number of neobkzlds to data sparsity
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problem during the training phase. In fact several of thghtvtnes may not appear even
once in the training data.

However, several states of all the triphones are acoulstidalse to each other and
hence can be tied together. For eg., it is desirable that'tharl 3¢ states of the two
triphones ‘k-aa+r’ and ‘b-aa+r’ be tied. This allows thenrag data from all the tied
states to be pooled together to form a larger training ses.rlot desirable though, to
tie the states using hand written rules. Several resea blage worked on this problem
in the early nineties.

One way to automate the state tying is by data driven clugjesf the states us-
ing either a top-down or bottom-up approach. Hwang and H{i#882] propose an
agglomerative clustering approach where by starting with oluster per state, de-
sired number of clusters are generated by repeated me@imgdisadvantage of this
approach is that it cannot account for unseen triphone<itr#iining data.

The other approach using phonetic decision trees [Bahl,et29.1; Young et al.,
1994] provides a mechanism to cluster even unseen triphdn@sonetic decision tree
is a binary tree with a yes/no phonetic question associaittdesch node of the tree.
The phonetic questions for example take the form ‘Is thetragimtext a Fricative?’,
'Is the phoneme an affricate?’ and so on. Each phonetic siakées down from the
root node to one of the leaf nodes depending on the answeclatr@armediate node’s
phonetic question. All the states arriving at the same lederare tied together. Even
unseen phonemes can be clustered in this manner. The aettestatself is built from
a predefined set of questions in a top down manner. The quesgnciated with each
node is chosen such that the likelihood of the resultinggtates is maximised for the
training data. Starting from the root node, the tree growsasting a question to each
node until the gain in likelihood from further splits fallelow a predefined threshold.

3.1.3 Language models

Language models contain information about the allowablel@equences. They help
in limiting the word-search space for the recogniser andavgp the accuracy and re-
duce the computational load. Language models may take thedbword networks
which limit the set of words that can follow a word by the rutdshe graph or sta-
tistical models such as N-Gram [Ney et al., 1994], that aaseprobabilities to word
sequences.

Word network lattices are preferred in small scale ASR systdn systems where



Chapter 3. Automatic Speech Recognition 38

the user’s input utterance is limited to a few words and whiggecontext is predefined,
use of word network lattices can lead to very high recognitiocuracies. Grammars
are usually hand written in Extended Backus-Naur Form (EBSkjce the grammar
sizes are very small, they can be loaded and freed from thersysmemory at run
time with negligible delays. This facilitates in changirigetgrammar depending on
the context or the state of the spoken dialogue system. FRorghason they are widely
used in the commercial spoken dialogue systems. Flguleh®Bssan example of a
grammar lattice that can be used in an appointment scheddiliogue system when
the user needs to select a suitable appointment sessiogdhbe week.

) iy
cD

would

SENT-START - SENT-END

Figure 3.8: Example of a word network lattice

In large vocabulary systems that allow continuous speeaxh the user, hand writ-
ten word lattices are infeasible. In such systems, stedisti-gram language models
covering a wide range of words are used. Such language madelsually trained on
large text corpora such as newspaper articles, text gexnkfadtm web crawling and
text collected specifically to represent well the domainsHge.

A statistical language model is used to compute the probabil a sequence of
words occurring together in the language. Decomposingdim probability as the
product of conditional probabilities, the probability dtword sequence is given by:

P(Wi,Wa,...,Wy) = P(w)P(Wz|w)P(Ws|wi, Wo)...P(Wm|Wi ... Wmn_1)

- ﬁ P(Wi|wi,...,Wi_1) (3.42)

It is infeasible to store the statistics for every word giainpossible context lengths.
Hence in practice n-gram language models are used, whemgatstics for a word
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given a word sequence of- 1 predecessors are stored. This constraint on the history
amounts to the following assumption

P(Wm|W1, W2, ... Wm_1) >~ P(Wm|Wm-n+1, . .- Wm-1) (3.43)

In ideal conditions, a large value ofwould be preferred, to have the best approxima-
tion, but due to the storage limitations and the sparsityaohing datan values of 1 to
3 are typically used. With the advent of cloud computingasfructure and trillions of
documents of data available on the world wide web, resees¢tae only recently be-
gun experimenting with higher order language models suéhigram models [Brants
and Franz, 2006].

Using word n-grams, the probability of a word sequence mesliid

m
P(Wq,Wo, ... ,Wm) = rlP(Wi IWi—nt1,---,Wi—1) (3.44)
i=
The n-gram sequence probabilities are estimated in a mawilikelihood sense

by counting the word sequence instances in the trainingctaxtora.

3.45
C(Wm-n+1---,Wm-1) ( )

P(Wm|Wm-nt1...,Wm-1) =

where,c() represents the count of word sequence in the training carpor

This naive approach to compute the maximum likelihood esttes of the n-gram
probabilities runs into problems with data sparsity. Thgrams not observed in the
training set are assigned zero probability which is notrdége as such word sequences
may appear in the test set. This is a common recurring probiestatistical model-
ing usually solved by some kind of a smoothing technique. &hmnog for language
models [Chen and Goodman, 1996] are based on three main ideas

1. Discounting, where some probability mass from high fesgpny word types is
reassigned to those with near zero frequency.

2. Backoff, where for an unseen n-gram, the conditional dridityaof word given
its history is approximated by backing off to the conditibpeobability of that
word given a shorter context.

3. Interpolation, where the conditional probability for alrer order n-gram is
computed as a linear combination of the probability estamaf the lower order
(shorter context) n-grams.



Chapter 3. Automatic Speech Recognition 40

Smoothing

One of the earliest proposed smoothing met@odd-Turing discounting [Good,
1953] assigns some of the probability mass of n-grams ooguo+ 1 times to n-
grams occurring times in the training corpus. The adjusted counts for alhtggams
with a count ofc is given by

N
¢ =(c+1) ;” (3.46)
C

where,N. denotes the number of n-grams with coant

For a sufficiently large corpudl.1 is usually less thahl. and hence the adjusted
counts are less than the actual counts leaving some prapabdss to be assigned to
unseen n-grams. The adjusted counts in equition 3.46 am/bownreliable at higher
values of ¢ wheré\; values would be zero or near zero.

A modified equation for the discounted counts was proposfititz, 1987] which
is used in conjunction with a backoff technique.

*

¢ = ¢ for, c>Kk

c k+1)Ni+1
(c+1) NNtl —c! Ny
= | N for, 1<c<k (3.47)

Ny

k is a threshold that can be set to zero or determined empyrical

In Katz backoff smoothing, when the n-gram counts are zero, the model backs off
to a lower order model with a non-zero count. In order to namtorrect probability
distributions, n-grams with non-zero counts are discalisteh that when a probabil-
ity for a zero count n-gram is assigned from a lower orderstima of the probability
for a given wordw, given all contexts, sums to one.

C(Wm_rH_l cee Wm)
C(Wm_rH_]_ e Wm_]_>

Poo(Wm|Wm—n+1---Wm-1) = Om-nti.m-1

= Owpnp1. W1 Poo(Wm|Wm-n42- . . Wm—1)
otherwise (3.49)

Equation3.4B discounts the n-grams occurring with a couomatgr than certain
threshold. The discounting factdican be found from modified Good-Turing estimates
in equation 3.417

C
d=" (3.50)
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To compute ther values, the total left over probability mass after discogithe n-
grams is first accumulated gsand this is redistributed equally among all the n-grams
with zero count.

C(Wm_rH_l e Wm)
BWm—n+1-~-Wm—1 = 1- z dWm—n+1-~-Wm—1 C(

Wm:C(Wm—nt1..-Wm)>0

(3.51)
Wm—n+1..-Wm-1

BWm—n+1~~~Wm—l (3 52)
2 Win:C(Win_ns-1...Win) =0 Poo(Wm|Wm-n+2. .. Wm-1)

Among the smoothing methods commonly us&gheser-Ney Smoothing [Ney
et al., 1994; Kneser and Ney, 1995], was shown to give thege&trmance in terms
of ASR WERs [Chen and Goodman, 1996]. Kneser-Ney smoothingsedan a
simpler approach calleflbsolute discounting, where the non-zero n-grams counts are

anfnJrlme—l

discounted by an absolute valle The discounted probabilities with absolute dis-
counting for a bi-gram are:

C(Wm-1,Wm) —D
C(Wm,]_)
O (W) PvL (Wm) otherwise (3.53)

if C(Wm-1,Wm) >0

Pabsolutd Wm|[Wawy, ;) =

Kneser-Ney smoothing uses a slightly different approaatotapute the unigram
probabilities. Instead of counting the number of times adanacurs in the corpus, the
number of different contexts in which a word appears is cedint

CKN(Wm) = |Wm_1 . C(Wm_l,Wm) > 0)| (3.54)

The idea behind the use of such a count is that those wordbakatappeared in
more contexts in the training set are more likely to appeamiseen contexts as well.
Using these counts, the estimated probability is termedastinuation Probability’
Pcont [Jurafsky and Matrtin, 2008].
|Wm-1 : C(Wm—1,Wm) > 0)|

o W1 : C(W_1,w) > O) (3:55)

Peont(Wm) =

For Knerser-Ney backoff smoothing, equation 8.53 is madliising the continu-
ation probabilities as follows:

C(Wm-1,Wm) — D
C(Wm-1)
|Wm-1 : C(Wm_1,Wm) > 0)|
Swi Wi—1:C(wi—1,w;) > 0)|

if C(Wm-1,Wm) >0

PN (Wm|Way, ) =

otherwise (3.56)

0 (Wm)
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The Deleted interpolation smoothing [[Jelinek and Mercer, 1980] interpolates the
maximum likelihood estimates of a word with estimates frdmrter contexts. For
instance, for a trigram language model, the adjusted pitifyadstimate is given by:

Poi (Wn|Wn—1,Wn—2) = A1PML(Wn|Wn_1,Wn_2) +A2PuL(Wn|Wn_1) (3.57)
+A3PwvL(Wh)

where,Py is the maximum likelihood estimate as given in equaftionl3.45
and,yiAi=1
Equation 3.58 can be expressed in an elegant recursive fatioruafter Brown
et al. [1992]:

Poi (Wn|Wm-n4+1---Wm-1) = Am-n+1PML(Wn|Wm-n41..-Wm-1) (3.58)

+(1—Am—n+1)Poi (Wn|Wm—n+2- - -Wm_1)

Here then'" order smoothed estimate is a linear combinatiomnt®forder maximum
likelihood estimate and then— 1)!" order smoothed estimate. The recursion can be
terminated by approximating the smoothed first order esénmabe equal to the max-
imum likelihood estimate. Thg values are computed using EM algorithm[Dempster
et al., 1977] such that the probability of some held out dgwelent set is maximised.

Perplexity

Given a statistical language model, it is of interest to eatd how well it models
the language in the domain of interest. A performance measetric is also desirable
to compare the performance of different language modela fven test set.

Based on principles from Shannon’s Information Theory [$loar) 1948], entropy
(H) of a language generating source measures the amount aedandant informa-
tion contained in a word sequence in that language.

H=—lim 1 > (P(wi...wm)log, P(w1...Wm)) (3.59)

m—eo mwl...wm
where,P is the true probability of the word sequence.
Assuming ergodicity and sufficiently large value of m, epyracan be approxi-
mated as

H= —%Iog2 P(Wy...Wn) (3.60)

Instead of directly using entropy, a related measure calglexity PP) is gen-
erally used.
Pp=2" (3.61)
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If the probability of the word sequence generated by thedagg model is given
by P, then the perplexity is given by

PP=B(Wi...Wy) (3.62)

When the language model is a good fit, it assigns high proliakilto unseen
test sequences and thereby lower perplexities. Thoughep@spis a good measure to
compare language models, it is found to be weakly corretatdte measure of interest
in ASR viz., Word Error Rate.

3.1.4 Lexicon

A lexicon (dictionary) is a collection of all the words (vdmdary) used in the ASR sys-
tem and provides a map between the units that are repregartteslacoustic models
and the words present in the language model. In a small vtarghiask using word
based acoustic models, the lexicon would be a simple om&¢omapping between
words and the symbolic representation of the acoustic nisodela large vocabulary
task, the acoustic models are trained as sub-word unitsasiphonemes and the lexi-
con provides a map between these sub-word units and the words

Example:

ABOARD axbaord
ABOLISH axbaalihsh
ABSENT axbsaxnt
ABSORB axbzaorb

Alternate pronunciations of words can be encoded in thedexand thus provide
more flexibility to the ASR system to deal with dialects. Thriton is typically built
apriori using rules of pronunciation for that language. €entain outliers and difficult
words, the pronunciation is hand coded.

The vocabulary, in effect sets the possible words that catebeded by the ASR.
Any word spoken by the user that is outside the vocabularyaigpad to a close word
in the vocabulary and is one of the main sources of error agretlty poor recognition
accuracies in ASR systems. Hence it is imperative to cdyefolver the all possible
word tokens for the domain of usage, in the vocabulary.
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3.1.5 Decoder

The role of the decoders is to combine the acoustic modelargubge model scores,
searching through all possible word sequences and outpuidast hypothesis for the
spoken utterance transcription. Most state-of-the-acbders use a tree structure or
a finite state transducer (FST) to represent the search.spat&ST used in ASR
comprises of nodes corresponding to acoustic models anesnibat correspond to
word endings. As the search progresses through a node, diegemn the type of
node, either the acoustic model score or the language modet s added to that

p-ey+n |»f ey-n+t | »f n-t+m | @
[ax-p+oy |- p-oy+n |»] ey-n+t |»| n-HB

m—ﬁ ax-n+t
APPOINTMENT

Figure 3.9: Example of a small segment of a finite state network

search path.

Usually an FST is built statically and preloaded into the ragnbefore the hy-
pothesis search begins. However in large vocabulary sgstina size of the FST can
be extremely large and the use of dynamic network expangiproaches have been
suggested. Efficient wighted finite state transducer dlgms have been proposed
[Mohri et all,| 1996] to construct compact decoding netwdrksn the transducers of
individual components in the ASR system.

The search itself can progress time synchronously in a tidadt search man-
ner keeping track of the best partial state sequences atigaelnstant. The Viterbi
algorithm discussed in section 3.1]2.2 is an example oftypie of search. Efficient
best-first search algorithms such as Stack decoderdhamigcoders have also been
quite well researched. These algorithms are time asynonsornThe key idea in these
algorithms is to maintain a priority queue of partial sequeesnwhere each sequence
maintains a score based on the acoustic and language matbelbdities. The se-
quence iteratively chooses the sequence with the best acdréetermines the best
word to post fix to the chosen sequence. The extended seqiseresntered into the
queue. The computational complexity is drastically redus@ce the algorithm fo-
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cuses only the most probable candidates. Such efficieneynpatational complexity
can also be achieved in Viterbi style decoding by path piginin

The decoding can also be done with multiple passes over énetseetwork [Austin
et al.,[1991]. In such methods, usually a simple languageeinsdused in the first
pass, generating a list of N-best hypothesis. This set obtngsis is then re-scored
using higher order language models and possibly more dogatiesd acoustic models.
Multi-pass algorithms are have been shown to give better WER&&xpense of the
the extra computational time.

In most of the decoding experiments in this thesis, the HTdstéiVite and HDe-
code have been used, which are based on Viterbi decoding.eBirig the path ex-
tension in the search problem as a token passing instamcee#ich problem is posed
as a token passing algorithm [Young et al., 1989]. This atlgor starts with a single
token in the start node. As acoustic features are input teytheem, tokens are passed
to connected nodes in the network. When a token is passed fnemaxle to another,
the score associated with the token is updated with the priiyaassociated with the
new node. At each node, only the token with the highest ssaietained and all other
tokens are discarded. A word link record (WLR) which maintdiresword sequence
a token has traversed, is also maintained with each actwemtdn order to make the
search computationally tractable, tokens with a score ddahen the token with the
highest score, by a certain threshold called beam width aneeg and their WLRs
deleted. As a result only a small fraction of the tokens atiwe@at any time instance
and the network is expanded dynamically only for these paths

The decoding setup in this thesis with the JNAS corpus useduhus decoder
[Lee et al., 2001] in a two pass decoding mode. In the first,@f&sward frame syn-
chronous beam search is used to generate a word trelligistudn the second pass,
a reverse search is performed on this word trellis usingck stacoding algorithm.

3.1.6 Performance measures

The performance of an ASR system is typically measured imgesf errors made
by the system. Using dynamic programming based string milégr, the hypothesis
generated from the decoder is aligned to the true trangmmipfThe number of Hits
(H), Substitutions$), Deletions D) and Insertionsl({ are then computed.

The percentage of correct recognitions is given by

H
COfTeCt(%) = m x 100% (363)
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The measure Word Error Rate (WER) is more commonly used

S+D+|
WER%) = % x 100% (3.64)

3.2 Normalisation approaches in acoustic space

An inherent problem in acoustic modeling, as in any macteaerling problem, is the
mismatch between the training set and the test set. This atcéncould be due to
inadequate representation of test set speaker charéictenisthe training set or due to
the differences in environmental conditions such as rengrektup, channel conditions
and the ambient background noise. There are two main agpgsdo overcome this
problem

1. Normalisation, where the acoustic features or the mathelsnselves are nor-
malised to remove undesirable variations.

2. Adaptation, where the features or models are adaptedtbatkhe differences
due to mismatch conditions are well captured.

In this section, some of the widely used normalisation tegs are discussed.

3.2.1 Cepstral mean and variance normalisation

One of the common problems in speech corpora is the differenchannel (micro-
phone) characteristics between various sessions. Celplsteal Normalisation (CMN)
can effectively reduce the variations due to channel distzs. As explained in sec-
tion[3.1.1.5, the channel characteristics which get camWwith the signal in time
domain, appear as an addition in the cepstral domain. Whecethsral features are
averaged over time, the mean represents the channel adrésacs assuming that the
channel is stationary. This mean is subtracted from thetadgsatures to nullify the
channel characteristics.

Cepstral Variance Normalisation (CVN) is typically used imgmction with CMN.
After mean normalisation, CVN involves scaling the featugetors such that each fea-
ture in the vector has unit variance.
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_ 1 S 3.65
e = ?t: Gt (3.65)
2 _ Ly 3.66
t=
~ _ Gl
G = oo (367)

wherec; andg; are the original and CMN-CVN normalised cepstral featuresra t.

CMN and CVN have been empirically shown to provide robustnesshannel
variations and white noise. In practical applicationstaad of applying CMN-CVN
over each utterance, they are often applied over longer eetgnof speech in which
either the speaker or channel conditions are constantalrinee systems, the cepstral
means and variances are computed as run time averages.

3.2.2 \Vocal tract length normalisation

Vocal tract length shows a great degree of variability frqreaker to speaker and more
prominently between gender and age groups. As a resultoftthiformant peaks are
different across speakers for the same spoken phonemeedh@dque known as vocal
tract length normalisation (VTLN) attempts to warp the fregcy axis to compensate
this difference.

Using a linear warping, significant improvements in WERs wetgeved by Co-
hen et al.[1995]. The extent of the warping is determined Waging factorx which
is estimated for each speaker. To keep the warped frequehoiended to the orig-
inal frequency range, piecewise linear warping is usugbgliad with the boundary
frequencies unwarped as shown in Figure 13.10

In various experiments in this thesis, warping as shown gufei 3.10 (b) is used.
The warping factor for each speaker is estimated in a maxitikatihood sense [Lee
and Rose, 1996; Hain etlal., 1999]. Through a linear searcugr various warp-
ing factors, the factor that maximises the likelihood of Humustic model on some
training data from the speaker is selected. Using a Brentkdased on quadratic
interpolation, the complexity of the search is substalytimduced. VTLN is applied
in an iterative manner as described in Garau et al. [2005]

e Training

1. Starting with non-normalised models, compute the warfactors for all
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Figure 3.10: Piecewise linear warping in VTLN

the training set speakers. Using the warping factors, rectethe feature
vectors for the entire training set.

2. Reestimate the parameters of the models with the new é&satvith a few
iterations of Baum-Welch algorithm.

3. Repeat steps 1 and 2 using the last retrained models uatihtihease in
likelihood for some predefined development set stabilises.

e Testing

1. For each test speaker, evaluate the warping factor usimgatised models
either with a small available development set, or by usiegtanscripts of
the test set from one pass of decoding using the non-nomdatimdel.

2. Normalise the acoustic features and decode with the rMizedamodels.

Since the estimation is ML based, the warping factors arangptin this frame-
work where all other parameters are estimated in ML sense.didadvantage of this
approach is the high computational complexity due to thelteeecode the data for
various values of.

The use of linear transforms to directly warp in the featyace has been explored
by many researchers. McDonough et al. [1998] propose thefusdilinear all pass
transform for speaker normalisation. Pitz et al. [2001]lesg the idea of applying
linear transform after Cepstral extraction while Uebel arambdfand [1999] investigate
the linear relationship between unwarped and warped MFCCs.
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For VTLN to work reliably, speaker segmentation is essén8ach segmentation
is naturally available in certain corpora such as teleplmmmersations while in sce-
narios such as meeting room conversations, a front end spdalization system is
usually required to provide the same.

3.3 Adaptation approaches in acoustic space

Speaker independent acoustic models trained on hundrekguo$ of speech from
many speakers, generalise well for unseen speakers. Hoa@wvpared with speaker
dependent models targeted towards a specific speaker, the We&Rgh. But it is in-
feasible to train speaker dependent models for each spé#dece several approaches
have been proposed to adapt the speaker independent nodetarget speaker. All
these approaches fall under the gamut of speaker adaptSp@aker adaptation tech-
niques have also been widely used for environment adaptatieere there is a mis-
match between train and test conditions.

Acoustic model adaptation attempts to modify the HMM paraarsesuch that they
resemble the target speech more closely. Several apptzheoustic model adap-
tation have been proposed and these can be broadly classtbed

e Maximum likelihood based approaches.
e Maximum-a posteriori (MAP) based approaches

e Approaches based on speaker clustering.

3.3.1 Maximum likelihood adaptation

The underlying idea in ML based adaptation is to update thampeaters of the acoustic
models such that the likelihood of a set of target speech imsed. Most of the
popular approaches in this domain estimate a linear tramdfom the adaptation data
to modify the HMM parameters.

On the face of it, estimating transformation matrices faheparameter of all the
HMMs in the acoustic model seems infeasible due to the remént of large amounts
of training data. However, it has been shown that significaprovements in accura-
cies can be achieved by tying several states of the HMMshegeind estimating one
transform for all the tied parameters. This greatly reddlcesiaumber of parameters to
be estimated and thus the need for large set of adaptatian kiaflact, improvements
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in WER can be achieved by estimating a single transform fahalmodel parameters
thus making rapid adaptation possible even with a small atnofudata.

3.3.1.1 MLLR

The core approach in this category is Maximum LikelihooddanRegression (MLLR).
In the basic MLLR [Leggetter and Woodland, 1995a] the meditiseoGaussian com-
ponentqu are updated using the following transformation

H=Ap+b (3.68)

where A is amxn regression matrix and b is an n-dimensional bias vector. dAeare
computed using Expectation - Maximisation (E-M) algoritfDempster et &l., 1977]
such that the likelihood of the transformed models is mas@diwith respect to the
adaptation data. This equation is more widely written inftren

n=Wn (3.69)
whereW is ann x (n+ 1) matrix andfiis the extended mean vector
=01 .. (3.70)

Although a single global transform can be used for all thesS&uns, with avail-
ability of larger quantities of adaptation data more pretiansforms can be computed
that apply to a smaller number of Gaussians. One solutiorhgeee this is the re-
gression class tree [Leggetter and Woodland, 1995b] whares§ians that are close
in acoustic space are clustered together and undergo thetsamsformation. Figure
[3.11 (A) shows an example of a regression class tree.

The steps involved in applying MLLR based speaker adaptaiie as follows:

1. Create the regression class tree based on acoustic disiatweeen phonemes.
The trees are usually built in a top-down approach usingroghsplitting ap-
proach. Typically the Gaussian components in non-speeit such asil and
spare tied together and form a child node of the root as showngaré{3.11

(B).

2. Accumulate the statistics for all the phonemes from theptation data with
reference to the speaker independent models.
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Figure 3.11: Regression trees

3. Using the statistics for all the phoneme states tied tmgedt each node in the
regression tree, estimate the transformation matrix fatr tlede. If the accumu-
lated statistics for a given node are not sufficient due tosgpdata set, then the
node borrows the transform from its parent node.

4. Decode the test utterances using models with paramegidetad by the MLLR
transforms.

To accumulate the statistics for each phoneme, the tramiserifor the adaptation
utterances is essential. In the absence of transcriptgdt@nulation is done in an
unsupervised manner, where the utterances are first decsieglthe speaker inde-
pendent models and the decoder hypothesis is used as anxiapgetranscription.

Under the MLLR framework, Gaussian covariance matrix cao dle adapted
[Gales and Woodland, 1996; Gales, 1998]. The transformgptiate the variances
as proposed by Gales and Woodland [1996] take the form

S=LHLT (3.71)

where H is the linear transformation to be estimated and hesGholeski factor of

the covariance matriX. Typically the transformation matrices for the means as fir
estimated and using the transformed means, the variant&drenation matrices are
estimated. Thus two different different matrices are regliio transform the mean and
variance of a single Gaussian and this approach is knownamatrained adaptation.
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Using MLLR for adaptation, significant improvements in kargocabulary continu-
ous speech recognition have been obtained in several exgr&s. MLLR Transforms
have more recently found application in speaker recognajaplications too. In [Stol-
cke et al., 2005] a set of MLLR transforms for each speakeuseel as representative
vectors and Support Vector Machine classifiers are usecttmnese the test speaker.

3.3.1.2 CMLLR (Constrained MLLR)

Unlike the standard MLLR, where independent transforms angpeited for the Mean
and Variance adaptation, the use of a single constrainedftnan was proposed by
Digalakis et al.[[1995] to update all the parameters of alsi@pussian. This variant
of MLLR is known as Constrained MLLR (CMLLR).

The update equations in CMLLR are as follows:

Ack— b (3.72)
Al A (3.73)

M) T
| I

where,A: andb; are the constrained transform and the bias vector which twebd
estimated in a maximum likelihood sense from the adaptatata.

Due to the constrained nature of the transforms, insteadwa$forming the models
themselves, they can also be used to transform the observwatctors. Applying
CMLLR, an observation vector at timdecomes

G = Ag o+ A Mo (3.74)

This is essentially equivalent to transforming the feat@tors from a new speaker
to lie in the acoustic space of the speaker independent m{@ales, 1998].

In constrained MLLR, closed form solutions do not exist fog tomputation of
the transformation matrix. The transforms are therefotienased iteratively.

3.3.1.3 Speaker adaptive training

Given a training corpus, in the normal acoustic model trajrprocedure, the model
parameterd are estimated to maximise the likelihood of training data

~

A = arg rr;ax_(o;)\) (3.75)

In SAT paradigm |[Anastasakos et al., 1996], the idea is totlpiestimate a set of
speaker transforms and a set of canonical model paramstenis that the variations
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due to speaker differences are captured in the speakefararssG(")) while the pho-
netic characteristics of the language are captured by thenieal modelsX;). Canon-
ical model parameters so estimated are normalised acreakess.

)\, ) =arg max|[]L(O 3.76
(Ac g)\c’ |_I| Ac) ( )

where,G = (G, G, ...,GR)), andO™" is the set of observation sequences asso-
ciated with speakar.
In practice, SAT is implemented in an iterative process asiileed below:

1. Train a speaker independent model using the Baum-Welektneation process.

2. For each of the training set speakers estimate the CMLL#fnams using the
last updated speaker independent model.

3. Normalise the feature vectors from the training set spesalising the corre-
sponding transforms.

4. Retrain the SI model with the normalised feature vectors.

5. Repeat Steps 2-4 until the the likelihood scores stalidistne training set. The
final set of models are the canonical normalised models.

3.3.2 Maximum a posteriori adaptation

Maximum A Posteriori (MAP) adaptation provides a well defimeathematical frame-
work for incorporating the prior information of the moderpmeters with the informa-
tion provided by the adaptation data in the training proc@&$® training process can
be viewed as an interpolation between the original acoustidels and the maximum
likelihood estimate of the adaptation data. While in maximikalihood estimation
the parametera are chosen such that the likeliho@dx|/A) is maximised, in MAP
estimation, parameters are set at the mode of the diswibptix|A)g(A) whereg(.) is
the prior distribution of\.

3.3.2.1 Standard MAP

The key issue in MAP adaptation is the choice of an apprappaior distribution
family. It is desirable to choose a prior density in the cgajte family which includes
the kernel densityp(x|A).
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For a Gaussian mixture model with mixture components, the kernel density
p(x|A) for the datax = (x;...x7) is of the form

T K

POXIA) =TT > WikN (% [, Zk) (3.77)
=1

The parameter sat= (W1 ... Wk, ... Mk, 21 ... 2k ) comprises the mixture weights
w which form a multinomial distribution and the parametergath componer, 2)
which are multivariate Gaussian densities. A sufficientisgtia of a fixed dimension
does not exist foh and hence a conjugate prior cannot be readily specified.

This issue is addressed in the seminal work on MAP adaptétiosontinuous
density HMMs by Gauvain and Lee [1994]. It is shown that byuasisg indepen-
dence between the weight parameters and the Gaussianydeasaimeters, a prior
distribution can be specified as a product of Dirichlet distion and Normal Wishart
distribution which are the conjugate pairs for multinonaiati multivariate normal dis-
tributions respectively.

The update equations for the model parameters are derivegl e Expectation
Maximisation algorithm|/[Dempster etlal., 1977].

Using MAP estimation, the update equations for a Gaussiampoaenim in state
j is given by

G = ZtT%ij(t) Him+ TT
T+ Yi—1Yim(t) T+ 31 Yjm(t)
where, ljm is the maximum likelihood estimate of the mean of the adaptadata,

Hjm (3.78)

Hjm is the prior mean usually chosen from the previous iteradibime EM algorithm
andT is the hyperparameter that controls the bias between tloe ipfiormation of
model parameters and additional information from the aatapt data.t is chosen
heuristically depending on the strength of the prior models the amount of amount
of adaptation data available. Similar update equationst éxi the other parameters.

Given a reasonable amount of adaptation data, MAP can baasatboth or adapt
the model parameters. An attractive property of MAP is itgngstotic convergence
to maximum likelihood estimation as the amount of adaptatata increases. The
main disadvantage of the use of MAP in its original form istthapdates only those
parameters from their prior values which are observed imtiagptation data. In a large
vocabulary system, there are typically thousands of Ganssind this limits the usage
of MAP when the adaptation data is very small. Various exterssto MAP have been
proposed that aim to update the parameters associatedmg#ien data.
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3.3.2.2 Structural MAP (SMAP)

Structural MAP [Shinoda and Lee, 1997, 2001] takes a slygidternate view of adap-
tation. The core idea in this approach is to model the mismbé&tween the speaker
independent mixture components and the adaptation dadaysesuch model as a
prior to adapt the parameters in a maximum a posteriori sense

Given an observation vectog, the mismatch of this observation with respect to
every Gaussian mixture component is computed.

Yt = Zm ™ 2 (% — ) (3.79)

If there were no mismatclyy,; would be normally distributed with zero mean and
unit variancer ~ N(y; 0,1). When there is a mismatch between the adaptation data and
the SI models the distribution would bé~ N(y;v,n), v # 0 andn # I, wherev and
n represent the shift and rotation needed to overcome the atesmThis distribution
is called the normalised pdf.

In SMAP procedure, all the mixture components in the speiakiependent models
are clustered int® clusters and normalised models are estimated for all thes$tzs
in each clustep in a maximum likelihood sense as shown in equations| 3.80 &1 3
respectively.

p
St T mea Vit

ST Vi (Vi —9P) (Ve —P)
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The adaptation step involves transforming the parameteat the components in

AP = (3.81)

the cluster with its corresponding normalised pdf actinthasprior.

W = R+ (ZR)Y20P (3.82)
o= (ZR)AP ()Y (3.83)

To further improve the estimates, a hierarchical tree sireovas proposed [Shin-
oda and Lee, 2001] to cluster the Gaussian components. \\ith & tree, the nor-
malised model at a node is used as the prior distributiontimating the normalised
models for all the child nodes of that node. These MAP estthabrmalised models
at each node are then used to adapt all the Gaussian comp@ssnotiated with that
node in maximum a posteriori sense.
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3.3.2.3 Maximum a posteriori linear regression

While MAP adaptation provides a robust estimate for the patam, its effective-
ness is limited by the availability of sufficient adaptatiata. The parameters of only
the seen models in the adaptation data are re estimatedarliegression based ap-
proaches on the other hand rely on the basis that severalsremgetied together. The
adaptation data for all the tied models are pooled togethestimate the affine trans-
forms for adaptation. Hence they give robust estimates aumsmall amounts of
data. However with the availability of larger amounts ofajahere is a tendency to
overfit the parameters and the improvement in performartoeagas quickly.

Maximum A Posteriori Linear Regression (MAPLR) [Chesta et1899] was pro-
posed as a solution that gets the best of both worlds. Thasdeaeffectively apply a
global transform to all the models and further improve thinestes by local adapta-
tion. The problem is posed as estimating the affine trangdwh= (A, b)) from the
adaptation data using MAP criterion instead of ML criterion

W = argmaP(W[Y,\) (3.84)
w

>
Il

argmaxP(Y|W,A)P(W) (3.85)
w

Under this formulation, it was suggested [Chesta et al.,|188han et al., 2001]
that the prior distribution for the affine transforms be aroas the matrix multivariate
normal distribution

P(W) ~ yz|<“+1>/2|q>\“/2exp{—%tr(w —M) T Hw-— M)Cbl} (3.86)

where, M,Z, and ® are the hyperparameters for the distribution family, withe
Om(+1) |5 e 0™ 5 >0, d € OMD*(HD) gandd > 0.

With the prior distribution assumed as above, the affinesfamW can be esti-
mated via the expectation maximisation formulation [Detapst al.; 1977].

With the availability of large amount of adaptation datagrtharises a need to
cluster the Gaussians and estimate an affine transform ébrafahese clusters. This
leads to a requirement to define a large number of prior deasibustly. In Structural
MAPLR (SMAPLR) [Siohan et all, 2002], a hierarchical prionstture is proposed as
a tool to control the complexity of prior distribution esation. Having defined a tree
structure for the priors, the idea is to use the posteridridigion of W in a given
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node as the prior distribution for the estimation of affinensformW; for its child
node. However, the posterior distribution \Mf at a given node does not belong to
the class of matrix multivariate normal distributions. &solve this problem, the true
posterior distribution is approximated by a distributioorh the matrix variate normal
family having the same mode. This approximation is shown aokwguite well and
thus provides a good framework for robust adaptation.

3.3.3 Speaker space adaptation approaches

Under speaker space adaptation approaches, we discusauster@daptive training
and Eigenvoices methods. These approaches are basedgintly slifferent paradigm
compared with the previously discussed approaches. Thefeds look at the acous-
tic space as not only partitioned in terms of differenceshangtic characteristics but
also by speaker characteristics.

3.3.3.1 Cluster adaptive training

In Cluster adaptive training (CAT) [Gales, 2000], the coreaide that speakers in
the training set can be clustered by their acoustic pragmertHence each Gaussian
componenmis represented by a canonical mobil

M = [u%qu%} (3.87)

where, the acoustic space of the Gaussian component ierddsntoC classes, and
U represents the mean of th class for the component.

For a new test speaker)(with a small amount of adaptation data, instead of hard
assigning the speaker to a cluster class, the Gaussian cemggbmeans are chosen
as a linear interpolation of all the classes either with dhait a bias term

W =MmA, +b (3.88)

Hin = MimAr (3.89)

HereA, is the cluster weight vecto[r)\rl...)\ﬂ for the speaker which needs to be
estimated from the adaptation data in ML sense.

The key advantage of this approach is that for any new speakigra small number
of cluster weight parameters need to be estimated. Hen@taagd robust adaptation
becomes possible even with the availability of a small amhofiadaptation data.
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3.3.3.2 Eigenvoices

The underlying idea in the eigenvoices approach is that¢bestic characteristics of
a speaker can be represented as a linear combination ofdhetaccharacteristics of
other speakers. In eigenvoices [Kuhn etlal., 2000], fromtatepeaker dependent
models and the speaker independent model, high dimenssopairvectors (dimen-
sionality D) are created by concatenating the parameters that neecattepéed. The

order of the parameters in the supervectors is the samel theapeakers.

From theseR (R <« D) supervectors, using dimensionality reduction techrsque
such as principal component analys®eigenvectors of dimensidd are determined.
These are then ordered in terms of their eigenvalues andloalppK along with the
supervector of speaker independent moeéfd)) are retained as the basis vectors in
the eigenspac&(< R).

Each new speaker is projected as a p8iim this space as shown in equation 3.90

P=¢e(0) +w(1)e(l) +... +w(K)e(K) (3.90)

The projection weights for a speaker are estimated fromdlaptation data using
maximum likelihood eigendecomposition (MLED) [Kuhn et, &000]. The standard
ML approach to maximise the auxiliary function resultskinequations withK un-
known weight parameters which can solved using Gauss-+dongshod.

Similar to CAT, the number of parameters to be estimated fasadpeaker are
small and hence can be robustly estimated even with smallanod adaptation data.

3.4 Automatic age recognition

Automatic estimation of speaker age has been a growing twfpiesearch over the
past few years. An age estimate of a speaker can be used atihcuseto adjust
spoken dialogue system’s behavior to suit the communicdt@havior of the speaker
age group [Shafran etlal., 2003]. It could also be used toampeopriate information,
and in the mechanism of information delivery. However eation of age based on
voice has not been an easy task to solve.

Though speech production deteriorates with age, there @eaw correlation be-
tween chronological age and speech. Some voices tend tosgog/of ageing in 40
years while the voices of some healthy elderly people abdmage of 65 years do not
show signs of ageing. The profession of speakers (in pdatiethether the profession



Chapter 3. Automatic Speech Recognition 59

involves lot of speaking/shouting), smoking habits, analtteconditions seem to have
a bearing on the vocal ageing.

Most of the automatic age estimation techniques hence gh@ve performance
comparable to perceived age. Perceived age is the age af@asmperceived by human
listeners. Several approaches using cepstral featurepatutbations in voice have
been used to classify speakers in age groups and comparestiieswith subjective
listening tests.

Cepstral features [Davis and Mermelstein, 1980] have besssiigated by many
researchers for discrimination of age. The use of thesaresthas been motivated by
the fact that they are robust for speech and speaker reamgapplications. Mine-
matsu et al. [2002] used MFCC aAdMFCC coefficients as acoustic features to create
Gaussian Mixture Models (GMM) of elderly speakers and niolerty speakers. All
the speakers (in training and test sets) were classifieddaslyebr non-elderly based
on listening test. The test identified perceived elderlyakpes with 90.9% accuracy.
Speech rate and local power perturbations were then addeddésnal features and
the experiment repeated. The additional features gaveer lokgcrimination of age at
95.3% identification rate. Shafran et al. [2003] used a HMB&ksifier based on cep-
stral features and pitch to recognise age, gender, diabecemotion. Results on age
classification showed 68.4% correct classification using oapstral features which
increased to 70.2% using both cepstral featureskgridatures. In another approach,
Ajmera and Burkhardt [2008] reported that the slow movinggeral envelope of the
Cepstral features called Modulation Cepstrum coeffientslggter age discrimination
than with the use of cepstral features themselves.

Muller et al. [2008] used various measures of Jitter and Sknfor classification
of speakers to their age group. Jitter and shimmer as acoustisures provided con-
sistently good results in age discrimination for a range athine learning approaches
for classification including Artificial Neural Networks, Kédirest Neighbours, Naive
Bayes, and Support Vector Machines.ulr [2006] extended the acoustic features
from jitter and shimmer to also include harmonics to noig®yarticulation rate, and
frequency and duration of speech pauses and the increasedniplexity of classi-
fication problem to 8 classes representing children, teesagdults and seniors for
both the genders. 63.5% correct classification accuraocse achieved in this task.
The system was further improved [Mer and Burkhardt, 2007] by using a classifier
combining GMMs using frame based Mel Frequency CoefficientsSupport Vector
Machines using long term pitch features. The system actiielassification perfor-
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mance close to human listeners.

In a recent studyl [Metze et lal., 2007], a comparative studfoof different ap-
proaches to age and gender classification has been madehdllenge was to clas-
sify a speaker into one of the groups of children, young malesng females, adult
males, adult females, senior males and senior females. oihiesystems used were
A) A parallel phoneme recogniser with separate models foh etass B) A classifier
using dynamic Bayesian networks to combine various prodeditires C) A system
based on linear prediction analysis and D) GMMs based on MF&2@ifes. Parallel
phoneme recogniser seems to give the best performancenigerdaitterances but its
performance drops with shorter utterances. The systeng psosodic features fared
well for both short and long utterances.

More recently, an age recognition challenge to classifyakees into one of the
4 subgroups (Child, Young, Adult and Senior) was organised asbchallenge in
the paralinguistic challenge at interspeech [Schullerl.ei2@10]. The system that
achieved the best accuracies [Kockmann et al., [2010] isdbasea fusion of GMM-
UBM models, discriminatively trained models, SVMs, eigeineoand anchor based
models. The accuracies obtained in age recognition weredr56%.

From all these studies, it is clear that there is no clearetation between the
chronological age and the vocal age. However various pro$eatures are good indi-
cators of ageing voice, though they may not be used to prégicctual age accurately.

3.5 Automatic speech recognition on older voices

Studies on various changes in the characteristics of spgigohl observed in older
voices have been discussed in|2.3. It was also seen fromttesvrin [3.4, that such
changes in voice also leave acoustic cues which can be &gblloy human listeners
as well as machines to infer the speakers age with reasoaatleacies.

As discussed il 213, less precise articulation is oftencaataa with older voices.
Shuey [1989] conducted an interesting experiment in or@emderstand the speech
intelligibility differences between younger and oldera@s. Speakers from the two
age groups were asked to read CVCs embedded in a carrier pimcs$eealisteners
had to transcribe the target word. It was found that sigmfigahigher number of
errors were made for the older speakers’ utterances. In periexent to understand
socio psychological meaning of older people’s languagecangmunication, Williams
and Giles|[1992] report that older people’s voices weredrgierceptually lower than
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younger voices by a set of young listeners and the recalleohthssage of the older
people was also found to be significantly lower than thoseoofhger voices.

While there have been numerous studies on the effects of ggeirthe voice,
there has been limited work to understand the performané&Bf systems on ageing
voices.

In an experiment to understand whether special acoustielmade required for au-
tomatic speech recognition of elderly voices [Baba et al0420it has been observed
that the recognition accuracies of elderly voices abovee&ds/of age are 9-12% lower
than adult speakers using speaker independent acoustalsn¥dhile the drop in per-
formance for aged females was around 4-7%, it was significiigher at 16-18%
for aged males. A relative increase of 5-8% in accuraciesashgved when acoustic
models trained using elderly speech was used. It was alsrna@ibthat the acoustic
models trained on elderly voices served as better baselaueis for speaker adapta-
tion than those trained on younger adult voices. Thesetseard consistent with the
observations made by Anderson €etlal. [1999] in which acoustidels trained with el-
derly speech gave 12% better accuracies with elderly veisesmpared to those with
acoustic models trained on non-elderly speech. Elderly wene found to have sub-
stantially higher WERSs. Further improvements in accuraciesgdcbe achieved using
gender and age group specific models and such results were tobe comparable to
speaker adapted models with VTLN normalised features.

In a study of speech recognition for children and the eld&iipon and Jacobsen,
1996], it has been found that the error rates increase di@attgtfor voices below 15
years and above 70 years of age. They also observe that vdoilleazies could be
improved for younger voices by modifying the front end of f#eech recogniser and
with additional training data, such improvement in resatisld not be replicated for
older voices.

These research results indicate that there are differend¢be acoustic properties
of younger and older adults and lay the motivation for thelkygyesented in this thesis.
It is of interest to investigate the possible causes fordhi$erences in WERs and to
explore some possible ways to improve ASR accuracies far ooices.
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ASR accuracy on ageing voices:

Baseline Experiments

As discussed in sectidn 3.5, ASR error rates have been egptartoe higher for older

adults compared to younger adults. In this chapter, the ASQRracies for younger

and older adults are presented and compared on three diffeoepora. The three

corpora are first described in detail. The experimentalsi&tueach of these corpora
along with the baseline results are discussed in the subsequbsections.

4.1 Corpora

One of the main challenges in working with older voices isléwk of speech corpora
for this domain. Most of the speech corpora used in ASR rebeae collected from
younger and middle aged adult speakers. The following thogpora collected in
three different continents have been used in this reseanck w

e SCOTUS Corpus - US English
e MATCH corpus - UK English
e JNAS Corpus - Japanese

All these three corpora have a good representation of speecholder speak-
ers. They are also reasonably balanced in terms of gendéx émd female) and age
(younger and older) of the speakers. Each of these corpsoacaptures a distinct
speaking style. SCOTUS is a rehearsed spontaneous spedetheVIATCH corpus
captures typical human interaction style with spoken djaesystems in the form of

62
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short and dialogue driven utterances. JNAS contains deveuas of read speech of
newspaper articles.

The three corpora and described below in detail and the salyas and disadvan-
tages of the usage of each of these corpora for this researetsa discussed.

4.1.1 SCOTUS

The SCOTUS speech corpus is a collection of the audio reagsddhthe oral argu-
ments of the Supreme Court of The United States. These regsrtiave been made
public under the Oyez projelat Each recording’s duration is about one hour and con-
sists of speech from the advocates and judges arguing tee Thsse recordings were
archived on reel-to-reel tapes, which were later digitaed made public.

Although the recordings from the 1980s to the present datewrently available
online, complete transcripts with speaker informationaualable only from the later
half of 1990s. Hence only those audio files annotated witlalsgretags were used in
our experiments. In all, the experimental corpus contaB#srcordings. It consists of
speech from 10 judges over several years and speech fronh Zb@®advocates. The
birth dates of the judges are known and hence their age attkeof an argument can
be precisely calculated. The birth dates of the advocatesatreasily available, hence
wherever the dates were not available, their age has beeoxapated by using the
year of their law graduation and assuming their age at gtamuto be 25.

The corpus available on the Oyez website is not readily estdsl ASR experi-
ments. Each of the audio files is about 1 hour in duration watregl speaker turns
and the transcripts have digits to represent years and casbans etc. Several pre-
processing steps were involved as detailed below to makeditpis usable for ASR
experiments.

1. The first step involved text normalisation. The punctuaiand speaker turn
tags were first removed from each audio transcript to getia pat transcript
of the entire audio. The speaker-sentence correspondescstared in a sep-
arate metafile. The text contained digits in several formas, yiears, supreme
court case ids, currency and normal numbers. Context bakesiwere setup to
convert the digits to text. This process involved severmhtions and tweaking
the rules to get most conversions correct. The text noratadis was manually
checked with random sampling.

3http://www.0yez.orq
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2. The audio files available for download are in MPEG formdbede were con-
verted to 16KHz 16 bit waveforms.

3. In order to obtain the sentence boundaries and speakeaklgnments, each
of the 1 hour long files was force aligned using acoustic nsttaeined on 73
hours of meetings data recorded by the International Comfgience Institute
(ICSI), 13 hours of meeting corpora from the National Inséitof Standards and
Technology (NIST) and 10 hours of corpora from the Intevac®ystems Lab
(ISL) [Hain et al./ 2005a]. These models will be referred $d@SI-NIST-ISL
models in this thesis.

4. Each utterance was renamed as shown below to reflect adlvdilmble meta
data.caseldSpeakerldAge SexStartTimeEndTime

4.1.1.1 Advantages and Limitations

One of the advantages of this corpus for ASR experimentsaistiie recording setup
for the Court proceedings has remained the same over a pedritiched and hence
the variations in noise and microphone characteristicsranémal. This reduces the
confounding effect of recording and channel conditions @RANVERS.

The language used in the Supreme Court is formal and is fairyas across all
the speakers. This allows us to assume minimal variabilithe language models and
focus on the acoustic models.

The other advantage is that the data from the supreme caogeus available over
several years and thus allows longitudinal analysis.

One of the limitations of this corpus in that the number oeolsipeakers (above 60
years) of age is quite limited. The corpus is also skewed Ioglgewith most of the
corpus being from male speakers.

4.1.2 MATCH

The MATCH corpus|[Georgila et al., 2009] was recorded at thevéisity of Edin-

burgh for a cognitive psychology experiment that invesgdahe accommodation of
cognitive ageing in spoken dialogue interfaces [Wolteral2t2009]. Speech utter-
ances were recorded from 24 younger users (aged 18-29 yezaig, 22) and 26 older
users (aged 52-84 years, mean 66) in a wizard of oz (WOZ) reysteere each user
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booked health care appointments using nine different sitadlspoken dialogue inter-
faces. A total of 447 dialogues were recorded using an EDIROL digital recorder
and a sampling frequency of 44.1 kHz. The dialogues contd&irh8urs of speech
in total. All dialogues were transcribed orthographicddlya trained annotator using
the tool ‘“Transcriber’|[Barras et al., 2001] in accordancéhwihe AMI transcription
guidelines, which were used for creating the AMI meetingpus [Carletta, 2007].

The corpus has been annotated semi-automatically witlogligl acts and infor-
mation state update information [Georgila et al., 2008].ef@il, the speech corpus
contains 1680 speech spLHtfrom older adults and 1369 speech spurts from younger
adults.

4.1.2.1 Advantages and Limitations

Since the MATCH corpus was created for a cognitive psychoéogeriment, dialogue
structure, appointment scenarios and system vocabulartigirtly controlled. As a
result, the vocabulary is much less diverse and the langisagwre formulaic than
that of corpora which are recorded for speech technologares. It is also relatively
small compared to other speech research corpora. Despte tlisadvantages, the
MATCH corpus is one of very few corpora that has a good balahckler and younger
speakers. It contains highly detailed dialogue act andinédion state annotations.

4.1.3 JINAS

The Japanese corpora used in our experiments consiststsfraseely INAS (Japanese
Newspaper Article Sentences) and S-JNAS (Senior-JNASh Bwodse corpora are
read speech of sentences from Mainichi newspaper artinotersees and a set of pho-
netically balanced (PB) sentences from the Advanced Telguontations Research
(ATR) institute. The JNAS corpus is predominantly from yousngd middle aged
adults. The JNAS corpus was collected by the Acoustic Spakdapan (ASJ) [Itou
etal./ 1998, 1999]. The S-JNAS corpus is comprised of spenholder adults in the
age group of 60-91 years. This corpus was collected at tha Matitute of Science
and Technology (NAIST) aimed at development of speech m&tog technologies
for older people. Although these corpora were collectecussply at different points
in time (S-JNAS was collected about 6 years after INAS), these recorded under

“Here we refer one continuous segment of speech spoken by ause/her interaction turn with
the spoken dialogue system as a speech spurt
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similar recording conditions in booths using Sennheisadhmounted microphones
at 16KHz sampling rate as 16 bit waveforms. This is partidylaseful since noise
and channel conditions are similar across the two corpoaadition to the sentences
spoken being the same. The main factor that varies betweewthcorpora is the age
range of the speakers as seen in Eigl 4.1.
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Figure 4.1: Age distribution of speakers in the JINAS and the S-JNAS corpora

More specific details of the corpora are listed below.

e JNAS: It comprises read speech from 306 speakers (153 Male anBerbale).
There are in all 155 text sets, each set consisting of 10@se@$ from newspa-
per articles and 50 ATR-PB sentences. Each set is usuallybseade male and
one female speaker. Thus each speaker has around 150 céteraaking a total
of about 45000 utterances in all.

e S INAS: The S-JNAS corpus has a predefined training and test seeakeps.
The training set has 301 speakers (151 Male and 150 Femalghartest set
has 101 speakers (51 Male and 50 Female). Each speakenrdirgginclude
one set of 100 sentences from newspaper articles and twofsgissentences
each from ATR-PB sentences giving a total of 200 utteranchs.t@tal amount
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of speech data is about 133 hours for the training speakeralaout 44 hours
for the test speakers.

4.1.3.1 Advantages and Limitations

The main advantage of using the JNAS corpus in this reseanck igthe availability
of a large amount of speech data from a large number of speakiee corpus is well
balanced in terms of speaker age groups and gender. Thandgésr spoken by the
speakers in the JNAS and S-JNAS corpus are the same. Thigsal®to design the
experiments such that the test sets for younger and oldéisddhyve the same speech
utterances. This nullifies the impact of language modelsercomparative results.

4.2 ASR WERSs on older voices

In this section, the ASR experimental setup using the thogpora discussed above
are described. State of the art ASR systems were built usidded Markov Model
toolkit (HTK)H [Young et al.; 2006] and the ASR WERs of older and younger voices
are compared.

4.2.1 Experiments with SCOTUS corpus
4.2.1.1 Comparison of ASR WERs on younger adult and older adul t voices

Feature extraction
The SCOTUS corpus in MP3 format was first converted to 16KHzfewawmat and then
parametrised using perceptual linear prediction (PLP) Capfeatures. A window
size of 25ms and frame shift of 10ms were used for featuraetiom. Energy along
with 1st and 2nd order derivatives were appended giving diBfnsional feature
vector.

Cepstral means and variances were computed for each speaah recording.
These were then used to normalise the feature vectors taxisgany channel induced
affects.

Acoustic models
The acoustic models were trained on 90 hours of speech datatfre advocates. A
significant portion of the entire corpus is from males, hethedraining data set is also

SHTK version 3.4http://htk.eng.cam.ac.uk
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similarly skewed in favour of males with around 77 hours @exgh from males and 13
hours of speech from females. As mentioned in se¢tionl4tielages of some of the
speakers used in the training set are unknown. The distribof the ages of speakers
(where known) is shown in Figufe 4.2. Although it does nottagmall the data, it
Is suggestive of the fact that that the training set speakerpredominantly younger
adults.

The acoustic models have been trained as cross-word caigperindent triphone
HMMs, each state modeled as 18 component GMM for all speeohgrhes and 36
component GMM for non-speech (sil & short pause) modelsaetsely.

Number of speakers

20-29 30-39 40-49 50-59 60-69 70-79
Age

Figure 4.2: Age distribution of speakers in the training set of the SCOTUS corpus

L anguage models
The language models were constructed from the transcifig&0dUnited States Supreme
Court recordings from the 1970s. Back-off bi-gram languagdetsowere constructed
from this data. The vocabulary consists of 23445 words. Theaynciations in the
AMI lexicon were used for those vocabulary words common tolAbtabulary [Hain
et al.,[2005a] and the pronunciations for the rest of the oleay words were gener-
ated using the Festival speech synthesis system [Tayld; é088].
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Test utterances
For theyounger adulttest set, speech utterances from 27 speakers (23 Male and 4
Female) in an age range of 30-45 were chosen. Foplther adulttest set, speech
data from 12 speakers (10 Male and 2 Female) in the age rang§8g %@re used. The
test speaker set is disjoint from the training set spealérsitterances from each test
speaker were kept aside for speaker adaptation and themegaitterances formed
the test set. In all, thgounger adultest set comprises of 4964 utterances (14.5 hours)
and theolder adulttest set comprises of 6652 utterances (19 hours). The péypbé
the language model on the two test sets and the OOV rates@ne s Tabld 4.11.

Language M odel Perplexity and OOV rate (%)
Younger adult test set | Older adult test set
Perplexity 178.3 169.7

OO0V Rate 3.8% 4.3%

Table 4.1: Perplexity and OOV rate for the younger adult and older adult test sets in
SCOTUS corpus

Basdlineresults

The ASR word error rates oypunger aduliandolder adulttest sets are shown in
Figure[4.8. The results show a significant difference of 9&8%olute higher WERS
for older voices as compared to younger voices. The WERSs diftar for males is
8.2% absolute while for females it is 13.3%. The difference8VERs are statisti-
cally significant withp < 0.001 using the Mann-Whitney test [Mann and Whitney,
1947]. A possible reason for such high WERs for female speagdh® inadequate
representation of females in the training set.

Standard MLLR mean adaptation was used to see if speaketagidapcould al-
leviate age induced errors in ASR. Using the adaptation s&0 aftterances for each
speaker, MLLR transforms were computed for each speakeusedin decoding the
test utterances. The difference in WERs even with MLLR spea#iaptation is 9.1%
absolute.

One of the main sources of inter-speaker variability in aticifeatures is the vari-
ation in vocal tract dimensions. Vocal Tract Length Norrsation (VTLN) is a stan-
dard approach used to overcome this variability. Vocatieagth normalised acoustic
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models were constructed using an iterative approach asiloeddn section 3.212. Us-
ing the normalised models, warping factors were estimaieddch of the test speak-
ers from the adaptation set utterances. With VTLN, the imgnoents in WERSs for

younger adults are higher than those for older adults |ggtdim difference in WER of

9.9% absolute between the two age groups.

Figure[4.8 also shows the comparative results with Spealagtve training. Us-
ing an iterative process as described in sedtion 313.1m@meal models were trained.
For each test speaker, using the same adaptation set adosed @VILLR transforms
were computed with respect to the speaker normalised ceedanodels. SAT gives
the best improvements in WERs. However, the difference in WERgdas the two
age groups is still 9.8% absolute.
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Figure 4.3: Comparison of WERs on younger adult and older adult voices in the SCO-
TUS corpus. Refer tables: [A.1] [A.2] and [A4]

From the results, we observe that though speaker adaptaisbspeaker normal-
isation improve the recognition accuracies, the gap betwee WERSs for adult and
older voices is not bridged. The results for females may eoa rue representation
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of the difference as the sample set is very small, but ovérealldifference in WERSs
seems to be large enough for investigation into the possélses.

4.2.1.2 Longitudinal Study of ASR accuracies on older voices

Speech data of the Supreme court judges is available oveical é several years. To
understand how the ASR accuracies vary for an older speakeage, a longitudinal
ASR experiment was setup. 200 utterances from each yeaadbr speaker from the
7 judges (5 Male and 2 Female) was used as test set. Speakel®wiD2 03 04,05
and 08 are males while speakers 07 and 10 are females. THies iesre been plotted
in Figurel4.4. It can be seen that though there are small fitions in WER over each
year, there is a general pattern in the results showingaseran WER gradually as the
age increases for some speakers.
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Figure 4.4: WERs (%) with increasing age on older adult voices in the SCOTUS corpus.

For each speaker, MLLR transform matrices were computech&an adaptation.
The regression class tree consisted of 2 classes, one fxtspad one for non-speech.
The longitudinal WER plots for all the speakers with speakkapaation are shown in
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Figure[4.b. A least square line fit for the WER over several yéareach speaker are
also plotted to understand the longitudinal trend.
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Figure 4.5: WERs (%) with increasing age on older adult voices in the SCOTUS corpus

with speaker adaptation

The longitudinal study results indicate that the WER gralguntreases with age
during old age. Since the number of utterances for each yeagdch speaker was
limited, variations in the WER are expected, however thet ls@sares line fit for WER
of all the speakers have a positive slope which suggestscagase in WER with age
especially after 65 years of age. For speaker®04nd 08, F-tests show that there is
strong evidenceld < 0.01) of a linear trend, and we conclude that in these cases WER
is indeed increasing with age.

From the regression plots, it is seen that the increase in WiRage varies across
speakers and the rate of increase differs for two speak#dre ame age. This suggests
that there is no clear correlation between chronologicaeiragand vocal ageing across
speakers.

Longitudinal studies on elderly voices using MLLR adatatilso show a gradual
increase in WER with age. For the case where MLLR has been wesfthd that only
speakers 04 and 08 show statistically significant evidehadimear trend of increasing
WER with age. The slopes of the longitudinal plots of each kpeasing MLLR
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adaptation are less than those without adaptation, indg#éhat speaker adaptation
can reduce the age related impact to some extent.

4.2.2 Experiments with MATCH corpus

As seen from the results on SCOTUS corpus, the WERs on oldersvareesignifi-
cantly higher than those of younger voices. We perform sinbhseline experiments
on the MATCH corpus. In this set of experiments, we examineddffiect of age-
specific language models and acoustic models on speechrgon@ccuracies. Since
the amount of data available for each speaker is quite ldnitehis corpus, a ‘leave
one out’ strategy has been used in the experimental design.

4.2.2.1 Impact of language modeling

Design

The aim of this experiment was to assess the effect of therdiittes in interaction
style between younger and older users in the MATCH corpush@eilanguage model-
ing component of the speech recogniser and consequenthSghakcuracies. From
the transcripts of the MATCH corpus, the following bi-granmd@aiage models were

constructed:

1. from all the utterances of the older speakéfd-Older)
2. from all the utterances of the young speaKeid-Young)

3. for each test speaker, from the entire corpus excludiegdtta from the test
speake(LM-All-1)

4. for each older test speaker, from the corpus of all therddeakers excluding
the data from the test speaKe&M-Older-1)

5. for each young test speaker, from the corpus of all the gepeakers excluding
the data from the test speakéM-Young-1)

Since the amount of data in the MATCH corpus is not sufficienbudd acous-
tic models from scratch, we used the speech from other carfmwrthis purpose.
ICSI-NIST-ISL acoustic models described before were MAPp&eth with 13 hours
of speech from 32 UK speakers from the Augmented Multipantgriaction (AMI)
COorpus.
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For each older test speaker, three ASR experiments wererpesdl, keeping the
acoustic model fixed and using different language modelthfospeaker vizL,M-All-
1, LM-Older-1andLM-Young Similarly, ASR experiments were repeated for each of
the young speakers using the language modéfsAll-1, LM-Young-landLM-Older.

Results

Goodness of fit of the language model on a test set was meassirggperplexity.
We also assessed the number of OOV words. We found that lgeguadels trained
on younger users were a bad fit to the language of older usbesegas data from the
older users allowed us to model the language patterns ofgeyumsers reasonably
well. In particular, models trained on younger users ontyrht contain many of the
words older people used. Detailed results are shown in aBle

Perplexity and OQV rate (%)
Test set | Language Model | Perplexity | OOV Rate (%)
Younger LM-Older 5.44 1.38
Older LM-Young 19.18 15.57

Table 4.2: Comparison of the perplexities of the language model and OOV rates to
understand the goodness of fit of the language models trained on younger users data

for older users test set and vice-versa on MATCH corpus

Figurel4.6 shows ASR WERs using different language modelsgaiard above,
averaged over all the young speakers and older speakeectiesty. As we would
expect from the results presented in Tdbleé 4.2, we find that WaRslder speakers
are particularly high when using the language models of tmger speakers. This is
due to the mismatch between the older and younger usersaatien styles. Clearly,
we need age-appropriate data to build adequate languagelsrfodolder speakers.

4.2.2.2 Impact of Acoustic modeling

Design
In this set of experiments, we examined the impact of diffees in the acoustics of
older and young speakers on ASR accuracies. In order tdesbla effect of the acous-
tic models, we only used the language maddéd-All, which contains all utterances in
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Figure 4.6: WERSs (%) for young and older speakers of the MATCH corpus using differ-
ent language models. (Refer Table [A.7)

the MATCH corpus, for this set of experiments. The acoustide®described in the
previous experiment (ICSI-NIST-ISL models adapted with Adldita) were used as
the baseline models. For each of the old speakers, two acoostiels were created

by maximum a posteriori adaptation of the baseline modeigube speech from ei-
ther the rest of the old speakers excluding the test spealkér { MATCH older-J)

or speech from the young speake#dl + MATCH younge). Acoustic models were
similarly created for each young speaker with the speechfdain all the older speak-

ers AMI + MATCH olden and the speech data from the rest of the young speakers
(AMI + MATCH young-).

Results
Figure[4.Y shows average WERs for both the young speakers anoldér speak-
ers. We observe that the WERs for older speakers are highettbaea for younger
speakers by 11% absolute using the baseline acoustic modigégpting the models
with speech from a new domain (i.e. appointment schedulsmgkpected to reduce
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the WERs for the test data in the new domain. While adapting tkelin@ models
with older speakers from the MATCH corpus (AMI + MATCH older)ifgs down
the WERSs for young speakers, the results are even better vafstattbn using speech
from other younger speakers in the same corpus (AMI + MATCHngpll). The re-
sults for older speakers in Figure 1.7 are quite interest@untrary to the belief that
speech from a new domain should help in creating better mddethe new domain,
adapting the baseline models with speech from the youngeaksps of MATCH cor-
pus (AMI + MATCH young) deteriorates the performance for thdeo speakers in the
same corpus. Hence, there is a clear mismatch in the ac®udtmder and young
speakers resulting in a higher WER for older speakers.
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Figure 4.7: WERSs (%) for young and older speakers of the MATCH corpus using differ-
ent acoustic models. (Refer Table [A.8)

4.2.3 Experiments with INAS corpus

Most of the components from the Japanese ASR Toolkit [Kaveabgal.| 1999] were
used in our setup.
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4.2.3.1 Acoustic models

Mel frequency cepstral coefficients with 12 filter banks weweputed every 10msec.
Appending delta and Energy coefficients, the feature vediad a dimension of 25.
Cepstral mean was subtracted for each utterance.

The acoustic models were trained using HTK [Young et al.,62@& continuous
density HMMs. The phoneme set comprised of 43 phonemes awedddfy the Acous-
tic Society of Japan. 3 Pause mod8I8, SilE andspfor beginning and end of utter-
ance and short pause between words respectively are udeel minoneme inventory.
Context dependent triphone HMMs with 5 states per model ackl state modeled as
16 component GMM were trained.

4.2.3.2 Lexicon

Japanese texts are written without spacing between thening Wsstate-of-the-art
Japanese morphological analyser named ChaSen [Matsunabtal®99] developed at
NAIST, the text from Mainichi newspaper was segmented inbod/chunks (morphs).
After the segmentation, the next step in text processingrnsersion from Kanji (chi-
nese characters) to Kana conversion which is equivalentGoapheme to Phoneme
mapping. The Kana transcripts are further converted fraimographic to phonemic
katakana form. A vocabulary of 20K [Kawahara et al., 1999)staucted from the
most frequently used words (morphemes) in the Mainichi papsr was used in our
experiments.

4.2.3.3 Language models

Word 2-gram and 3-gram language model with back off smogtbonstructed from
65 million words (morphs) in the Mainichi newspaper weredusethe decoding.

4.2.3.4 Decoder

The open source large vocabulary speech decoder JuliuslLlas 1998] was used
in decoding. It uses a forward backward two pass algorithmthé first pass a frame
synchronous beam search in the forward direction outputsrd lattice. In the second
pass the lattice is re-scored in the reverse direction ek decoding approach.
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4.2.3.5 Evaluation setup

Training Set

The training set comprises of 205 speakers (about 31638anttes) from JNAS
corpus and 187 speakers (28332 utterances) from the SINAGscA hus the training
set is balanced in terms of age and gender.

Test Set

The test set for SINAS corpus was predefined with 101 speakarsqual num-
ber of test speakers were chosen from the JNAS corpus sutcthéatterances from
the younger and older adults corresponded to the same sesteithis factors out
the differences in the ASR accuracies between speakerg divthage groups due to
language use pattern. The differences in accuracies ifvamyld be purely due to the
differences in acoustic characteristics between speakter s

The test set comprises of utterances from 101 older aduW@4(btterances, ap-
prox 50 utterances/speaker) and 101 younger adults (40&@ntes, approx 50 utter-
ances/speaker).

4.2.3.6 Baseline Results

Table[4.8 shows the baseline comparative accuracies fanthage groups using Sl
acoustic models. The difference in WERs between younger aed atlults is found to
be 4.5% absolute. While the WER increases by 1.4% in older &svad compared to
younger females, the difference is more prominent in maéalsprs with a difference
of 7.7% absolute.

Younger Adults | Older Adults
All speakers 15.9 20.4
Male 16.2 23.9
Female 15.5 16.9

Table 4.3: Comparison of WERSs (%) of younger and older adults in the JNAS corpus

The split up of the WERSs for the older speakers in age groups-606énd 70-79
are shown in Table[_4.4. The WERs for older males is partigulagh in the age
group of 70-79. The WERs for older females in 70-79 are quite IBuce there are
only six female speakers in this subset, the result may bewbiat biased.
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AgeGroup | #Speakers | Older Male Adults | Older Female Adults
60-69 80 (M:36 F:44) 21.3 17.0
70-79 21 (M:15 F:6) 30.0 14.2

Table 4.4: WERs (%) for older adults in different age groups in the JNAS corpus

4.3 Summary

The WER for older voices was found to be significantly highantfor younger voices
from the baseline experiments on the three corpora. Usanflatd speaker normali-
sation and speaker adaptation approaches improve thepearioe for older speakers
marginally. However, the difference in the WERSs for the two ggmups persists. The
results on the MATCH corpus also highlight the fact that theraction style of older
people with spoken dialogue systems is significantly daffieérfrom younger adults.
Such differences need to be accounted in the design of SD8lder people. The
results from JNAS corpus which has a balanced set of spemkirath the age groups
and in gender, indicates that the impact on WERs with ageingie pronounced for
male speakers as compared to female speakers.



Chapter 5

Impact of changes in glottal source

parameters with ageing on ASR

In chaptei 4, significantly higher ASR WERSs were observed ferdlder adults than
for younger adults on the SCOTUS, MATCH and JNAS corpora. ls thiapter, the
differences in voice characteristics of the younger an@rmo#tiult speakers are anal-
ysed and an attempt is made to delve into the possible caust®fASR performance
degradation on older voices. Several important glottatremparameters such as the
fundamental frequency, jitter (measure of temporal pb#tions in glottal source pe-
riods), shimmer (measure of amplitude perturbations intglsource periods), and
harmonicity for the two age groups are compared and wheteeemeasures differ
significantly, the effect of changes in these parameters R Accuracies has been
analysed.

5.1 Experimental setup

Among the two English corpora used in this thesis, the nurabetterances available
in the MATCH corpus are quite limited and not quite sufficiemtdetailed analysis of
voice characteristics. Hence the SCOTUS corpus has beerfargbis set of experi-
ments. Since the number of female speakers in this corplsavary small, we used
only the male speakers test set as described in sectionf8rdvibice analysis. This
also helps to keep the analysis free from gender inducedti@is. We have analysed
and compared the samples of phoneme ‘aa’ from adult and oidkr speakers.

Voice analysis is typically carried out on sustained vowelnuinciations recorded
in a controlled noise-free environment. However the SCOTOIpuUS is spontaneous

80
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speech with a considerable amount of background noise. Beimigtaneous in nature,
the corpus also does not have sustained vowel pronuncatith durations over a

few seconds. Most of the samples of the vowels are typicafhaeion of a second

long and are part of a longer utterance. In order to pick ttst @eailable instances of
the phoneme ‘aa’ from the speech the following procedureusasl.

1. Each utterance was force aligned to the triphone trgvtgmni in order to deter-
mine the frame boundaries and the likelihood of each tripharthe utterance.

2. All the triphone samples with the centre phoneme ‘aa’ vgetected.

3. Out of the selected samples, the ones with negative legHikod greater than a
threshold of 1000 were rejected.

4. From the remaining, those samples having a durationtessd.1 seconds were
rejected, to get the final set of vowel ‘aa’ samples for anslys

In all, 2970 samples of ‘aa’ from 23 adult male speakers aritbZhmples from
10 older male speakers were used for voice analysis. Sexa@cal parameters such as
the fundamental frequency, jitter, shimmer and harmonitieasures were computed
for the selected samples using ‘Praat’ [Boersma, 2001].

Apart from these parameter computations on sustained gpwsing complete
speech utterances cepstral peak prominence measures|seomputed and anal-
ysed.

Each of the following sections deals with one voice paransatalysing if there is a
significant difference in the parameter value between ahdtolder speakers. Wher-
ever the difference is significant, we artificially modifyoge parameters in speech
from younger adults to analyse the impact on ASR accuracies.

5.2 Fundamental frequency

The result of the analysis of fundamental frequency areldtbd in Tabld 5J1. We
observe that the average fundamental frequency for oldersnemabout 15 Hz (10%)
lower than that of adult male voices. The difference§jmeasures are statistically
significant atp < 0.001 using Mann-Whitney rank sum test.

In order to understand the affect of reductionFfi on ASR accuracies, we arti-
ficially reduce thely by 10% and compare the WERs of the original waveforms and
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Younger Males | Older Males
FO p-value
Mean Std Mean | Std

Median FO| 144.4| 44.3 | 128.2| 45.4| < 0.001
Mean FO | 143.9| 43.2 | 128.0| 44.6 | < 0.001

Table 5.1: Fundamental frequency analysis for the phonations of vowel ‘aa’ in the SCO-

TUS corpus.

modified waveforms. The factor of 10% was used to reflect tfierdnce in adult and
older voices. For this experiment, the ASR system is the sasnat described in
section 4.2.1]1. We use 400 utterances from 8 adult spegkéale and 4 Female)
as the test set. For each waveform, the pitch tier is caledilasing using Praat. The
frequencies are then scaled to 0.9 of their original valusing) the new pitch tier,
the waveforms are resynthesized using pitch synchronoedapvand add (PSOLA)
method [Moulines and Charpentier, 1990]. Figuré 5.1 showexample of the wave-
forms andr, contours before and aftét0 manipulation.

The word error rates before and after reductionFid are given in Tablé 5] 2.
The WER increases by 1.1% absolute to 33.2% and is statlgtsighificant with
p < 0.001 using the Matched pair sentence segment word error (NBAVS test
[Gillick and Cox,11989]. In order to be able to attribute thergase in WER to the
change in fundamental frequency and not to the resynthestegs, we repeated the
resynthesis process described above without modifyingiteé tier. The WER for
the resynthesized waveforms is 32.0% and the differende ngpect to the original
waveform is statistically insignificant with = 0.61 using MAPSSWE test.

We also perform VTLN, calculating the warping factors foclkeapeaker separately
for the two sets. Using VTLN, the difference in WER is reduce®{7% absolute at
p < 0.01 using MAPSSWE test.

Word Error Rate (WER) %

Original | Reduced pitch | p-value

Without VTLN 32.1 33.2 < 0.001
with VTLN 28.8 29.5 < 0.01

Table 5.2: WER (%) with artificial reduction in fundamental frequency of the speech

from younger adults in the SCOTUS corpus.
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Figure 5.1: lllustration of artificial modification of fundamental frequency
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5.3 Jitter

For our analysis, the jitter measurements ‘Jitter Local(@c)’ and ‘Jitter Relative Av-
erage Perturbation (Jit RAP)’ as described in sedtion R.&@womputed. Since the
analysed samples were obtained from continuous speeclluthéon of each sam-
ple is quite short. As a result each sample only has a few syaflglottal periods.
Hence the higher order measures of Jitter which averagergerlaumber of cycles
are unreliable in our experimental setup and thereby oditi¢he analysis.

The variations of these jitter measurements are shown ifef@B. The changes
are statistically significant gi < 0.001 using Mann-Whitney rank sum test.

) Younger Males | Older Males
Jitter p-value
Mean Std Mean | Std

JitLoc | 1.89 150 | 241 | 1.83| <0.001
JitRAP | 0.85 | 0.96 1.08 | 1.14| < 0.001

Table 5.3: Jitter analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

In order to understand the affect of increased jitter on ABRgumance, we artifi-
cially introduce jitter into the 400 test waveforms from &agers.

Pulse positions representing the glottal closures areebe from the speech ut-
terances. Each pulse positiBiR,q is then perturbed to get a new pulse posititiew
as follows

PBiew= PFojd + 1 * 0 % Tayg (5.1)

where,—0.5 <r < 0.5 is a uniformly distributed random variable,is a factor con-
trolling the maximum perturbation allowed as a fractiontw aiverage periothyg.

Using these new pulse positions, the waveform is resyrabdsby pitch syn-
chronous overlap and add method to get a waveform with iseckdtter. Figuré 512
shows an example of the waveforms before and after artifieiaéase in jitter.

Temporal perturbations witth = 0.05 anda = 0.10 were introduced into the wave-
forms. To get an idea of the jitter values before and aftentbdification, the same ap-
proach as explained in sectionl5.1 was used to sample 40trencas of the phoneme
‘aa’ from the test utterances. The jitter measures on thepkirom original and
modified waveforms are presented in Tdble 5.4.

Table5.5 shows the ASR WERSs on the original waveforms and thefaans with
increased jitter. The change in WER with increased jittetasistically insignificant
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Figure 5.2: lllustration of waveforms with artificial increase in jitter

Original a=0.05 a=0.10
Mean| Std | Mean| Std | Mean| Std
JitLoc| 1.63 | 1.41| 2.31 | 1.52| 3.08 | 1.69
JitRap| 0.70 | 0.78| 1.02 | 0.94| 1.39 | 1.06

Jitter

Table 5.4: Jitter values computed on phonations of the vowel ‘aa’ in the original and

modified waveforms
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(using MAPSSWE test) and the ASR system performance is sdendaite robust to
jitter variations.

Word Error Rate (WER) %
Original a=0.05 a=0.10
321 |32.2(p=0.62) | 32.4(p=10.17)

Table 5.5: WER (%) with artificial increase of jitter in the speech from younger adults in
the SCOTUS corpus.

5.4 Shimmer

Shimmer measures ‘Shimmer Local (Shim Loc)’ and ‘Shimmeeé&lpoint Amplitude
Perturbation Quotient (Shim APQ3)’ were computed usingaPrégain, due to the
short duration of analysed samples, shimmer measuresréhatvaraged over larger
number of cycles have not been compared.

Table[5.6 shows that the shimmer measures for older maldsigtier compared
to the adult males and the results are statistically sigmti¢with p < 0.001 using
Mann-Whitney rank sum test).

_ Younger Males | Older Males
Shimmer p-value
Mean | Std Mean | Std

ShimLoc | 10.73| 5.22 | 11.33| 5.27 | < 0.001
Shim APQ3| 4.65 270 | 493 | 2.88| < 0.001

Table 5.6: Shimmer analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

We atrtificially increase shimmer in the test waveforms toarsthnd the affect of
increased shimmer on ASR performance. Pulse positionesepting glottal closures
are extracted for each test waveform. From the location efpihise positions, the
voiced and unvoiced segments in speech are determinedmudese shimmer effect,
the speech samplegy between two adjacent pulses in voiced segment are scaled to
obtainxnew as follows

Xnew = x0|d*(1+r*0() (52)
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Figure 5.3: lllustration of waveform with artificial increase in shimmer

where,—0.5 <r < 0.5 is a uniformly distributed random variable which is fixed fo
all the speech samples between two adjacent pulsesy &d factor controlling the
maximum perturbation allowed.

An example of the waveform and spectrograms before andaatiécial introduc-
tion of shimmer is seen in Figure 5.3. Similar to the Jitteasweements in Table 5.4,
Shimmer values measured over the 401 segments of phonenrettaatest utterances
before and after artificial increase of shimmer are preskintéable5.V.

Original a=0.05 a=0.10
Mean| Std | Mean| Std | Mean| Std
ShimLoc | 9.71 | 5.43| 10.33| 5.41| 11.12| 5.44
Shim APQ3| 3.94 | 2.72| 4.25 | 2.74| 4.76 | 2.73

Shimmer

Table 5.7: Shimmer values computed on phonations of the vowel ‘aa’ in the original and

modified waveforms

Table[5.8 shows the results with maximum perturbation inlaoge between ad-
jacent periods of 5% and 10%. The effect of shimmer on ASR WERsgés to be
insignificant.
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Word Error Rate (WER) %
Original a=0.05 a=0.10
321 | 32.1(p=0.65) | 32.1(p=0.13)

Table 5.8: WER (%) with artificial increase of shimmer in the speech from younger

adults in the SCOTUS corpus.

5.5 Harmonicity

For the measurement of parameters indicating breathiaass;orrelation (Autocorr)
and Noise to Harmonic Ratio (NHR) were computed from the chdr&a' segments.
CPP and CPPS were also measured using the whole speech wsarestead of chun-
ked phoneme utterances. The results are tabulated in[T&ble 5

o Younger Males | Older Males
Har monicity p-value
M ean Std Mean | Std
Autocorr 0.85 0.08 0.85 | 0.09| 0.61
NHR 0.21 | 0.15 | 0.21 | 0.16| 0.79
HNR (dB) 9.03 | 3.15 | 9.10 | 3.16| 0.49
CPP 10.81| 0.83 | 10.69| 0.82| <0.001

CPPS 271 | 043 | 269 | 04 | <0.05

Table 5.9: Harmonicity analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

It is observed that the differences in the harmonicity mezswof younger adult
and older adult males are statistically insignificant (byn&Vhitney rank sum test).
Though the changes in CPP and CPPS measures are found todieatitsignificant,
the actual difference in the values is very small. CPPS whahlieen reported by
Hillenbrand and Houde [1996] to be better correlated witlcewed breathiness in
voice than CPP, differs only by a value 0.02 for the two age psouThis coupled
with the comparative results of NHR suggests that the diffee in the breathiness
characteristics of younger and older male test sets usedriexperiments do not

differ much.
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5.6 Summary

Many of the values of the voice analysis measures reporteikiarticle are somewhat
higher than the published values in diagnostic medicabrebe This is due to the fact
that we have not used sustained vowel pronunciations imalkeeording conditions,
but extracted sustained phonemes from spontaneous speeho chunking, there
is also a co-articulation effect at the beginning and theafrehch analysed phoneme
sample. However the same procedure has been applied todidtlaad older voices
in similar recording environments to analyse the diffeemnbetween the two groups.
Indeed our analysis is relevant in this context as it is madeaiural speech which is
the typical input to ASR systems.

Jitter and Shimmer measures have been extensively studtetiave been used
by researchers in age recognition from voice. From our exyttal results too, we
observe a clear increase in jitter and shimmer values faraldices. These measures
can work well for detection of ageing voices. However, thaatans in these mea-
sures do not have a significant impact on ASR accuraciest Enohfeature extraction
techniques in ASR such as perceptual linear prediction usedr experiments are
quite robust and suppress the variations in the glottalcgocinaracteristics.

Changes in the fundamental frequency appear to increasartins enarginally,
which can be overcome to some extent using vocal tract lamgtimalisation.

The speech from older adults used in our experiments do ot shsignificant
increase in parameters related to breathiness. It is hovagv@nportant parameter
that needs to be further investigated.



Chapter 6
Articulatory changes in older voices

As observed in the previous chapter, although there aréfisiggm differences in the
glottal source characteristics of younger and older adtliessse changes do not con-
tribute significantly towards the reduction in ASR accueaciln this chapter, some of
the aspects of the changes in articulation patterns witinggee studied. In partic-
ular, it is of interest to see which phonemes are most affieictéerms of recognition
accuracies. Phoneme accuracies on SCOTUS corpus and JNAS ewe analysed to
see if any patterns emerge across corpora and across speaker

Another widely studied articulatory parameter in vocalingeesearch is the ‘rate
of speech’. Speaking rate has been reported to be slowedén atlults as compared
to younger adults. However, the impact of slower speechaatASR accuracies is
not well understood. This issue is also addressed in thiptehavith experimental
analysis.

6.1 Phoneme recognition accuracies

As discussed in sectidn 2.2.3, several changes have beertegn the physiology
of the articulators with ageing. These include restricted novement, loss of tongue
strength and the rate of movement of these articulatorss fidsults in changes in
articulatory patterns during old age.

An interesting question that needs to be answered is whitese changes impact
all the phonemes in terms of ASR accuracies. Typically theollyeses generated by
the ASR system are constrained by the allowed pronuncetioposed by the lexicon
and the sequence of words allowed by the langauge model.eHmply expanding
the decoded word hypothesis to phoneme level hypothesig tise lexicon will not

90
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lead to proper insights.

In order to analyse the results at phoneme level, we remdwaueh confound-
ing affects by using a phoneme loop decoder. A phoneme loopdie is a finite
state machine which allows any phoneme to follow any phonasrghown in Figure.
[6.1. Under such an unconstrained setting, the overallteeButerms of percentage
of correct recognitions and overall accuracies are usuallgh lower than the results
obtained using language models.

In the following experiments, we consider phoneme correobgnition percentage
as an evaluation metric. It is a ratio of number of correcogeitions of a phoneme in
the decoded hypothesis to the total number of occurrenctwqfhoneme in the ref-
erence transcript. The results are computed after dynaragrgmming based string
alignment of the reference and decoded hypotheses. Suchgamant procedure
allows the comparison of corresponding reference and retog labels for a given
speech segment and hence the computation of accuracietaneme confusion ma-
trices.

Itis also important to note that the usage of phonemes ingukage does not have a
uniform distribution. Hence while analysing the overalpact on ASR accuracies, the
probability of the phoneme in the language is used to weiglifierence in phoneme
error for that phoneme between the two age groups.

Figure 6.1: Phoneme loop decoder



Chapter 6. Articulatory changes in older voices 92

6.1.1 Results on the SCOTUS corpus

For the experiments with SCOTUS corpus, the training set laadeist set are same as
those used in section 4.2.11.1. Since the number of olderd&adalts are quite limited,
we analyse the phoneme errors of only the male speakerssicdhpus. Monophone
HMMs were trained without any state tying. Each phoneme wadaied as a three
state HMM with 18 Gaussian components per state.

Figure.[6.2 shows the comparative results of correct retiogrof each phoneme
for the two age groups. The results are categorised basdteghbnetic classes and
the actual numbers can be found in the appendix in Tablel bty a few phonemes
are seen to have drastic reduction in correct recognitidnsong the monophthongs,
the lower vowels da, ao, a¢ seem to be the most affected with over 10% difference
between the two age groups. All the diphthongs show comjerabults excepaw
for which the recognition drops by over 10%. In consonarts, fticative hh has
a substantial drop in performance. The r-coloured vaveés the other phoneme that
sees a drop of over 10%. The nasats (1, ng have about 3-5% decrease in recognition
rates.

To understand which phonemes have the most impact on oirenadhse in phoneme
error rates, the differences in phoneme correct recogniteiween the age groups are
scaled by the probability of the phoneme occurrence in thguage. The phoneme
statistics are computed over all the utterances in the SCQJdyus and shown in
TablelA.10.

The phonemes with most dominant affect on ASR accuracieesnahding order
on SCOTUS corpus are as follows:

]ae, aa, er, t, n, ao\

6.1.2 Longitudinal results on the SCOTUS corpus

In sectior 4.2.1]2, it was seen that ASR accuracies det¢eitwngitudinally for older
speakers in the SCOTUS corpus. In this section we analysehtireeme recognition
rates longitudinally for those speakers. The motivatiomihe this experiment is to see
if patterns emerge in phoneme errors across speakers.

Using a phoneme loop decoder, test utterances from 5 adldtspaakers from the
SCOTUS corpus were decoded. The same monophone acoustitsmasdiescribed
in sectior 6.1.11 are used. For each of the speakers the testrsprises of about 200
utterances each recorded about 8 years apart. Table 6.% ghewhonemes that have
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Figure 6.2: Phoneme correct recognition (%) on the SCOTUS corpus
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more than 10% decrease in phoneme recognitions with ag&img phonemes in the
table for each speaker are sorted in decreasing order ofiffeeedce in recognition
rate longitudinally.

Speaker Id | Start age | End age | Phonemes with largest decrease in recognition rate
02 79 87 g, jh, ch, aa, eh, I, r, hh
03 63 71 aw, g, zh
04 62 70 oy, s, ch, b, th
05 59 67 oy, uh, n, jh
08 60 68 zh, oy, aa

Table 6.1: Phonemes with largest drop in recognition rates in longitudinal study on the
SCOTUS corpus

It is seen that there is a large variability in terms of mo&@&éed phonemes across
speakers.

6.1.3 Results on the INAS corpus

In the baseline results on the JNAS corpus in se¢tionl4 2w&s seen that the differ-
ence in WERs is highest between younger adult males and theaald# males in the
age range of 70-79 years. We use these two sets to compaiéehentes in phoneme
recognition rates. Similar to the experimental setup fer 8€OTUS corpus, mono-
phone HMMs with 16 Gaussian components per state were ttaared a phoneme
loop decoder experiment was setup for INAS corpus. The phemecognition rates
of the two test sets was compared.

Analysis of the monophone transcripts of the JNAS transespggest that some
phonemes occur quite a lot while the occurrence of certaameimes is negligibly low
as seenintable A.11. Hence from an ASR point of view, we Iddke@phonemes that
occur the most. Figurle 8.3 shows the comparative recognitites of younger male
and older male speakers in descending order of occurrence.

On scaling the differences in phoneme recognition ratek thié probability of
occurrence of the phonemes, the phonemes that appear ta Ina&@r impact on the
overall decrease in accuracies for older adults are asafsilo

i,aresmu

Comparing the results on the SCOTUS and JNAS corpora, some tler vow-
els seem to be commonly affected by ageing.
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Figure 6.3: Correct recognition (%) of most used japanese phonemes for the younger

and older adults. Refer Table. [A.11]

6.2 \Vowel centralisation

If the movement of the articulators are restricted in terfi®ice and range, it results
in an undershoot of vowel articulation. This undershootlead to changes in the for-
mant patterns, viz., formants with higher frequency tegdowards lower frequency
and formants with lower frequencies tending towards hidregjuencies. This effect
is called vowel centralisation. It has been reported by kisd. [1989] that vowel cen-
tralisation is quite pronounced in very old speakers witki@lel realisations sounding
quite close to each other.

Vowel centralisation is typically measured using the voghce area. First and
second formant frequencies (F1 and F2) are calculated &@rweavel and the vowels
are plotted in the 2 dimensional F1-F2 space. The vowel spr&eeis the area enclosed
by the corner vowelg u, aandae

For the vowel space analysis, speech samples from the SCQOdrg&sowvere used.
The analysis was again carried out on male speakers dueltmitagion in the number
of female speakers. The utterances used for analysis wergathe as those used in
section[5.]1 and the voice samples for vowel space analysis al@sen in similar
manner.
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1. Each utterance was force aligned to triphone transoripin order to determine
the frame boundaries and the likelihood of each triphonaeérutterance.

2. All the triphone samples with central vowel phoneme weteced.

3. Out of the selected samples, the ones with log likelinvade less than a
threshold of -80 and with a length less than four frames (40mese rejected.

Using ‘Praat’, the values of first (F1) and second forman fF&juency for each
vowel instance were computed at the midpoint of that ins&nduration. For each
vowel for a speaker, lower quartile (LQ), upper quartile \Ad interquartile range
(IQR =UQ-LQ) were computed. Outliers outside the range (LQIQR), (UQ+1.51QR)]
were rejected. Mean values of each vowel for a speaker wenpuied from the re-
maining samples.

21001
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1y —— Older male adults

2000 -
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Figure 6.4: Mean vowel space areas for younger and older male adults in the SCOTUS

corpus. Corner vowels and their standard deviations are also shown in the figure.

The vowel space bounded by the phoneraas uw, iyand ae for both the age
groups is shown in figurle 8.4. The corner points of each gladdral is the average
across all the speakers in that age group. The area of thd gyoadrilateral for each
speaker is computed by summing the areas of the trianglegtbby the pointsy, uw,
aeandaa, uw, adfor that speaker. The area of the triangles is in turn caledlasing
Heron’s formula
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Area= \/s(s—a)(s—b)(s—c¢) (6.1)

where,a, b, c are the sides of the triangle asé- (a+b+c)/2

It is seen from Tablg 612 that the area occupied by the vowaddiateral of older
speakers is less than that of younger speakers, indicatvwgl\centralization. The
vowel space areas of the speakers in the two age groups arkcsigtly different at
p < 0.01 using student T test.

Vowel space area (HZ)

Younger adult males Older adult males Difference | p-value
5.46x 10% (std: 133x 10%) | 3.99x 10 (std: Q97x 10%) | 1.47x 10* | < 0.01

Table 6.2: Vowel Space Area comparison between younger adult and older adult males
in SCOTUS corpus

While all the corner vowels appear to shift in the F1-F2 spaith ageing, the
phoneme recognition results reported in Figuré 6.2 showubaels ‘ae’ and ‘aa’
have a large decrease in performance with ageing while pheséy’ and ‘uw’ do
not show much difference in accuracies.

In order to understand this better, the centroids of all to@ophthongs (averaged
over all the speakers in each age group) are shown in Highrd=6r the older speak-
ers, the vowels appear to move closer to each other intoectust the F1-F2 space
especially in the central region of the vowel space. Thishigad to a reduction in
the discrimination capacity between phonemes (atleastar-il-F2 space) and also
explain to some extent the large decrease in recognitioaracies for some of the
central vowels. It is also interesting to see that with agethere is a tendency of F1
decreasing and F2 increasing for most of the phonemes.

It is important to clarify at this point that in the calculai of F1 and F2 for the
vowels, segments from continuous speech were used and thyubkawe inherent con-
founding co-articulation effects with adjacent phonem&se segments chosen are
also typically very short in duration and more so in case oftstowels such as ‘ih’,
‘ax’, ‘eh’ and ‘er’ which further impacts the accurate contgion of the true for-
mant frequencies. However, extreme care has been takemtuveethe outliers and
to choose the best samples available for analysis with tie gsocedures applied for
both the age groups. In Figdre 6.5.(b), for instance, thetslavels ‘ih’ and ‘ax’ seem
to shift significantly for older age group. It is not clearhig shift is indeed due to the
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Figure 6.5: Centroid positions of common vowels in younger and older Adults

influence of ageing or due to the limitation of the procedurehmosing samples from

continuous speech. It needs further investigation witreexrpents on other corpora to

understand clearly this effect.

6.3 Speaking rate

Speaking rate has been reported to be lower in older adalts/bunger adults. Though

the underlying physiological change for the decrease iedpeate is not clear com-

pletely, it is believed to be a result of restricted free nroeat in articulators and a

reduction in motor control capabilities. It has also beeggasted that older adults

tend to deliberately reduce speech rate so as to be morégitiel under restricted

motor control abilities.

Slower speaking rate is a combined effect of longer proratimei of words, in-

creased number of pauses and pause duration. The impaaalfisg rate differences

on ASR accuracies has received little attention in ASR meseaFosler-Lussier and

Morgan [1999] indicate that the WER increases marginalijhwicreased speaking

rate.

In this section, the differences in speaking rates on SCOTIUSIAAS corpus

are analysed. Two different approaches are employed to et@rgnd compare the
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speaking rates between the two age groups. The impact okisgeate differences
on ASR accuracies are then investigated on the JNAS corpus.

6.3.1 Speaking rate comparison on SCOTUS corpus

For our analysis of speaking rate, we compute the averagéewof frames (amount
of time) per phoneme. Analysis is done on the younger and aldelt male test sets
described in section 5.1. The utterances being analysee fivet force aligned to
a phoneme transcription. All the silences and short pausge then deleted. The
purpose of deleting the pauses was to analyse if there idaeaatite in the speaking
rate in the speech part of the utterances. The average ahufdg) for each phoneme
for each age group was then computed using the informatan forced alignment
results.

For overall speaking rate, a weighted average of all the pm@durations is com-
puted as follows:

d= S wpxd (6.2)
pgp p*Up

where,wp, is the probability of occurrence of the phoneme

We find from our results in Table 6.3 that there is a statiljicignificant decrease
in the speaking rates in older voices. From tdble A.12, it$e aeen that there is a
consistent decrease in speaking rate with ageing for apliomemes.

Aver age duration (msec) per phoneme

Younger Adult males | Older adult males p
81.0 90.8 < 0.001

Table 6.3: Speaking rate differences between younger and older adults on the SCOTUS

corpus

6.3.2 Speaking rate comparison on JNAS corpus

For the analysis of speaking rate on JNAS corpus, we use ffeveht approaches:

1. using the state occupancy probabilities of the phonem&idM

2. using forced alignment method as described in the prevsabsection.



Chapter 6. Articulatory changes in older voices 100

In the INAS corpus, we have a reasonably large and equivateotint of training
utterances for each gender-age category viz., Male-YoMiadg-Old, Female-Young,
Female-Old. Using these sets, monophone acoustic modedstra@ed for each cat-
egory. The model set for each category comprises of 3 stat®lsifdr each phoneme
with 16 Gaussian components per state.

Given an HMM with transition probabilities in stagggiven byai(js), the expected
durationd, of occupying all the stateS of the HMM for phonemep is given by

[Rabiner, 1989]:
1

dp= 3;1——4,5) (6.3)
Equatiori6.B gives the expected number of frames emittedHiviel and thus can
be used as a measure of frames/phoneme. The average nurfraened occupied per
phoneme in a model s€ can again be similarly computed as a weighted average of
durations over all the phonemes.

d= wpxd (6.4)
ng p*p

The weightsw, are the expected probability of a phoneme in the languagemFr
the phoneme counts over the whole JNAS corpus, the weights approximated and
tabulated in Table’A.13.

Tablel6.4 shows the expected duration per phoneme for edbk ofodels trained.
It is seen that the speaking rate is slower for older adultk bmale and female as
compared to their younger counterparts.

Speaking Rate (msec per phoneme)
Males Females
Method
Younger adults | Older adults | Younger adults | Older adults
Model Based 71.7 94.9 78.9 98.8
Forced alignment 72.0 91.2 78.1 93.8

Table 6.4: Speaking Rate differences between younger and older adults in the JNAS
corpus with a) model based method where the transition parameters of the hidden
Markov models are used to estimate the expected occupancy of each phoneme and b)
using forced alignment method to compute average number of frames associated with

each phoneme.

As seen in Tablé 614, similar results are obtained even \Wwighfarced alignment
method as described in Sectlon 613.1.
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6.3.3 Impact of speaking rate changes on ASR accuracies

From the speaking rate analysis on INAS corpus, it is obdenes the acoustic models
for younger and older adults differ by a large margin in titdmis parameters across
all the phonemes. The probabilities of occupying the samie $$ higher in models
trained on older speakers as compared to those trained oygospeakers.

Let the monophone acoustic models trained on each age-gestggory be repre-
sented as follows:

e Younger Male Adults ©ym = {tym, oy m, Wy m, Ty m}
e Older Male Adults :©om = {Howm, om, Wom, Tom
e Younger Female Adults®y g = {pyr, oy, W F, Tyg}
e Older Female Adults ©oF = {por, 0or, Wor, Tor }

To understand the impact of changes of duration, we replectansition parame-
ters of the models corresponding to younger male adultsdiréimsition probabilities
of the Older male adults. The transition parameters for theranodels are also re-
placed similarly to get a set of modified models.

e Oym= {lym, Oym, Wem, Tom}
e Oom = {Hom, Gom, Wom, Tym}
o Ovk = {ivF,0vE,Wr, Tor}
e Oor = {LoF,00F, Wor, Tyr}

Using a phoneme loop decoder, the test sets (as describectiorg4.2.8) for each
age-gender category is decoded using the original and raddatoustic models for
that category.

The results for older speakers are shown in Tablé 6.5. Thesdts capture in
effect, the outcome of slower speech test set decoded onlsnwdmed on slower
speech and models trained on faster speech, all other pansnoé speech being the
same. Itis observed that while correct recognitions ar@siithe same, the accuracies
suffer a large decrease for both male and female speakdrawaitlified models. It
can thus be concluded that insertions errors increasedaeslspeech decoded with
models trained on relatively faster speech.
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Phoneme accur acies using phoneme loop decoder for older speakers

Older males Older females

Acoustic models
% Correct | % Accuracy | % Correct | % Accuracy

Original (©) 72.3 54.2 78.9 62.4
Modified ((5) 72.5 50.1 78.9 59.9

Table 6.5: Phoneme accuracies using phoneme loop decoder for older speakers

Table 6.6 captures similar results for younger speakeisirteresting to note that
insertion errors are less even for faster speech decodedodelsnsuited for slower
speech. While the correct recognition rates are marginaiet with modified models,
the overall accuracies seem to be better. These result®am/ér not constrained by
language model weighting and do not completely explain thteame in a complete
ASR setup.

Phoneme accur acies using phoneme loop decoder for younger speakers

Younger males Younger females
% Correct | % Accuracy | % Correct | % Accuracy
Original (©) 73.3 58.7 73.9 61.0
Modified (©) 72.9 60.4 73.9 62.7

Acoustic models

Table 6.6: Phoneme accuracies using phoneme loop decoder for younger speakers

We repeat the above experiments using a full ASR decodardimgj the language
models and lexicon. The experimental setup is similar td ¢éxplained in section
4.2.3, except that in the current set of experiments insté&gpbhone acoustic models,
we use monophone models trained separately for each agergeategory.

The accuracies for the older speakers are tabulated in. Taél@and the split of the
errors in terms of substitutions, deletions and insertisshown in Tablé 618.

We note that while (substitution + deletion) errors remdmast the same, inser-
tion errors for slower speech with models tuned for fasteresh are 1.2% absolute
higher for male speakers and 0.3% absolute higher for fespaakers. It is interest-
ing that although the reduction in speaking rate is simambth the older males and
females, there is a considerably higher insertion errerfiatolder males with models
trained on relatively faster speech.

The results for the younger speakers are shown in Table@[6.40.
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Word accuraciesfor older speakers

) Older males Older females
Acoustic models
% Correct | % Accuracy | % Correct | % Accuracy
Original (©) 75.8 69.6 84.3 80.0
Modified (@) 75.6 68.1 84.2 79.6

Table 6.7: Word correct recognition and accuracies for older speakers in the JNAS

corpus with original and transition parameter modified models

Word Error details (%) for older speakers

Older males
Subs
21.0
21.6

Older females
Subs
13.8
14.0

Acoustic models
Ins

4.3
4.6

Dels

1.9
1.8

Ins

6.3
7.5

Dels

3.2
2.8

Original (©)
Modified ©)

Table 6.8: Substitution, deletion and insertion errors for older speakers in the JNAS

corpus with original and transition parameter modified models

Word accuraciesfor younger speakers

Younger males Younger females

Acoustic models

% Correct

80.7
80.5

% Correct

77.8
77.2

% Accuracy

73.1
72.9

% Accuracy

77.4
77.2

Original (©)
Modified (©)

Table 6.9: Word correct recognition and accuracies for younger speakers

Word Error details (%) for younger speakers

) Younger males | Younger females
Acoustic models

Subs| Dels | Ins | Subs| Dels | Ins

Original (®) 19.0| 3.3 47| 16.6| 2.7 | 34

Modified @) | 19.1| 3.6 | 4.3| 16.6| 2.9 | 3.3

Table 6.10: Substitution, deletion and insertion errors for younger speakers in the INAS

corpus with original and transition parameter modified models
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In the test on younger speakers, once again the insertiorsegduce with models
tuned for slower speech but only marginally by 0.4% absolatemales and 0.1%
absolute for females. However, the deletion errors inedns0.3% and 0.2% for
males and females with modified acoustic models. Overadtetlis no evidence of a
large difference in errors for faster speech decoded on Imt@déned on faster speech
and models trained on slower speech.

6.4 Summary

In this chapter we have looked at the increase in ASR errdisageing from the point
of view of articulatory changes.

Comparative analysis of the phoneme errors on SCOTUS and JNA®BIS be-
tween the two age groups suggests that certain lower vovewks lhigher increase in
errors with ageing. However, it is difficult to find strong fgaihs and generalise age re-
lated disfluencies across speakers as seen from the loimgitvelsults on the SCOTUS
Corpus.

The study of vowel space area changes shows vowel centi@lisaith ageing
where the vowels move closer to each other in the first anchskfoomant space.

The experiments to analyse the impact of slower speakiegasabbserved in older
speakers on ASR accuracies suggest an increase in insentays and the impact is
seen to be more dominant for older male speakers.
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Acoustic models for older voices

The main concern of this thesis is to improve the acousticeisofbr older voices.
Hence we are interested in addressing the question wheibecls from older speak-
ers is different from that of younger speakers in the acosgtace. We seek to answer
the question through a speaker age-group classificatién Results of the speaker
classification using two different approaches are predenidotivated by the clas-
sification accuracies, we then look at ASR accuracies usipgrsised hierarchical
models based on gender and age. Hierarchical models ardotiieim an unsuper-
vised manner and the ASR accuracies analysed. Finally viedba simple strategy
based on speaking rate differences to refine the acoustielmfod older speakers.

7.1 Speaker classification and clustering

In order to understand how close or separable the acoustigrés of the older voices
are from those of the younger voices, experiments on spedidstering were per-
formed. Since the objective is to understand the effect efragon the features used in
the ASR system, the experiments are based on MFCC and PLRicerdf. Prosodic
features that can give a good discrimination for age basesiaring as seen in chapter
[, have not been used in these experiments.

The MATCH corpus was used in these experiments since it hasgalpbalanced
set of 24 younger and 26 older speakers. In the first set ofiempsts, Support Vector
Machine (SVM) classifiers were trained for younger and olaeces and the classifi-
cation accuracies measured. In the second set of expeanusitig MLLR transforms
as feature vectors, the speakers were clustered into foupgrusing repeated bisec-
tions.

105
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7.1.1 Age group classification using SVMs

The goal of this exercise is to see how well the speakers cantalssified into their
respective age groups automatically using a simple Supfemtor Machine (SVM)
based classifier.

MFCCs were computed from the utterances of all the younger kied speakers.
A window size of 25 ms and a frame shift of 10 ms was used in thtife extraction
to get 14 dimensional vectors (including the energy).

SVMs with Radial Basis Function (RBF) kernels were used for diaation. In
SVM approach of classification, the data is mapped into adrigimensional space
and a linear separating hyperplane with maximal margin ismdoin the higher di-
mensional space. The RBF kernel does a non-linear mapping afdta into higher
dimensional space and takes the form

K(%,%j) = exp(—yl[x —Xj||%) (7.1)

For the classifier to function properly, two parametersywizhe RBF kernel pa-
rameter andC the penalty parameter for the error term, need to be fixedapriA
cross validation with a grid search on the parameters wdesrpaed and the values of
the parameters that gave the best performance were fix€d-a256 andy = 2.

Since the number of speakers in the corpus is limited, a ‘t@me out’ approach
was used. The SVM classifiers were trained using LIBSVYM [Chandylan, (2001].
The following steps were involved in the process:

1. For each test speaker, training set from the rest of thekepg' data was created.

2. All the training vectors were normalised (to zero mean anid variance) and
the same normalisation applied to the test set.

3. Using a stratified selection approach, a subset of 10@00ing samples and
2000 test samples were selected. This was done since theenwhtraining
samples was very high making it computationally intensov&din the models.

4. Binary classifiers were trained for each test speakemithelasses being ‘younger’
and ‘older’

5. The class for each sample in the test set was predicted thgrclassifiers and
the accuracies calculated.
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Each speaker was assigned to a class based on majority Va@veérall accuracy
of the classification was 70%. The precision and recall fohedass are shown below
in Table[7.1.

Older speakers | Younger speakers
Precision | Recall | Precision | Recall
73.9% | 65.4%| 66.7% 75%

Table 7.1: Precision And recall for each class in age group classification task on MATCH

corpus using support vector machines

From the results, it is seen that variations in speech dugémg reflect in the
feature vectors used in ASR and it is possible to estimat@deegroup of a speaker
with reasonable accuracy. This 2 class problem is a relgtsimpler task than age
recognition.

These accuracies are consistent with the accuracies ebtainspeaker age and
gender recognition literature. Metze et al. [2007] repardgerage accuracy of around
45% with state-of-the-art systems when identifying a speakje category on a rela-
tively more challenging task of 7 classes comprising ofdreih, young males, young
females, adult males, adult females, elderly males andlgltemales respectively.
Human recognition on the same task had a precision of 54. ®Wtemall of 69.3%. In
a perceptual study on age recognition by voice,&rH2001] reports that there is a
better than chance probability of human listeners juddnegspeaker age withitt10%
of chronological age.

7.1.2 Speaker clustering based on MLLR transforms

MLLR transforms used in speaker adaptation map the meanseaksr independent
HMMs to fit the target speaker more closely. These transfaansbe used as speaker
identity and have been used in speaker recognition taskkkgtet al., 2005].

We propose a new metric to calculate the distance betweersp&akers using
MLLR transforms as feature vectors. The metric is explainedktpth in chaptdr]8. In
brief, the distancer sbetween two speakers whose MLLR transforms are represented
by AT andAg s given by:
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wherec is thek" mean of theK clusters computed from the means of all Gaussians
in the speaker independent model.

Using the AMI speaker independent models (described irnsesét3.2), MLLR
transforms were computed for all the speakers in the MATCHbesr To compute
the distance between each of these speakers using equ&id@0 pointsdy) were
computed from the means of all the Gaussians in SI model. infiagty between the

speakers was then computedsasilarity = 1000— d.

(7.2)

+  Young Females
O  Young Males
Older Females

0.2 A Older Males
N
0.1 PORRRS
+ ¥ :
(@] + +
A +
[92]
c 0 A o + +
Ke] A A -+
2 a o
g -01 & o
5 A O
02 aN A +
. o

0

Dimension 2 05 -05 Dimension 1

Figure 7.1: MATCH speakers in 3D space using multi dimensional scaling on the dis-

tance matrix

Figure[Z.1 shows a 3 dimensional plot of all the speakerserMATCH corpus.
The plot was generated using multi dimensional scaling enlistance matrix between
all pairs of speakers.

For the classification task, the speakers were clusteredant groups using CLUTO
[Karypis, | 2003] by the repeated bisections method. In theshod, the speakers are
first clustered into 2 groups, which are again bisected tainlihe desired number
of clusters. The bisection is based on maximising the obgdtinction as shown in

equatior 7.8
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N
maximise sim(u, V) (7.3)

where,N is the total number of clusterS, is the set of speakers assigned to cluster
andv represent the two speakers in that set, sinfu, v) is the similarity between the
two speakers.

Total Speakers (50)

(7) Younger Males (5)
(18) Older Males (2)

Younger Males (2)
Older Males (8)
(1) Older Females (1)

(6)

Younger Females (6)
(32)

Younger Females (11)
(26) Older Females (15)

Figure 7.2: Clustering of speakers in the MATCH corpus

The speaker distribution in the clusters is shown in FiguPe As expected at the
first level of clustering, the male and female speakers graraged out. At the next
level of clustering, there appears to be some separatiovebeatthe younger and older
male speakers. While for the females, there is a large oveflgpunger and older
females in a cluster. This also corroborates with the faattadlye related changes in the
voice for women are less pronounced than those observedrnin me

The overall accuracy of the system is 68%. One advantagesainthod over the
previous SVM based method is that there is no need to tunearayreters.

7.2 Supervised hierarchical models

Speaker independent models have to generalise in ordeteiotodhe large variety in
speaker space. When the models are built for targeted sqis@kars, the recognition
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accuracies are higher. A good improvement can be achievgdsbysing gender
dependent models. In the previous section, we have seespibalters can be separated
out in acoustic space based on their age group with a reasomeduracy. In this set
of experiments, we explore how much increase in ASR acoesaiEn be obtained by
exploiting the a priori knowledge about the gender and ag#sedraining and the test
set speakers. Hierarchical acoustic models based on gegkecategory are trained
and used for decoding the test utterances. The experimentaied out on the INAS
corpus due to the good balance of speakers in terms of agecanieg

The work by Baba et al. [2001] is similar in principle to this tkko Based on
the hypothesis that the acoustic space for elderly spe@keseparable from that of
younger speakers, separate speaker independent acoadgtsmare built for the two
age groups. Those models were further adapted to each geatdgory to obtain
significant improvements in performance. In our work on &pealustering, we find
that the top level clustering is principally based on thedggrfactor and hence we
adopt the strategy of gender dependent models adapted toagegory. Since the
acoustic space for younger and elderly speakers is not @etypkeparable, instead of
training separate models for each category, we derive theegeage based models by
adaptation of speaker independent models thus allowingesftisharing of data.

7.2.1 Experimental setup

The training data used for S| acoustic models in the basedperiments on JNAS
corpus (sectioh 4.2.3) are balanced in terms of gender amd@ender and age group
specific models were built in a hierarchical structure frérase models as shown in
Figurel7.8. Using the MAP approach witk= 10, the speaker independent models are
first adapted with the male and female subsets of the trasen¢p get gender depen-
dent models. These models are further adapted using ‘gendge group’ specific
subsets to create 4 more models. The mean, variance andenxéight parameters
are estimated for each model using the priors from the paueahes.

The language models and the decoding setup are the saménasetup described
in sectior 4.2.3.
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Figure 7.3: Training gender and age dependent acoustic models

7.2.2 Results

7.2.2.1 Gender dependent models

Gender + Age dependant models

The test set utterances as described in the baseline exgmesiare decoded using the

appropriate gender dependent model for each test speakers&\the prior knowledge

of the gender of the test speaker to choose the appropriatsiaecmodel. The WER

results are tabulated in Tallle]7.2. Overall, there is aolatessimprovement of 1.2%
and 1.7% in WER over the baseline results (in sedtion 4)2f8r6)ounger adults and
older adults respectively. Older Males have the maximunravgments in WER of

2.5% as compared to the other groups.

Younger adults | Older adults
All speakers 14.7 18.7
Male 15.1 21.4
Female 14.3 15.9

Table 7.2: Comparison of WERs (%) of younger and older adults in the JNAS corpus

using gender dependant models
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7.2.2.2 ‘Gender + Age’ dependent models

Again the prior knowledge of the age of the test speaker id tesselect one of the four
acoustic models adapted to gender and age group. The rasiltzbulated in Table.
[7.3. Consistent improvements in WERS over the baseline arevaustor all groups.

Interestingly, a further improvement over gender dependesdels is obtained for

older adults (both male and female speakers). From thetsasappears that while it
is beneficial for older adults to have the gender dependedeta@dapted to the older
speaker set, it is not the case for younger adults. The pedioce is better for the
younger adult group with a larger training pool (includiqmesch from older speakers)

of data.
Younger adults | Older adults
All speakers 14.9 18.4
Male 15.7 21.1
Female 14.2 15.7

Table 7.3: Comparison of WERSs (%) of younger and older adults using ‘Gender + Age’

dependant Models

7.3 Unsupervised hierarchical models

In the previous experiment, prior knowledge of the gendet age of the training
and test set speakers was used to build the hierarchicallsnotieis however is not
feasible in practical systems. Most speech corpora aremmitated with gender and
age details of the speakers.

7.3.1 Acoustic models

We use an unsupervised clustering approach described belowid the hierarchical
models.

1. Using the speaker independent models, compute an MLLRBftvam for each
speaker in the training set.

2. The distance between each pair of training speakers ip@@th using equation

(7.2
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3. The speakers are then clustered into groups using thatespigisections method.

4. The Sl models are adapted hierarchically using the data fine training speak-

ers clustered at each node using MAP adaptation.

The training set age distribution in the hierarchical medslseen in Figure.7.4.
The clustering at the first level turns out to be predominyageinder based. In the next
level some pattern with age groups is observed. Nodes 1 anel @banewhat biased

towards older males and females respectively, while nodexi(B are biased towards

younger males and females respectively.

Node 6
Speakers:392
M:195, F:197
YM:102 OM:93
YF:103 OF:94
Node 4 Node 5
Speakers:199 Speakers:193
M:4, F:195 M:191, F:2
YM:3 OM:1 YM:99 OM:92
YF:102 OF:93 YF:1 OF:1
) \ ........ / \
Node 3 Node 2 Node 0 Node 1
Speakers:79 Speakers:120 Speakers:108 Speakers:85
M:0, F:79 M:4, F:116 M:108, F:0 M:83, F:2
YM:0 OM:0 YM:3 OM:1 YM:68 OM:40 YM:31 OM:52
YF:51 OF:28 YF:51 OF:65 YF:0 OF:0 YF:1 OF:1

Figure 7.4: Unsupervised hierarchical models. Figure shows the age and gender statis-

tics of training set speakers clustered at each node

7.3.2 Testing

Utterances from each test speaker are decoded againg aibitkels in the hierarchical
structure and the model that maximises the likelihood oftése set is chosen as the
acoustic model for that speaker. However decoding withregéveodel sets leads to

undesirable increase in the computational time. To oveecthis, we decode the first
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test utterance from a speaker with all the models and sdieanbdel with the best
likelihood score.

Typically, the models selected with the likelihood sconesf the first utterance
and scores accumulated over all the utterances are the Jdreee were a few cases
where they were different, but in such cases the models veergdfto be parent and
child nodes in the hierarchical tree and the choice of eidighem did not have a
significant impact on the ASR accuracies. Hence in all thalt®seported below,
likelihood scores from the first utterance were used in medigction.

7.3.3 Results

The results with the best model choice for each test spea&eshamwn in Table[_714.
It is seen that the results are comparable to the hierailamodels built using prior
knowledge of age and gender.

Younger adults | Older adults
All speakers 14.7 18.7
Male 15.0 21.3
Female 14.3 16.0

Table 7.4: WERs (%) of Younger and Older odults using unsupervised hierarchical

models

The statistics for the number of test speakers choosing@lar model in the tree
is shown in Figuré 715. Female speakers do not show any patt@icking age based
models, while the male speakers seem to prefer models adtaptleir age group.
Interestingly, 11 out of the 15 older male speakers in thegagep of 70-79 pick the
model corresponding to Node 1 which has a higher proportfarider males in the
training set.

7.4 Modifying HMM transition parameters

Often, there is a requirement to deploy ASR systems in enmients where there
is sufficient data available from younger speakers to bulnliatic models, but zero
resources available from older speakers. However thettsegef users for the system
might be older speakers, for instance in care homes.
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Node 6

Speakers:392
M:195, F:197
YM:102 OM:93
YF:103 OF:94

Test Speakers

YM: 1
YF: 1
OM: 1
OF :2

N

VM- O Node 4 Node 5 VM- 11
YF: 22 Speakers:199 Speakers:193 YF: 0
OM:0 M:4, F:195 M:191, F:2 OM: 19
OF : 22 YM:3 OM:1 YM:99 OM:92 OF:0
YF:102 OF:93 YF:1 OF:1
Node 3 Node 2 Node 0 Node 1
Speakers:79 Speakers:120 Speakers:108 Speakers:85
M:0, F:79 M:4, F:116 M:108, F:0 M:83, F:2
YM:0 OM:0 YM:3 OM:1 YM:68 OM:40 YM:31 OM:52
YF:51 OF:28 YF:51 OF:65 YF:0 OF:0 YF:1 OF:1
YM: 0 YM: 0 YM: 33 YM: 6
YF: 13 YF: 13 YF: 0 YF: 0
OM: 0 OM:0 OM:8 OM: 23
OF : 11 OF : 15 OF: 0 OF: 0

speakers selecting acoustic model corresponding to that node is shown.

115

Figure 7.5: Unsupervised hierarchical model. At each node, the statistics of the test
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Motivated by the results in sectién 6.3 where models traoreglower speech give
much higher accuracies for older voices, we want to undedsifait is possible to
improve the ASR accuracies for older speakers by adjustiagtate transition prob-
abilities of the HMMs to increase state persistence ancethyemodel slower speech
better.

Traditionally, hidden semi Markov models [Murphy, 2002ykdeen very popular
models to capture variations in speaking rate. These modelgate the state duration
probability distributions explicitly into the HMMs. In shcmodels the unobservable
state is semi-Markovian where the probability of stategitaon depends on the time
duration elapsed since entry to the occupied state. Evargtheuch models come
with increased complexity, they have been shown to giveifstgimt improvements in
ASR accuracies over the traditional HMMSs [Oura etlal., 2006]

In this section, we are interested in exploring the possiof adaptation of HMM
transition parameters to suit slower speech without anytiaddl complexity in the
model. Following procedure has been adapted for the trangiarameter modifica-
tion.

Let a be the desired fractional increase in the duration of ococoypaf a state,
aj i be the probability of occupying the same statnda; i1 be the probability of
transitioning to the next state in the following time indtarhe modified parametér ;
is related to the original paramet&r; by the following relation.

1 1+a
1-a; 1-—a;
Simplifying this relationship, and subtracting the resitweight added ta; j from

(7.4)

aj i+1, we get the following relations for the modified parameters.

~ o + aji
i = 7.5
a i 11a (7.5)
. oa(l—a;
g1 = ai.,i+1—(—") (7.6)

l1+a

7.4.1 Experimental results on the JNAS corpus

The experimental setup is similar to that described in se@ti2.3. The test set in this
set of experiments is only the set of utterances from oldelt ageakers. The transition
parameters of all the HMMs in the acoustic models are modfbed: varying from
5% to 40% in steps of 5%. The WER results are shown in Table 7.5.
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Word Error Rates (%)

a | Overall | Male | Female

0 20.5 24.0 16.9
0.05| 20.3 23.7 16.9
0.10| 20.2 23.6 16.8
0.15| 20.2 23.6 16.7
0.20| 20.1 23.5 16.6
0.25| 20.0 23.4 16.5
0.30| 20.0 | 235 | 16.4
0.35| 19.8 23.2 16.3
0.40| 19.8 23.2 16.3

Table 7.5: WERSs (%) on older speakers in the JNAS corpus using acoustic models with

modified transition parameters

7.4.2 Experimental results on the SCOTUS corpus

The same experiment is repeated on the SCOTUS corpus. Theetdstagain only
from older adult speakers. The results on SCOTUS corpus spéaglied in Table, 716

7.4.3 Discussion

It is quite interesting to see some relative gains in acéesaan both the corpora. On
JNAS corpus, the improvements in accuracies are quite mabsm while on SCOTUS
corpus, the improvements are minuscule. The possible ¢atisat the speaking rate
for older speakers in INAS corpus is substantially lowen §@unger speakers, while
it is only marginally lower in SCOTUS corpus as seen in sedfiéh

If it is known apriori that the target users of the ASR systeould be elderly
speakers or people with a slower speaking rate, then theress® be value in adjust-
ing the transition parameters.

Although a value of 15% or 20% far seems appropriate for older speakers, it is
also not clear from the experimental results, what is thé ¢ddesice for the value od.
This could possibly be better estimated in a maximum likedith sense from a small
development set from the target user.
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Word Error Rates (%)

a | Overall | Male | Female

0 40.4 38.8 | 46.1
0.05| 40.3 38.8 | 46.0
0.10| 40.3 | 38.8| 45.9
0.15| 40.3 38.8 | 45.9
0.20| 404 38.9 | 45.9
0.25| 404 38.9 45.8
0.30| 404 | 389 | 4538
0.35| 40.9 39.3 | 46.4
0.40| 40.8 39.3 | 46.4

Table 7.6: WERSs (%) on older speakers in the SCOTUS Corpus with modified transition

parameters

7.5 Summary

Though MFCC and PLP features are designed mainly to captanghtbnetic charac-

teristics in speech, they also capture meta informatiorutabpeaker characteristics.
Speaker clustering task into two age groups using thesarésatchieves an accu-
racy of 70%. A method to compute the acoustic distance betwee speakers using

MLLR transforms is also introduced in the speaker clusteexperiments.

Motivated by the separation of the speakers in acousticespased on age and
gender, the use of supervised hierarchical ‘age and genuetéls has been explored.
Significant improvements in ASR accuracies are achieveagusiich models. It is
also observed that for older adults these models outperf@mder dependent models
which is not the case for younger adults.

Using the speaker distance measure proposed, hieraromozidls constructed in
an unsupervised manner are also seen to give accuraciesuaiigto the supervised
models.

Artificial modification of the transition parameters of th&IMls to cater for slower
speaking rate of older speakers is explored. Favourahldiisese attained in this task
on JNAS corpus.
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Speaker selection to augment

adaptation data

In typical ASR based interactive voice response and spolkdogiie systems, only a
few seconds of speech is generally available from a userdptdte acoustic models
to his/her voice. Linear regression based speaker adaptathniques such as MLLR
and MAPLR are widely used in such scenarios where the tramsftton matrices can
be efficiently computed with a reasonable amount of data. é¥ewwhen the trans-
forms are computed using a very small amount of adaptatitay ttee improvement in
recognition accuracy using the adapted models can be laggohthe accuracy with
the adapted models can be lower than that with the speakepemdilent models.

To overcome this problem of sparse data, several approaelvesbeen devised to
characterise the test speaker and make better use of thieatatéhe existing speakers.
Eigenvoices/ [Kuhn et al., 2000] is one such idea where thepesaker is characterised
as a linear combination of eigenvectors which are computed speaker dependent
(SD) models of the training set speakers. This approachvewes limitations when
applied to large vocabulary systems due to the need to gersaeeral SD models and
in the computation of speaker coefficients in the high direared Eigen-space.

Another approach to tackle data sparsity is to augment thptation data for the
target speaker with speech data from other reference sfgeakeustically close to
the target speaker. The reference speakers can be a sulibetsgeakers used to
train the SI models as well as other speakers whose data lescrailable at a later
stage. Such systems where more corpora becomes availalsleefaker selection can
be easily envisaged in practical applications. In telegHmased IVR systems, speech
data can be collected as the system is used and the collexttedath be made available

119
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as a pool of reference speakers. In broadcast news, speetantcis made available
on daily basis from different speakers. Hence it makes serseh scenarios, to build
a speaker independent ASR system and use the data maddlavedasequently, to
improve the performance of the system.

Some related work based on this approach of speaker seleeti® conducted by
Yoshizawa et al. [2005], where GMMs were trained for eaclkenexice speaker and
the models that maximised the likelihood for the target kpes adaptation data were
chosen as the closest speakers. Wu and Changl/[2001] buincw$iMs for each
reference speaker using MLLR and the speakers whose modgisised the likeli-
hood scores for forced alignment of the adaptation data walewsen as the reference
speakers.

Recently, an approach to speaker recognition using MLLRstoams as feature
vectors has been investigated [Stolcke et al., 2005, 200].core idea is to concate-
nate the coefficients of the adaptation transforms into Higtensional vectors and use
these vectors for speaker identification using SVM classifienspired by this work,
we extend the idea of using transformation matrices as spéa&tures to identify the
reference speakers acoustically closest to the targekspddowever, we do not use
SVM classifiers since our task is different from speaker gadoon. We use a distance
metric based on transformations to compute the distaneeeketspeakers.

In this chapter we first explain the distance metric used aniiyits validity on a
speaker identification task. The speaker selection siyrategugment the adaptation
data is then outlined. This is an interesting generic spea#taptation strategy not
specifically targeted for the older speakers. The expetiaheasults on AMI corpus
are discussed to illustrate the usefulness of this apprimdiclved by the extension of
the idea to SCOTUS corpus, where the results are analysedsgpdor younger and
older speakers.

8.1 Distance measure

Stolcke et al.[[2005] concatenate the coefficients of MLLRtrinas to create high

dimensional vectors and these vectors are used as speakeefe Such high dimen-
sional vectors have been shown to have good discriminatiopepties for classifica-

tion but the disadvantage of this approach is that it justttréhe matrix as a vector and
discards the property of the MLLR matrices that enable iramsform the means of
HMMs to match the target speaker.
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We propose a distance metric that takes advantage of thefdraration defined
by the MLLR matrices. Given MLLR matrices from two speakesample points in
the acoustic space are transformed by the two matrices andistance between the
transformed points is calculated. We cluster the meand ¢i@lGaussians in the Sl
model and choose the centroids of the partitions as the sapaphts. This ensures a
good coverage over the acoustic space.

The distancal between two speakers whose MLLR transforms are represbgted
At andAgis given by:

€l (Ar —Ag)ek ||

a-3

8.1
2 Tl 81)

wherecy is thek mean of theK clusters computed from the means of all Gaussians
in the speaker independent model.

This metric is in principle similar to matrix operator normatbnstead of choosing
the maximum, we sum over all the points being considerecerith measures well the
actual operation of the transformation matrix in the adoisgiace.

8.2 Speaker identification task

In order to understand how well the proposed distance miedtigs in identifying the
closest transformation matrices, it was applied to a spedkatification task.

The experimental setup consisted of reference MLLR transcand test MLLR
transforms for a set of speakers. For each speaker, thantts used in computing
the reference and test transforms were disjoint. The tas& identify the closest
reference transform for each test transform using the riistametric proposed and
when the closest reference transform is from the same tesikep it is treated as
correct recognition.

The SCOTUS corpus was used for this task. Acoustic models Gsetpof 18
component GMMs per state. In all, the Sl acoustic models cmeg 59886 Gaussians
over 3324 independent states.

A set of 100 speakers was used for the speaker identificatgin To compute the
reference and test MLLR transforms, about 40 seconds andctihds of speech was
used respectively for each speaker. A two class regresserfdr speech and silence
was used for the MLLR computation and only the speech tramsfavere used in
distance computation.
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The sample points in acoustic space to be used in calculd#tangistance, were
selected as the centroids from k-means clustering on alBthessian means in the Sl
model. The task was repeated with various sizes of sampigswaiz., global mean,
100 clusters, 1000 clusters and using all the Gaussian Me#ms S| model. A simple
euclidean distance (Frobenius norm) between the co-eftece the matrices was also
used for comparison.

The results for this task are shown in Tablel 8.1. We obseraedtset of 1000
points in the acoustic space is sufficient to achieve acb&pgecuracy.

Distance measure Accuracy

Euclidean Distance between transformation matrices 32%

Transformation of the global Mean of all Gaussians in SI nhade 36%

Transformation of 100 Cluster Means 97%
Transformation of 1000 Cluster Means 98%
Transformation of all the Gaussian Means 98%

Table 8.1: Speaker identification task

As mentioned earlier, the objective of this task is only tkema sanity check of
the distance metric and hence the results have not been cempih other competing
methods for speaker recognition.

8.3 Speaker selection

Given a set oN reference speakers, our task is to select a subset of theslkeesp who
are acoustically closest to the target spedker

Denoting the transformation matrices for the target speasar, theith reference
speaker a®\r (i = 1...N) and using an identity matrix to represent the SI model

AI - [|m><m : Omxl]mx(m+1),

e Compute a linear transfordyy for the test speaker from the available adaptation
data.

e Compute the distancekr fori=1...N anddy.

e Choose a subset of speakers satisfyirg < dr| to augment the adaptation
data.
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@ Speaker Independent Model
Test Speaker
Speaker in the reference set
® Selected speaker for augmentation

Figure 8.1: Speaker Selection

e Recompute the linear transform for the test speaker usingugmented data.

To illustrate the speaker selection process, Figlre. 8tshhe speakers in 3d
space (generated using multidimensional scaling). Thereate speakers selected for
augmentation are the ones that lie within the spherical folanwith the target speaker
at the center with a radius aff;. In practice, the dimension of the speaker space is

large and the selection manifold is a high dimensional sdlig.
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8.4 Experiments

The experiments were carried out on the AMI and SCOTUS corpora

8.4.1 Experiments with the AMI corpus

8.4.1.1 Setup

Features

The waveforms were parametrised into 39 dimensional PLBd&satures with
first and second order derivatives

Acoustic models

The ICSI-NIST-ISL acoustic models were MAP adapted with 4Qremf speech
from the AMI corpus. With 8 and 16 Gaussian components pés ftaspeech and si-
lence respectively, the SI model comprised 3712 indepdrafates with 29720 Gaus-
sians in total.

L anguage models

Back-off bi-gram language models and vocabulary of size 80@8rds were built
using transcripts of several meeting corpora including@waioard, Call Home, Fisher,
ICSI, NIST, ISL and other web data resources [Hain et al., BR05

Reference set

The reference speaker set comprised of 69 speakers used Roddapt the Si
models and 78 speakers not used in the training set. Eackespgeal about 30 minutes
of speech data on average.

Test set

The test speaker set in this corpus consisted of 42 speakér2@0 utterances as
test data per speaker and a small adaptation set separatéhfedest set.

8.4.1.2 Procedure for speaker selection

The means of all the Gaussians in the Sl acoustic models viestered into 1000
groups using k-means clustering for each of the two corpdtee centroids of each
of these clusters were used as the sample points for congptlnacoustic distance
between speakers. From each of the reference speakers’Miat&® and MAPLR
mean transforms were computed using a two class regressmrne for speech and
one for non-speech. Three sets of adaptation data were uiedifferent amounts
of data for the test speakers viz., 1)10-15 seconds of spmescspeaker 2) About 30
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seconds per speaker and 3) About 1 minute per speaker. Aidapttaansforms were

computed from all the adaptation sets using the actualdrgots for supervised case
and using the hypotheses from first pass decoding for ungigpdrcase. For each of
the test speakers, acoustically closest speakers werercheslescribed in sectibn 8.3.

8.4.1.3 Results

The baseline results for the AMI corpus are shown in Table 82 baseline WER
of 46.3% is much higher than 39% WER reported on the same cangtiain et al.,
2008], but our experimental setup is quite different from ¢niginal AMI setup. The
ICSI-NIST-ISL models were adapted to the AMI domain with oA hours of in
domain data, in order to keep aside seperate speaker séenoe speakers. Addi-
tionally the test set in our experimental setup is also diffiefrom the AMI set. Hence
the difference in WER is not surprising.

The WERSs with speaker adaptation are also tabulated in TaBl&\&en only 10-
15 secs of adaptation data is available, it is seen that spedlaptation is not optimal.
The WERSs increase in most cases.

Speaker independent 46.3
Adaptation Data | 15s | 30s | 60s
MLLR Supervised 50.2| 46.0| 43.9
MLLR Unsupervised | 51.5| 47.5| 45.3
MAPLR Supervised | 48.1| 45.3| 43.7
MAPLR Unsupervised 49.3| 46.7 | 45.1

Table 8.2: AMI Corpus: Baseline results (WER %)

In order to understand if there is merit in adapting the attousodels for a tar-
get speaker with speech from other speakers, an oracleestgkriment was setup.
For each of the 42 test speakers, the test utterances wesdetbtwith MLLR trans-
forms generated from each of the 78 reference speakersessryrin the training set.
The reference speakers were then sorted in increasing of8&¢ER and the speech
from top 10 speakers in the sorted list was chosen as theatdaptiata. A WER of
45.4% was obtained using such adapted models. From tharmasesults shown in
Table[8.2, we observe that more than 30 seconds of adaptitans required from
the target speaker to achieve similar improvement in acguwrader the same experi-
mental setup. This reinforces the hypothesis that spedelfrdan acoustically similar
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speakers can be shared to improve ASR WERS.

Reference Speakers Train set Train + Add Set
Adaptation Data | 15s | 30s | 60s | 15s | 30s | 60s
MLLR Supervised 46.2| 45.6| 45.5| 45.9| 45.6| 45.2
MLLR Unsupervised | 47.4| 46.2 | 45.8| 46.8| 45.9| 45.4
MAPLR Supervised | 46.1| 45.7| 45.4| 45.8| 45.7| 45.3
MAPLR Unsupervised 47.1| 46.1| 45.7| 46.2| 45.9| 45.7

Table 8.3: AMI Corpus: Results with augmented adaptation data (WER %)

Results with adaptation using augmented data using autosgiaker selection
procedure are shown in Table. 8.3. It capture WERs using 1) thelytraining set
speakers as reference speakers and 2) Training set speakkeeslditional speakers
(Train + Add Set). The results show a significant reductiodMiBR with augmented
adaptation data when the adaptation data is limited to 1€e&6nds. The WER reduc-
tion is significant ap < 0.001 using MAPSSWE test. As the adaptation data from the
target speaker increases, the benefit from using other spgakeech reduces.

Augmenting the adaptation data is seen to be particulaxgradgeous in the unsu-
pervised case which is often the situation for practicalesys. It is also observed that
accuracies with MAPLR mean adaptation are overall bettn MLLR mean adapta-
tion. With augmented adaptation data, an improvement 8o4e&ative for supervised
case and 4.5% relative for unsupervised case are achieved.

Using speakers additional to the training set speakersrthefuimprovement in
recognition accuracies can be achieved as seen in Higure 8.2

8.4.2 Experiments on SCOTUS Corpus

The main motivation to extend the experiment to SCOTUS coipts get a feel for
the kind of improvements in ASR accuracies for younger an@madults using this
approach.

8.4.2.1 Setup

ASR system
The Sl acoustic models used are the same as those descriesatior 8.2. Back-
off bigram language models and the vocabulary were corstiifcom the transcripts
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Figure 8.2: Augmentation of adaptation data. Results on the AMI corpus
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of the Supreme Court of the United States proceedings reguiiti23445 words types.
Reference Set
The reference speaker set consists of speech data from &6indr set speakers
and 282 additional speakers not used in the training seth Ederence speaker had
about 8 to 20 minutes of available data with an average of Iit@s per speaker.
Test Set
The test speaker set comprised of 27 younger adults and &2 adullts disjoint
from the training and additional speaker set. Each testkgpded about 60 minutes
of data and a small set of about 3 minutes kept aside as thé¢stidapdata.

8.4.3 Results

The same procedure as described in the AMI experiments akere followed even
for the SCOTUS corpus.

The baseline results for the younger and older adults anershro Tableg 8.4 and
respectively. The results shown in these tables areasidiptation sets of 15 secs,
30 secs and 60 secs which are a subset of the 120 second extagttt used for
speaker adaptation results shown in sedfion 4J2.1.1. tfamaseen from these results,
that speaker adaptation with very little adaptation dateleaa tricky issue.

Speaker Independent 30.4
Adaptation Data | 15s | 30s | 60s
MLLR Supervised 30.9| 30.3| 29.8
MLLR Unsupervised | 31.0| 30.4| 30.0
MAPLR Supervised | 30.5| 30.0| 29.7
MAPLR Unsupervised 30.6| 30.1| 29.9

Table 8.4: SCOTUS Corpus: Baseline results (WER %) for younger adult speakers

The results with augmented adaptation data for younger ket adults are dis-
played in Tables 816 arid 8.7 respectively.

From figureg 813 and 8.4, it is seen that trends in WER impromesnamilar to
those observed on AMI corpus are repeated on SCOTUS corpusllagie gains for
younger adults by data augmentation is higher than thosaelder adults. However, it
must be noted that the number of older speakers in the toagorpus as well as the
additional set is extremely low. Hence suitable augmemtatiata for older speakers
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Speaker Independent 40.4
Adaptation Data | 15s | 30s | 60s
MLLR Supervised 40.4| 39.8| 39.7
MLLR Unsupervised | 41.0| 40.3| 40.0
MAPLR Supervised | 39.8| 39.5| 39.3
MAPLR Unsupervised 40.3| 39.8| 39.8

Table 8.5: SCOTUS Corpus: Baseline results (WER %) for older adult speakers

Reference Spkrs Train set Train + Add set
Adaptation Data | 15s | 30s | 60s | 15s | 30s | 60s
MLLR Supervised 30.4|30.2| 30.1| 29.6| 29.5| 29.5
MLLR Unsupervised | 30.4| 30.2| 30.2| 29.5| 29.5| 29.5
MAPLR Supervised | 30.4| 30.2| 30.2| 29.7| 29.7 | 29.6
MAPLR Unsupervised 30.4| 30.2| 30.2| 29.7| 29.7 | 29.6

Table 8.6: SCOTUS Corpus: Results with augmented adaptation data (WER %) on

younger adult speakers

Reference Spkrs Train set Train + Add set
Adaptation Data | 15s | 30s | 60s | 15s | 30s | 60s
MLLR Supervised 39.6| 39.6| 39.6| 39.7| 39.7| 39.6
MLLR Unsupervised | 39.6| 39.6| 39.7| 39.7| 39.7 | 39.7
MAPLR Supervised | 39.7|39.7| 39.7| 39.7| 39.7| 39.5
MAPLR Unsupervised 39.6 | 39.7 | 39.7 | 39.8| 39.7| 39.7

Table 8.7: SCOTUS Corpus: Results with augmented adaptation data (WER %) on

older adult speakers
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is not readily available from the reference speakers. Despat, there are minor
improvements in WERS observed even for older adult speakers.
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Figure 8.3: Augmentation of adaptation data. Results on the SCOTUS corpus for

younger adult male speakers

8.4.4 Discussion

A simple and efficient method to improve the ASR accuracidh small amounts of
adaptation data is described. Other approaches on siragks tsuch as eigenvoices
have been shown to improve performance in smaller systemtscaling the eigen-
voices approach as described in Kuhn et al. [2000] to ouelesgstem led to Principal
component analysis on a large matrix (2.5million x 250),ahhivas computationally
expensive. Due to the high dimensionality, all the eigetorscgenerated had similar
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eigenvalues. Choosing the top 20 of them as basis resultssrofanformation and an
increase in WER of 6.2%.

The distance metric proposed, is efficient in memory usagecamputational
complexity. The storage requirements ararax (m- 1) matrix per reference speaker
andK sample vectors in the acoustic space. The computation afistence between
two speakers involves only a few matrix operations. To spgethe computations
|ck| terms could be precomputed and stored. To save on the tinugeddor com-
puting the regression transforms, sufficient statistictie reference speakers can be
computed offline.

Another feature of this approach is that there is no manumh¢uor thresholding
involved. The threshold is implicitly determined by thetdrsce of the target speaker
from the speaker independent model. If no reference speskdose enough to the
target speaker, only the available adaptation data fordbegpeaker is used. This
approach is expected to work better with the availabilityadarger and more varied
reference speaker set in terms of age and gender. Furthesrihtre speech from a
target speaker is available in the reference set, it is vkejyl to be selected first as
augmentation data and improve the recognition accuracyfsigntly.

The MLLR/MAPLR WERs on AMI corpus with 15 seconds adaptatioradate
significantly higher as compared to the results with SI madBkspite this, the linear
transform matrices still capture sufficient informatioroabthe speaker to be able to
select augmentation data.

In both of our systems, the number of reference speakers mgited to a few
hundred. If thousands of reference speakers are availaltheiselection pool, then
computing the distance of the target speaker to all the gpealan be time consuming.
A possible solution to this problem is

e project all the reference speakei$) (@nd SI model to g dimensional space
(p << N) using MDS.

e Selectp non-coplanar speakers in thpgdimensional space as reference points.

e For a target speaker compute the distance from tpesference speakers and
project the target speaker into this reduced dimensioredespsing triangulation
method.

e Select the augmentation speakers satisfding < dr, whered is the euclidean
distance.
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8.5 Summary

In this chapter, a simple approach to compute distance leetajgeakers using regres-
sion matrices as speaker features is proposed and disclisgetimental results show
that speakers acoustically close to the target speakerecafidetively selected from a
pool of reference speakers to augment the adaptation datiaefdarget speaker. It is
a general speaker adaptation strategy that is applicabspéakers of all genders and
ages. This approach works well when the adaptation data tinentarget speaker is
very limited and gives significant reduction in WER. It is seebé particularly useful
when the adaptation is unsupervised which is often the ecapeactical deployments
of ASR systems. However when sufficient adaptation dataagadle from the target
speaker, augmenting it with speech from other speakerd isemeficial.

Results on SCOTUS corpus also suggest that for such a speddaicgestrategy
to work well for speakers of all age groups, a diverse setfefemce speakers in terms
of gender and age is desirable.
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Conclusions

9.1 Summary

In this thesis, we focused on the problem of Automatic Spdetognition for the
domain of older voices. While there are several subsysteras iASR system, the
problem was investigated from an acoustic modeling pointeaf. The main questions
that this work attempted to answer are as follows:

e What is the impact of changes that take place in speech pliodutiie to ageing
on ASR accuracies?

e How can the acoustic modeling component of the ASR systermpeoved for
the target domain of older speakers?

In order to answer the above questions, several researebtves as mentioned in
sectior 1.2 were set a forth. The outcomes of the experinteiddress each of those
objectives are summarised below.

ASR accuracies for older voices

To start with, baseline experiments were set up with thréerdint corpora viz., SCO-
TUS, MATCH and JNAS having substantial amount of speech fréserospeakers.
Results on SCOTUS and MATCH corpora show about 9-11% higher WERdder
adults as compared to younger adults which are consistémtr@sults from such pre-
vious studies by Wilpon and Jacobsen [1996] and Andersoh [t999] on different
corpora. Longitudinal study on the WERs of older speakersénS8OTUS corpus

134



Chapter 9. Conclusions 135

showed increase in WER with age. The differences in the WERdaoot be allevi-
ated even with the use of state-of-the-art speaker adaptatid speaker normlisation
techniques. Results on INAS corpus which has an extensio¢ sgeakers from both
the age groups display about 4.5% higher WER for older spsalére performance
deterioration was found to higher for elderly males with @eréase of 7.7% in WER.
These results laid the foundation for further investigaiicto the possible causes and
look for other strategies to improve the acoustic models.

Impact of changes in glottal source characteristics on ASR acc uracies

The investigation was started with careful analysis oftgl&ource characteristics. The
following parameters that correspond to glottal sourceattaristics were analysed :
Fundamental frequency, jitter, shimmer and Harmonic te@oatio. These param-
eters strongly correlate with the change in pitch, hoarsea&d breathiness usually
associated with older voices.

Comparative analysis on the male speakers on SCOTUS corpusdlacdecrease
in fundamental frequency measures and an increase irgitteshimmer measures that
are associated with vocal cord instability. Harmonic tcseaiatio analysis showed lit-
tle differences between the two age groups. The paramebenewhere was significant
change with ageing, were then then analysed carefully tenstahd the impact of the
changes on ASR accuracies. Speech from younger adults tfasadly modified to
reflect the changes observed in the above parameters and &cBReies compared.
Decrease ifr0 by 10% increased the WER by 1.1% absolute. However, it wasrsho
that this can be compensated to some extent using vocalléragth normalisation.
ASR experiments with artificial increase in jitter and shierrmeasures showed that
these changes do not have a significant impact on WERSs.

While Glottal source parameters provide strong acoustis otiageing and help in
perception of speaker age by humans as well as machinestiéissting to find that
their impact on ASR accuracies in minimal.

Study of the articulatory changes in older voices

One important characteristic that is often associated wliler voices is less precise
articulation. An ASR system was set up in a phoneme loop dcowde for com-
puting phoneme recognition accuracies. Phoneme errogotorger and older adults
on two different corpora viz., SCOTUS and JNAS were comparBae motivation
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behind this set of experiments was to see if any strong patemerge in the changes
in articulatory pattern of certain phonemes with ageingthéligh the results show
that some lower vowels are commonly more affected due tanggéhere is a great
degree of variability in the results across different cogpand across different speak-
ers. Analysis of vowel space area bounded by the first ancdhddoomants indicated
vowel centralisation with ageing thereby decreasing tlserdanination capacity be-
tween vowels.

Impact of slower speaking rate on ASR accuracies

Another important articulatory change associated witkeolices is the decrease in
speaking rate. While there has been some research work psévid-osler-Lussier
and Morgan| 1999] that concludes that WERSs for faster speeblyler, there has
not been much insight into the impact of slower speech. Tcerstdnd this better,
transition parameters of the acoustic models trained oeradeakers were modified
to reflect the slower speech of older speakers and vice vEsggerimental results on
ASR WERs showed that there is an increase in insertion errdrs shower speech
decoded with acoustic models trained on faster speech anidgpact was found to be
more pronounced for older male speakers than their femaietearts.

Hierarchical models based on gender and age group

With the results from the analysis of glottal source chamastics suggesting little im-
pact on ASR accuracies and with high variability of the ressim articulatory changes
across corpora and speakers, it became evident that ificsuttito exploit such infor-
mation directly to improve the ASR accuracies.

Hence in order to answer the problem of better acoustic rsddeblder speakers,
we first looked at experiments to understand the acoustiarabjity of speakers in
terms of their age group based on the feature vectors usefiisfstems. The speaker
age group recognition task gave a classification accura@raafnd 70% using two
different approaches based on SVMs and repeated bisedtisteicng.

Inspired by these results, we looked at the use of hieraathaoustic models built
in supervised manner based on gender and age groups of ithiegraet speakers.
Results on JNAS corpus showed a 2% absolute improvement urases over the
baseline results. The results also indicated that therddgianal gain in accuracies
for older adults in using gender and age dependent modeigusteggender dependent
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models. Hierarchical models builtin an unsupervised maweee also seen to achieve
comparable accuracies to those of supervised models.

We then looked at a simple strategy to modify the transitiarameters of the
HMMs such that there is an increase in state persistencettslswer speaking rate.
Results indicated that there is value in such a method edlyestaen there is a mis-
match in the speaking rate of training and test set speakers.

Augmentation of adaptation data with speech from other acou stically close speak-

ers

Typically the adaptation data available for a target speikeractical deployments of
ASR systems is quite limited. To address this problem, a ateth use speech data
from acoustically close speakers for adaptation was egglor

A distance metric based on the adaptation transforms wagsopea to compute
the acoustic distance between speakers. Using this métrsttategy was devised
to select speech data from acoustically close speakergtoent the adaptation data
for the target speaker. Adaptation with augmented data @@s ®© give significant
improvements in accuracies especially when the adaptdtba is limited to a few
seconds. The improvements in accuracies were found to Ipebeteer in unsupervised
adaptation. While the method is a general purpose techniguallf speakers, the
improvements for older speakers was analysed in particudiahe SCOTUS corpus.
Favourable results were achieved for both younger and aldidts on this corpora.

9.2 Future work

The three corpora used in this thesis have certain limnatidhe SCOTUS corpus has
few older speakers and is very specific to the legal domairrevtie speaking styles
of the speakers are constrained. MATCH corpus is conversdtia nature but the
amount of speech data available is limited. JNAS has a golzsthta of speakers in
age and gender but it is read speech. For this kind of stuyglé@sirable to have large
amount of conversational speech with a good balance of spgakterms of age and
gender.
Aninteresting finding that has come out from the experiment8IATCH corpus is

the difference in language patterns used by younger and attigts while interacting
with dialogue systems. While the focus of this thesis has lo@escoustic modeling,
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it would be interesting to carry forward the work to undenstséhe subtleties involved
in the language modeling for older adults especially in epsational speech.

The age range of the older speakers used in our experimentseiween 60-80
years with the bulk of them in the age group of 60-70 years. ol be interesting
to extend the experiments on speaker characterisationomstic space for speakers
further into older age. Speakers in age range above 70 yéageas of particular
interest in this research since they are the real targetpgttoat would benefit from
research in this direction. Data from such older speakerddvalso highlight other
disfluencies such as breathiness and slurred speech duedbageing that are not
prominent in the data used in this thesis.

In this thesis, the methodologies employed are targetedrttsvmproving the ASR
systems for the domain of older voices. However what is @giéng is to build upon the
findings in this thesis to construct more generalised acoostdels that are agnostic
to variations in age.
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Appendix: Experimental result tables

Word Error Rate (WER) %

| Younger adult voices | Older adult voices | Difference | p-value

Overall 30.4 40.4 10.0 < 0.001
Male 30.1 38.8 8.7 < 0.001
Female 32.4 46.1 13.7 < 0.001

Table A.1: Comparison of WER (%) on younger adult and older adult voices in the

SCOTUS corpus

Word Error Rate (WER) %

| Younger adult voices | Older adult voices | Difference | p-value

Overall 29.6 38.7 9.1 < 0.001
Male 29.5 38.1 8.6 < 0.001
Female 30.0 41.0 11.0 < 0.001

Table A.2: Comparison of WER (%) using MLLR speaker adaptation on younger adult
and older adult voices in the SCOTUS corpus

Word Error Rate (WER) %

| Younger adult voices | Older adult voices | Difference | p-value

Overall 28.7 38.6 9.9 < 0.001
Male 28.7 37.9 9.2 < 0.001
Female 28.2 41.3 131 < 0.001

Table A.3: Comparison of WER (%) using vocal tract length normalisation on younger

adult and older adult voices in the SCOTUS corpus

139
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Word Error Rate (WER) %
| Younger adult voices | Older adult voices | Difference | p-value

Overall 27.9 37.6 9.7 < 0.001
Male 27.9 37.1 9.2 < 0.001
Female 28.1 394 11.3 < 0.001

Table A.4: Comparison of WER (%) using speaker adaptive training on younger adult
and older adult voices in the SCOTUS corpus

Word Error Rate (WER) %
Speaker ID

Age| 02 | 03 | 04 [ 05 | 07 | 08 | 10
59 32.0
60 34.9 32.4
61 33.0 32.7
62 41.4| 31.1 34.5
63 34.7|42.8| 32.0 33.6
64 35.8(44.3| 31.2 33.6
65 34.2| 45.0| 31.9 35.1
66 38.3| 43.1| 32.2| 49.8| 33.7
67 36.4| 47.0| 33.8/ 51.1| 35.0
68 40.3| 45.0 53.7| 35.7
69 35.5| 435 56.2 41.0
70 37.4| 47.7 55.3 42.6
71 38.9 60.4 41.2
72 55.3 44.2
73 57.7 45.3
74 61.8 42.7
75 44.0
79 | 42.6
80 | 44.2
81 | 434
82 | 46.2
83 | 40.0
84 | 43.6
85 | 44.7
86 | 45.4
87 | 50.6

Table A.5: WER (%) with increasing age on older adult voices in the SCOTUS corpus
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Word Error Rate (WER) %
Speaker 1D

Age| 02 | 03 | 04 [ 05 | 07 | 08 | 10
59 31.3
60 32.5 31.7
61 31.1 315
62 40.4| 29.4 32.7
63 33.7|40.4| 30.0 31.8
64 34.3|42.9| 29.1 31.6
65 32.4| 43.6| 30.5 33.8
66 36.3|41.4| 30.6| 40.0| 32.7
67 36.1|45.1| 32.5| 40.7| 33.6
68 37.8| 43.6 41.3| 34.7
69 34.0| 42.6 46.9 35.0
70 35.1| 46.6 43.1 36.5
71 36.6 45.6 35.3
72 43.2 38.3
73 44.5 37.6
74 47.6 36.1
75 37.6
79 | 40.1
80 | 42.1
81 | 41.2
82 | 441
83 | 38.7
84 | 41.3
85 | 41.4
86 | 41.3
87 | 47.0

Table A.6: WER (%) with increasing age on older adult voices using MLLR speaker
adaptation in the SCOTUS corpus

Word Error Rate (WER) %

Young speakers Older speakers
L anguage model | WER | Language model | WER
LM-All-1 24.0 LM-AII-1 39.3

LM-Young-1 22.0 LM-Young 45.6
LM-Older 25.9 LM-Older-1 404

Table A.7: Comparison of WER (%) of young and older voices on MATCH corpus using
different language models
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Word Error Rate (WER) %

Young speakers Older speakers
Acoustic model | WER Acousticmodel | WER
Baseline (AMI) 22.4 Baseline (AMI) 33.9

AMI + MATCH Young-1| 10.8 | AMI + MATCH Young | 38.3
AMI + MATCH Older | 13.8 | AMI + MATCH Older-1| 25.2

Table A.8: Comparison of WER (%) of younger and older voices on MATCH corpus
using different acoustic models.

Phoneme Younger adult males | Older adult males
F1(Hz) \ F2(Hz) | F1(H2) \ F2 (H2)

aa 725.1 1395.0 671.4 | 1409.9
uw 429.6 1761.1 404.7 1786.7
iy 429.0 2026.5 378.7 | 2054.9
ae 622.8 1727.2 567.8 1680.0
ih 481.6 1948.6 507.7 | 1976.5
ax 519.4 1825.2 556.3 | 1916.1
eh 571.1 1677.7 518.9 | 1700.9
er 552.2 1605.4 491.6 | 1653.0
ah 582.7 1578.7 558.1 1659.7
ao 579.6 1293.6 579.7 | 13275
uh 477.8 1610.2 430.6 | 1661.4

Table A.9: F1 and F2 for the monophthongs in the SCOTUS corpus
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Correct recognition (%) of phonemes

Phoneme | Occurrence (%) | Younger male adults | Older male adults | Difference

aa 1.8 61.4 46.7 14.7
ae 3.6 46.6 36.8 9.8
ah 2.2 50.2 52.8 -2.6
ao 1.6 59.6 48.9 10.7
aw 0.4 67.8 52.2 15.6
ax 9.0 39.5 40.9 -14
ay 1.5 72.6 69.9 2.7
b 1.6 62.1 62.5 -04
ch 0.5 71.4 69.4 2.0
d 3.9 37.2 41.2 -3.9
dh 3.9 53.6 53.8 -0.2
eh 2.9 48.4 48.6 -0.2
er 2.2 63.5 53.2 10.3
ey 1.7 75.3 74.6 0.8
f 1.6 80.2 75.5 4.6
g 0.8 60.4 67.8 -7.3
hh 0.9 60.8 49.2 11.6
ih 6.5 44.6 44.1 0.6
iy 2.9 69.5 67.4 2.1
jh 0.7 69.0 64.2 4.8
k 3.6 63.3 64.9 -1.6
I 3.2 59.4 55.5 3.9
m 2.2 71.9 68.7 3.2
n 7.2 57.5 54.8 2.7
ng 0.9 71.1 66.6 4.5
ow 1.1 63.1 64.8 -1.7
oy 0.1 80.2 78.3 1.9
p 1.9 68.8 67.2 1.6
r 4.4 55.5 53.9 1.6
s 5.4 75.2 75.3 -0.1
sh 0.9 77.3 80.1 -2.8
t 8.7 334 31.1 2.3
th 0.6 48.3 44.1 4.3
uh 0.5 65.2 68.3 -3.2
uw 1.3 63.1 63.3 -0.2
Y 1.9 58.4 57.5 0.9
w 2.1 74.2 71.7 2.5
y 1.0 68.2 69.6 -1.5
z 2.7 68.1 64.2 3.9
zh 0.1 73.9 74.7 -0.7

Table A.10: Correct recognition (%) of phonemes on younger and older adult males in
the SCOTUS corpus
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Correct recognition (%) of phonemes
Phoneme | Occurrence (%) | Younger male adults | Older male adults | Difference
a 13.9 71.1 65.1 6.0
i 9.4 65.0 52.6 12.4
u 57 61.4 57.8 3.6
e 6.2 68.2 62.0 6.2
o] 9.7 68.4 71.3 -2.9
a. 0.1 85.6 82.7 2.9
i 0.2 83.3 78.8 4.5
u: 0.8 34.0 87.8 -563.8
e: 0.8 81.6 86.3 -4.7
0. 2.6 89.2 88.0 1.2
N 4.0 83.1 80.8 2.3
w 1.5 88.3 85.1 3.2
y 1.3 67.9 55.0 12.9
j 14 78.8 76.8 2.0
Ky 0.5 85.4 90.8 54
by 0.0 52.2 83.3 31.1
qy 0.1 68.7 476 211
ny 0.1 100.0 88.9 11.1
hy 0.1 86.1 62.2 23.9
ry 0.2 75.0 64.8 10.2
Dy 0.0 78.6 100.0 21.4
p 04 76.8 78.9 -2.1
t 4.8 80.2 78.2 2.0
k 6.8 72.9 711 1.8
ts 1.0 7.7 70.3 7.4
ch 1.0 77.2 78.9 -1.7
b 1.1 81.2 74.8 6.4
d 2.4 73.4 73.2 0.2
g 2.4 55.4 49.5 5.9
y4 0.6 81.8 64.3 17.5
m 2.7 80.1 70.4 9.7
n 5.3 59.0 60.6 -1.6
S 3.1 87.3 76.1 11.2
sh 2.6 78.4 79.7 -1.3
h 1.4 78.3 80.7 -2.4
f 0.4 90.2 78.3 11.9
r 4.0 73.1 63.1 10.0
q 1.3 85.5 87.9 -2.4

Table A.11: Correct recognition (%) of phonemes on younger and older adult males in
the JNAS corpus 101

10lphonemesnyanddy have not been shown in the table since no instances were fodhe test set
for atleast one of the age groups
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Duration (Frames) per phoneme
Phoneme | Occurrence | Younger adult males | Older adult males

aa 1.8 9.6 10.0
ae 3.6 8.9 9.6
ah 2.2 6.9 7.6
ao 1.6 9.0 10.3
aw 0.4 13.0 14.0
ax 9.0 6.1 7.1
ay 15 11.5 13.3
b 1.6 7.5 8.3
ch 0.5 10.3 10.9
d 3.9 7.0 8.2
dh 3.9 6.0 6.9
eh 2.9 7.3 8.0
er 2.2 10.0 11.0
ey 1.7 11.0 12.3
f 1.6 11.1 12.2
9 0.8 6.2 7.2
hh 0.9 8.0 7.6
ih 6.5 6.4 7.5
iy 2.9 10.4 11.7
ih 0.7 8.8 9.3
k 3.6 8.7 9.3
| 3.2 8.1 9.1
m 2.2 6.8 7.6
n 7.2 7.3 8.5
ng 0.9 8.5 10.3
ow 1.1 11.5 12.7
oy 0.1 10.5 11.9
p 1.9 9.3 10.5
r 4.4 6.5 7.5
S 54 10.1 10.5
sh 0.9 9.0 8.8
t 8.7 8.4 9.7
th 0.6 8.6 9.6
uh 0.5 51 5.8
uw 1.3 10.6 12.0
\ 1.9 7.4 8.7
w 2.1 6.7 7.6
y 1.0 6.3 6.9
z 2.7 11.6 12.7
zh 0.1 7.8 8.2

Table A.12: Speaking Rate (Frames/Phoneme) on the SCOTUS Corpus
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Expected Frames/Phoneme Frames/Phoneme
Phoneme Occurrenc (using model parameters) (using forced alignment)
Male Female Male Female

Young | Old | Young | OId | Young | Old | Young | Old
a 13.87 6.8 8.5 7.5 8.5 6.7 8.4 7.6 8.4
a: 0.15 13.2 | 18.1| 139 | 18.3| 8.3 9.7 8.9 |10.0
b 1.11 6.4 8.4 7.1 8.9 6.7 8.0 7.4 8.4
by 0.04 11.0 | 14.0| 10.8 | 14.0| 8.8 9.5 8.1 | 10.6
ch 1.01 11.4 | 13.8| 122 |149| 105 |119| 10.8 | 12.0
d 2.40 4.7 6.9 51 7.1 51 7.1 5.6 7.3
dy 0.00 148 | 17.3| 13.0 | 225| 123 |144| 115 | 10.8
e 6.17 7.3 9.5 8.2 9.8 7.6 9.4 8.4 9.7
e: 0.76 13.7 | 185| 15.0 |19.6| 105 |12.6| 11.1 | 13.3
f 0.41 84 |123| 9.2 |123| 79 |111| 7.7 |118
g 2.45 4.9 6.4 5.3 7.0 4.8 6.0 5.3 6.9
ay 0.11 109 | 13.1| 10.7 | 12.8| 8.8 9.5 8.4 9.4
h 141 7.4 9.7 8.7 10.3 7.3 8.5 8.4 9.3
hy 0.13 98 |11.8| 11.0 |12.7| 8.3 9.1 9.2 | 106
[ 9.36 6.7 8.8 7.1 8.7 7.1 9.2 7.5 8.6
i; 0.21 145 | 19.9| 16.0 | 20.0 9.4 12.0| 10.1 | 11.9
] 1.43 93 |118| 96 |11.8| 93 |11.0f 9.7 |110
k 6.77 7.1 8.6 78 |10.1| 6.9 7.7 7.1 8.8
ky 0.47 11.1 | 14.3| 12.0 | 155| 8.7 |10.0| 9.0 |10.8
m 2.70 7.0 8.9 7.8 9.8 7.8 9.3 8.5 |10.2
my 0.01 11.6 | 14.2| 11.9 | 15.3 9.0 8.9 7.7 11.2
N 4.02 7.6 11.7 7.7 11.3 7.4 11.6 7.2 10.9
n 5.30 4.7 6.9 5.6 7.8 51 7.4 5.9 8.5
ny 0.07 125 | 144 134 | 155| 100 |116| 11.1 | 123
0 9.66 6.4 9.0 7.1 8.7 6.8 9.6 7.6 8.8
o: 2.55 13.0 | 18.0| 144 | 19.0| 12.3 | 152| 13.3 | 16.2
p 0.38 7.1 9.3 77 | 115 5.1 6.3 5.1 9.8
py 0.02 98 |118| 95 |127| 6.2 6.7 5.8 7.8
q 1.29 9.1 135 9.8 14.1| 10.2 | 15.0| 114 | 15.0
r 4.03 4.7 6.0 5.2 6.3 5.3 6.5 5.7 6.8
ry 0.21 93 |119| 98 |122| 7.6 9.2 8.2 9.7
S 3.09 105 | 13.7| 11.2 |146| 10.7 |12.7| 11.0 | 13.2
sh 2.62 116 | 148 128 |16.0| 12.1 |14.4| 129 | 15.2
t 4.82 57 7.9 6.5 9.4 55 6.8 5.8 7.9
ts 1.00 114 | 13.9| 128 | 15.1| 10.7 | 12.0| 115 | 128
u 5.65 55 6.5 6.1 6.8 5.3 6.4 6.0 6.7
u: 0.83 10.8 | 15.8| 12.1 |17.0| 9.2 |12.7| 9.9 |13.9
w 1.54 8.1 |10.3| 87 |104| 8.3 9.6 9.0 |10.2
y 1.29 75 |10.0| 8.3 9.8 7.2 9.4 8.3 8.9
z 0.64 82 |10.3| 85 |104| 7.7 8.5 8.3 8.9

Table A.13: Speaking rate (Frames/Phoneme) on the JNAS corpus
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