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Abstract
With ageing, human voices undergo several changes which aretypically characterised

by increased hoarseness, breathiness, changes in articulatory patterns and slower speak-

ing rate. The focus of this thesis is to understand the impactof ageing on Automatic

Speech Recognition (ASR) performance and improve the ASR accuracies for older

voices.

Baseline results on three corpora indicate that the word error rates (WER) for older

adults are significantly higher than those of younger adultsand the decrease in accura-

cies is higher for males speakers as compared to females.

Acoustic parameters such as jitter and shimmer that measureglottal source disflu-

encies were found to be significantly higher for older adults. However, the hypothesis

that these changes explain the differences in WER for the two age groups is proven in-

correct. Experiments with artificial introduction of glottal source disfluencies in speech

from younger adults do not display a significant impact on WERs.Changes in funda-

mental frequency observed quite often in older voices has a marginal impact on ASR

accuracies.

Analysis of phoneme errors between younger and older speakers shows a pattern

of certain phonemes especially lower vowels getting more affected with ageing. These

changes however are seen to vary across speakers. Another factor that is strongly as-

sociated with ageing voices is a decrease in the rate of speech. Experiments to analyse

the impact of slower speaking rate on ASR accuracies indicate that the insertion errors

increase while decoding slower speech with models trained on relatively faster speech.

We then propose a way to characterise speakers in acoustic space based on speaker

adaptation transforms and observe that speakers (especially males) can be segregated

with reasonable accuracies based on age. Inspired by this, we look at supervised hier-

archical acoustic models based on gender and age. Significant improvements in word

accuracies are achieved over the baseline results with suchmodels. The idea is then ex-

tended to construct unsupervised hierarchical models which also outperform the base-

line models by a good margin.

Finally, we hypothesize that the ASR accuracies can be improved by augmenting

the adaptation data with speech from acoustically closest speakers. A strategy to select

the augmentation speakers is proposed. Experimental results on two corpora indicate

that the hypothesis holds true only when the amount of available adaptation is limited

to a few seconds. The efficacy of such a speaker selection strategy is analysed for both

younger and older adults.
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Chapter 1

Introduction

1.1 Motivation

Speech is the most natural form of communication between humans. With advances in

Automatic Speech Recognition (ASR) systems, speech as a mode of communication

with computing devices is finding wider acceptance in the society. Today, use of ASR

can be seen in a large array of applications including interactive voice response systems

such as telephone banking and ticket booking, dictation systems on personal comput-

ers, command and control in automobiles, easy dialing on mobile phones, creation of

electronic medical records in health-care organisations etc.

While use of ASR systems is beneficial for everyone, it could beparticularly useful

for older people and especially those with mobility and visual impairments. Easy to

use voice based interactive systems in health-care and home-care would make life a

lot easier for them [M̈uller et al., 2003]. Several initiatives such as MATCH1 and

Gator Tech Smart houses2 are focused on research and development of home care

technologies and thereby to assist in independent living ofthe elderly people. These

systems see voice as one of the important modes of interaction.

During the last century the world’s ageing population has been growing at a stag-

gering rate. According to the United Nations, in 2006, closeto 500 million people in

the world were aged 65 and older. Based on projections, the number will increase to

1 billion by 2030, which means one in every 8 of earth’s inhabitant’s will be aged 65

or above [Kevin and Philips, 2005]. This is a large segment ofpopulation and from an

1‘Mobilising Advanced Technologies For Care at Home’ - a research project focused on technologies
for home care.www.match-project.org.uk

2http://www.icta.ufl.edu/gt.htm

1

www.match-project.org.uk
http://www.icta.ufl.edu/gt.htm
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ASR research point of view it is of interest to be able to caterto their voices.

Over the years, there have been numerous studies to understand the structural

changes in speech production mechanism observed with ageing. These studies have

been mainly in speech pathology and speech therapy researchand research associ-

ated with geratology mainly motivated by the need to understand the differences be-

tween natural changes in voice with ageing and vocal changesassociated with patho-

logical conditions. Deterioration of voice quality with ageing has been widely re-

ported [Linville, 2001; Ramig and Ringel, 1983; Ramig et al., 2001]. Ageing also

effects fine motor control capabilities and thereby the tongue movement and speaking

rate. These changes impact the intelligibility of speech from older people. Cognitive

abilities such as fluid intelligence, working memory span and information processing

speed tend to decline as people grow old [Bäckman et al., 2001]. These cognitive

factors have a large impact on the way older people interact with spoken dialogue sys-

tems [Wolters et al., 2009]. The impact of ageing on voice is also dependent on several

factors specific to individuals such as their health and wellbeing, smoking habits and

their profession. These factors increase the variability and make it difficult to find a

correspondence between chronological age and vocal age. All the above mentioned

changes throw interesting challenges to ASR systems that need to be addressed.

ASR systems have been evolving rapidly over the last couple of decades with ad-

vances in machine learning techniques[Renals and Hain, 2010]. The problem of acous-

tic modeling has been studied and researched from various perspectives such as making

them robust to variations in background noise, speaker characteristics, dialect and ac-

cent. From an age perspctive, there has been lot of work focused on acoustic modeling

for children voices [Gerosa et al., 2009], but there has beenlimited work on under-

standing the impact of changes in acoustic characteristicsassociated with older voices

on ASR systems. Relatively poor recognition accuracies for older voices have been

reported before [Baba et al., 2004; Anderson et al., 1999; Wilpon and Jacobsen, 1996]

but to the best of our knowledge there has not been an in-depthstudy addressing this

problem. In this thesis, we address this problem and presentour research work and

experimental results focused on the domain of ASR for ageingvoices.

1.2 Objectives

There are several components in an ASR system including the acoustic models, lan-

guage models, lexicon and decoder. There is scope to adapt each of these components
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in order to make the ASR systems work better for older voices.In this thesis, we

address the problem from an acoustic modeling perspective.

We approach the problem from a two fold perspective. Firstly, it is of interest to

analyse the changes in glottal source and articulatory characteristics of older voices

and to analyse the impact of such changes on ASR recognition accuracies. Secondly, it

is of interest to understand the improvements in accuraciespossible with the state-of-

the-art speaker adaptation techniques and to explore and propose other strategies for

acoustic modeling targeted towards older voices to enhancethe accuracies.

The main objectives of the thesis are outlined as follows:

1. To perform a systematic comparative study of the glottal source parameters of

adult and older voices and to analyse the impact of changes inany those param-

eters on ASR accuracies.

2. To study articulatory changes with ageing.

3. To analyse the impact of slower speaking rate on ASR accuracies.

4. To report the baseline accuracies for older voices for a few chosen corpora.

5. To explore the possibility of speaker clustering based ongender and age group.

6. To explore the effectiveness of hierarchical models to improve the accuracies for

older voices.

7. To explore the idea of improving the accuracies for a target speaker by using

speech from other acoustically close speakers.

The approach to address these research objectives and the experimental results are

explained in detail in the following chapters.

A couple of important factors need to be mentioned beforehand. In general, there

are several disfluencies associated with very old speakers due to various pathological

conditions. For the purpose of this thesis, we are mainly interested in and only investi-

gate the speech of healthy older adults. It is also well knownthat chronological ageing

and vocal ageing are weakly correlated. However, in this thesis we categorize speakers

above 60 years of age as older adults.
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1.3 Publications

Some of the ideas and results appearing in this thesis have been published in peer

reviewed conference proceedings and articles during the course of this research work.

Following is the list of publications and the thesis chapterin which the results of the

paper are discussed.

• Ravichander Vipperla, Steve Renals, and Joe Frankel. Longitudinal study of

ASR performance on ageing voices. In Proceedings of Interspeech, Brisbane,

2008. (Chapter 4)

• Ravichander Vipperla, Maria Wolters, Kallirroi Georgila, and Steve Renals. Speech

input from older users in smart environments: Challenges andperspectives. In

Proc. HCI International: Universal Access in Human-ComputerInteraction.

Intelligent and Ubiquitous Interaction Environments, number 5615 in Lecture

Notes in Computer Science. Springer, 2009. (Chapter 4)

• Maria Wolters, Ravichander Vipperla, and Steve Renals. Age Recognition for

Spoken Dialogue Systems: Do We Need It? In Proceedings of Interspeech,

Brighton, 2009. (Chapter 7)

• Ravichander Vipperla, Steve Renals, and Joe Frankel. Ageing voices: The effect

of changes in voice parameters on ASR performance. EURASIP Journal on

Audio, Speech and Music Processing, 2010. (Chapter 5)

• Ravichander Vipperla, Steve Renals, and Joe Frankel. Augmentation of adapta-

tion data. Proceedings of Interspeech, Makuhari, 2010. (Chapter 8)



Chapter 2

Ageing voices

In this chapter, we review the important structural and functional changes that occur

in speech production when people grow old. We then review previous studies on how

these changes impact voice quality and look at various measures used by researchers

to analyse the quality of voice.

2.1 Human speech production mechanism

The human vocal mechanism (Figure. 2.1) consists of the lungs, the larynx (which

houses the vocal cords), and the vocal tract comprised of thepharynx, the mouth and

the nose.

Depending on the sound that needs to be generated, articulatory motor control

mechanisms include positioning the jaw, shaping the tongue, shaping the lips, posi-

tioning the velum (to control the acoustic flow through the nasal cavity), control of the

vocal cord vibrations and flow of air in and out of the lungs. Asair is expelled from

the lungs through the trachea, the vocal cords in the larynx are caused to vibrate by the

air flow. The air flow is thus chopped into quasi periodic pulses which are modulated

as they pass through the pharynx cavity, mouth cavity and nasal cavity. The combina-

tion of the shape of the vocal tract and the presence/absenceof vocal cords vibrations,

result in the production of various sounds [Rabiner and Juang, 1993].

5
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Lungs
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Trachea
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Pharynx
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Figure 2.1: Human speech production mechanism

2.2 Changes in the speech production mechanism with

ageing

Several physical and physiological changes occur in a humanbodies with ageing. Typ-

ical changes include decline in vision and hearing, weakening of muscles, mobility

restrictions and weakened immune system. Similar to other body parts, organs in the

human speech production mechanism also undergo age relatedchanges such as reduc-

tion in the respiratory muscle strength, restricted vocal fold adjustments during phona-

tion and difficulty in adjustments of tongue and lip shapes [Linville, 2001]. The rate at

which voices age does not however depend only on the chronological age of a person,

but also on other factors such as lifestyle, physiological condition, smoking habits and

profession. Even with the above mentioned factors being identical between two indi-

viduals, the extent of vocal ageing could differ between them. Described below are

some of the changes seen in the voices showing signs of ageing.
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2.2.1 Changes in the Respiratory system

Apart from breathing, the respiratory system plays a crucial role in producing speech.

It acts as the energy source for speech production by forcingair through the vocal cords

and the vocal tract resulting in various sounds.

The most significant changes seen in the respiratory system of aged people are the

loss of lung elasticity, increase in the stiffness of the chest wall, and decrease in the

respiratory muscle strength [Mahler et al., 1986; Rossi et al., 1996].

Lung recoil elasticity is the ease with which lungs rebound after having been

stretched during inhalation. A decline in lung elasticity has been reported by Mahler

et al. [1986] due to ageing. The loss of lung elastic recoil with age is found to be faster

in males as compared to females [Bode et al., 1976].

Due to the alterations in the muscles of the chest wall, the thorax becomes increas-

ingly rigid with ageing [Kahane, 1981]. This leads to a reduced movement in response

to the respiratory muscle forces. Due to the degeneration ofthe upper and middle re-

gions of the thoracic vertebral column, a pronounced curvature of the back is observed

in some older adults. This phenomenon called Kyphosis, alters the shape of the thorax

and may effect the amount of air that can be inhaled and exhaled.

Several research studies have reported weakening of respiratory muscles during

old age [Black and Hyatt, 1969; Kahane, 1981]. This leads to reduced respiratory

forces during inhalation and exhalation. A decline in maximal respiratory pressure

progressively beyond the age of 65 has been reported by Enright et al. [1994]. The

decline is more prominent in males compared to females. A loss in diaphragm strength

leading to an average reduction of 25% of maximum transdiaphragmatic pressure in

elderly group as compared to younger subjects has also been reported [Tolep et al.,

1995].

While the total lung volume remains unaltered in the older people, the forced ex-

piratory volume and the lung pressure are decreased. This leads to a decline in the

amount of air that can be moved in and out of the lungs and the efficiency with which

it can be moved [Linville, 2004; Ramig et al., 2001]. The rate of this decline accelerates

with advancing age [Mahler et al., 1986]. Also the amount of air left after exhalation

known as ‘Residual volume’ has been found to increase by about40% from the age of

20 to the age of 70 [Lynne-Davies, 1977].
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2.2.2 Changes in the Larynx

The parts of the larynx that form the vocal apparatus are the laryngeal cartilages (to

which the vocal folds are attached), the vocal folds that play a key role in phonation,

and the intrinsic muscles that regulate the vocal cord tension and the vocal fold open-

ing [Pretterklieber, 2003]. Several anatomical changes are seen in these organs with

ageing.

Among the several cartilages in the larynx, the thyroid, cricoid and arytenoid car-

tilages are the most significant from the speech production point of view. The thyroid

and cricoid cartilages form the skeleton of the larynx. A pair of arytenoid cartilages

are located on the upper edge of the cricoid cartilage. The vocal cords are attached

posteriorly to the arytenoid cartilages and anteriorly to the thyroid cartilages. The

cricoarytenoid joints allow the arytenoid and thus the vocal apparatus to move laterally

or medially. The arytenoids can also glide on the surface of the cricoid and move closer

or recede away from each other. The most significant change inthe cartilages observed

as an individual moves from adulthood to old age is the toughening of the soft tissue

into bone like structure (ossification). This phenomenon isobserved in both males and

females. It occurs at an earlier age and is more prominent in males as compared to

females. Each of the cartilages has its own pattern of ossification. Arytenoid cartilage

ossifies only partially sparing the vocal process. Significant age-related changes have

been reported in the cricoarytenoid joint [Paulsen and Tillmann, 1998; Dedivitis et al.,

2001]. Changes include thinning of the joint surface, reduced collagen fibers in the

cartilage matrix and surface irregularities. These changes are again more prominent in

males compared to females and hamper overall positional or postural movements of

the arytenoid cartilages. This leads to reduction in the degree and extent of vocal lig-

ament closure and makes it difficult for vocal fold adjustments during phonation. The

result of this is impaired vocal quality and reduced vocal intensity due to air leakage

through incomplete vocal fold closure.

The vocal folds have a complex layered structure. They are comprised of five

discrete histological layers: the Epithelium, three layers jointly called Lamina Propria

and the Thyroarytenoid muscle. The thin layer of Epitheliumforms the protective

covering for the vocal folds. The epithelial cells are boundtogether firmly and form

a smooth lining reducing the friction to the air flow. The superficial layer of Lamina

Propria is a thin layer made of elastin fibres. This layer can be stretched in several

directions. The intermediate layer which is formed of elastin and collagen fibres is
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more densely packed and can only be stretched in anterior-posterior direction. The

deep layer is formed on collagen fibres and is least stretchable. This layer protects the

vocal cords from over extension. The Thyroarytenoid musclelies below the Lamina

Propria. They are mainly concerned with pulling together the thyroid and arytenoid

cartilage, thus relaxing the vocal folds.

Several changes in the structure with ageing alter the biomechanical properties of

the vocal folds [Linville, 2001]. Glandular changes in the laryngeal mucosa (the mu-

cous lining of larynx) [Linville, 2004] cause drying of the epithelial tissue, increasing

the stiffness of vocal cord cover. This increase in cover stiffness leads to instability of

vocal fold vibration. Some investigations [Hirano et al., 1989] have reported thicken-

ing of laryngeal epithelium progressively with age. Tissues age at varying rates and to

varying extents [Kahane and Hammons, 1987] and substantialstructural changes need

to occur before observing noticeable changes in voice.

In the Lamina Propria, several age related changes have beendocumented in all

the three layers. The thickness of the superficial layers alters [Hirano et al., 1989] and

atrophy and degeneration of the elastic fibres in the layer has been observed [Sato and

Hirano, 1997]. Changes seen in the intermediate layer include thinning of the layer,

decrease in the density of the fibres, atrophy of the fibres andchanges in the contour

of the layer [Linville, 2001]. The fibrous protein loses elasticity and the layer stiffens.

The deep layer thickens with an increase in the collagen fibres. Such morphological

changes in the fibres of the vocal folds contribute partiallyto the ageing of the voices.

The thyroarytenoid muscle also displays atrophy with ageing. Changes in mus-

cle fibres have been reported [Sato and Tauchi, 1982]. A decrease in thyroarytenoid

muscle activity has been reported [Baker et al., 1998] in older speakers than young

speakers. This affects the fine control of the position of thearytenoid joint and thereby

the fine control of pitch of the voice.

Intrinsic laryngeal muscles are responsible for control ofthe vocal cords. The

tension in the vocal cords is regulated by the cricothyroid muscle. The opening (ab-

duction) of the vocal fold opening (called Rima Glottidis) iscontrolled by the posterior

cricoarytenoid muscle and the closing (adduction) is controlled by the lateral cricoary-

tenoid and thyroarytenoid muscles. Regressive changes and atrophy have been re-

ported in all these muscles with ageing [Rodeño et al., 1993; Bach et al., 1941]. The

changes include accumulation of fats, degeneration of muscle fibers and unusual vari-

ations in the cross sectional areas [Linville, 2001]. As a result, precise control of the

vocal cord tension and complete abduction/adduction is affected.
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2.2.3 Changes in the vocal tract

The human vocal tract consists of all the organs above the vocal folds that are involved

in speech production. It is comprised of the pharynx (throat), the oral cavity, the nasal

cavity, soft palate (velum) and the articulators viz., the tongue and the lips. The human

speech production mechanism can be viewed as a source-filtermodel. The lungs in

conjunction with vocal cords act as the source and expel air into the vocal tract. De-

pending on the presence or absence of the vocal cord vibrations, the source is either

voiced or unvoiced. This quasi periodic air then resonates in the pharynx, oral and

nasal cavities to generate a rich timbre. The vocal tract thus acts as the filter.

The vocal tract can be broadly thought to be comprised of three resonating cavities,

the pharynx, and the oral and nasal cavities. The pharynx is involved in the production

of all speech sounds. The pharynx can change shape to a limited extent and thus alter

the resonance patterns. The pharynx can be constricted, andit can be raised or lowered.

The position of the velum also alters the shape of the pharyngeal cavity. The velum

controls the flow of air into the nasal cavity. During the production of nasal sounds

such as /m/ and /n/, the velum is moved forward to open the air passage through the

nasal cavity. The oral cavity is the most flexible among the three cavities in varying

the shape. The resonating property of the oral cavity depends on the position of the

temporomandibular joint, the shape of the tongue and the lips and the position of the

velum.

Thinning of pharyngeal epithelium and degeneration of the pharyngeal muscles has

been reported with ageing [Linville, 2001]. However these changes in the pharynx are

not found to be extensive.

The temporomandibular joint (TMJ) is the joint at which the jaw is hinged to the

skull. It is used in controlling the position of the jaw and hence influences the oral

resonance during speech production. Jaw movement has a significant role to play in

articulation of certain phonemes as well as in the co-articulation of adjacent phonemes.

With ageing, degenerative changes are observed in the TMJ [Weinstein, 2000]. Dis-

placement of the TMJ disk is commonly observed leading to a lowering of the articu-

lating surface. Xue and Hao [2003] have reported increase invocal tract dimensions in

older speakers. The vocal tract volume of older speakers in particular is significantly

higher compared to the younger speakers. This could lead to changes in the resonance

patterns in older voices.

The tongue plays a major role in speech production. It is veryflexible and can be
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moved up, down, forward and backward. By adjusting the shape of the tongue and the

position of the tongue tip, the oral cavity’s shape is modified affecting the resonance

patterns and hence the sound produced. Significant changes have been reported in the

tongue with ageing [Rother et al., 2002]. Decrease in the thickness of epithelium and

glandular atrophy have been reported in people over 50 yearsof age [Nakayama, 1991].

However the most significant change in the tongue that affects the speech production is

the atrophy of the tongue muscles. From ultrasound observations, decline in the tongue

motor skills in the elderly in comparison to young adults were reported by Koshino

et al. [1997]. A decline in tongue strength has also been reported in older individuals

[Crow and Ship, 1996]. These changes in the tongue could affect the articulatory

patterns.

Other changes observed in the mouth with ageing include lossof oral mucosa (the

mucous membrane that covers all the structures inside the oral cavity other than the

teeth), decline in the salivary function leading to oral dryness and degeneration and

loss of tooth. These changes could also have a small impact onspeech production.

2.2.4 Neuromuscular control

Age related changes also take place in the peripheral and central nervous system that

have implications for speech production. One of the changesin the peripheral neural

system is the decline of motor neurons. This loss in the motorunits has been impli-

cated as the primary mechanism for muscle atrophy and loss ofcontractile strength in

the muscles [Doherty et al., 1993]. An average loss of 25% neurons has been reported

from the second to the tenth decade of life. However this lossof motor units is par-

tially compensated by increase in the size of the motor unitsalong with the slowing of

contractile speed. This affects various muscles involved in the speech production and

is a possible cause of the slower speaking rate observed in older speakers.

Age related memory impairment is commonly observed in elderly people [Hedden

and Gabrieli, 2004]. In particular reduction in working memory and the associated

difficulty in refreshing recently processed information have implications on speech

production behavior and interaction styles.
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2.3 Acoustic effects of ageing

Several studies have been made to understand the effect of ageing on various acoustic

parameters of speech. These studies have been mainly in the field of speech pathology

to differentiate normal voice changes due to ageing from pathological vocal conditions

affecting elderly patients. Most of these studies [Ramig andRingel, 1983; Ramig

et al., 2001; Linville, 2000; Edward, 1959] have indicated that speakers experience

certain changes, mainly deterioration, of vocal acoustic output as they age.

To analyse the voice quality, different parameters of speech signal have been pro-

posed and widely used. This section provides a brief description of the parameters

that have been used in this thesis. Some of these parameters such as the fundamen-

tal frequency, jitter and shimmer relate to the characteristics of the glottis and hence

can be treated as source related parameters. Other parameters, such as formant fre-

quencies and speaking rate relate to the shape and movement of the vocal tract and

are thereby treated as filter related parameters. Although these parameters have been

primarily used to differentiate between healthy voices andthose suffering from patho-

logical conditions, they have also been used to study the change in voice quality with

ageing. These parameters are typically measured on sustained phonations of few sec-

onds in duration recorded in noise free sound booths.

2.3.1 Average fundamental frequency

Among the several parameters affected by ageing, the average fundamental frequency

(F0) has been one of the most extensively studied parameters. Although there is no

general agreement on the trend, it appears [Schötz and M̈uller, 2007; Linville, 2000]

that in females, the fundamental frequency remains fairly constant until menopause,

and later decreases. A drop of approximately 10-15 Hz is observed. This is attributed

to the thickening of laryngeal mucosa. while in malesF0 decreases until a certain age

around 60 years and increases after that significantly. However the experiments in

[Xue and Deliyski, 2001; Endres et al., 1971] indicate thatF0 reduces significantly for

both the males and females. A decrease of 40-60 Hz inF0 has been reported for both

males and females.
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2.3.2 Fundamental frequency variation and Amplitude varia tion

Older voices are generally associated with tremor and increased hoarseness. These

characteristics are related toF0 and amplitude instability. Measures of standard de-

viation of the fundamental frequency and its amplitude, indicate gross stability of

voice over time. These measures tend to increase with age forboth males and fe-

males [Linville, 2000]. TheF0 standard deviation more than doubles between young

adulthood and old age for men while an increase of over 70% hasbeen observed in

older women’s voices. These observations are also confirmedexperimentally by Xue

and Deliyski [2001]; Bruckl and Sendlmeier [2003].

2.3.3 Jitter

Jitter is the cycle to cycle variation of the pitch period, i.e., the average of the absolute

distance between consecutive periods. It is measured inµsec.

Jitter(absolute) =
1

N−1

N−1

∑
i=1

|Ti −Ti+1| (2.1)

whereTi is the extractedF0 period length and N is the number of extractedF0 pitch

periods [Boersma, 2001].

A relative measure for frequency perturbations known as ‘Jitter Local’ is often

used. It is the ratio of pitch period variation from cycle to cycle to the average pitch

period. It is expressed as a percentage.

Jitter(Local) =
1

N−1 ∑N−1
i=1 |Ti −Ti+1|
1
N ∑N

i=1Ti
(2.2)

The other measures of jitter that are averaged over larger number of pitch periods

are as follows:

• Relative Average Perturbations (Jitter RAP): The average absolute difference

between a period and the average of it and its two neighbours,divided by the

average period.

• Five point Period Perturbation Quotient (Jitter PPQ5): The average absolute

difference between a period and the average of it and its fourclosest neighbours,

divided by the average.

• Difference of differences between periods (Jitter DDP): The average absolute

difference between consecutive differences between consecutive periods, divided

by the average period.
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Increased jitter with age has been observed in both males andfemales. But it has

been suggested by Ramig and Ringel [1983]; Linville [2001] that amplitude pertur-

bation measures may be better discriminators of age than cycle-to-cycle variations.

Jitter is caused by the instability of the vocal folds. With ageing, due to physiological

changes and deterioration in health, the vocal folds may weaken causing jitter, but if

the older person is in a healthy condition, the difference inJitter from a young adult

does not differ too much [Linville, 2001]. Though Jitter maynot be a clear indicator

of chronological age, it does provide some acoustic cues to indicate ageing.

2.3.4 Shimmer

Shimmer is the variability of the peak-to-peak amplitude indecibels. It is the ratio of

amplitudes of consecutive periods. It is expressed as

Shimmer(dB) =
1

N−1

N−1

∑
i=1

|20log(
Ai+1

Ai
)| (2.3)

whereAi is the peak-to-peak amplitude in the period andN is the number of extracted

fundamental frequency periods.

Relative shimmer (Shimmer Local)is defined as the average absolute difference

between the amplitudes of consecutive periods, divided by the average amplitude, ex-

pressed as a percentage.

Shimmer(Local) =
1

N−1 ∑N−1
i=1 |Ai −Ai+1|
1
N ∑N

i=1Ai
(2.4)

Similar to the Jitter measurements, Shimmer is also measured by averaging over

larger number of periods.

• Three point Amplitude Perturbation quotient (Shimmer APQ3): The average ab-

solute difference between the amplitude of a period and the average of the am-

plitudes of its neighbours, divided by the average amplitude.

• Five point Amplitude Perturbation Quotient (Shimmer APQ5): The average ab-

solute difference between the amplitude of a period and the average of the am-

plitudes of it and its four closest neighbours, divided by the average amplitude.

• Difference of difference between amplitudes (Shimmer DDA): The average abso-

lute difference between consecutive differences between the amplitudes of con-

secutive periods.
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Shimmer has been found to have a strong correlation with age.Xue and Deliyski

[2001] found the mean shimmer in older voices to be 0.48 dB while the value was 0.19

dB for younger speakers. Amplitude perturbations have alsobeen reported to increase

with age by Ramig and Ringel [1983]; Linville [2000]; Bruckl andSendlmeier [2003];

Bruckl [2007]. Shimmer levels increase with age independentof health and fitness

variables, and hence serves as a good indicator of ageing voice.

2.3.5 Breathiness

Another voice quality associated with ageing is increased breathiness. In general

women are judged to be breathier than men. Breathiness is thought to be due to the

incomplete glottal closure during closed phase of the phonatory cycle. The nearly sinu-

soidal shape of the breathy glottal waveforms is responsible for increase in the relative

amplitude of the first harmonic. It has also been observed in [Kilch, 1982] that breathy

signals tend to have more high-frequency energy than normally phonated signal. An-

other property of breathy signals are that they are less periodic, especially in mid and

high frequencies where aspiration noise is large [Hillenbrand et al., 1994].

Harmonic to Noise Ratio (HNR) measures the signal to noise ratio in a periodic

waveform and acts as a good indicator of voice quality. It is computed as the logarithm

of the ratio of the energy of the signal in the periodic part tothe noise. It is measured

in decibels [Boersma, 1993]. HNR was found to be a sensitive index of vocal function

[Ferrand, 2002] and a significant lowering of the HNR values were reported in older

voices.

A measure that correlates well with breathiness in voice is Cepstral Peak Promi-

nence (CPP) proposed by Hillenbrand and Houde [1996]. The cepstrum is a Fourier

analysis of the logarithmic amplitude spectrum of a signal.When the log amplitude of

the spectrum contains regularly spaced harmonics, the Fourier analysis of the spectrum

then captures the periodicity in the spectrum and will show apeak at a quefrency cor-

responding to the spacing between the harmonics. The cepstral peak reflects both the

level of harmonic structure in the signal and the overall amplitude of the signal. To nor-

malise for overall amplitude, a linear regression line is calculated relating quefrency to

cepstral magnitude. The CPP measure is the difference in amplitude (in dB) between

the cepstral peak and the value of the regression line at the cepstral peak (Figure 2.2).

CPP is computed on frames of 10 ms and averaged over all the frames in an utterance.

CPP values for breathy voices are lower than those for normal voice since the cepstral
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peak is expected to be smaller in breathy voices due to loss ofperiodic structure in

higher frequencies of the spectrum.
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Figure 2.2: Cepstral peak prominence

A smoothed version of CPP called CPPS is computed similarly with some addi-

tional smoothing. For CPPS, a frame size of 2ms is used insteadof 10ms and two

levels of smoothing are applied. First the cepstrum is averaged across time by replac-

ing an unsmoothed cepstrum at a time frame with the average ofitself and the adjacent

cepstral frames. A second level of smoothing is then appliedby a running average of

the cepstral magnitude across quefrency for each cepstral frame.
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2.3.6 Sound pressure level

Increase in sound pressure level in conversational speech has been observed in males

over 70 years of age, while no noticeable changes have been observed in females

[Linville, 2001]. Typically with ageing there is a decline in hearing capabilities. Peo-

ple usually adjust the sound level based on feedback from internal coupling of sound

production and sound perception. Increase in voice sound pressure level with ageing

is believed to be a compensation mechanism to overcome the hearing loss. However

increase in speech intensity has been observed even for older speakers with no hearing

loss.

Experiments comparing long term spectral amplitudes of older adults with those of

younger adults [Linville, 2002] show a significant increasein amplitudes at 160 Hz and

frequencies above 6000 Hz. These findings were associated with increased breathiness

in the voices.

2.3.7 Speech rate

Older speech is characterised by a lower speech rate. The lowering of the speech rate is

due to the degeneration of the muscles and reduced efficiencyof the peripheral motor

system. It has also been suggested that older speakers deliberately slow down their

speech in response to the restrictions in the functionalityof the articulators in order to

be more intelligible.

The speech rate is related to segment duration, number of segments per unit time

and duration and frequencies of pauses. The number of speechunits (syllables, phonemes,

sub-phonemes etc) per second generally decrease with age [Schötz and M̈uller, 2007].

Several studies have reported a decrease of 20-25% in speechrate in older speak-

ers reading and speaking rates. Increase in vowel and consonant durations and an

increase in pause durations and frequencies [Bruckl and Sendlmeier, 2003; Linville,

2001; Scḧotz and M̈uller, 2007] have been reported. Speech rate reduction withage

has been found to be more prominent in men than in women.

Perceptual tests on age recognition [Harnsberger et al., 2008] suggests that speak-

ing rate is used as a strong cue in distinguishing older speakers from younger speakers.
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Automatic Speech Recognition

Automatic speech recognition systems attempt to transcribe a speech signal to a string

of words. Given the intrinsic variability in speech due to differences in environment,

speaker accent, gender, age, and emotions, this is not a straightforward task. Decades

of research have not yet been able to make machine based speech recognition com-

parable to human performance. However, state-of-the-art ASR systems achieve good

recognition accuracies on constrained tasks including simple isolated word recognition

tasks on few hundred words and continuous speech recognition on larger vocabularies

of the order of 50000 words.

Several models, theories and algorithms from Mathematics,Computer science and

Linguistics form the basis on which the current ASR systems are built. Digital signal

processing techniques, probabilistic models, machine learning techniques, finite state

automata, formal logic and grammar representations, language, linguistic and phonetic

knowledge find their way into the design of various components of the speech recog-

nition systems.

3.1 ASR architecture

In order to be able to recognise the input speech, it is first parametrised into a sequence

of equally spaced discrete feature vectorsO as shown in Figure 3.1. Given the observed

feature vectors, the basic decision rule used to hypothesize the spoken word sequence

‘ ŵ’ is given by

ŵ= argmax
w

P(w|O) (3.1)

18
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where,

O= {o1,o2, ...,oT} is the sequence of speech feature vectors (observations).

P(w|O) is the probability of a word sequencew given the observation sequenceO.

Time

A
m
p
lit
u
d
e

o
1
o
2

o
T

Overlapping

windows

Figure 3.1: Parametric representation of speech

To keep the computation tractable, equation 3.1 is rewritten using Bayes’ rule as

follows:

ŵ= argmax
w

P(w|O) = argmax
w

{
P(w)P(O|w)

P(O)

}
(3.2)

where,

P(w) is the a-priori probability of the word sequencew.

P(O|w) is the probability of observing parameter vectorsO given the word sequence

w

State-of-the-art ASR systems (Figure. 3.2) are built around this mathematical for-

mulation. The probability of a word sequenceP(w) is computed from language mod-

els. Acoustic models are used in the computation of the likelihoodP(O|w). The lex-

icon acts as a map between the words in the language model and the sub word units

that comprise the acoustic models. The feature extraction module assumes the task of

converting the speech signal into discrete parameter vectors.
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Figure 3.2: Automatic speech recognition system

3.1.1 Feature extraction

A speech signals(t) captured from a microphone is typically processed through an

Analogue to Digital (A/D) converter to get a sequence of sampless[n] representing the

original speech. The goal of the feature extraction module is to extract meaningful

features from this signal such that the features provide

1. a compact representation of the original signal.

2. good discrimination capacity between different speech sounds.

3. robustness against noise.

4. minimal variations due to speaker characteristics

Several prominent features of the speech signal, speech production and speech per-

ception are taken into consideration in the design of feature extraction techniques for

ASR.

1. The speech production mechanism can be represented as a source filter model,

where the air pushed from the lungs with or without vocal foldvibrations can

be treated as the source with the vocal tract acting as a filtershaping this source

signal. Figure 3.3 illustrates the speech signal, its spectrum and the frequency

response of the vocal tract. The vocal tract’s shape leads toresonance at certain
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frequencies known as the formants. By varying the shape of thevocal tract, the

frequencies of the formants can be controlled thereby generating various sounds.

It is hence of interest to model the underlying vocal tract shape to represent the

speech signal.

2. The spectral slope of the speech signal is found to be negative. Lower frequen-

cies have higher amplitude compared to higher frequencies.

3. Though speech is a non-stationary signal, it is a reasonable to assume stationarity

over short durations of 20-30 msecs.

4. The human ear frequency resolution is non-linear with respect to frequency. The

relation between actual frequency and the perceived frequency is logarithmic in

nature as reported in [Stevens et al., 1937].

5. The human ear response is also non-linear in sensitivity to amplitude/sound pres-

sure at different frequencies. [Robinson and Dadson, 1956; ISO-226:, 2003]

Several feature extraction techniques inspired by auditory and perceptual models

combined with machine learning techniques to reduce the dimensionality and to re-

duce the correlation across dimensions in the feature spacehave been proposed to date.

Some of the earliest feature extraction techniques were based on linear prediction anal-

ysis where the vocal tract’s spectral response is modeled asan all-pole filter and the

filter coefficients formed the feature vector. Approaches based on analysing the speech

signals in the frequency domain proved to be more effective.The Cepstrum (spectrum

of log spectrum) was proposed [Bogert et al., 1963] as an effective tool for homomor-

phic speech signal processing. State-of-the-art feature extraction techniques viz., Mel

Frequency Cepstral coefficients (MFCC) [Mermelstein, 1976; Davis and Mermelstein,

1980] and Perceptual Linear Prediction coefficients (PLP) [Hermansky, 1990] use the

cepstral analysis. Instead of using a fixed frame length for speech analysis, other ap-

proaches using variable frame length and rate [Bridle and Brown, 1982] and wavelets

have been tried with limited success.

MFCCs and PLPs, as implemented in HTK [Young et al., 2006] have been used in

this thesis. Both these methods are based on mel filter bank analysis. PLPs incorporate

properties of human ear perception into the feature extraction process. Figure 3.4

shows a block diagram representing the various steps involved in the MFCC and PLP

generation. The motivation and the process involved in eachstep is described below.
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Figure 3.3: Speech signal and vocal tract response. a) shows a voiced segment of a

speech waveform b) Discrete Fourier transform of the waveform c) Frequency response

of the linear predictor filter modeling the speech waveform
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Figure 3.4: MFCC and PLP feature extraction



Chapter 3. Automatic Speech Recognition 24

3.1.1.1 Windowing

In order to do frequency analysis of a signal, it needs to be stationary. As discussed

above, a speech signal is assumed to be stationary over shortintervals of time. Hence a

sliding window approach is used, with overlapping adjacentframes as shown in figure

3.5 . Typically a window size of 25 msec and a frame shift of 10 msec are used.

Figure 3.5: Windowing or Short time analysis of speech signal

3.1.1.2 Pre-emphasis

The speech signal is typically preprocessed before the actual feature extraction. Any

DC offset introduced by the A/D converter is first removed. The signal is then pre-

emphasised to boost the signal signal strength in the higherformants, using a high

pass filter:

H(z) = 1−kz−1 (3.3)

(0≤ k< 1)

The pre-emphasis coefficientk is typically chosen close to 1 and a value of 0.97

has been used for all the experiments in this thesis.
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3.1.1.3 Conversion to frequency domain

Using rectangular windowing is equivalent to convolving the speech signal with a sinc

function which introduces overtones of the signal at higherfrequencies. To avoid this,

a smoothing window function is applied [Harris, 1978]. A raised cosine (hamming

window) is often used in speech processing due to its capacity to maximally suppress

the overtone frequencies.

ŝ[n] =

(
0.54−0.46cos

(
2πn

N−1

))
s[n] (3.4)

Each frame is then converted to frequency domain using the Discrete Fourier Trans-

form.

3.1.1.4 Filterbank analysis

To replicate the human ear resolution of the frequencies which is logarithmic in nature,

the frequency domain signal is transformed from a linear scale to a logarithmic mel

scale [Stevens et al., 1937].

fmel = 1127loge

(
1+

f
700

)
(3.5)

This is achieved in practice using triangular overlapping windows as shown in Figure

3.6. The energy in each frequency bin (mj ) is accumulated by weighting the spectral

amplitude of the original signal by the value of the corresponding triangular filter at

that frequency. This gives a lower dimensional feature vector (equal to the number

of frequency bins). The width of the windows increase as the frequency increases in

correlation to the mel scale. This approach is particularlyefficient, since it provides a

larger bin for higher frequencies where the energy is low.

3.1.1.5 Cepstral analysis

The goal of cepstral analysis is two fold:

1. The mel filter bank coefficients are not decorrelated due tothe overlapping fre-

quency bins. We would however like the feature vectors to be independent across

dimensions.

2. The mel filter bank coefficients represent the frequency components of the speech

signal which is mathematically a convolution of the glottalsource signal and the
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Figure 3.6: Filter bank illustration (using 9 bins for a signal sampled at 16KHz)

vocal tract channel response. It is desirable to somehow suppress the glottal

source characteristics as much as possible and only capturethe vocal tract for-

mants.

Conversion to Cepstral domain involves a discrete cosine transform on the log of

the mel filter bank coeffients (mj ).

ci =

√
2
N

N

∑
j=1

(logmj)cos
( π

N
( j −0.5)i

)
(3.6)

This can be viewed as projecting the signal onto an orthogonal basis. Hence the

resulting coefficients are decorrelated. Convolution in thetime domain is equivalent to

multiplication in frequency domain, and this multiplication becomes a simple addition

in log frequency. Hence by subtracting the cepstral mean in the log cepstral domain,

the glottal source characteristics can be suppressed as well.

3.1.1.6 Equal loudness

Inspired by the studies on human auditory system [Robinson and Dadson, 1956], the

signal is pre-emphasized according to the equal loudness curves of the human ear re-

sponse. Usually a piecewise linear approximation of the equal loudness curves is used

in this process. This scaling is applied to the mel filterbankcoefficients as imple-

mented in HTK. In the original proposal of PLP [Hermansky, 1990], the frequencies

are warped using a bark scale instead of mel scale.
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3.1.1.7 Cube root amplitude scaling

The amplitude of the speech signal and perceived loudness are not linearly related.

An empirical relationship between the two was proposed in [Stevens, 1957] called the

psychophysical power law or Stevens law. As per this law, a cube root compression is

applied to the energy in all the frequency components in the signal.

As a result of this step, the variations in the spectral amplitudes reduce and this

gives an additional advantage in the following linear prediction step since the signal

can be modeled by a lower order filter.

3.1.1.8 Linear prediction analysis

An all pole filter model is used to compactly represent the vocal tract frequency re-

sponse.

H(Z) =
1

1+∑p
i=1z−i

(3.7)

An all pole filter is a good model to represent speech since thehigh energy formants

can be captured by the location of the poles on the frequency axis. In practice, a filter

of the order of 10 to 15 is sufficient to efficiently model the speech signal. In linear

prediction analysis we attempt to compute the coefficientsai of the filter such that

the mean square error between the original speech signals[n] and the predicted signal

ŝ[n] is minimised over all the speech samples in the current frameof analysis. Using

an autocorrelation method, this optimisation problem can be posed as the problem of

solving M equations with M unknowns [Makhoul, 1975] which hasO(n3) complexity.

A more efficient method known as Levinson-Durbin method [Levinson, 1947] that

exploits the Toeplitz structure of the autocorrelation matrix is commonly used due to

its betterO(n2) computational complexity.

3.1.1.9 Energy and differential coefficients

After the MFCC/PLP feature extraction, the log of the energy ofthe signal in the

current frame is usually appended to the features. Throughout the feature extraction,

all the processing has been done under the assumption that each frame/window of

speech is independent of others. However, this is not true. There is a high degree

of correlation between speech frames close to each other. Tocapture this dynamics

in speech signal, additional first and second order differential coefficients computed

using the static features from the set of adjacent frames arealso usually appended to

the static features.
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3.1.2 Acoustic models

Acoustic models aim to compactly represent the speech sounds as mathematical mod-

els. In practice, models are usually built at the phoneme level. These phoneme models

can be concatenated to model a word or an utterance.

In fact the speech signal cannot be assumed to be stationary even within a phoneme

unit since each phoneme realisation can be approximated as beginning of the phoneme,

steady state and the end of the phoneme. Hence under the assumption that the signal

is stationary in each of these phases, a phoneme model is typically comprised of three

models which are tied together into one unit using an overarching Hidden Markov

Model (HMM). HMMs provide an excellent framework to capturethe variations in the

phoneme realisations and durations.

The standard approach to train the HMMs is based on Expectation Maximisation

using maximum likelihood criterion as proposed in [Dempster et al., 1977]. More

recently, discriminative training criteria using MaximumMutual Information [Nor-

mandin, 1991] and minimum bayes’ risk based Minimum Phone Error [Povey and

Woodland, 2002] have been proposed. In this thesis, we use the maximum likelihood

criterion to train the models which will be discussed in moredetail in the following

sections.

3.1.2.1 Hidden Markov models for acoustic modeling

The basic theory of Hidden Markov models was proposed in the 1960s [Baum and

Petrie, 1966]. It is essentially a Markov model in which the state sequence is not

observable. It provides a good framework to model an observable time series in which

the underlying system generating the observations can be assumed to lie in a finite set

of states.

Some of the earliest acoustic models using HMMs were built atCMU [Baker,

1975] and IBM [Jelinek, 1976]. Due to the elegant framework they provide, HMMs

have been adopted as a standard modeling technique for acoustic models.

HMMs can have a variety of configurations based on the allowedtransitions be-

tween states. In speech processing, as explained above, we use one state to model

a segment of a phoneme (either beginning, middle or ending).This enforces an or-

dering for state transitions in the HMM and hence a constrained left-to-right HMM is

typically used.

The structure of a three state left to right HMM is shown in theFigure 3.7.
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Figure 3.7: Three state left-right HMM

A HMM is specified by

1. The number of emitting states in the HMM ‘N’. For ease of implementation,

two dummy states one for ‘Entry’ and one for ‘Exit’ are appended which are

used to concatenate HMMs together into larger context word-level or utterance

level HMMs. Each emitting state contains a probability density function such as

a multivariate Gaussian or a Gaussian mixture model.

2. Transition probabilities ‘ai j ’ which capture the probability of transition from

statei to state j. i.e., ai j = P(qt+1 = j|qt = i) where,qt indicates the state

occupied at timet. ai j terms must obey the condition∑N
j=1ai j = 1. At every

instance of time, there is a change in state from the current state to one of the

states having a nonzero transition probability from the current state.

3. Emission probability densitiesb j(ot) that capture the probability of observing

feature vectorot emitted from statej at timet. i.e.,b j(ot) = P(o(t)|qt = j). The

state output distribution modeled by a multivariate Gaussian distribution is given

by

b j(ot) =
1√

(2π)n|Σ j |
e−

1
2(ot−µj )

′Σ−1
j (ot−µj )

where,µj andΣ j are the mean and the covariance of the Gaussian respectively.

4. The initial state distributions ‘π’ that capture the probability of a state occurring

at timet = 1, i.e.,πi = P(q1 = i)
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Thus a HMM is specified by the tripletλ = (A,B,π).
In order to be able to use HMMs to represent the acoustics, thefollowing assump-

tions are made

1. The speech waveform is stationary over segments of time i.e, over the duration

of feature extraction window.

2. The probability of a state is only dependent on its previous state.

3. The transition between states is instantaneous.

4. The probability of an observation being generated is onlydependent on the cur-

rent state and independent of the previous states and observations.

P(O|q1,q2, . . . ,qT ,λ) =
T

∏
t=1

P(ot |qt ,λ) (3.8)

Though not completely true, these assumptions allow the modeling of speech in the

mathematical framework of HMMs. Elegant algorithms for training the HMMs and

recognition of speech using those HMMs have been developed.

3.1.2.2 The three problems of Hidden Markov models

We briefly review the three central problems in the HMM theory. These are discussed

in detail by Rabiner [1989].

Problem 1: Evaluation

Given a sequence of observationsO= o1o2..oT , this problem deals with the com-

putation of the likelihood of a given HMM (λ) generatingO i.e., P(O|λ). Since the

state sequenceq = q1q2..qT is hidden, the likelihood is computed by marginalising

over all possible state sequences.

P(O|λ) = ∑
q

P(O|q,λ)P(q|λ) (3.9)

where,

P(O|q,λ) = bq1(o1)bq2(o2) . . .bqT (oT) (3.10)

P(q|λ) = πq1aq1q2aq2q3 . . .aqT−1qT (3.11)

If there areN states in the HMM, the number of possible state sequences inT time

steps isNT , and hence the evaluation of the likelihood in equation 3.9 using the naive

approach has complexity ofO(TNT) which is computationally infeasible.
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In order to make this calculation tractable, taking advantage of the Markovian as-

sumption, recursive forward or backward procedures are used. Variablesα andβ are

introduced in these two procedures respectively, which areused to accumulate the

statistics as explained below and hence avoid the need to replicate calculations.

Forward procedure

The forward variableαt(i) is defined as

αt(i) = P(o1,o2, . . . ,ot ,qt = i|λ) (3.12)

i.e., the probability of observing the partial sequenceo1..ot and occupying statei at

time t.

Using induction,αt(i) can be computed as follows:

1.

α1(i) = πibi(o1), 1≤ i ≤ N (3.13)

2.

αt+1( j) =

[
N

∑
i=1

αt(i)ai j

]
b j(ot+1)

for t = 1,2, . . . ,T −1, 1≤ j ≤ N (3.14)

3. The likelihoodP(O|λ) can be computed by marginalising theα variables at time

T over all the states.

P(O|λ) =
N

∑
i=1

αT(i) (3.15)

With this approach the computational complexity is of the orderO(N2T) which is

a significant improvement over the naive approach.

Backward procedure

Similar to the forward procedure,P(O|λ) can also computed using a backward

procedure using a variableβt(i) which is defined as the the probability of observing

the sequence from time instancet +1 toT given the occupancy of statei of the model

λ at timet.

βt(i) = P(ot+1,ot+2, . . . ,oT |qt = i,λ) (3.16)

The recursive formulation for likelihood computation using the backward proce-

dure is as follows:
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1.

βT(i) = 1, 1≤ i ≤ N (3.17)

2.

βt(i) =
N

∑
j=1

ai j b j(ot+1)βt+1( j)

for t = T −1,T −2, . . . ,1 1≤ i ≤ N (3.18)

3. And

P(O|λ) =
N

∑
i=1

πibi(o1)β1(i) (3.19)

The computational complexity using the backward procedureis also of the order

O(N2T). Hence both the procedures are equally efficient to solve theevaluation prob-

lem.

Problem 2: Decoding

This is the problem of identifying the state sequence that maximises the likelihood

of an observation sequence given the model i.e,

argmax
q

P(O,q|λ) where q∈ Q (3.20)

This search problem can be efficiently solved using Viterbi decoding [Viterbi,

1967]. It is a dynamic programming approach which builds thecomplete solution

from optimal sub solutions.

Let δt(i) be the likelihood of the partial observation sequenceo1..ot generated by

the best state sequence ending in statei at timet.

δt(i) = max
q

P(q1,q2 . . .qt = i,o1,o2 . . .ot |λ) (3.21)

By recurrent property, the value ofδ at timet +1 for state j can be computed by:

δt+1( j) = max
i

(
δt(i)ai j

)
b j(ot) (3.22)

As the Viterbi algorithm builds the solution step by step, itis also essential to keep

track of the best predecessor state at each time instant. This information is stored in

ψt(i) which denotes the best preceding state for current statei at timet. The algorithm

to find the optimal state sequence is as follows:
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1. Initialisation

δ1(i) = πibi(o1) (3.23)

ψ1(i) = 0 (3.24)

for 1≤ i ≤ N

2. Build optimal sub solutions iteratively

For time instancest = 2 toT−1, update theδs andψs for each statej (1≤ j ≤N)

using:

δt( j) = max
i

(
δt−1(i)ai j

)
b j(ot) (3.25)

ψt( j) = argmax
i

(
δt−1(i)ai j

)
(3.26)

for 1≤ i ≤ N

3. Termination

Find the state at timeT that has the maximum cumulative likelihood score.

p∗ = max
i

δT(i) (3.27)

q∗T = argmax
i

δT(i) (3.28)

for 1≤ i ≤ N

4. Backtrack

Having found the best stateq∗T at timeT, the best state sequence explaining the

observation dataO can be found by backtracking the states stored inψ variable.

q∗t = ψt+1(q
∗
t+1) for t = T −1,T −2, . . . ,1 (3.29)

Problem 3: Learning

This is the problem of training the models from the observation sequences such

that the models generalise well to unseen data of similar nature i.e., find the model

parametersλ(A,B,π) that maximiseP(O|λ).
The procedure employed in training the models is to start with an initial model

λ0 and update the parameters iteratively until the differencein the likelihoodP(O|λ)
between two successive iterations becomes negligible.

The initial models are usually built using either
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1. a segmental K Means approach, where the observation vectors are split equally

among all the states in the HMM and the parameters estimated,or

2. a flat start approach where all the observation vectors areused to estimate the

parameters of one global model which is then used as the seed model for all the

units.

Starting from such initial models, the parameters are then updated iteratively in

a maximum likelihood sense using Baum-Welch re-estimation [Baum et al., 1970]

process.

Let γt(i) be the probability of occupying statei at time t given the observation

sequenceO and the modelλ.

γt(i) = p(qt = i|O,λ) =
P(qt = i,O|λ)

P(O|λ)
=

αt(i)βt(i)

∑N
i=1αt(i)βt(i)

(3.30)

Let ξt(i, j) be the joint probability of occupying statei at timet and occupying state

j at timet +1 given the observation sequenceO and the modelλ.

ξt(i, j) = P(qt = i,qt+1 = j|O,λ) =
P(qt = i,qt+1 = j,O|λ)

P(O|λ)
(3.31)

=
αt(i)ai j b j(ot+1)βt+1( j)

P(O|λ)
(3.32)

Summingγt(i) from t = 1 to T gives the expected number of times statei is occu-

pied and summing it overt = 1 to (T −1) gives the expected number of times there

is a transition from statei. Similarly summingξt(i, j) over t = 1 to (T −1) gives the

expected number of transitions from statei to statej.

The Baum-Welch re-estimation formulae to update the model parameters assuming

Gaussian densities are:

π̂i = γ1(i) (3.33)

âi j =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 γt(i)

(3.34)

µ̂i =
∑T

t=1γt(i)ot

∑T
t=1γt(i)

(3.35)

Σ̂i =
∑T

t=1γt(i)(ot −µj)(ot −µj)
′

∑T
t=1γt(i)

(3.36)
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3.1.2.3 Extensions

Gaussian mixture models

Using single Gaussians to model each state of the HMM would imply an assump-

tion that all the data used to model a state is unimodal. However in a large dimensional

space, this assumption is not appropriate. So modifying theassumption of the under-

lying data distribution from unimodal to multimodal, single Gaussians are replaced by

Gaussian Mixture Models (GMM) and the emission probabilitydensity of statej is

given by:

b j(ot) =
M j

∑
m=1

w jmN (ot ;µjm,Σ jm) (3.37)

whereM j denotes the number of mixture components in the GMM modelingstate j

andw jm, µjm andΣ jm denote the weight, mean and variance of themth component in

statej.

The re-estimation formulae for the HMM parameters are modified as follows:

The termγt(i) is modified toγt(i,k)which accounts for the probability of occupying

mixture componentk in statei at timet given the observation sequenceOand the model

λ.

γt(i,k) =

[
αt(i)βt(i)

∑N
i=1αt(i)βt(i)

][
wikN (ot ;µik,Σik)

∑M
m=1wimN (ot ;µim,Σim)

]
(3.38)

Using γt(i,k) the formulae for computation of the weight, mean and variance of

each mixture component are given by:

ŵik =
∑T

t=1γt(i,k)

∑T
t=1∑M

m=1γt(i,m)
(3.39)

µ̂ik =
∑T

t=1γt(i,k)ot

∑T
t=1γt(i,k)

(3.40)

Σ̂ik =
∑T

t=1γt(i,k)(ot − µ̂ik)(ot − µ̂ik)
′

∑T
t=1γt(i,k)

(3.41)

While training the GMM-HMM based systems, the number of components in the

GMM cannot be determined in advance. The usual approach is tostart the training

process with one Gaussian per state, and then repeatedly train and split the available

mixture components till the likelihood of the model is maximised for a small devel-

opment set disjoint from the training set. Mixture sizes of 16 to 32 components are

typically used in most of the state-of-the-art acoustic models [Hain et al., 2008].
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Triphone context

To overcome the variability in the phoneme pronunciations introduced due to co-

articulation effect with adjacent phonemes, triphone models are usually preferred in

large vocabulary systems. Hence for each phoneme, instead of having a single 3 state

HMM, multiple HMMs with different left and right contexts are trained. Triphones are

usually represented asL−P+R whereL andR are the left and right context respec-

tively for the phonemeP.

Example: HMM for the word ‘monotonic’ would be comprised of concatenation of fol-

lowing monophone HMMs:m aa n ax t aa n ih k

Using Triphone HMMs it would be comprised of:

sil-m+aa m-aa+n aa-n+ax ax-t+aa aa-n+ih ih-k+sil

Here two different HMMs are used for ‘aa’ depending on the phonetic context to the left

and right.

Triphones can have word-internal or crossword context [Young et al., 2006]. In

word internal triphones, the left and right context are limited to the word boundaries in

the transcript. In such cases, the boundary phonemes have only one of the left or right

context as shown in the example below. Crossword context triphones on the other hand

use context from adjacent words for boundary phonemes. In all the experiments pre-

sented in this thesis, unless otherwise specified, crossword context dependent triphones

have been used.

Transcript: This is speech

Monophone sequence:sil th ih s sp ih s sp s p iy ch sil

Word Internal context dependent triphones:sil th+ih th-ih+s ih-s sp ih+s ih-s

sp s+p s-p+iy p-iy+ch iy-ch sil

Crossword context dependent triphones:sil sil-th+ih th-ih+s ih-s+ih sp s-ih+s

ih-s+s sp s-s+p s-p+iy p-iy+ch iy-ch+sil sil

State tying

When we use triphones instead of monophones, the total numberof HMMs in-

crease cubically. For instance the number of monophones in the CMU phoneme set

that we use in the experiments is 41 and the number of triphones covering all the left-

right contexts is 68921. This increase in the number of models leads to data sparsity
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problem during the training phase. In fact several of the triphones may not appear even

once in the training data.

However, several states of all the triphones are acoustically close to each other and

hence can be tied together. For eg., it is desirable that the 2nd and 3rd states of the two

triphones ‘k-aa+r’ and ‘b-aa+r’ be tied. This allows the training data from all the tied

states to be pooled together to form a larger training set. Itis not desirable though, to

tie the states using hand written rules. Several researchers have worked on this problem

in the early nineties.

One way to automate the state tying is by data driven clustering of the states us-

ing either a top-down or bottom-up approach. Hwang and Huang[1992] propose an

agglomerative clustering approach where by starting with one cluster per state, de-

sired number of clusters are generated by repeated merging.One disadvantage of this

approach is that it cannot account for unseen triphones in the training data.

The other approach using phonetic decision trees [Bahl et al., 1991; Young et al.,

1994] provides a mechanism to cluster even unseen triphones. A phonetic decision tree

is a binary tree with a yes/no phonetic question associated with each node of the tree.

The phonetic questions for example take the form ‘Is the right context a Fricative?’,

’Is the phoneme an affricate?’ and so on. Each phonetic statetrickles down from the

root node to one of the leaf nodes depending on the answer at each intermediate node’s

phonetic question. All the states arriving at the same leaf node are tied together. Even

unseen phonemes can be clustered in this manner. The decision tree itself is built from

a predefined set of questions in a top down manner. The question associated with each

node is chosen such that the likelihood of the resulting tiedstates is maximised for the

training data. Starting from the root node, the tree grows associating a question to each

node until the gain in likelihood from further splits falls below a predefined threshold.

3.1.3 Language models

Language models contain information about the allowable word sequences. They help

in limiting the word-search space for the recogniser and improve the accuracy and re-

duce the computational load. Language models may take the form of word networks

which limit the set of words that can follow a word by the rulesof the graph or sta-

tistical models such as N-Gram [Ney et al., 1994], that associate probabilities to word

sequences.

Word network lattices are preferred in small scale ASR systems. In systems where
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the user’s input utterance is limited to a few words and wherethe context is predefined,

use of word network lattices can lead to very high recognition accuracies. Grammars

are usually hand written in Extended Backus-Naur Form (EBNF).Since the grammar

sizes are very small, they can be loaded and freed from the system memory at run

time with negligible delays. This facilitates in changing the grammar depending on

the context or the state of the spoken dialogue system. For this reason they are widely

used in the commercial spoken dialogue systems. Figure 3.8 shows an example of a

grammar lattice that can be used in an appointment scheduling dialogue system when

the user needs to select a suitable appointment session during the week.

Monday

SENT-START

Tuesday

Wednesday

Thursday

Friday

morning

afternoon

A.M.

P.M.

should

would

be

fine

nice

great

good

please

SENT-END

Figure 3.8: Example of a word network lattice

In large vocabulary systems that allow continuous speech from the user, hand writ-

ten word lattices are infeasible. In such systems, statistical n-gram language models

covering a wide range of words are used. Such language modelsare usually trained on

large text corpora such as newspaper articles, text generated from web crawling and

text collected specifically to represent well the domain of usage.

A statistical language model is used to compute the probability of a sequence of

words occurring together in the language. Decomposing the joint probability as the

product of conditional probabilities, the probability of the word sequence is given by:

P(w1,w2, . . . ,wm) = P(w1)P(w2|w1)P(w3|w1,w2)...P(wm|w1 . . .wm−1)

=
m

∏
i=1

P(wi |w1, . . . ,wi−1) (3.42)

It is infeasible to store the statistics for every word givenall possible context lengths.

Hence in practice n-gram language models are used, where thestatistics for a word
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given a word sequence ofn−1 predecessors are stored. This constraint on the history

amounts to the following assumption

P(wm|w1,w2, . . .wm−1)≃ P(wm|wm−n+1, . . .wm−1) (3.43)

In ideal conditions, a large value ofn would be preferred, to have the best approxima-

tion, but due to the storage limitations and the sparsity of training data,n values of 1 to

3 are typically used. With the advent of cloud computing infrastructure and trillions of

documents of data available on the world wide web, researchers have only recently be-

gun experimenting with higher order language models such as5-gram models [Brants

and Franz, 2006].

Using word n-grams, the probability of a word sequence modifies to

P(w1,w2, . . . ,wm)≃
m

∏
i=1

P(wi |wi−n+1, . . . ,wi−1) (3.44)

The n-gram sequence probabilities are estimated in a maximum likelihood sense

by counting the word sequence instances in the training textcorpora.

P(wm|wm−n+1 . . . ,wm−1) =
c(wm−n+1 . . .wm)

c(wm−n+1 . . . ,wm−1)
(3.45)

where,c() represents the count of word sequence in the training corpora.

This naive approach to compute the maximum likelihood estimates of the n-gram

probabilities runs into problems with data sparsity. The n-grams not observed in the

training set are assigned zero probability which is not desirable as such word sequences

may appear in the test set. This is a common recurring problemin statistical model-

ing usually solved by some kind of a smoothing technique. Smoothing for language

models [Chen and Goodman, 1996] are based on three main ideas

1. Discounting, where some probability mass from high frequency word types is

reassigned to those with near zero frequency.

2. Backoff, where for an unseen n-gram, the conditional probability of word given

its history is approximated by backing off to the conditional probability of that

word given a shorter context.

3. Interpolation, where the conditional probability for a higher order n-gram is

computed as a linear combination of the probability estimates of the lower order

(shorter context) n-grams.
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Smoothing

One of the earliest proposed smoothing methodGood-Turing discounting [Good,

1953] assigns some of the probability mass of n-grams occurring c+ 1 times to n-

grams occurringc times in the training corpus. The adjusted counts for all then-grams

with a count ofc is given by

c∗ = (c+1)
Nc+1

Nc
(3.46)

where,Nc denotes the number of n-grams with countc.

For a sufficiently large corpus,Nc+1 is usually less thanNc and hence the adjusted

counts are less than the actual counts leaving some probability mass to be assigned to

unseen n-grams. The adjusted counts in equation 3.46 are however unreliable at higher

values of c whereNc values would be zero or near zero.

A modified equation for the discounted counts was proposed in[Katz, 1987] which

is used in conjunction with a backoff technique.

c∗ = c for, c> k

=
(c+1)Nc+1

Nc
−c(k+1)Nk+1

N1

1− (k+1)Nk+1
N1

for, 1≤ c≤ k (3.47)

k is a threshold that can be set to zero or determined empirically.

In Katz backoff smoothing, when the n-gram counts are zero, the model backs off

to a lower order model with a non-zero count. In order to maintain correct probability

distributions, n-grams with non-zero counts are discounted such that when a probabil-

ity for a zero count n-gram is assigned from a lower order, thesum of the probability

for a given wordwn given all contexts, sums to one.

Pbo(wm|wm−n+1 . . .wm−1) = dm−n+1...m−1
C(wm−n+1 . . .wm)

c(wm−n+1 . . .wm−1)

if C(wm−n+1 . . .wm)> k (3.48)

= αwm−n+1...wm−1Pbo(wm|wm−n+2 . . .wm−1)

otherwise (3.49)

Equation 3.48 discounts the n-grams occurring with a count greater than certain

threshold. The discounting factord can be found from modified Good-Turing estimates

in equation 3.47

d =
c∗

c
(3.50)
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To compute theα values, the total left over probability mass after discounting the n-

grams is first accumulated asβ and this is redistributed equally among all the n-grams

with zero count.

βwm−n+1...wm−1 = 1− ∑
wm:C(wm−n+1...wm)>0

dwm−n+1...wm−1

C(wm−n+1 . . .wm)

C(wm−n+1 . . .wm−1
(3.51)

αwm−n+1...wm−1 =
βwm−n+1...wm−1

∑wm:C(wm−n+1...wm)=0Pbo(wm|wm−n+2 . . .wm−1)
(3.52)

Among the smoothing methods commonly used,Kneser-Ney Smoothing [Ney

et al., 1994; Kneser and Ney, 1995], was shown to give the bestperformance in terms

of ASR WERs [Chen and Goodman, 1996]. Kneser-Ney smoothing is based on a

simpler approach calledAbsolute discounting, where the non-zero n-grams counts are

discounted by an absolute valueD. The discounted probabilities with absolute dis-

counting for a bi-gram are:

Pabsolute(wm|wwm−1) =
C(wm−1,wm)−D

C(wm−1)
if C(wm−1,wm)> 0

α(wm)PML(wm) otherwise (3.53)

Kneser-Ney smoothing uses a slightly different approach tocompute the unigram

probabilities. Instead of counting the number of times a word occurs in the corpus, the

number of different contexts in which a word appears is counted.

CKN(wm) = |wm−1 : C(wm−1,wm)> 0)| (3.54)

The idea behind the use of such a count is that those words thathave appeared in

more contexts in the training set are more likely to appear inunseen contexts as well.

Using these counts, the estimated probability is termed as ‘Continuation Probability’

Pcont [Jurafsky and Martin, 2008].

Pcont(wm) =
|wm−1 : C(wm−1,wm)> 0)|

∑wi
|wi−1 : C(wi−1,wi)> 0)|

(3.55)

For Knerser-Ney backoff smoothing, equation 3.53 is modified using the continu-

ation probabilities as follows:

PKN(wm|wwm−1) =
C(wm−1,wm)−D

C(wm−1)
if C(wm−1,wm)> 0

α(wm)
|wm−1 : C(wm−1,wm)> 0)|

∑wi
|wi−1 : C(wi−1,wi)> 0)|

otherwise (3.56)
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The Deleted interpolation smoothing [Jelinek and Mercer, 1980] interpolates the

maximum likelihood estimates of a word with estimates from shorter contexts. For

instance, for a trigram language model, the adjusted probability estimate is given by:

PDI (wn|wn−1,wn−2) = λ1PML(wn|wn−1,wn−2)+λ2PML(wn|wn−1) (3.57)

+λ3PML(wn)

where,PML is the maximum likelihood estimate as given in equation 3.45

and,∑i λi = 1

Equation 3.58 can be expressed in an elegant recursive formulation after Brown

et al. [1992]:

PDI (wn|wm−n+1 . . .wm−1) = λm−n+1PML(wn|wm−n+1 . . .wm−1) (3.58)

+(1−λm−n+1)PDI (wn|wm−n+2 . . .wm−1)

Here thenth order smoothed estimate is a linear combination ofnth order maximum

likelihood estimate and the(n−1)th order smoothed estimate. The recursion can be

terminated by approximating the smoothed first order estimate to be equal to the max-

imum likelihood estimate. Theλ values are computed using EM algorithm[Dempster

et al., 1977] such that the probability of some held out development set is maximised.

Perplexity

Given a statistical language model, it is of interest to evaluate how well it models

the language in the domain of interest. A performance measure metric is also desirable

to compare the performance of different language models fora given test set.

Based on principles from Shannon’s Information Theory [Shannon, 1948], entropy

(H) of a language generating source measures the amount of non-redundant informa-

tion contained in a word sequence in that language.

H =− lim
m→∞

1
m ∑

w1...wm

(P(w1 . . .wm) log2P(w1 . . .wm)) (3.59)

where,P is the true probability of the word sequence.

Assuming ergodicity and sufficiently large value of m, entropy can be approxi-

mated as

Ĥ =−
1
m

log2P(w1 . . .wm) (3.60)

Instead of directly using entropy, a related measure calledperplexity (PP) is gen-

erally used.

PP= 2Ĥ (3.61)
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If the probability of the word sequence generated by the language model is given

by P̃, then the perplexity is given by

PP= P̃(w1 . . .wm)
− 1

m (3.62)

When the language model is a good fit, it assigns high probabilities to unseen

test sequences and thereby lower perplexities. Though perplexity is a good measure to

compare language models, it is found to be weakly correlatedto the measure of interest

in ASR viz., Word Error Rate.

3.1.4 Lexicon

A lexicon (dictionary) is a collection of all the words (vocabulary) used in the ASR sys-

tem and provides a map between the units that are representedin the acoustic models

and the words present in the language model. In a small vocabulary task using word

based acoustic models, the lexicon would be a simple one-to-one mapping between

words and the symbolic representation of the acoustic models. In a large vocabulary

task, the acoustic models are trained as sub-word units suchas phonemes and the lexi-

con provides a map between these sub-word units and the words.

Example:

ABOARD ax b ao r d

ABOLISH ax b aa l ih sh

ABSENT ax b s ax n t

ABSORB ax b z ao r b

..

Alternate pronunciations of words can be encoded in the lexicon and thus provide

more flexibility to the ASR system to deal with dialects. The lexicon is typically built

apriori using rules of pronunciation for that language. Forcertain outliers and difficult

words, the pronunciation is hand coded.

The vocabulary, in effect sets the possible words that can bedecoded by the ASR.

Any word spoken by the user that is outside the vocabulary is mapped to a close word

in the vocabulary and is one of the main sources of error and thereby poor recognition

accuracies in ASR systems. Hence it is imperative to carefully cover the all possible

word tokens for the domain of usage, in the vocabulary.
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3.1.5 Decoder

The role of the decoders is to combine the acoustic model and language model scores,

searching through all possible word sequences and output the best hypothesis for the

spoken utterance transcription. Most state-of-the-art decoders use a tree structure or

a finite state transducer (FST) to represent the search space. An FST used in ASR

comprises of nodes corresponding to acoustic models and nodes that correspond to

word endings. As the search progresses through a node, depending on the type of

node, either the acoustic model score or the language model score is added to that

search path.

A PAINT

POINT

MAN

START sil-ax+p ax-p+ey p-ey+n ey-n+t n-t+m

ax-p+oy p-oy+n ey-n+t n-t+m

t-m+ax m-ax+n ax-n+t

n-t+s APPOINTMENT

Figure 3.9: Example of a small segment of a finite state network

Usually an FST is built statically and preloaded into the memory before the hy-

pothesis search begins. However in large vocabulary systems, the size of the FST can

be extremely large and the use of dynamic network expansion approaches have been

suggested. Efficient wighted finite state transducer algorithms have been proposed

[Mohri et al., 1996] to construct compact decoding networksfrom the transducers of

individual components in the ASR system.

The search itself can progress time synchronously in a breadth first search man-

ner keeping track of the best partial state sequences at eachtime instant. The Viterbi

algorithm discussed in section 3.1.2.2 is an example of thistype of search. Efficient

best-first search algorithms such as Stack decoders andA∗ decoders have also been

quite well researched. These algorithms are time asynchronous. The key idea in these

algorithms is to maintain a priority queue of partial sequences where each sequence

maintains a score based on the acoustic and language model probabilities. The se-

quence iteratively chooses the sequence with the best scoreand determines the best

word to post fix to the chosen sequence. The extended sequenceis reentered into the

queue. The computational complexity is drastically reduced since the algorithm fo-
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cuses only the most probable candidates. Such efficiency in computational complexity

can also be achieved in Viterbi style decoding by path pruning.

The decoding can also be done with multiple passes over the search network [Austin

et al., 1991]. In such methods, usually a simple language model is used in the first

pass, generating a list of N-best hypothesis. This set of hypothesis is then re-scored

using higher order language models and possibly more sophisticated acoustic models.

Multi-pass algorithms are have been shown to give better WERs at the expense of the

the extra computational time.

In most of the decoding experiments in this thesis, the HTK tools HVite and HDe-

code have been used, which are based on Viterbi decoding. By treating the path ex-

tension in the search problem as a token passing instance, the search problem is posed

as a token passing algorithm [Young et al., 1989]. This algorithm starts with a single

token in the start node. As acoustic features are input to thesystem, tokens are passed

to connected nodes in the network. When a token is passed from one node to another,

the score associated with the token is updated with the probability associated with the

new node. At each node, only the token with the highest score is retained and all other

tokens are discarded. A word link record (WLR) which maintainsthe word sequence

a token has traversed, is also maintained with each active token. In order to make the

search computationally tractable, tokens with a score lower than the token with the

highest score, by a certain threshold called beam width are pruned and their WLRs

deleted. As a result only a small fraction of the tokens are active at any time instance

and the network is expanded dynamically only for these paths.

The decoding setup in this thesis with the JNAS corpus uses the Julius decoder

[Lee et al., 2001] in a two pass decoding mode. In the first pass, a forward frame syn-

chronous beam search is used to generate a word trellis structure. In the second pass,

a reverse search is performed on this word trellis using a stack decoding algorithm.

3.1.6 Performance measures

The performance of an ASR system is typically measured in terms of errors made

by the system. Using dynamic programming based string alignment, the hypothesis

generated from the decoder is aligned to the true transcription. The number of Hits

(H), Substitutions (S), Deletions (D) and Insertions (I ) are then computed.

The percentage of correct recognitions is given by

Correct(%) =
H

H +S+D
×100% (3.63)
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The measure Word Error Rate (WER) is more commonly used

WER(%) =
S+D+ I
H +S+D

×100% (3.64)

3.2 Normalisation approaches in acoustic space

An inherent problem in acoustic modeling, as in any machine learning problem, is the

mismatch between the training set and the test set. This mismatch could be due to

inadequate representation of test set speaker characteristics in the training set or due to

the differences in environmental conditions such as recording setup, channel conditions

and the ambient background noise. There are two main approaches to overcome this

problem

1. Normalisation, where the acoustic features or the modelsthemselves are nor-

malised to remove undesirable variations.

2. Adaptation, where the features or models are adapted suchthat the differences

due to mismatch conditions are well captured.

In this section, some of the widely used normalisation techniques are discussed.

3.2.1 Cepstral mean and variance normalisation

One of the common problems in speech corpora is the difference in channel (micro-

phone) characteristics between various sessions. CepstralMean Normalisation (CMN)

can effectively reduce the variations due to channel distortions. As explained in sec-

tion 3.1.1.5, the channel characteristics which get convolved with the signal in time

domain, appear as an addition in the cepstral domain. When thecepstral features are

averaged over time, the mean represents the channel characteristics assuming that the

channel is stationary. This mean is subtracted from the cepstral features to nullify the

channel characteristics.

Cepstral Variance Normalisation (CVN) is typically used in conjunction with CMN.

After mean normalisation, CVN involves scaling the feature vectors such that each fea-

ture in the vector has unit variance.
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µc =
1
T

T

∑
t=1

ct (3.65)

σ2
c =

1
T

T

∑
t=1

(c2
t −µ2

t ) (3.66)

ĉt =
ct −µc

σc
(3.67)

wherect andĉt are the original and CMN-CVN normalised cepstral features at time t.

CMN and CVN have been empirically shown to provide robustness to channel

variations and white noise. In practical applications, instead of applying CMN-CVN

over each utterance, they are often applied over longer segments of speech in which

either the speaker or channel conditions are constant. In real time systems, the cepstral

means and variances are computed as run time averages.

3.2.2 Vocal tract length normalisation

Vocal tract length shows a great degree of variability from speaker to speaker and more

prominently between gender and age groups. As a result of this the formant peaks are

different across speakers for the same spoken phoneme. The technique known as vocal

tract length normalisation (VTLN) attempts to warp the frequency axis to compensate

this difference.

Using a linear warping, significant improvements in WERs were achieved by Co-

hen et al. [1995]. The extent of the warping is determined by awarping factorα which

is estimated for each speaker. To keep the warped frequencies bounded to the orig-

inal frequency range, piecewise linear warping is usually applied with the boundary

frequencies unwarped as shown in Figure 3.10

In various experiments in this thesis, warping as shown in Figure 3.10 (b) is used.

The warping factor for each speaker is estimated in a maximumlikelihood sense [Lee

and Rose, 1996; Hain et al., 1999]. Through a linear search through various warp-

ing factors, the factor that maximises the likelihood of theacoustic model on some

training data from the speaker is selected. Using a Brent search based on quadratic

interpolation, the complexity of the search is substantially reduced. VTLN is applied

in an iterative manner as described in Garau et al. [2005]

• Training

1. Starting with non-normalised models, compute the warping factors for all
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Figure 3.10: Piecewise linear warping in VTLN

the training set speakers. Using the warping factors, recompute the feature

vectors for the entire training set.

2. Reestimate the parameters of the models with the new features with a few

iterations of Baum-Welch algorithm.

3. Repeat steps 1 and 2 using the last retrained models until the increase in

likelihood for some predefined development set stabilises.

• Testing

1. For each test speaker, evaluate the warping factor using normalised models

either with a small available development set, or by using the transcripts of

the test set from one pass of decoding using the non-normalised model.

2. Normalise the acoustic features and decode with the normalised models.

Since the estimation is ML based, the warping factors are optimal in this frame-

work where all other parameters are estimated in ML sense. The disadvantage of this

approach is the high computational complexity due to the need to recode the data for

various values ofα.

The use of linear transforms to directly warp in the feature space has been explored

by many researchers. McDonough et al. [1998] propose the useof a bilinear all pass

transform for speaker normalisation. Pitz et al. [2001] explore the idea of applying

linear transform after Cepstral extraction while Uebel and Woodland [1999] investigate

the linear relationship between unwarped and warped MFCCs.
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For VTLN to work reliably, speaker segmentation is essential. Such segmentation

is naturally available in certain corpora such as telephoneconversations while in sce-

narios such as meeting room conversations, a front end speaker diarization system is

usually required to provide the same.

3.3 Adaptation approaches in acoustic space

Speaker independent acoustic models trained on hundreds ofhours of speech from

many speakers, generalise well for unseen speakers. However compared with speaker

dependent models targeted towards a specific speaker, the WERsare high. But it is in-

feasible to train speaker dependent models for each speaker. Hence several approaches

have been proposed to adapt the speaker independent models to a target speaker. All

these approaches fall under the gamut of speaker adaptation. Speaker adaptation tech-

niques have also been widely used for environment adaptation where there is a mis-

match between train and test conditions.

Acoustic model adaptation attempts to modify the HMM parameters such that they

resemble the target speech more closely. Several approaches to acoustic model adap-

tation have been proposed and these can be broadly classifiedinto

• Maximum likelihood based approaches.

• Maximum-a posteriori (MAP) based approaches

• Approaches based on speaker clustering.

3.3.1 Maximum likelihood adaptation

The underlying idea in ML based adaptation is to update the parameters of the acoustic

models such that the likelihood of a set of target speech is maximised. Most of the

popular approaches in this domain estimate a linear transform from the adaptation data

to modify the HMM parameters.

On the face of it, estimating transformation matrices for each parameter of all the

HMMs in the acoustic model seems infeasible due to the requirement of large amounts

of training data. However, it has been shown that significantimprovements in accura-

cies can be achieved by tying several states of the HMMs together and estimating one

transform for all the tied parameters. This greatly reducesthe number of parameters to

be estimated and thus the need for large set of adaptation data. In fact, improvements
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in WER can be achieved by estimating a single transform for allthe model parameters

thus making rapid adaptation possible even with a small amount of data.

3.3.1.1 MLLR

The core approach in this category is Maximum Likelihood Linear Regression (MLLR).

In the basic MLLR [Leggetter and Woodland, 1995a] the means of the Gaussian com-

ponentsµ are updated using the following transformation

µ̄= Aµ+b (3.68)

where A is annxn regression matrix and b is an n-dimensional bias vector. A and b are

computed using Expectation - Maximisation (E-M) algorithm[Dempster et al., 1977]

such that the likelihood of the transformed models is maximised with respect to the

adaptation data. This equation is more widely written in theform

µ̄=Wµ̂ (3.69)

whereW is ann x (n+1) matrix and̂µ is the extended mean vector

µ̂T = [1 µ1 . . .µn] (3.70)

Although a single global transform can be used for all the Gaussians, with avail-

ability of larger quantities of adaptation data more precise transforms can be computed

that apply to a smaller number of Gaussians. One solution to achieve this is the re-

gression class tree [Leggetter and Woodland, 1995b] where Gaussians that are close

in acoustic space are clustered together and undergo the same transformation. Figure

3.11 (A) shows an example of a regression class tree.

The steps involved in applying MLLR based speaker adaptation are as follows:

1. Create the regression class tree based on acoustic distance between phonemes.

The trees are usually built in a top-down approach using centroid splitting ap-

proach. Typically the Gaussian components in non-speech units such assil and

sp are tied together and form a child node of the root as shown in Figure 3.11

(B).

2. Accumulate the statistics for all the phonemes from the adaptation data with

reference to the speaker independent models.
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Figure 3.11: Regression trees

3. Using the statistics for all the phoneme states tied together at each node in the

regression tree, estimate the transformation matrix for that node. If the accumu-

lated statistics for a given node are not sufficient due to sparse data set, then the

node borrows the transform from its parent node.

4. Decode the test utterances using models with parameters updated by the MLLR

transforms.

To accumulate the statistics for each phoneme, the transcription for the adaptation

utterances is essential. In the absence of transcripts, theaccumulation is done in an

unsupervised manner, where the utterances are first decodedusing the speaker inde-

pendent models and the decoder hypothesis is used as an approximate transcription.

Under the MLLR framework, Gaussian covariance matrix can also be adapted

[Gales and Woodland, 1996; Gales, 1998]. The transforms to update the variances

as proposed by Gales and Woodland [1996] take the form

Σ̂ = LHLT (3.71)

where H is the linear transformation to be estimated and L is the Choleski factor of

the covariance matrixΣ. Typically the transformation matrices for the means are first

estimated and using the transformed means, the variance transformation matrices are

estimated. Thus two different different matrices are required to transform the mean and

variance of a single Gaussian and this approach is known as unconstrained adaptation.
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Using MLLR for adaptation, significant improvements in large vocabulary continu-

ous speech recognition have been obtained in several experiments. MLLR Transforms

have more recently found application in speaker recognition applications too. In [Stol-

cke et al., 2005] a set of MLLR transforms for each speaker areused as representative

vectors and Support Vector Machine classifiers are used to recognise the test speaker.

3.3.1.2 CMLLR (Constrained MLLR)

Unlike the standard MLLR, where independent transforms are computed for the Mean

and Variance adaptation, the use of a single constrained transform was proposed by

Digalakis et al. [1995] to update all the parameters of a single Gaussian. This variant

of MLLR is known as Constrained MLLR (CMLLR).

The update equations in CMLLR are as follows:

µ̂ = Acµ−bc (3.72)

Σ̂ = AT
c ΣAc (3.73)

where,Ac andbc are the constrained transform and the bias vector which needto be

estimated in a maximum likelihood sense from the adaptationdata.

Due to the constrained nature of the transforms, instead of transforming the models

themselves, they can also be used to transform the observation vectors. Applying

CMLLR, an observation vector at timet becomes

ôt = A−1
c ot +A−1

c bc (3.74)

This is essentially equivalent to transforming the featurevectors from a new speaker

to lie in the acoustic space of the speaker independent models [Gales, 1998].

In constrained MLLR, closed form solutions do not exist for the computation of

the transformation matrix. The transforms are therefore estimated iteratively.

3.3.1.3 Speaker adaptive training

Given a training corpus, in the normal acoustic model training procedure, the model

parametersλ are estimated to maximise the likelihood of training data

λ̂ = argmax
λ

L(O;λ) (3.75)

In SAT paradigm [Anastasakos et al., 1996], the idea is to jointly estimate a set of

speaker transforms and a set of canonical model parameters,such that the variations
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due to speaker differences are captured in the speaker transforms (G(r)) while the pho-

netic characteristics of the language are captured by the canonical models (λc). Canon-

ical model parameters so estimated are normalised across speakers.

(λ̂c,Ĝ) = arg max
λc,G(r)

R

∏
r=1

L(O(r);G(r),λc) (3.76)

where,Ĝ= (Ĝ(1),Ĝ(2), ...,Ĝ(R)), andO(r) is the set of observation sequences asso-

ciated with speakerr.

In practice, SAT is implemented in an iterative process as described below:

1. Train a speaker independent model using the Baum-Welch re-estimation process.

2. For each of the training set speakers estimate the CMLLR transforms using the

last updated speaker independent model.

3. Normalise the feature vectors from the training set speakers using the corre-

sponding transforms.

4. Retrain the SI model with the normalised feature vectors.

5. Repeat Steps 2-4 until the the likelihood scores stabilisefor the training set. The

final set of models are the canonical normalised models.

3.3.2 Maximum a posteriori adaptation

Maximum A Posteriori (MAP) adaptation provides a well defined mathematical frame-

work for incorporating the prior information of the model parameters with the informa-

tion provided by the adaptation data in the training process. The training process can

be viewed as an interpolation between the original acousticmodels and the maximum

likelihood estimate of the adaptation data. While in maximumlikelihood estimation

the parametersλ are chosen such that the likelihoodp(x|λ) is maximised, in MAP

estimation, parameters are set at the mode of the distribution p(x|λ)g(λ) whereg(.) is

the prior distribution ofλ.

3.3.2.1 Standard MAP

The key issue in MAP adaptation is the choice of an appropriate prior distribution

family. It is desirable to choose a prior density in the conjugate family which includes

the kernel densityp(x|λ).
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For a Gaussian mixture model withk mixture components, the kernel density

p(x|λ) for the datax= (x1 . . .xT) is of the form

p(x|λ) =
T

∏
t=1

K

∑
k=1

wkN(xt |µk,Σk) (3.77)

The parameter setλ=(w1 . . .wK,µ1 . . .µK ,Σ1 . . .ΣK) comprises the mixture weights

w which form a multinomial distribution and the parameters ofeach component(µ,Σ)
which are multivariate Gaussian densities. A sufficient statistic of a fixed dimension

does not exist forλ and hence a conjugate prior cannot be readily specified.

This issue is addressed in the seminal work on MAP adaptationfor continuous

density HMMs by Gauvain and Lee [1994]. It is shown that by assuming indepen-

dence between the weight parameters and the Gaussian density parameters, a prior

distribution can be specified as a product of Dirichlet distribution and Normal Wishart

distribution which are the conjugate pairs for multinomialand multivariate normal dis-

tributions respectively.

The update equations for the model parameters are derived using the Expectation

Maximisation algorithm [Dempster et al., 1977].

Using MAP estimation, the update equations for a Gaussian componentm in state

j is given by

µ̂jm =
∑T

t=1γ jm(t)

τ+∑T
t=1γ jm(t)

µ̄jm+
τ

τ+∑T
t=1γ jm(t)

µjm (3.78)

where,µ̄jm is the maximum likelihood estimate of the mean of the adaptation data,

µjm is the prior mean usually chosen from the previous iterationof the EM algorithm

and τ is the hyperparameter that controls the bias between the prior information of

model parameters and additional information from the adaptation data. τ is chosen

heuristically depending on the strength of the prior modelsand the amount of amount

of adaptation data available. Similar update equations exist for the other parameters.

Given a reasonable amount of adaptation data, MAP can be usedto smooth or adapt

the model parameters. An attractive property of MAP is its asymptotic convergence

to maximum likelihood estimation as the amount of adaptation data increases. The

main disadvantage of the use of MAP in its original form is that it updates only those

parameters from their prior values which are observed in theadaptation data. In a large

vocabulary system, there are typically thousands of Gaussians and this limits the usage

of MAP when the adaptation data is very small. Various extensions to MAP have been

proposed that aim to update the parameters associated with unseen data.
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3.3.2.2 Structural MAP (SMAP)

Structural MAP [Shinoda and Lee, 1997, 2001] takes a slightly alternate view of adap-

tation. The core idea in this approach is to model the mismatch between the speaker

independent mixture components and the adaptation data, and use such model as a

prior to adapt the parameters in a maximum a posteriori sense.

Given an observation vectorxt , the mismatch of this observation with respect to

every Gaussian mixture component is computed.

ymt = Σ−1/2
m (xt −µm) (3.79)

If there were no mismatch,ymt would be normally distributed with zero mean and

unit varianceY ∼N(y; 0̄, I). When there is a mismatch between the adaptation data and

the SI models the distribution would be,Y ∼ N(y;ν,η), ν 6= 0̄ andη 6= I , whereν and

η represent the shift and rotation needed to overcome the mismatch. This distribution

is called the normalised pdf.

In SMAP procedure, all the mixture components in the speakerindependent models

are clustered intoP clusters and normalised models are estimated for all the Gaussians

in each clusterp in a maximum likelihood sense as shown in equations 3.80 and 3.81

respectively.

ν̃p =
∑T

t=1∑Mp

m=1γp
mty

p
mt

∑T
t=1∑Mp

m=1γp
mt

(3.80)

η̃p =
∑T

t=1∑Mp

m=1γp
mt
(
yp

mt− ν̃p
)(

yp
mt− ν̃p

)′

∑T
t=1∑Mp

m=1γp
mt

(3.81)

The adaptation step involves transforming the parameters of all the components in

the cluster with its corresponding normalised pdf acting asthe prior.

µ̃p
m = µ̄p

m+
(
Σ̄p

m

)1/2 ν̃p (3.82)

Σ̃p
m =

(
Σ̄p

m

)1/2 η̃p
((

Σ̄p
m

)1/2
)′

(3.83)

To further improve the estimates, a hierarchical tree structure was proposed [Shin-

oda and Lee, 2001] to cluster the Gaussian components. With such a tree, the nor-

malised model at a node is used as the prior distribution in estimating the normalised

models for all the child nodes of that node. These MAP estimated normalised models

at each node are then used to adapt all the Gaussian components associated with that

node in maximum a posteriori sense.
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3.3.2.3 Maximum a posteriori linear regression

While MAP adaptation provides a robust estimate for the parameters, its effective-

ness is limited by the availability of sufficient adaptationdata. The parameters of only

the seen models in the adaptation data are re estimated. Linear regression based ap-

proaches on the other hand rely on the basis that several models are tied together. The

adaptation data for all the tied models are pooled together to estimate the affine trans-

forms for adaptation. Hence they give robust estimates evenwith small amounts of

data. However with the availability of larger amounts of data, there is a tendency to

overfit the parameters and the improvement in performance saturates quickly.

Maximum A Posteriori Linear Regression (MAPLR) [Chesta et al.,1999] was pro-

posed as a solution that gets the best of both worlds. The ideais to effectively apply a

global transform to all the models and further improve the estimates by local adapta-

tion. The problem is posed as estimating the affine transforms (W = (A,b)) from the

adaptation data using MAP criterion instead of ML criterion.

Ŵ = argmax
W

P(W|Y,λ) (3.84)

Ŵ = argmax
W

P(Y|W,λ)P(W) (3.85)

Under this formulation, it was suggested [Chesta et al., 1999; Siohan et al., 2001]

that the prior distribution for the affine transforms be chosen as the matrix multivariate

normal distribution

P(W)∼ |Σ|−(n+1)/2|Φ|−n/2exp

{
−

1
2

tr(W−M)
′
Σ−1(W−M)Φ−1

}
(3.86)

where, M,Σ, and Φ are the hyperparameters for the distribution family, withM ∈

ℜn×(n+1), Σ ∈ ℜn×n, Σ ≥ 0, Φ ∈ ℜ(n+1)×(n+1) andΦ ≥ 0.

With the prior distribution assumed as above, the affine transformW can be esti-

mated via the expectation maximisation formulation [Dempster et al., 1977].

With the availability of large amount of adaptation data, there arises a need to

cluster the Gaussians and estimate an affine transform for each of these clusters. This

leads to a requirement to define a large number of prior densities robustly. In Structural

MAPLR (SMAPLR) [Siohan et al., 2002], a hierarchical prior structure is proposed as

a tool to control the complexity of prior distribution estimation. Having defined a tree

structure for the priors, the idea is to use the posterior distribution of W in a given
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node as the prior distribution for the estimation of affine transformWc for its child

node. However, the posterior distribution ofW at a given node does not belong to

the class of matrix multivariate normal distributions. To resolve this problem, the true

posterior distribution is approximated by a distribution from the matrix variate normal

family having the same mode. This approximation is shown to work quite well and

thus provides a good framework for robust adaptation.

3.3.3 Speaker space adaptation approaches

Under speaker space adaptation approaches, we discuss the Cluster adaptive training

and Eigenvoices methods. These approaches are based on a slightly different paradigm

compared with the previously discussed approaches. These methods look at the acous-

tic space as not only partitioned in terms of differences in phonetic characteristics but

also by speaker characteristics.

3.3.3.1 Cluster adaptive training

In Cluster adaptive training (CAT) [Gales, 2000], the core idea is that speakers in

the training set can be clustered by their acoustic properties. Hence each Gaussian

componentm is represented by a canonical modelM

Mm =
[
µ1

m. . .µC
m

]
(3.87)

where, the acoustic space of the Gaussian component is clustered intoC classes, and

µi
m represents the mean of theith class for the componentm.

For a new test speaker (r) with a small amount of adaptation data, instead of hard

assigning the speaker to a cluster class, the Gaussian components’ means are chosen

as a linear interpolation of all the classes either with or without a bias term

µr
m = Mmλr +b (3.88)

µr
m = Mmλr (3.89)

Hereλr is the cluster weight vector
[
λ1

r . . .λC
r

]
for the speaker which needs to be

estimated from the adaptation data in ML sense.

The key advantage of this approach is that for any new speaker, only a small number

of cluster weight parameters need to be estimated. Hence rapid and robust adaptation

becomes possible even with the availability of a small amount of adaptation data.
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3.3.3.2 Eigenvoices

The underlying idea in the eigenvoices approach is that the acoustic characteristics of

a speaker can be represented as a linear combination of the acoustic characteristics of

other speakers. In eigenvoices [Kuhn et al., 2000], from a set of speaker dependent

models and the speaker independent model, high dimensionalsupervectors (dimen-

sionalityD) are created by concatenating the parameters that need to beadapted. The

order of the parameters in the supervectors is the same for all the speakers.

From theseR (R≪ D) supervectors, using dimensionality reduction techniques

such as principal component analysis,R eigenvectors of dimensionD are determined.

These are then ordered in terms of their eigenvalues and onlythe topK along with the

supervector of speaker independent model (e(0)) are retained as the basis vectors in

the eigenspace (K < R).

Each new speaker is projected as a pointP in this space as shown in equation 3.90

P= e(0)+w(1)e(1)+ . . .+w(K)e(K) (3.90)

The projection weights for a speaker are estimated from the adaptation data using

maximum likelihood eigendecomposition (MLED) [Kuhn et al., 2000]. The standard

ML approach to maximise the auxiliary function results inK equations withK un-

known weight parameters which can solved using Gauss-Jordan method.

Similar to CAT, the number of parameters to be estimated for a test speaker are

small and hence can be robustly estimated even with small amount of adaptation data.

3.4 Automatic age recognition

Automatic estimation of speaker age has been a growing topicof research over the

past few years. An age estimate of a speaker can be used as a useful cue to adjust

spoken dialogue system’s behavior to suit the communication behavior of the speaker

age group [Shafran et al., 2003]. It could also be used to giveappropriate information,

and in the mechanism of information delivery. However estimation of age based on

voice has not been an easy task to solve.

Though speech production deteriorates with age, there is noclear correlation be-

tween chronological age and speech. Some voices tend to showsigns of ageing in 40

years while the voices of some healthy elderly people above the age of 65 years do not

show signs of ageing. The profession of speakers (in particular whether the profession
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involves lot of speaking/shouting), smoking habits, and health conditions seem to have

a bearing on the vocal ageing.

Most of the automatic age estimation techniques hence try toachieve performance

comparable to perceived age. Perceived age is the age of a voice as perceived by human

listeners. Several approaches using cepstral features andperturbations in voice have

been used to classify speakers in age groups and compare the results with subjective

listening tests.

Cepstral features [Davis and Mermelstein, 1980] have been investigated by many

researchers for discrimination of age. The use of these features has been motivated by

the fact that they are robust for speech and speaker recognition applications. Mine-

matsu et al. [2002] used MFCC and∆ MFCC coefficients as acoustic features to create

Gaussian Mixture Models (GMM) of elderly speakers and non-elderly speakers. All

the speakers (in training and test sets) were classified as elderly or non-elderly based

on listening test. The test identified perceived elderly speakers with 90.9% accuracy.

Speech rate and local power perturbations were then added asadditional features and

the experiment repeated. The additional features gave a better discrimination of age at

95.3% identification rate. Shafran et al. [2003] used a HMM classifier based on cep-

stral features and pitch to recognise age, gender, dialect and emotion. Results on age

classification showed 68.4% correct classification using only cepstral features which

increased to 70.2% using both cepstral features andF0 features. In another approach,

Ajmera and Burkhardt [2008] reported that the slow moving temporal envelope of the

Cepstral features called Modulation Cepstrum coeffients givebetter age discrimination

than with the use of cepstral features themselves.

Müller et al. [2003] used various measures of Jitter and Shimmer for classification

of speakers to their age group. Jitter and shimmer as acoustic measures provided con-

sistently good results in age discrimination for a range of machine learning approaches

for classification including Artificial Neural Networks, K Nearest Neighbours, Naive

Bayes, and Support Vector Machines. Müller [2006] extended the acoustic features

from jitter and shimmer to also include harmonics to noise ratio, articulation rate, and

frequency and duration of speech pauses and the increased the complexity of classi-

fication problem to 8 classes representing children, teenagers, adults and seniors for

both the genders. 63.5% correct classification accuracies were achieved in this task.

The system was further improved [M̈uller and Burkhardt, 2007] by using a classifier

combining GMMs using frame based Mel Frequency Coefficients and Support Vector

Machines using long term pitch features. The system achieved classification perfor-
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mance close to human listeners.

In a recent study [Metze et al., 2007], a comparative study offour different ap-

proaches to age and gender classification has been made. The challenge was to clas-

sify a speaker into one of the groups of children, young males, young females, adult

males, adult females, senior males and senior females. The four systems used were

A) A parallel phoneme recogniser with separate models for each class B) A classifier

using dynamic Bayesian networks to combine various prosodicfeatures C) A system

based on linear prediction analysis and D) GMMs based on MFCC features. Parallel

phoneme recogniser seems to give the best performance for longer utterances but its

performance drops with shorter utterances. The system using prosodic features fared

well for both short and long utterances.

More recently, an age recognition challenge to classify speakers into one of the

4 subgroups (Child, Young, Adult and Senior) was organised asa subchallenge in

the paralinguistic challenge at interspeech [Schuller et al., 2010]. The system that

achieved the best accuracies [Kockmann et al., 2010] is based on a fusion of GMM-

UBM models, discriminatively trained models, SVMs, eigenvoice and anchor based

models. The accuracies obtained in age recognition were around 56%.

From all these studies, it is clear that there is no clear correlation between the

chronological age and the vocal age. However various prosodic features are good indi-

cators of ageing voice, though they may not be used to predictthe actual age accurately.

3.5 Automatic speech recognition on older voices

Studies on various changes in the characteristics of speechsignal observed in older

voices have been discussed in 2.3. It was also seen from the review in 3.4, that such

changes in voice also leave acoustic cues which can be exploited by human listeners

as well as machines to infer the speakers age with reasonableaccuracies.

As discussed in 2.3, less precise articulation is often associated with older voices.

Shuey [1989] conducted an interesting experiment in order to understand the speech

intelligibility differences between younger and older voices. Speakers from the two

age groups were asked to read CVCs embedded in a carrier phrase and the listeners

had to transcribe the target word. It was found that significantly higher number of

errors were made for the older speakers’ utterances. In an experiment to understand

socio psychological meaning of older people’s language andcommunication, Williams

and Giles [1992] report that older people’s voices were rated perceptually lower than
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younger voices by a set of young listeners and the recall of the message of the older

people was also found to be significantly lower than those of younger voices.

While there have been numerous studies on the effects of ageing on the voice,

there has been limited work to understand the performance ofASR systems on ageing

voices.

In an experiment to understand whether special acoustic models are required for au-

tomatic speech recognition of elderly voices [Baba et al., 2004], it has been observed

that the recognition accuracies of elderly voices above 70 years of age are 9-12% lower

than adult speakers using speaker independent acoustic models. While the drop in per-

formance for aged females was around 4-7%, it was significantly higher at 16-18%

for aged males. A relative increase of 5-8% in accuracies wasachieved when acoustic

models trained using elderly speech was used. It was also observed that the acoustic

models trained on elderly voices served as better baseline models for speaker adapta-

tion than those trained on younger adult voices. These results are consistent with the

observations made by Anderson et al. [1999] in which acoustic models trained with el-

derly speech gave 12% better accuracies with elderly voicesas compared to those with

acoustic models trained on non-elderly speech. Elderly menwere found to have sub-

stantially higher WERs. Further improvements in accuracies could be achieved using

gender and age group specific models and such results were found to be comparable to

speaker adapted models with VTLN normalised features.

In a study of speech recognition for children and the elderly[Wilpon and Jacobsen,

1996], it has been found that the error rates increase dramatically for voices below 15

years and above 70 years of age. They also observe that while accuracies could be

improved for younger voices by modifying the front end of thespeech recogniser and

with additional training data, such improvement in resultscould not be replicated for

older voices.

These research results indicate that there are differencesin the acoustic properties

of younger and older adults and lay the motivation for the work presented in this thesis.

It is of interest to investigate the possible causes for these differences in WERs and to

explore some possible ways to improve ASR accuracies for older voices.
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ASR accuracy on ageing voices:

Baseline Experiments

As discussed in section 3.5, ASR error rates have been reported to be higher for older

adults compared to younger adults. In this chapter, the ASR accuracies for younger

and older adults are presented and compared on three different corpora. The three

corpora are first described in detail. The experimental setup for each of these corpora

along with the baseline results are discussed in the subsequent subsections.

4.1 Corpora

One of the main challenges in working with older voices is thelack of speech corpora

for this domain. Most of the speech corpora used in ASR research are collected from

younger and middle aged adult speakers. The following threecorpora collected in

three different continents have been used in this research work

• SCOTUS Corpus - US English

• MATCH corpus - UK English

• JNAS Corpus - Japanese

All these three corpora have a good representation of speechfrom older speak-

ers. They are also reasonably balanced in terms of gender (male and female) and age

(younger and older) of the speakers. Each of these corpora also captures a distinct

speaking style. SCOTUS is a rehearsed spontaneous speech while the MATCH corpus

captures typical human interaction style with spoken dialogue systems in the form of

62
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short and dialogue driven utterances. JNAS contains several hours of read speech of

newspaper articles.

The three corpora and described below in detail and the advantages and disadvan-

tages of the usage of each of these corpora for this research are also discussed.

4.1.1 SCOTUS

The SCOTUS speech corpus is a collection of the audio recordings of the oral argu-

ments of the Supreme Court of The United States. These recordings have been made

public under the Oyez project3. Each recording’s duration is about one hour and con-

sists of speech from the advocates and judges arguing the case. These recordings were

archived on reel-to-reel tapes, which were later digitisedand made public.

Although the recordings from the 1980s to the present date are currently available

online, complete transcripts with speaker information areavailable only from the later

half of 1990s. Hence only those audio files annotated with speaker tags were used in

our experiments. In all, the experimental corpus contains 534 recordings. It consists of

speech from 10 judges over several years and speech from about 500 advocates. The

birth dates of the judges are known and hence their age at the time of an argument can

be precisely calculated. The birth dates of the advocates are not easily available, hence

wherever the dates were not available, their age has been approximated by using the

year of their law graduation and assuming their age at graduation to be 25.

The corpus available on the Oyez website is not readily usable for ASR experi-

ments. Each of the audio files is about 1 hour in duration with several speaker turns

and the transcripts have digits to represent years and case numbers etc. Several pre-

processing steps were involved as detailed below to make thecorpus usable for ASR

experiments.

1. The first step involved text normalisation. The punctuations and speaker turn

tags were first removed from each audio transcript to get a plain text transcript

of the entire audio. The speaker-sentence correspondence was stored in a sep-

arate metafile. The text contained digits in several forms viz., years, supreme

court case ids, currency and normal numbers. Context based rules were setup to

convert the digits to text. This process involved several iterations and tweaking

the rules to get most conversions correct. The text normalisation was manually

checked with random sampling.

3http://www.oyez.org

http://www.oyez.org
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2. The audio files available for download are in MPEG format. These were con-

verted to 16KHz 16 bit waveforms.

3. In order to obtain the sentence boundaries and speaker turn alignments, each

of the 1 hour long files was force aligned using acoustic models trained on 73

hours of meetings data recorded by the International Computer Science Institute

(ICSI), 13 hours of meeting corpora from the National Institute of Standards and

Technology (NIST) and 10 hours of corpora from the Interactive Systems Lab

(ISL) [Hain et al., 2005a]. These models will be referred to as ICSI-NIST-ISL

models in this thesis.

4. Each utterance was renamed as shown below to reflect all theavailable meta

data.caseIdSpeakerIdAgeSexStartTimeEndTime

4.1.1.1 Advantages and Limitations

One of the advantages of this corpus for ASR experiments is that the recording setup

for the Court proceedings has remained the same over a period of time and hence

the variations in noise and microphone characteristics areminimal. This reduces the

confounding effect of recording and channel conditions on ASR WERs.

The language used in the Supreme Court is formal and is fairly similar across all

the speakers. This allows us to assume minimal variability in the language models and

focus on the acoustic models.

The other advantage is that the data from the supreme court judges is available over

several years and thus allows longitudinal analysis.

One of the limitations of this corpus in that the number of older speakers (above 60

years) of age is quite limited. The corpus is also skewed by gender with most of the

corpus being from male speakers.

4.1.2 MATCH

The MATCH corpus [Georgila et al., 2009] was recorded at the University of Edin-

burgh for a cognitive psychology experiment that investigated the accommodation of

cognitive ageing in spoken dialogue interfaces [Wolters etal., 2009]. Speech utter-

ances were recorded from 24 younger users (aged 18-29 years,mean 22) and 26 older

users (aged 52-84 years, mean 66) in a wizard of oz (WOZ) system where each user
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booked health care appointments using nine different simulated spoken dialogue inter-

faces. A total of 447 dialogues were recorded using an EDIROLR01 digital recorder

and a sampling frequency of 44.1 kHz. The dialogues contain 3.5 hours of speech

in total. All dialogues were transcribed orthographicallyby a trained annotator using

the tool ‘Transcriber’ [Barras et al., 2001] in accordance with the AMI transcription

guidelines, which were used for creating the AMI meetings corpus [Carletta, 2007].

The corpus has been annotated semi-automatically with dialogue acts and infor-

mation state update information [Georgila et al., 2008]. Overall, the speech corpus

contains 1680 speech spurts4 from older adults and 1369 speech spurts from younger

adults.

4.1.2.1 Advantages and Limitations

Since the MATCH corpus was created for a cognitive psychologyexperiment, dialogue

structure, appointment scenarios and system vocabulary are tightly controlled. As a

result, the vocabulary is much less diverse and the languageis more formulaic than

that of corpora which are recorded for speech technology research. It is also relatively

small compared to other speech research corpora. Despite these disadvantages, the

MATCH corpus is one of very few corpora that has a good balance of older and younger

speakers. It contains highly detailed dialogue act and information state annotations.

4.1.3 JNAS

The Japanese corpora used in our experiments consists of 2 sets namely JNAS (Japanese

Newspaper Article Sentences) and S-JNAS (Senior-JNAS). Both these corpora are

read speech of sentences from Mainichi newspaper article sentences and a set of pho-

netically balanced (PB) sentences from the Advanced Telecommunications Research

(ATR) institute. The JNAS corpus is predominantly from youngand middle aged

adults. The JNAS corpus was collected by the Acoustic Society of Japan (ASJ) [Itou

et al., 1998, 1999]. The S-JNAS corpus is comprised of speechfrom older adults in the

age group of 60-91 years. This corpus was collected at the Nara Institute of Science

and Technology (NAIST) aimed at development of speech recognition technologies

for older people. Although these corpora were collected separately at different points

in time (S-JNAS was collected about 6 years after JNAS), theywere recorded under

4Here we refer one continuous segment of speech spoken by a user in his/her interaction turn with
the spoken dialogue system as a speech spurt
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similar recording conditions in booths using Sennheiser head mounted microphones

at 16KHz sampling rate as 16 bit waveforms. This is particularly useful since noise

and channel conditions are similar across the two corpora inaddition to the sentences

spoken being the same. The main factor that varies between the two corpora is the age

range of the speakers as seen in Fig. 4.1.
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Figure 4.1: Age distribution of speakers in the JNAS and the S-JNAS corpora

More specific details of the corpora are listed below.

• JNAS: It comprises read speech from 306 speakers (153 Male and 153Female).

There are in all 155 text sets, each set consisting of 100 sentences from newspa-

per articles and 50 ATR-PB sentences. Each set is usually readby one male and

one female speaker. Thus each speaker has around 150 utterances making a total

of about 45000 utterances in all.

• S-JNAS: The S-JNAS corpus has a predefined training and test set of speakers.

The training set has 301 speakers (151 Male and 150 Female) and the test set

has 101 speakers (51 Male and 50 Female). Each speaker’s recordings include

one set of 100 sentences from newspaper articles and two setsof 50 sentences

each from ATR-PB sentences giving a total of 200 utterances. The total amount
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of speech data is about 133 hours for the training speakers and about 44 hours

for the test speakers.

4.1.3.1 Advantages and Limitations

The main advantage of using the JNAS corpus in this research work is the availability

of a large amount of speech data from a large number of speakers. The corpus is well

balanced in terms of speaker age groups and gender. The utterances spoken by the

speakers in the JNAS and S-JNAS corpus are the same. This allows us to design the

experiments such that the test sets for younger and older adults have the same speech

utterances. This nullifies the impact of language models in the comparative results.

4.2 ASR WERs on older voices

In this section, the ASR experimental setup using the three corpora discussed above

are described. State of the art ASR systems were built using Hidden Markov Model

toolkit (HTK)5 [Young et al., 2006] and the ASR WERs of older and younger voices

are compared.

4.2.1 Experiments with SCOTUS corpus

4.2.1.1 Comparison of ASR WERs on younger adult and older adul t voices

Feature extraction

The SCOTUS corpus in MP3 format was first converted to 16KHz wavformat and then

parametrised using perceptual linear prediction (PLP) Cepstral features. A window

size of 25ms and frame shift of 10ms were used for feature extraction. Energy along

with 1st and 2nd order derivatives were appended giving a 39-dimensional feature

vector.

Cepstral means and variances were computed for each speaker in each recording.

These were then used to normalise the feature vectors to minimise any channel induced

affects.

Acoustic models

The acoustic models were trained on 90 hours of speech data from the advocates. A

significant portion of the entire corpus is from males, hencethe training data set is also

5HTK version 3.4http://htk.eng.cam.ac.uk

http://htk.eng.cam.ac.uk
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similarly skewed in favour of males with around 77 hours of speech from males and 13

hours of speech from females. As mentioned in section 4.1.1,the ages of some of the

speakers used in the training set are unknown. The distribution of the ages of speakers

(where known) is shown in Figure 4.2. Although it does not contain all the data, it

is suggestive of the fact that that the training set speakersare predominantly younger

adults.

The acoustic models have been trained as cross-word context-dependent triphone

HMMs, each state modeled as 18 component GMM for all speech phonemes and 36

component GMM for non-speech (sil & short pause) models respectively.
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Figure 4.2: Age distribution of speakers in the training set of the SCOTUS corpus

Language models

The language models were constructed from the transcripts of 260 United States Supreme

Court recordings from the 1970s. Back-off bi-gram language models were constructed

from this data. The vocabulary consists of 23445 words. The pronunciations in the

AMI lexicon were used for those vocabulary words common to AMI vocabulary [Hain

et al., 2005a] and the pronunciations for the rest of the vocabulary words were gener-

ated using the Festival speech synthesis system [Taylor et al., 1998].
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Test utterances

For theyounger adulttest set, speech utterances from 27 speakers (23 Male and 4

Female) in an age range of 30-45 were chosen. For theolder adult test set, speech

data from 12 speakers (10 Male and 2 Female) in the age range 60-85 were used. The

test speaker set is disjoint from the training set speakers.10 utterances from each test

speaker were kept aside for speaker adaptation and the remaining utterances formed

the test set. In all, theyounger adulttest set comprises of 4964 utterances (14.5 hours)

and theolder adulttest set comprises of 6652 utterances (19 hours). The perplexity of

the language model on the two test sets and the OOV rates are shown in Table 4.1.

Language Model Perplexity and OOV rate (%)

Younger adult test set Older adult test set

Perplexity 178.3 169.7

OOV Rate 3.8% 4.3%

Table 4.1: Perplexity and OOV rate for the younger adult and older adult test sets in

SCOTUS corpus

Baseline results

The ASR word error rates onyounger adultandolder adulttest sets are shown in

Figure 4.3. The results show a significant difference of 9.3%absolute higher WERs

for older voices as compared to younger voices. The WERs difference for males is

8.2% absolute while for females it is 13.3%. The differencesin WERs are statisti-

cally significant withp < 0.001 using the Mann-Whitney test [Mann and Whitney,

1947]. A possible reason for such high WERs for female speakersis the inadequate

representation of females in the training set.

Standard MLLR mean adaptation was used to see if speaker adaptation could al-

leviate age induced errors in ASR. Using the adaptation set of10 utterances for each

speaker, MLLR transforms were computed for each speaker andused in decoding the

test utterances. The difference in WERs even with MLLR speakeradaptation is 9.1%

absolute.

One of the main sources of inter-speaker variability in acoustic features is the vari-

ation in vocal tract dimensions. Vocal Tract Length Normalisation (VTLN) is a stan-

dard approach used to overcome this variability. Vocal tract length normalised acoustic
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models were constructed using an iterative approach as described in section 3.2.2. Us-

ing the normalised models, warping factors were estimated for each of the test speak-

ers from the adaptation set utterances. With VTLN, the improvements in WERs for

younger adults are higher than those for older adults leading to a difference in WER of

9.9% absolute between the two age groups.

Figure 4.3 also shows the comparative results with Speaker adaptive training. Us-

ing an iterative process as described in section 3.3.1.3, canonical models were trained.

For each test speaker, using the same adaptation set as used above, CMLLR transforms

were computed with respect to the speaker normalised canonical models. SAT gives

the best improvements in WERs. However, the difference in WERs between the two

age groups is still 9.8% absolute.
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Figure 4.3: Comparison of WERs on younger adult and older adult voices in the SCO-

TUS corpus. Refer tables: A.1, A.2, A.3 and A.4

From the results, we observe that though speaker adaptationand speaker normal-

isation improve the recognition accuracies, the gap between the WERs for adult and

older voices is not bridged. The results for females may not be a true representation
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of the difference as the sample set is very small, but overallthe difference in WERs

seems to be large enough for investigation into the possiblecauses.

4.2.1.2 Longitudinal Study of ASR accuracies on older voices

Speech data of the Supreme court judges is available over a period of several years. To

understand how the ASR accuracies vary for an older speaker with age, a longitudinal

ASR experiment was setup. 200 utterances from each year for each speaker from the

7 judges (5 Male and 2 Female) was used as test set. Speakers with IDs 02,03,04,05

and 08 are males while speakers 07 and 10 are females. The results have been plotted

in Figure 4.4. It can be seen that though there are small fluctuations in WER over each

year, there is a general pattern in the results showing increase in WER gradually as the

age increases for some speakers.
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Figure 4.4: WERs (%) with increasing age on older adult voices in the SCOTUS corpus.

For each speaker, MLLR transform matrices were computed formean adaptation.

The regression class tree consisted of 2 classes, one for speech and one for non-speech.

The longitudinal WER plots for all the speakers with speaker adaptation are shown in
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Figure 4.5. A least square line fit for the WER over several years for each speaker are

also plotted to understand the longitudinal trend.
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Figure 4.5: WERs (%) with increasing age on older adult voices in the SCOTUS corpus

with speaker adaptation

The longitudinal study results indicate that the WER gradually increases with age

during old age. Since the number of utterances for each year for each speaker was

limited, variations in the WER are expected, however the least squares line fit for WER

of all the speakers have a positive slope which suggests an increase in WER with age

especially after 65 years of age. For speakers 04,07 and 08, F-tests show that there is

strong evidence (p< 0.01) of a linear trend, and we conclude that in these cases WER

is indeed increasing with age.

From the regression plots, it is seen that the increase in WER with age varies across

speakers and the rate of increase differs for two speakers atthe same age. This suggests

that there is no clear correlation between chronological ageing and vocal ageing across

speakers.

Longitudinal studies on elderly voices using MLLR adaptation also show a gradual

increase in WER with age. For the case where MLLR has been used,we find that only

speakers 04 and 08 show statistically significant evidence of a linear trend of increasing

WER with age. The slopes of the longitudinal plots of each speaker using MLLR
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adaptation are less than those without adaptation, indicating that speaker adaptation

can reduce the age related impact to some extent.

4.2.2 Experiments with MATCH corpus

As seen from the results on SCOTUS corpus, the WERs on older voices are signifi-

cantly higher than those of younger voices. We perform similar baseline experiments

on the MATCH corpus. In this set of experiments, we examined the affect of age-

specific language models and acoustic models on speech recognition accuracies. Since

the amount of data available for each speaker is quite limited in this corpus, a ‘leave

one out’ strategy has been used in the experimental design.

4.2.2.1 Impact of language modeling

Design

The aim of this experiment was to assess the effect of the differences in interaction

style between younger and older users in the MATCH corpus, on the language model-

ing component of the speech recogniser and consequently on ASR accuracies. From

the transcripts of the MATCH corpus, the following bi-gram language models were

constructed:

1. from all the utterances of the older speakers(LM-Older)

2. from all the utterances of the young speakers(LM-Young)

3. for each test speaker, from the entire corpus excluding the data from the test

speaker(LM-All-1)

4. for each older test speaker, from the corpus of all the older speakers excluding

the data from the test speaker(LM-Older-1)

5. for each young test speaker, from the corpus of all the young speakers excluding

the data from the test speaker(LM-Young-1)

Since the amount of data in the MATCH corpus is not sufficient tobuild acous-

tic models from scratch, we used the speech from other corpora for this purpose.

ICSI-NIST-ISL acoustic models described before were MAP adapted with 13 hours

of speech from 32 UK speakers from the Augmented Multiparty Interaction (AMI)

corpus.
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For each older test speaker, three ASR experiments were performed, keeping the

acoustic model fixed and using different language models forthe speaker viz.,LM-All-

1, LM-Older-1andLM-Young. Similarly, ASR experiments were repeated for each of

the young speakers using the language models:LM-All-1, LM-Young-1andLM-Older.

Results

Goodness of fit of the language model on a test set was measuredusing perplexity.

We also assessed the number of OOV words. We found that language models trained

on younger users were a bad fit to the language of older users, whereas data from the

older users allowed us to model the language patterns of younger users reasonably

well. In particular, models trained on younger users only did not contain many of the

words older people used. Detailed results are shown in Table4.2.

Perplexity and OOV rate (%)

Test set Language Model Perplexity OOV Rate (%)

Younger LM-Older 5.44 1.38

Older LM-Young 19.18 15.57

Table 4.2: Comparison of the perplexities of the language model and OOV rates to

understand the goodness of fit of the language models trained on younger users data

for older users test set and vice-versa on MATCH corpus

Figure 4.6 shows ASR WERs using different language models as explained above,

averaged over all the young speakers and older speakers respectively. As we would

expect from the results presented in Table 4.2, we find that WERsfor older speakers

are particularly high when using the language models of the younger speakers. This is

due to the mismatch between the older and younger users’ interaction styles. Clearly,

we need age-appropriate data to build adequate language models for older speakers.

4.2.2.2 Impact of Acoustic modeling

Design

In this set of experiments, we examined the impact of differences in the acoustics of

older and young speakers on ASR accuracies. In order to isolate the effect of the acous-

tic models, we only used the language modelLM-All, which contains all utterances in
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Figure 4.6: WERs (%) for young and older speakers of the MATCH corpus using differ-

ent language models. (Refer Table A.7)

the MATCH corpus, for this set of experiments. The acoustic models described in the

previous experiment (ICSI-NIST-ISL models adapted with AMIdata) were used as

the baseline models. For each of the old speakers, two acoustic models were created

by maximum a posteriori adaptation of the baseline models using the speech from ei-

ther the rest of the old speakers excluding the test speaker (AMI + MATCH older-1)

or speech from the young speakers (AMI + MATCH younger). Acoustic models were

similarly created for each young speaker with the speech data from all the older speak-

ers (AMI + MATCH older) and the speech data from the rest of the young speakers

(AMI + MATCH young-1).

Results

Figure 4.7 shows average WERs for both the young speakers and the older speak-

ers. We observe that the WERs for older speakers are higher thanthose for younger

speakers by 11% absolute using the baseline acoustic models. Adapting the models

with speech from a new domain (i.e. appointment scheduling)is expected to reduce
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the WERs for the test data in the new domain. While adapting the baseline models

with older speakers from the MATCH corpus (AMI + MATCH older) brings down

the WERs for young speakers, the results are even better with adaptation using speech

from other younger speakers in the same corpus (AMI + MATCH young-1). The re-

sults for older speakers in Figure 4.7 are quite interesting, Contrary to the belief that

speech from a new domain should help in creating better models for the new domain,

adapting the baseline models with speech from the younger speakers of MATCH cor-

pus (AMI + MATCH young) deteriorates the performance for the older speakers in the

same corpus. Hence, there is a clear mismatch in the acoustics of older and young

speakers resulting in a higher WER for older speakers.
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Figure 4.7: WERs (%) for young and older speakers of the MATCH corpus using differ-

ent acoustic models. (Refer Table A.8)

4.2.3 Experiments with JNAS corpus

Most of the components from the Japanese ASR Toolkit [Kawahara et al., 1999] were

used in our setup.
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4.2.3.1 Acoustic models

Mel frequency cepstral coefficients with 12 filter banks werecomputed every 10msec.

Appending delta and Energy coefficients, the feature vectors had a dimension of 25.

Cepstral mean was subtracted for each utterance.

The acoustic models were trained using HTK [Young et al., 2006] as continuous

density HMMs. The phoneme set comprised of 43 phonemes as defined by the Acous-

tic Society of Japan. 3 Pause modelsSilB, SilE andsp for beginning and end of utter-

ance and short pause between words respectively are used in the phoneme inventory.

Context dependent triphone HMMs with 5 states per model and each state modeled as

16 component GMM were trained.

4.2.3.2 Lexicon

Japanese texts are written without spacing between them. Using a state-of-the-art

Japanese morphological analyser named ChaSen [Matsumoto etal., 1999] developed at

NAIST, the text from Mainichi newspaper was segmented into word chunks (morphs).

After the segmentation, the next step in text processing is conversion from Kanji (chi-

nese characters) to Kana conversion which is equivalent to aGrapheme to Phoneme

mapping. The Kana transcripts are further converted from orthographic to phonemic

katakana form. A vocabulary of 20K [Kawahara et al., 1999] constructed from the

most frequently used words (morphemes) in the Mainichi newspaper was used in our

experiments.

4.2.3.3 Language models

Word 2-gram and 3-gram language model with back off smoothing constructed from

65 million words (morphs) in the Mainichi newspaper were used in the decoding.

4.2.3.4 Decoder

The open source large vocabulary speech decoder Julius [Leeet al., 1998] was used

in decoding. It uses a forward backward two pass algorithm. In the first pass a frame

synchronous beam search in the forward direction outputs a word lattice. In the second

pass the lattice is re-scored in the reverse direction usingstack decoding approach.
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4.2.3.5 Evaluation setup

Training Set

The training set comprises of 205 speakers (about 31638 utterances) from JNAS

corpus and 187 speakers (28332 utterances) from the SJNAS corpus. Thus the training

set is balanced in terms of age and gender.

Test Set

The test set for SJNAS corpus was predefined with 101 speakers. An equal num-

ber of test speakers were chosen from the JNAS corpus such that the utterances from

the younger and older adults corresponded to the same sentences. This factors out

the differences in the ASR accuracies between speakers of the two age groups due to

language use pattern. The differences in accuracies if any,would be purely due to the

differences in acoustic characteristics between speaker sets.

The test set comprises of utterances from 101 older adults (5024 utterances, ap-

prox 50 utterances/speaker) and 101 younger adults (4099 utterances, approx 50 utter-

ances/speaker).

4.2.3.6 Baseline Results

Table 4.3 shows the baseline comparative accuracies for thetwo age groups using SI

acoustic models. The difference in WERs between younger and older adults is found to

be 4.5% absolute. While the WER increases by 1.4% in older females as compared to

younger females, the difference is more prominent in male speakers with a difference

of 7.7% absolute.

Younger Adults Older Adults

All speakers 15.9 20.4

Male 16.2 23.9

Female 15.5 16.9

Table 4.3: Comparison of WERs (%) of younger and older adults in the JNAS corpus

The split up of the WERs for the older speakers in age groups of 60-69 and 70-79

are shown in Table. 4.4. The WERs for older males is particularly high in the age

group of 70-79. The WERs for older females in 70-79 are quite low. Since there are

only six female speakers in this subset, the result may be somewhat biased.
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Age Group #Speakers Older Male Adults Older Female Adults

60-69 80 (M:36 F:44) 21.3 17.0

70-79 21 (M:15 F:6) 30.0 14.2

Table 4.4: WERs (%) for older adults in different age groups in the JNAS corpus

4.3 Summary

The WER for older voices was found to be significantly higher than for younger voices

from the baseline experiments on the three corpora. Use of standard speaker normali-

sation and speaker adaptation approaches improve the performance for older speakers

marginally. However, the difference in the WERs for the two agegroups persists. The

results on the MATCH corpus also highlight the fact that the interaction style of older

people with spoken dialogue systems is significantly different from younger adults.

Such differences need to be accounted in the design of SDS forolder people. The

results from JNAS corpus which has a balanced set of speakersin both the age groups

and in gender, indicates that the impact on WERs with ageing is more pronounced for

male speakers as compared to female speakers.



Chapter 5

Impact of changes in glottal source

parameters with ageing on ASR

In chapter 4, significantly higher ASR WERs were observed for the older adults than

for younger adults on the SCOTUS, MATCH and JNAS corpora. In this chapter, the

differences in voice characteristics of the younger and older adult speakers are anal-

ysed and an attempt is made to delve into the possible causes for the ASR performance

degradation on older voices. Several important glottal source parameters such as the

fundamental frequency, jitter (measure of temporal perturbations in glottal source pe-

riods), shimmer (measure of amplitude perturbations in glottal source periods), and

harmonicity for the two age groups are compared and whereverthe measures differ

significantly, the effect of changes in these parameters on ASR accuracies has been

analysed.

5.1 Experimental setup

Among the two English corpora used in this thesis, the numberof utterances available

in the MATCH corpus are quite limited and not quite sufficient for detailed analysis of

voice characteristics. Hence the SCOTUS corpus has been usedfor this set of experi-

ments. Since the number of female speakers in this corpus is also very small, we used

only the male speakers test set as described in section 3.3.1for voice analysis. This

also helps to keep the analysis free from gender induced variations. We have analysed

and compared the samples of phoneme ‘aa’ from adult and oldermale speakers.

Voice analysis is typically carried out on sustained vowel pronunciations recorded

in a controlled noise-free environment. However the SCOTUS corpus is spontaneous

80
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speech with a considerable amount of background noise. Beingspontaneous in nature,

the corpus also does not have sustained vowel pronunciations with durations over a

few seconds. Most of the samples of the vowels are typically afraction of a second

long and are part of a longer utterance. In order to pick the best available instances of

the phoneme ‘aa’ from the speech the following procedure wasused.

1. Each utterance was force aligned to the triphone transcription, in order to deter-

mine the frame boundaries and the likelihood of each triphone in the utterance.

2. All the triphone samples with the centre phoneme ‘aa’ wereselected.

3. Out of the selected samples, the ones with negative log likelihood greater than a

threshold of 1000 were rejected.

4. From the remaining, those samples having a duration less than 0.1 seconds were

rejected, to get the final set of vowel ‘aa’ samples for analysis.

In all, 2970 samples of ‘aa’ from 23 adult male speakers and 2105 samples from

10 older male speakers were used for voice analysis. Severalvoice parameters such as

the fundamental frequency, jitter, shimmer and harmonicity measures were computed

for the selected samples using ‘Praat’ [Boersma, 2001].

Apart from these parameter computations on sustained vowels, using complete

speech utterances cepstral peak prominence measures were also computed and anal-

ysed.

Each of the following sections deals with one voice parameter analysing if there is a

significant difference in the parameter value between adultand older speakers. Wher-

ever the difference is significant, we artificially modify those parameters in speech

from younger adults to analyse the impact on ASR accuracies.

5.2 Fundamental frequency

The result of the analysis of fundamental frequency are tabulated in Table 5.1. We

observe that the average fundamental frequency for older males is about 15 Hz (10%)

lower than that of adult male voices. The differences inF0 measures are statistically

significant atp< 0.001 using Mann-Whitney rank sum test.

In order to understand the affect of reduction inF0 on ASR accuracies, we arti-

ficially reduce theF0 by 10% and compare the WERs of the original waveforms and
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F0
Younger Males Older Males

p-value
Mean Std Mean Std

Median F0 144.4 44.3 128.2 45.4 < 0.001

Mean F0 143.9 43.2 128.0 44.6 < 0.001

Table 5.1: Fundamental frequency analysis for the phonations of vowel ‘aa’ in the SCO-

TUS corpus.

modified waveforms. The factor of 10% was used to reflect the difference in adult and

older voices. For this experiment, the ASR system is the sameas that described in

section 4.2.1.1. We use 400 utterances from 8 adult speakers(4 Male and 4 Female)

as the test set. For each waveform, the pitch tier is calculated using using Praat. The

frequencies are then scaled to 0.9 of their original value. Using the new pitch tier,

the waveforms are resynthesized using pitch synchronous overlap and add (PSOLA)

method [Moulines and Charpentier, 1990]. Figure 5.1 shows anexample of the wave-

forms andF0 contours before and afterF0 manipulation.

The word error rates before and after reduction inF0 are given in Table 5.2.

The WER increases by 1.1% absolute to 33.2% and is statistically significant with

p < 0.001 using the Matched pair sentence segment word error (MAPSSWE) test

[Gillick and Cox, 1989]. In order to be able to attribute the increase in WER to the

change in fundamental frequency and not to the resynthesis process, we repeated the

resynthesis process described above without modifying thepitch tier. The WER for

the resynthesized waveforms is 32.0% and the difference with respect to the original

waveform is statistically insignificant withp= 0.61 using MAPSSWE test.

We also perform VTLN, calculating the warping factors for each speaker separately

for the two sets. Using VTLN, the difference in WER is reduced to 0.7% absolute at

p< 0.01 using MAPSSWE test.

Word Error Rate (WER) %

Original Reduced pitch p-value

Without VTLN 32.1 33.2 < 0.001

with VTLN 28.8 29.5 < 0.01

Table 5.2: WER (%) with artificial reduction in fundamental frequency of the speech

from younger adults in the SCOTUS corpus.
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Figure 5.1: Illustration of artificial modification of fundamental frequency
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5.3 Jitter

For our analysis, the jitter measurements ‘Jitter Local (Jit Loc)’ and ‘Jitter Relative Av-

erage Perturbation (Jit RAP)’ as described in section 2.3.3 were computed. Since the

analysed samples were obtained from continuous speech, theduration of each sam-

ple is quite short. As a result each sample only has a few cycles of glottal periods.

Hence the higher order measures of Jitter which average on larger number of cycles

are unreliable in our experimental setup and thereby omitted in the analysis.

The variations of these jitter measurements are shown in Table 5.3. The changes

are statistically significant atp< 0.001 using Mann-Whitney rank sum test.

Jitter
Younger Males Older Males

p-value
Mean Std Mean Std

Jit Loc 1.89 1.50 2.41 1.83 < 0.001

Jit RAP 0.85 0.96 1.08 1.14 < 0.001

Table 5.3: Jitter analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

In order to understand the affect of increased jitter on ASR performance, we artifi-

cially introduce jitter into the 400 test waveforms from 8 speakers.

Pulse positions representing the glottal closures are extracted from the speech ut-

terances. Each pulse positionPPold is then perturbed to get a new pulse positionPPnew

as follows

PPnew= PPold+ r ∗α∗Tavg (5.1)

where,−0.5≤ r ≤ 0.5 is a uniformly distributed random variable,α is a factor con-

trolling the maximum perturbation allowed as a fraction of the average periodTavg.

Using these new pulse positions, the waveform is resynthesized by pitch syn-

chronous overlap and add method to get a waveform with increased jitter. Figure 5.2

shows an example of the waveforms before and after artificialincrease in jitter.

Temporal perturbations withα= 0.05 andα= 0.10 were introduced into the wave-

forms. To get an idea of the jitter values before and after themodification, the same ap-

proach as explained in section 5.1 was used to sample 401 occurrences of the phoneme

‘aa’ from the test utterances. The jitter measures on the samples from original and

modified waveforms are presented in Table 5.4.

Table 5.5 shows the ASR WERs on the original waveforms and the waveforms with

increased jitter. The change in WER with increased jitter is statistically insignificant
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Figure 5.2: Illustration of waveforms with artificial increase in jitter

Jitter
Original α = 0.05 α = 0.10

Mean Std Mean Std Mean Std

Jit Loc 1.63 1.41 2.31 1.52 3.08 1.69

Jit Rap 0.70 0.78 1.02 0.94 1.39 1.06

Table 5.4: Jitter values computed on phonations of the vowel ‘aa’ in the original and

modified waveforms
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(using MAPSSWE test) and the ASR system performance is seen tobe quite robust to

jitter variations.

Word Error Rate (WER) %

Original α = 0.05 α = 0.10

32.1 32.2(p= 0.62) 32.4(p= 0.17)

Table 5.5: WER (%) with artificial increase of jitter in the speech from younger adults in

the SCOTUS corpus.

5.4 Shimmer

Shimmer measures ‘Shimmer Local (Shim Loc)’ and ‘Shimmer Three point Amplitude

Perturbation Quotient (Shim APQ3)’ were computed using Praat. Again, due to the

short duration of analysed samples, shimmer measures that are averaged over larger

number of cycles have not been compared.

Table 5.6 shows that the shimmer measures for older males arehigher compared

to the adult males and the results are statistically significant (with p < 0.001 using

Mann-Whitney rank sum test).

Shimmer
Younger Males Older Males

p-value
Mean Std Mean Std

Shim Loc 10.73 5.22 11.33 5.27 < 0.001

Shim APQ3 4.65 2.70 4.93 2.88 < 0.001

Table 5.6: Shimmer analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

We artificially increase shimmer in the test waveforms to understand the affect of

increased shimmer on ASR performance. Pulse positions representing glottal closures

are extracted for each test waveform. From the location of the pulse positions, the

voiced and unvoiced segments in speech are determined. To simulate shimmer effect,

the speech samplesxold between two adjacent pulses in voiced segment are scaled to

obtainxnew as follows

xnew= xold ∗ (1+ r ∗α) (5.2)
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Figure 5.3: Illustration of waveform with artificial increase in shimmer

where,−0.5 ≤ r ≤ 0.5 is a uniformly distributed random variable which is fixed for

all the speech samples between two adjacent pulses, andα is a factor controlling the

maximum perturbation allowed.

An example of the waveform and spectrograms before and afterartificial introduc-

tion of shimmer is seen in Figure 5.3. Similar to the Jitter measurements in Table 5.4,

Shimmer values measured over the 401 segments of phoneme ‘aa’ in the test utterances

before and after artificial increase of shimmer are presented in Table 5.7.

Shimmer
Original α = 0.05 α = 0.10

Mean Std Mean Std Mean Std

Shim Loc 9.71 5.43 10.33 5.41 11.12 5.44

Shim APQ3 3.94 2.72 4.25 2.74 4.76 2.73

Table 5.7: Shimmer values computed on phonations of the vowel ‘aa’ in the original and

modified waveforms

Table 5.8 shows the results with maximum perturbation in amplitude between ad-

jacent periods of 5% and 10%. The effect of shimmer on ASR WERs isseen to be

insignificant.
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Word Error Rate (WER) %

Original α = 0.05 α = 0.10

32.1 32.1(p= 0.65) 32.1(p= 0.13)

Table 5.8: WER (%) with artificial increase of shimmer in the speech from younger

adults in the SCOTUS corpus.

5.5 Harmonicity

For the measurement of parameters indicating breathiness,autocorrelation (Autocorr)

and Noise to Harmonic Ratio (NHR) were computed from the chunked ‘aa’ segments.

CPP and CPPS were also measured using the whole speech utterances instead of chun-

ked phoneme utterances. The results are tabulated in Table 5.9.

Harmonicity
Younger Males Older Males

p-value
Mean Std Mean Std

Autocorr 0.85 0.08 0.85 0.09 0.61

NHR 0.21 0.15 0.21 0.16 0.79

HNR (dB) 9.03 3.15 9.10 3.16 0.49

CPP 10.81 0.83 10.69 0.82 <0.001

CPPS 2.71 0.43 2.69 0.4 <0.05

Table 5.9: Harmonicity analysis for the phonations of vowel ‘aa’ in the SCOTUS corpus.

It is observed that the differences in the harmonicity measures of younger adult

and older adult males are statistically insignificant (by Mann Whitney rank sum test).

Though the changes in CPP and CPPS measures are found to be statistically significant,

the actual difference in the values is very small. CPPS which has been reported by

Hillenbrand and Houde [1996] to be better correlated with perceived breathiness in

voice than CPP, differs only by a value 0.02 for the two age groups. This coupled

with the comparative results of NHR suggests that the difference in the breathiness

characteristics of younger and older male test sets used in our experiments do not

differ much.
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5.6 Summary

Many of the values of the voice analysis measures reported inthis article are somewhat

higher than the published values in diagnostic medical research. This is due to the fact

that we have not used sustained vowel pronunciations in clean recording conditions,

but extracted sustained phonemes from spontaneous speech.Due to chunking, there

is also a co-articulation effect at the beginning and the endof each analysed phoneme

sample. However the same procedure has been applied to both adult and older voices

in similar recording environments to analyse the differences between the two groups.

Indeed our analysis is relevant in this context as it is made on natural speech which is

the typical input to ASR systems.

Jitter and Shimmer measures have been extensively studied and have been used

by researchers in age recognition from voice. From our experimental results too, we

observe a clear increase in jitter and shimmer values for older voices. These measures

can work well for detection of ageing voices. However, the variations in these mea-

sures do not have a significant impact on ASR accuracies. Front end feature extraction

techniques in ASR such as perceptual linear prediction usedin our experiments are

quite robust and suppress the variations in the glottal source characteristics.

Changes in the fundamental frequency appear to increase the errors marginally,

which can be overcome to some extent using vocal tract lengthnormalisation.

The speech from older adults used in our experiments do not show a significant

increase in parameters related to breathiness. It is however an important parameter

that needs to be further investigated.



Chapter 6

Articulatory changes in older voices

As observed in the previous chapter, although there are significant differences in the

glottal source characteristics of younger and older adults, these changes do not con-

tribute significantly towards the reduction in ASR accuracies. In this chapter, some of

the aspects of the changes in articulation patterns with ageing are studied. In partic-

ular, it is of interest to see which phonemes are most affected in terms of recognition

accuracies. Phoneme accuracies on SCOTUS corpus and JNAS corpus are analysed to

see if any patterns emerge across corpora and across speakers.

Another widely studied articulatory parameter in vocal ageing research is the ‘rate

of speech’. Speaking rate has been reported to be slower in older adults as compared

to younger adults. However, the impact of slower speech rateon ASR accuracies is

not well understood. This issue is also addressed in this chapter with experimental

analysis.

6.1 Phoneme recognition accuracies

As discussed in section 2.2.3, several changes have been reported in the physiology

of the articulators with ageing. These include restricted jaw movement, loss of tongue

strength and the rate of movement of these articulators. This results in changes in

articulatory patterns during old age.

An interesting question that needs to be answered is whetherthese changes impact

all the phonemes in terms of ASR accuracies. Typically the hypotheses generated by

the ASR system are constrained by the allowed pronunciations imposed by the lexicon

and the sequence of words allowed by the langauge model. Hence simply expanding

the decoded word hypothesis to phoneme level hypothesis using the lexicon will not
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lead to proper insights.

In order to analyse the results at phoneme level, we remove all such confound-

ing affects by using a phoneme loop decoder. A phoneme loop decoder is a finite

state machine which allows any phoneme to follow any phonemeas shown in Figure.

6.1. Under such an unconstrained setting, the overall results in terms of percentage

of correct recognitions and overall accuracies are usuallymuch lower than the results

obtained using language models.

In the following experiments, we consider phoneme correct recognition percentage

as an evaluation metric. It is a ratio of number of correct recognitions of a phoneme in

the decoded hypothesis to the total number of occurrences ofthe phoneme in the ref-

erence transcript. The results are computed after dynamic programming based string

alignment of the reference and decoded hypotheses. Such an alignment procedure

allows the comparison of corresponding reference and recognition labels for a given

speech segment and hence the computation of accuracies and phoneme confusion ma-

trices.

It is also important to note that the usage of phonemes in a language does not have a

uniform distribution. Hence while analysing the overall impact on ASR accuracies, the

probability of the phoneme in the language is used to weigh the difference in phoneme

error for that phoneme between the two age groups.

sil sil

aa

ae

zh

sp

Figure 6.1: Phoneme loop decoder
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6.1.1 Results on the SCOTUS corpus

For the experiments with SCOTUS corpus, the training set and the test set are same as

those used in section 4.2.1.1. Since the number of older female adults are quite limited,

we analyse the phoneme errors of only the male speakers in this corpus. Monophone

HMMs were trained without any state tying. Each phoneme was modeled as a three

state HMM with 18 Gaussian components per state.

Figure. 6.2 shows the comparative results of correct recognition of each phoneme

for the two age groups. The results are categorised based on the phonetic classes and

the actual numbers can be found in the appendix in Table A.10.Only a few phonemes

are seen to have drastic reduction in correct recognitions.Among the monophthongs,

the lower vowels (aa, ao, ae) seem to be the most affected with over 10% difference

between the two age groups. All the diphthongs show comparable results exceptaw

for which the recognition drops by over 10%. In consonants, the fricativehh has

a substantial drop in performance. The r-coloured voweler is the other phoneme that

sees a drop of over 10%. The nasals (m, n, ng) have about 3-5% decrease in recognition

rates.

To understand which phonemes have the most impact on overallincrease in phoneme

error rates, the differences in phoneme correct recognition between the age groups are

scaled by the probability of the phoneme occurrence in the language. The phoneme

statistics are computed over all the utterances in the SCOTUScorpus and shown in

Table A.10.

The phonemes with most dominant affect on ASR accuracies in descending order

on SCOTUS corpus are as follows:

ae, aa, er, t, n, ao

6.1.2 Longitudinal results on the SCOTUS corpus

In section 4.2.1.2, it was seen that ASR accuracies deteriorate longitudinally for older

speakers in the SCOTUS corpus. In this section we analyse the phoneme recognition

rates longitudinally for those speakers. The motivation behind this experiment is to see

if patterns emerge in phoneme errors across speakers.

Using a phoneme loop decoder, test utterances from 5 adult male speakers from the

SCOTUS corpus were decoded. The same monophone acoustic models as described

in section 6.1.1 are used. For each of the speakers the test set comprises of about 200

utterances each recorded about 8 years apart. Table 6.1 shows the phonemes that have
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(c) Consonants
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(d) Affricates (ch, jh) and Fricatives (f, v, th, dh, s, z, sh,

zh, hh)
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(e) Nasals (m, n, ng), Liquids (l, r), Semi vowels (y, w)

and R Coloured vowel (er)

Figure 6.2: Phoneme correct recognition (%) on the SCOTUS corpus
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more than 10% decrease in phoneme recognitions with ageing.The phonemes in the

table for each speaker are sorted in decreasing order of the difference in recognition

rate longitudinally.

Speaker Id Start age End age Phonemes with largest decrease in recognition rate

02 79 87 g, jh, ch, aa, eh, l, r, hh

03 63 71 aw, g, zh

04 62 70 oy, s, ch, b, th

05 59 67 oy, uh, n, jh

08 60 68 zh, oy, aa

Table 6.1: Phonemes with largest drop in recognition rates in longitudinal study on the

SCOTUS corpus

It is seen that there is a large variability in terms of most affected phonemes across

speakers.

6.1.3 Results on the JNAS corpus

In the baseline results on the JNAS corpus in section 4.2.3, it was seen that the differ-

ence in WERs is highest between younger adult males and the older adult males in the

age range of 70-79 years. We use these two sets to compare the differences in phoneme

recognition rates. Similar to the experimental setup for the SCOTUS corpus, mono-

phone HMMs with 16 Gaussian components per state were trained, and a phoneme

loop decoder experiment was setup for JNAS corpus. The phoneme recognition rates

of the two test sets was compared.

Analysis of the monophone transcripts of the JNAS transcripts suggest that some

phonemes occur quite a lot while the occurrence of certain phonemes is negligibly low

as seen in table A.11. Hence from an ASR point of view, we look at the phonemes that

occur the most. Figure 6.3 shows the comparative recognition rates of younger male

and older male speakers in descending order of occurrence.

On scaling the differences in phoneme recognition rates with the probability of

occurrence of the phonemes, the phonemes that appear to havea major impact on the

overall decrease in accuracies for older adults are as follows:

i, a, r, e, s, m, u

Comparing the results on the SCOTUS and JNAS corpora, some of the lower vow-

els seem to be commonly affected by ageing.
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Figure 6.3: Correct recognition (%) of most used japanese phonemes for the younger

and older adults. Refer Table. A.11

6.2 Vowel centralisation

If the movement of the articulators are restricted in terms of force and range, it results

in an undershoot of vowel articulation. This undershoot canlead to changes in the for-

mant patterns, viz., formants with higher frequency tending towards lower frequency

and formants with lower frequencies tending towards higherfrequencies. This effect

is called vowel centralisation. It has been reported by Lisset al. [1989] that vowel cen-

tralisation is quite pronounced in very old speakers with all vowel realisations sounding

quite close to each other.

Vowel centralisation is typically measured using the vowelspace area. First and

second formant frequencies (F1 and F2) are calculated for each vowel and the vowels

are plotted in the 2 dimensional F1-F2 space. The vowel spacearea is the area enclosed

by the corner vowelsi, u, aandae.

For the vowel space analysis, speech samples from the SCOTUS corpus were used.

The analysis was again carried out on male speakers due to thelimitation in the number

of female speakers. The utterances used for analysis were the same as those used in

section 5.1 and the voice samples for vowel space analysis were chosen in similar

manner.
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1. Each utterance was force aligned to triphone transcription, in order to determine

the frame boundaries and the likelihood of each triphone in the utterance.

2. All the triphone samples with central vowel phoneme were selected.

3. Out of the selected samples, the ones with log likelihood/frame less than a

threshold of -80 and with a length less than four frames (40ms) were rejected.

Using ‘Praat’, the values of first (F1) and second formant (F2) frequency for each

vowel instance were computed at the midpoint of that instance’s duration. For each

vowel for a speaker, lower quartile (LQ), upper quartile (UQ) and interquartile range

(IQR = UQ-LQ) were computed. Outliers outside the range [(LQ-1.5IQR), (UQ+1.5IQR)]

were rejected. Mean values of each vowel for a speaker were computed from the re-

maining samples.
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Figure 6.4: Mean vowel space areas for younger and older male adults in the SCOTUS

corpus. Corner vowels and their standard deviations are also shown in the figure.

The vowel space bounded by the phonemesaa, uw, iyand ae for both the age

groups is shown in figure 6.4. The corner points of each quadrilateral is the average

across all the speakers in that age group. The area of the vowel quadrilateral for each

speaker is computed by summing the areas of the triangles formed by the pointsiy, uw,

aeandaa, uw, aefor that speaker. The area of the triangles is in turn calculated using

Heron’s formula
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Area=
√

s(s−a)(s−b)(s−c) (6.1)

where,a,b,c are the sides of the triangle ands= (a+b+c)/2

It is seen from Table 6.2 that the area occupied by the vowel quadrilateral of older

speakers is less than that of younger speakers, indicating vowel centralization. The

vowel space areas of the speakers in the two age groups are significantly different at

p< 0.01 using student T test.

Vowel space area (Hz2)

Younger adult males Older adult males Difference p-value

5.46×104 (std: 1.33×104) 3.99×104 (std: 0.97×104 ) 1.47×104 < 0.01

Table 6.2: Vowel Space Area comparison between younger adult and older adult males

in SCOTUS corpus

While all the corner vowels appear to shift in the F1-F2 space with ageing, the

phoneme recognition results reported in Figure 6.2 show that vowels ‘ae’ and ‘aa’

have a large decrease in performance with ageing while phonemes ‘iy’ and ‘uw’ do

not show much difference in accuracies.

In order to understand this better, the centroids of all the monophthongs (averaged

over all the speakers in each age group) are shown in Figure 6.5. For the older speak-

ers, the vowels appear to move closer to each other into clusters in the F1-F2 space

especially in the central region of the vowel space. This might lead to a reduction in

the discrimination capacity between phonemes (atleast in the F1-F2 space) and also

explain to some extent the large decrease in recognition accuracies for some of the

central vowels. It is also interesting to see that with ageing, there is a tendency of F1

decreasing and F2 increasing for most of the phonemes.

It is important to clarify at this point that in the calculation of F1 and F2 for the

vowels, segments from continuous speech were used and thus may have inherent con-

founding co-articulation effects with adjacent phonemes.The segments chosen are

also typically very short in duration and more so in case of short vowels such as ‘ih’,

‘ax’, ‘eh’ and ‘er’ which further impacts the accurate computation of the true for-

mant frequencies. However, extreme care has been taken to remove the outliers and

to choose the best samples available for analysis with the same procedures applied for

both the age groups. In Figure 6.5.(b), for instance, the short vowels ‘ih’ and ‘ax’ seem

to shift significantly for older age group. It is not clear if this shift is indeed due to the



Chapter 6. Articulatory changes in older voices 98

350 400 450 500 550 600 650 700 750
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

aa

uw

iy

ae

ih

ax

eh

er
ah

ao

uh

F1 (Hz)

F
2

 (
H

z
)

(a) Vowel space: younger adults

350 400 450 500 550 600 650 700 750
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

aa

uw

iy

ae

ih

ax

eh

er ah

ao

uh

F1 (Hz)

F
2

 (
H

z
)

(b) Vowel space: older adults

Figure 6.5: Centroid positions of common vowels in younger and older Adults

influence of ageing or due to the limitation of the procedure of choosing samples from

continuous speech. It needs further investigation with experiments on other corpora to

understand clearly this effect.

6.3 Speaking rate

Speaking rate has been reported to be lower in older adults than younger adults. Though

the underlying physiological change for the decrease in speech rate is not clear com-

pletely, it is believed to be a result of restricted free movement in articulators and a

reduction in motor control capabilities. It has also been suggested that older adults

tend to deliberately reduce speech rate so as to be more intelligible under restricted

motor control abilities.

Slower speaking rate is a combined effect of longer pronunciation of words, in-

creased number of pauses and pause duration. The impact of speaking rate differences

on ASR accuracies has received little attention in ASR research. Fosler-Lussier and

Morgan [1999] indicate that the WER increases marginally with increased speaking

rate.

In this section, the differences in speaking rates on SCOTUS and JNAS corpus

are analysed. Two different approaches are employed to compute and compare the



Chapter 6. Articulatory changes in older voices 99

speaking rates between the two age groups. The impact of speaking rate differences

on ASR accuracies are then investigated on the JNAS corpus.

6.3.1 Speaking rate comparison on SCOTUS corpus

For our analysis of speaking rate, we compute the average number of frames (amount

of time) per phoneme. Analysis is done on the younger and older adult male test sets

described in section 5.1. The utterances being analysed were first force aligned to

a phoneme transcription. All the silences and short pauses were then deleted. The

purpose of deleting the pauses was to analyse if there is a difference in the speaking

rate in the speech part of the utterances. The average duration (dp) for each phoneme

for each age group was then computed using the information from forced alignment

results.

For overall speaking rate, a weighted average of all the phoneme durations is com-

puted as follows:

d = ∑
p∈P

wp∗dp (6.2)

where,wp is the probability of occurrence of the phonemep.

We find from our results in Table 6.3 that there is a statistically significant decrease

in the speaking rates in older voices. From table A.12, it is also seen that there is a

consistent decrease in speaking rate with ageing for all thephonemes.

Average duration (msec) per phoneme

Younger Adult males Older adult males p

81.0 90.8 < 0.001

Table 6.3: Speaking rate differences between younger and older adults on the SCOTUS

corpus

6.3.2 Speaking rate comparison on JNAS corpus

For the analysis of speaking rate on JNAS corpus, we use two different approaches:

1. using the state occupancy probabilities of the phoneme HMMs.

2. using forced alignment method as described in the previous subsection.
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In the JNAS corpus, we have a reasonably large and equivalentamount of training

utterances for each gender-age category viz., Male-Young,Male-Old, Female-Young,

Female-Old. Using these sets, monophone acoustic models were trained for each cat-

egory. The model set for each category comprises of 3 state HMMs for each phoneme

with 16 Gaussian components per state.

Given an HMM with transition probabilities in states given bya(s)i j , the expected

durationdp of occupying all the statesS of the HMM for phonemep is given by

[Rabiner, 1989]:

dp = ∑
s∈S

1

1−a(s)ii

(6.3)

Equation 6.3 gives the expected number of frames emitted by aHMM and thus can

be used as a measure of frames/phoneme. The average number offrames occupied per

phoneme in a model setP can again be similarly computed as a weighted average of

durations over all the phonemes.

d = ∑
p∈P

wp∗dp (6.4)

The weightswp are the expected probability of a phoneme in the language. From

the phoneme counts over the whole JNAS corpus, the weights were approximated and

tabulated in Table A.13.

Table 6.4 shows the expected duration per phoneme for each ofthe models trained.

It is seen that the speaking rate is slower for older adults both male and female as

compared to their younger counterparts.

Speaking Rate (msec per phoneme)

Method
Males Females

Younger adults Older adults Younger adults Older adults

Model Based 71.7 94.9 78.9 98.8

Forced alignment 72.0 91.2 78.1 93.8

Table 6.4: Speaking Rate differences between younger and older adults in the JNAS

corpus with a) model based method where the transition parameters of the hidden

Markov models are used to estimate the expected occupancy of each phoneme and b)

using forced alignment method to compute average number of frames associated with

each phoneme.

As seen in Table 6.4, similar results are obtained even with the forced alignment

method as described in Section 6.3.1.
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6.3.3 Impact of speaking rate changes on ASR accuracies

From the speaking rate analysis on JNAS corpus, it is observed that the acoustic models

for younger and older adults differ by a large margin in transition parameters across

all the phonemes. The probabilities of occupying the same state is higher in models

trained on older speakers as compared to those trained on younger speakers.

Let the monophone acoustic models trained on each age-gender category be repre-

sented as follows:

• Younger Male Adults :ΘYM = {µYM,σYM,WYM,TYM}

• Older Male Adults :ΘOM = {µOM,σOM,WOM,TOM}

• Younger Female Adults :ΘYF = {µYF,σYF,WYF,TYF}

• Older Female Adults :ΘOF = {µOF,σOF,WOF,TOF}

To understand the impact of changes of duration, we replace the transition parame-

ters of the models corresponding to younger male adults by the transition probabilities

of the Older male adults. The transition parameters for the other models are also re-

placed similarly to get a set of modified models.

• Θ̂YM = {µYM,σYM,WYM,TOM}

• Θ̂OM = {µOM,σOM,WOM,TYM}

• Θ̂YF = {µYF,σYF,WYF,TOF}

• Θ̂OF = {µOF,σOF,WOF,TYF}

Using a phoneme loop decoder, the test sets (as described in section 4.2.3) for each

age-gender category is decoded using the original and modified acoustic models for

that category.

The results for older speakers are shown in Table 6.5. These results capture in

effect, the outcome of slower speech test set decoded on models trained on slower

speech and models trained on faster speech, all other parameters of speech being the

same. It is observed that while correct recognitions are almost the same, the accuracies

suffer a large decrease for both male and female speakers with modified models. It

can thus be concluded that insertions errors increase for slower speech decoded with

models trained on relatively faster speech.
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Phoneme accuracies using phoneme loop decoder for older speakers

Acoustic models
Older males Older females

% Correct % Accuracy % Correct % Accuracy

Original (Θ) 72.3 54.2 78.9 62.4

Modified (Θ̂) 72.5 50.1 78.9 59.9

Table 6.5: Phoneme accuracies using phoneme loop decoder for older speakers

Table 6.6 captures similar results for younger speakers. Itis interesting to note that

insertion errors are less even for faster speech decoded on models suited for slower

speech. While the correct recognition rates are marginally lower with modified models,

the overall accuracies seem to be better. These results are however not constrained by

language model weighting and do not completely explain the outcome in a complete

ASR setup.

Phoneme accuracies using phoneme loop decoder for younger speakers

Acoustic models
Younger males Younger females

% Correct % Accuracy % Correct % Accuracy

Original (Θ) 73.3 58.7 73.9 61.0

Modified (Θ̂) 72.9 60.4 73.9 62.7

Table 6.6: Phoneme accuracies using phoneme loop decoder for younger speakers

We repeat the above experiments using a full ASR decoder including the language

models and lexicon. The experimental setup is similar to that explained in section

4.2.3, except that in the current set of experiments insteadof triphone acoustic models,

we use monophone models trained separately for each age-gender category.

The accuracies for the older speakers are tabulated in Table. 6.7 and the split of the

errors in terms of substitutions, deletions and insertionsis shown in Table 6.8.

We note that while (substitution + deletion) errors remain almost the same, inser-

tion errors for slower speech with models tuned for faster speech are 1.2% absolute

higher for male speakers and 0.3% absolute higher for femalespeakers. It is interest-

ing that although the reduction in speaking rate is similar for both the older males and

females, there is a considerably higher insertion error rate for older males with models

trained on relatively faster speech.

The results for the younger speakers are shown in Tables 6.9 and 6.10.
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Word accuracies for older speakers

Acoustic models
Older males Older females

% Correct % Accuracy % Correct % Accuracy

Original (Θ) 75.8 69.6 84.3 80.0

Modified (Θ̂) 75.6 68.1 84.2 79.6

Table 6.7: Word correct recognition and accuracies for older speakers in the JNAS

corpus with original and transition parameter modified models

Word Error details (%) for older speakers

Acoustic models
Older males Older females

Subs Dels Ins Subs Dels Ins

Original (Θ) 21.0 3.2 6.3 13.8 1.9 4.3

Modified (Θ̂) 21.6 2.8 7.5 14.0 1.8 4.6

Table 6.8: Substitution, deletion and insertion errors for older speakers in the JNAS

corpus with original and transition parameter modified models

Word accuracies for younger speakers

Acoustic models
Younger males Younger females

% Correct % Accuracy % Correct % Accuracy

Original (Θ) 77.8 73.1 80.7 77.4

Modified (Θ̂) 77.2 72.9 80.5 77.2

Table 6.9: Word correct recognition and accuracies for younger speakers

Word Error details (%) for younger speakers

Acoustic models
Younger males Younger females

Subs Dels Ins Subs Dels Ins

Original (Θ) 19.0 3.3 4.7 16.6 2.7 3.4

Modified (Θ̂) 19.1 3.6 4.3 16.6 2.9 3.3

Table 6.10: Substitution, deletion and insertion errors for younger speakers in the JNAS

corpus with original and transition parameter modified models
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In the test on younger speakers, once again the insertion errors reduce with models

tuned for slower speech but only marginally by 0.4% absolutefor males and 0.1%

absolute for females. However, the deletion errors increase by 0.3% and 0.2% for

males and females with modified acoustic models. Overall, there is no evidence of a

large difference in errors for faster speech decoded on models trained on faster speech

and models trained on slower speech.

6.4 Summary

In this chapter we have looked at the increase in ASR errors with ageing from the point

of view of articulatory changes.

Comparative analysis of the phoneme errors on SCOTUS and JNAS corpus be-

tween the two age groups suggests that certain lower vowels have higher increase in

errors with ageing. However, it is difficult to find strong patterns and generalise age re-

lated disfluencies across speakers as seen from the longitudinal results on the SCOTUS

corpus.

The study of vowel space area changes shows vowel centralisation with ageing

where the vowels move closer to each other in the first and second formant space.

The experiments to analyse the impact of slower speaking rate as observed in older

speakers on ASR accuracies suggest an increase in insertionerrors and the impact is

seen to be more dominant for older male speakers.
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Acoustic models for older voices

The main concern of this thesis is to improve the acoustic models for older voices.

Hence we are interested in addressing the question whether speech from older speak-

ers is different from that of younger speakers in the acoustic space. We seek to answer

the question through a speaker age-group classification task. Results of the speaker

classification using two different approaches are presented. Motivated by the clas-

sification accuracies, we then look at ASR accuracies using supervised hierarchical

models based on gender and age. Hierarchical models are thenbuilt in an unsuper-

vised manner and the ASR accuracies analysed. Finally we look at a simple strategy

based on speaking rate differences to refine the acoustic models for older speakers.

7.1 Speaker classification and clustering

In order to understand how close or separable the acoustic features of the older voices

are from those of the younger voices, experiments on speakerclustering were per-

formed. Since the objective is to understand the effect of ageing on the features used in

the ASR system, the experiments are based on MFCC and PLP co-efficients. Prosodic

features that can give a good discrimination for age based clustering as seen in chapter

5, have not been used in these experiments.

The MATCH corpus was used in these experiments since it has a roughly balanced

set of 24 younger and 26 older speakers. In the first set of experiments, Support Vector

Machine (SVM) classifiers were trained for younger and oldervoices and the classifi-

cation accuracies measured. In the second set of experiments, using MLLR transforms

as feature vectors, the speakers were clustered into four groups using repeated bisec-

tions.

105
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7.1.1 Age group classification using SVMs

The goal of this exercise is to see how well the speakers can beclassified into their

respective age groups automatically using a simple SupportVector Machine (SVM)

based classifier.

MFCCs were computed from the utterances of all the younger and older speakers.

A window size of 25 ms and a frame shift of 10 ms was used in the feature extraction

to get 14 dimensional vectors (including the energy).

SVMs with Radial Basis Function (RBF) kernels were used for classification. In

SVM approach of classification, the data is mapped into a higher dimensional space

and a linear separating hyperplane with maximal margin is found in the higher di-

mensional space. The RBF kernel does a non-linear mapping of the data into higher

dimensional space and takes the form

K(xi ,x j) = exp(−γ‖xi −x j‖
2) (7.1)

For the classifier to function properly, two parameters vizγ - the RBF kernel pa-

rameter andC the penalty parameter for the error term, need to be fixed apriori. A

cross validation with a grid search on the parameters was performed and the values of

the parameters that gave the best performance were fixed at:C= 256 andγ = 2.

Since the number of speakers in the corpus is limited, a ‘Leave one out’ approach

was used. The SVM classifiers were trained using LIBSVM [Chang and Lin, 2001].

The following steps were involved in the process:

1. For each test speaker, training set from the rest of the speakers’ data was created.

2. All the training vectors were normalised (to zero mean andunit variance) and

the same normalisation applied to the test set.

3. Using a stratified selection approach, a subset of 10000 training samples and

2000 test samples were selected. This was done since the number of training

samples was very high making it computationally intensive to train the models.

4. Binary classifiers were trained for each test speaker, the two classes being ‘younger’

and ‘older’

5. The class for each sample in the test set was predicted using the classifiers and

the accuracies calculated.
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Each speaker was assigned to a class based on majority vote. The overall accuracy

of the classification was 70%. The precision and recall for each class are shown below

in Table 7.1.

Older speakers Younger speakers

Precision Recall Precision Recall

73.9% 65.4% 66.7% 75%

Table 7.1: Precision And recall for each class in age group classification task on MATCH

corpus using support vector machines

From the results, it is seen that variations in speech due to ageing reflect in the

feature vectors used in ASR and it is possible to estimate theage group of a speaker

with reasonable accuracy. This 2 class problem is a relatively simpler task than age

recognition.

These accuracies are consistent with the accuracies obtained in speaker age and

gender recognition literature. Metze et al. [2007] report an average accuracy of around

45% with state-of-the-art systems when identifying a speaker age category on a rela-

tively more challenging task of 7 classes comprising of children, young males, young

females, adult males, adult females, elderly males and elderly females respectively.

Human recognition on the same task had a precision of 54.7% and recall of 69.3%. In

a perceptual study on age recognition by voice, Schötz [2001] reports that there is a

better than chance probability of human listeners judging the speaker age within±10%

of chronological age.

7.1.2 Speaker clustering based on MLLR transforms

MLLR transforms used in speaker adaptation map the means of speaker independent

HMMs to fit the target speaker more closely. These transformscan be used as speaker

identity and have been used in speaker recognition tasks [Stolcke et al., 2005].

We propose a new metric to calculate the distance between twospeakers using

MLLR transforms as feature vectors. The metric is explainedin depth in chapter 8. In

brief, the distancedTSbetween two speakers whose MLLR transforms are represented

by AT andAS is given by:
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dTS=
K

∑
k=1

‖ (AT −AS)ck ‖

‖ ck ‖
(7.2)

whereck is thekth mean of theK clusters computed from the means of all Gaussians

in the speaker independent model.

Using the AMI speaker independent models (described in section 3.3.2), MLLR

transforms were computed for all the speakers in the MATCH corpus. To compute

the distance between each of these speakers using equation 7.2, 1000 points (ck) were

computed from the means of all the Gaussians in SI model. The similarity between the

speakers was then computed assimilarity= 1000−d.
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Figure 7.1: MATCH speakers in 3D space using multi dimensional scaling on the dis-

tance matrix

Figure 7.1 shows a 3 dimensional plot of all the speakers in the MATCH corpus.

The plot was generated using multi dimensional scaling on the distance matrix between

all pairs of speakers.

For the classification task, the speakers were clustered into four groups using CLUTO

[Karypis, 2003] by the repeated bisections method. In this method, the speakers are

first clustered into 2 groups, which are again bisected to obtain the desired number

of clusters. The bisection is based on maximising the objective function as shown in

equation 7.3
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maximise
N

∑
i=1

√
∑

v,u∈Si

sim(u,v) (7.3)

where,N is the total number of clusters,Si is the set of speakers assigned to clusteri, u

andv represent the two speakers in that set, andsim(u,v) is the similarity between the

two speakers.

Younger Males (5)

Older Males (2)

Younger Males (2)

Older Males (8)

Older Females (1)

Younger Females (6)

Younger Females (11)

Older Females (15)

(7)

(11)

(6)

(26)

Total Speakers (50)

(18)

(32)

Figure 7.2: Clustering of speakers in the MATCH corpus

The speaker distribution in the clusters is shown in Figure 7.2. As expected at the

first level of clustering, the male and female speakers are separated out. At the next

level of clustering, there appears to be some separation between the younger and older

male speakers. While for the females, there is a large overlapof younger and older

females in a cluster. This also corroborates with the fact that age related changes in the

voice for women are less pronounced than those observed in men.

The overall accuracy of the system is 68%. One advantage of this method over the

previous SVM based method is that there is no need to tune any parameters.

7.2 Supervised hierarchical models

Speaker independent models have to generalise in order to cater to the large variety in

speaker space. When the models are built for targeted sets of speakers, the recognition
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accuracies are higher. A good improvement can be achieved byjust using gender

dependent models. In the previous section, we have seen thatspeakers can be separated

out in acoustic space based on their age group with a reasonable accuracy. In this set

of experiments, we explore how much increase in ASR accuracies can be obtained by

exploiting the a priori knowledge about the gender and ages of the training and the test

set speakers. Hierarchical acoustic models based on gender+age category are trained

and used for decoding the test utterances. The experiments are carried out on the JNAS

corpus due to the good balance of speakers in terms of age and gender.

The work by Baba et al. [2001] is similar in principle to this work. Based on

the hypothesis that the acoustic space for elderly speakersis separable from that of

younger speakers, separate speaker independent acoustic models are built for the two

age groups. Those models were further adapted to each gendercategory to obtain

significant improvements in performance. In our work on speaker clustering, we find

that the top level clustering is principally based on the gender factor and hence we

adopt the strategy of gender dependent models adapted to agecategory. Since the

acoustic space for younger and elderly speakers is not completely separable, instead of

training separate models for each category, we derive the gender-age based models by

adaptation of speaker independent models thus allowing efficient sharing of data.

7.2.1 Experimental setup

The training data used for SI acoustic models in the baselineexperiments on JNAS

corpus (section 4.2.3) are balanced in terms of gender and age. Gender and age group

specific models were built in a hierarchical structure from these models as shown in

Figure 7.3. Using the MAP approach withτ = 10, the speaker independent models are

first adapted with the male and female subsets of the trainingset to get gender depen-

dent models. These models are further adapted using ‘gender+ age group’ specific

subsets to create 4 more models. The mean, variance and mixture weight parameters

are estimated for each model using the priors from the parentnodes.

The language models and the decoding setup are the same as in the setup described

in section 4.2.3.
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Figure 7.3: Training gender and age dependent acoustic models

7.2.2 Results

7.2.2.1 Gender dependent models

The test set utterances as described in the baseline experiments are decoded using the

appropriate gender dependent model for each test speaker. We use the prior knowledge

of the gender of the test speaker to choose the appropriate acoustic model. The WER

results are tabulated in Table.7.2. Overall, there is an absolute improvement of 1.2%

and 1.7% in WER over the baseline results (in section 4.2.3.6)for younger adults and

older adults respectively. Older Males have the maximum improvements in WER of

2.5% as compared to the other groups.

Younger adults Older adults

All speakers 14.7 18.7

Male 15.1 21.4

Female 14.3 15.9

Table 7.2: Comparison of WERs (%) of younger and older adults in the JNAS corpus

using gender dependant models
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7.2.2.2 ‘Gender + Age’ dependent models

Again the prior knowledge of the age of the test speaker is used to select one of the four

acoustic models adapted to gender and age group. The resultsare tabulated in Table.

7.3. Consistent improvements in WERs over the baseline are observed for all groups.

Interestingly, a further improvement over gender dependent models is obtained for

older adults (both male and female speakers). From the results it appears that while it

is beneficial for older adults to have the gender dependent models adapted to the older

speaker set, it is not the case for younger adults. The performance is better for the

younger adult group with a larger training pool (including speech from older speakers)

of data.

Younger adults Older adults

All speakers 14.9 18.4

Male 15.7 21.1

Female 14.2 15.7

Table 7.3: Comparison of WERs (%) of younger and older adults using ‘Gender + Age’

dependant Models

7.3 Unsupervised hierarchical models

In the previous experiment, prior knowledge of the gender and age of the training

and test set speakers was used to build the hierarchical models. This however is not

feasible in practical systems. Most speech corpora are not annotated with gender and

age details of the speakers.

7.3.1 Acoustic models

We use an unsupervised clustering approach described belowto build the hierarchical

models.

1. Using the speaker independent models, compute an MLLR transform for each

speaker in the training set.

2. The distance between each pair of training speakers is computed using equation

7.2
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3. The speakers are then clustered into groups using the repeated bisections method.

4. The SI models are adapted hierarchically using the data from the training speak-

ers clustered at each node using MAP adaptation.

The training set age distribution in the hierarchical models is seen in Figure.7.4.

The clustering at the first level turns out to be predominantly gender based. In the next

level some pattern with age groups is observed. Nodes 1 and 2 are somewhat biased

towards older males and females respectively, while nodes 0and 3 are biased towards

younger males and females respectively.

Figure 7.4: Unsupervised hierarchical models. Figure shows the age and gender statis-

tics of training set speakers clustered at each node

7.3.2 Testing

Utterances from each test speaker are decoded against all the models in the hierarchical

structure and the model that maximises the likelihood of thetest set is chosen as the

acoustic model for that speaker. However decoding with several model sets leads to

undesirable increase in the computational time. To overcome this, we decode the first
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test utterance from a speaker with all the models and select the model with the best

likelihood score.

Typically, the models selected with the likelihood scores from the first utterance

and scores accumulated over all the utterances are the same.There were a few cases

where they were different, but in such cases the models were found to be parent and

child nodes in the hierarchical tree and the choice of eitherof them did not have a

significant impact on the ASR accuracies. Hence in all the results reported below,

likelihood scores from the first utterance were used in modelselection.

7.3.3 Results

The results with the best model choice for each test speaker are shown in Table. 7.4.

It is seen that the results are comparable to the hierarchical models built using prior

knowledge of age and gender.

Younger adults Older adults

All speakers 14.7 18.7

Male 15.0 21.3

Female 14.3 16.0

Table 7.4: WERs (%) of Younger and Older odults using unsupervised hierarchical

models

The statistics for the number of test speakers choosing a particular model in the tree

is shown in Figure 7.5. Female speakers do not show any pattern in picking age based

models, while the male speakers seem to prefer models adapted to their age group.

Interestingly, 11 out of the 15 older male speakers in the agegroup of 70-79 pick the

model corresponding to Node 1 which has a higher proportion of older males in the

training set.

7.4 Modifying HMM transition parameters

Often, there is a requirement to deploy ASR systems in environments where there

is sufficient data available from younger speakers to build acoustic models, but zero

resources available from older speakers. However the target set of users for the system

might be older speakers, for instance in care homes.
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Figure 7.5: Unsupervised hierarchical model. At each node, the statistics of the test

speakers selecting acoustic model corresponding to that node is shown.
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Motivated by the results in section 6.3 where models trainedon slower speech give

much higher accuracies for older voices, we want to understand if it is possible to

improve the ASR accuracies for older speakers by adjusting the state transition prob-

abilities of the HMMs to increase state persistence and thereby model slower speech

better.

Traditionally, hidden semi Markov models [Murphy, 2002] have been very popular

models to capture variations in speaking rate. These modelsintegrate the state duration

probability distributions explicitly into the HMMs. In such models the unobservable

state is semi-Markovian where the probability of state transition depends on the time

duration elapsed since entry to the occupied state. Even though such models come

with increased complexity, they have been shown to give significant improvements in

ASR accuracies over the traditional HMMs [Oura et al., 2006].

In this section, we are interested in exploring the possibility of adaptation of HMM

transition parameters to suit slower speech without any additional complexity in the

model. Following procedure has been adapted for the transition parameter modifica-

tion.

Let α be the desired fractional increase in the duration of occupancy of a state,

ai,i be the probability of occupying the same statei andai,i+1 be the probability of

transitioning to the next state in the following time instant. The modified parameter̂ai,i

is related to the original parameterai,i by the following relation.

1
1− âi,i

=
1+α
1−ai,i

(7.4)

Simplifying this relationship, and subtracting the residual weight added toai,i from

ai,i+1, we get the following relations for the modified parameters.

âi,i =
α+aii

1+α
(7.5)

âi,i+1 = ai,i+1−
α(1−ai,i)

1+α
(7.6)

7.4.1 Experimental results on the JNAS corpus

The experimental setup is similar to that described in section 4.2.3. The test set in this

set of experiments is only the set of utterances from older adult speakers. The transition

parameters of all the HMMs in the acoustic models are modifiedfor α varying from

5% to 40% in steps of 5%. The WER results are shown in Table 7.5.
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Word Error Rates (%)

α Overall Male Female

0 20.5 24.0 16.9

0.05 20.3 23.7 16.9

0.10 20.2 23.6 16.8

0.15 20.2 23.6 16.7

0.20 20.1 23.5 16.6

0.25 20.0 23.4 16.5

0.30 20.0 23.5 16.4

0.35 19.8 23.2 16.3

0.40 19.8 23.2 16.3

Table 7.5: WERs (%) on older speakers in the JNAS corpus using acoustic models with

modified transition parameters

7.4.2 Experimental results on the SCOTUS corpus

The same experiment is repeated on the SCOTUS corpus. The testset is again only

from older adult speakers. The results on SCOTUS corpus are displayed in Table. 7.6

7.4.3 Discussion

It is quite interesting to see some relative gains in accuracies on both the corpora. On

JNAS corpus, the improvements in accuracies are quite reasonable, while on SCOTUS

corpus, the improvements are minuscule. The possible causeis that the speaking rate

for older speakers in JNAS corpus is substantially lower than younger speakers, while

it is only marginally lower in SCOTUS corpus as seen in section6.3.

If it is known apriori that the target users of the ASR system would be elderly

speakers or people with a slower speaking rate, then there seems to be value in adjust-

ing the transition parameters.

Although a value of 15% or 20% forα seems appropriate for older speakers, it is

also not clear from the experimental results, what is the best choice for the value ofα.

This could possibly be better estimated in a maximum likelihood sense from a small

development set from the target user.
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Word Error Rates (%)

α Overall Male Female

0 40.4 38.8 46.1

0.05 40.3 38.8 46.0

0.10 40.3 38.8 45.9

0.15 40.3 38.8 45.9

0.20 40.4 38.9 45.9

0.25 40.4 38.9 45.8

0.30 40.4 38.9 45.8

0.35 40.9 39.3 46.4

0.40 40.8 39.3 46.4

Table 7.6: WERs (%) on older speakers in the SCOTUS Corpus with modified transition

parameters

7.5 Summary

Though MFCC and PLP features are designed mainly to capture the phonetic charac-

teristics in speech, they also capture meta information about speaker characteristics.

Speaker clustering task into two age groups using these features achieves an accu-

racy of 70%. A method to compute the acoustic distance between two speakers using

MLLR transforms is also introduced in the speaker clustering experiments.

Motivated by the separation of the speakers in acoustic space based on age and

gender, the use of supervised hierarchical ‘age and gender’models has been explored.

Significant improvements in ASR accuracies are achieved using such models. It is

also observed that for older adults these models outperformgender dependent models

which is not the case for younger adults.

Using the speaker distance measure proposed, hierarchicalmodels constructed in

an unsupervised manner are also seen to give accuracies comparable to the supervised

models.

Artificial modification of the transition parameters of the HMMs to cater for slower

speaking rate of older speakers is explored. Favourable results are attained in this task

on JNAS corpus.
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Speaker selection to augment

adaptation data

In typical ASR based interactive voice response and spoken dialogue systems, only a

few seconds of speech is generally available from a user to adapt the acoustic models

to his/her voice. Linear regression based speaker adaptation techniques such as MLLR

and MAPLR are widely used in such scenarios where the transformation matrices can

be efficiently computed with a reasonable amount of data. However when the trans-

forms are computed using a very small amount of adaptation data, the improvement in

recognition accuracy using the adapted models can be low; indeed the accuracy with

the adapted models can be lower than that with the speaker independent models.

To overcome this problem of sparse data, several approacheshave been devised to

characterise the test speaker and make better use of the datafrom the existing speakers.

Eigenvoices [Kuhn et al., 2000] is one such idea where the test speaker is characterised

as a linear combination of eigenvectors which are computed from speaker dependent

(SD) models of the training set speakers. This approach however has limitations when

applied to large vocabulary systems due to the need to generate several SD models and

in the computation of speaker coefficients in the high dimensional Eigen-space.

Another approach to tackle data sparsity is to augment the adaptation data for the

target speaker with speech data from other reference speakers acoustically close to

the target speaker. The reference speakers can be a subset ofthe speakers used to

train the SI models as well as other speakers whose data becomes available at a later

stage. Such systems where more corpora becomes available for speaker selection can

be easily envisaged in practical applications. In telephony based IVR systems, speech

data can be collected as the system is used and the collected data can be made available

119
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as a pool of reference speakers. In broadcast news, speech content is made available

on daily basis from different speakers. Hence it makes sensein such scenarios, to build

a speaker independent ASR system and use the data made available consequently, to

improve the performance of the system.

Some related work based on this approach of speaker selection was conducted by

Yoshizawa et al. [2005], where GMMs were trained for each reference speaker and

the models that maximised the likelihood for the target speaker’s adaptation data were

chosen as the closest speakers. Wu and Chang [2001] built custom HMMs for each

reference speaker using MLLR and the speakers whose models maximised the likeli-

hood scores for forced alignment of the adaptation data werechosen as the reference

speakers.

Recently, an approach to speaker recognition using MLLR transforms as feature

vectors has been investigated [Stolcke et al., 2005, 2006].The core idea is to concate-

nate the coefficients of the adaptation transforms into highdimensional vectors and use

these vectors for speaker identification using SVM classifiers. Inspired by this work,

we extend the idea of using transformation matrices as speaker features to identify the

reference speakers acoustically closest to the target speaker. However, we do not use

SVM classifiers since our task is different from speaker recognition. We use a distance

metric based on transformations to compute the distance between speakers.

In this chapter we first explain the distance metric used and verify its validity on a

speaker identification task. The speaker selection strategy to augment the adaptation

data is then outlined. This is an interesting generic speaker adaptation strategy not

specifically targeted for the older speakers. The experimental results on AMI corpus

are discussed to illustrate the usefulness of this approachfollowed by the extension of

the idea to SCOTUS corpus, where the results are analysed separately for younger and

older speakers.

8.1 Distance measure

Stolcke et al. [2005] concatenate the coefficients of MLLR matrices to create high

dimensional vectors and these vectors are used as speaker features. Such high dimen-

sional vectors have been shown to have good discrimination properties for classifica-

tion but the disadvantage of this approach is that it just treats the matrix as a vector and

discards the property of the MLLR matrices that enable it to transform the means of

HMMs to match the target speaker.
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We propose a distance metric that takes advantage of the transformation defined

by the MLLR matrices. Given MLLR matrices from two speakers,sample points in

the acoustic space are transformed by the two matrices and the distance between the

transformed points is calculated. We cluster the means of all the Gaussians in the SI

model and choose the centroids of the partitions as the sample points. This ensures a

good coverage over the acoustic space.

The distanced between two speakers whose MLLR transforms are representedby

AT andAS is given by:

d =
K

∑
k=1

‖ (AT −AS)ck ‖

‖ ck ‖
(8.1)

whereck is thekth mean of theK clusters computed from the means of all Gaussians

in the speaker independent model.

This metric is in principle similar to matrix operator norm but instead of choosing

the maximum, we sum over all the points being considered. It hence measures well the

actual operation of the transformation matrix in the acoustic space.

8.2 Speaker identification task

In order to understand how well the proposed distance metrichelps in identifying the

closest transformation matrices, it was applied to a speaker identification task.

The experimental setup consisted of reference MLLR transforms and test MLLR

transforms for a set of speakers. For each speaker, the utterances used in computing

the reference and test transforms were disjoint. The task isto identify the closest

reference transform for each test transform using the distance metric proposed and

when the closest reference transform is from the same test speaker, it is treated as

correct recognition.

The SCOTUS corpus was used for this task. Acoustic models comprised of 18

component GMMs per state. In all, the SI acoustic models comprised 59886 Gaussians

over 3324 independent states.

A set of 100 speakers was used for the speaker identification task. To compute the

reference and test MLLR transforms, about 40 seconds and 12 seconds of speech was

used respectively for each speaker. A two class regression tree for speech and silence

was used for the MLLR computation and only the speech transforms were used in

distance computation.
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The sample points in acoustic space to be used in calculatingthe distance, were

selected as the centroids from k-means clustering on all theGaussian means in the SI

model. The task was repeated with various sizes of sample points viz., global mean,

100 clusters, 1000 clusters and using all the Gaussian Meansin the SI model. A simple

euclidean distance (Frobenius norm) between the co-efficients of the matrices was also

used for comparison.

The results for this task are shown in Table 8.1. We observe that a set of 1000

points in the acoustic space is sufficient to achieve acceptable accuracy.

Distance measure Accuracy

Euclidean Distance between transformation matrices 32%

Transformation of the global Mean of all Gaussians in SI model 36%

Transformation of 100 Cluster Means 97%

Transformation of 1000 Cluster Means 98%

Transformation of all the Gaussian Means 98%

Table 8.1: Speaker identification task

As mentioned earlier, the objective of this task is only to make a sanity check of

the distance metric and hence the results have not been compared with other competing

methods for speaker recognition.

8.3 Speaker selection

Given a set ofN reference speakers, our task is to select a subset of these speakers who

are acoustically closest to the target speakerT.

Denoting the transformation matrices for the target speaker asAT , theith reference

speaker asARi (i = 1. . .N) and using an identity matrix to represent the SI model

AI = [Im×m : 0m×1]m×(m+1),

• Compute a linear transformAT for the test speaker from the available adaptation

data.

• Compute the distancesdTRi for i = 1. . .N anddTI.

• Choose a subset of speakers satisfyingdTRi ≤ dTI to augment the adaptation

data.
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Figure 8.1: Speaker Selection

• Recompute the linear transform for the test speaker using theaugmented data.

To illustrate the speaker selection process, Figure. 8.1 shows the speakers in 3d

space (generated using multidimensional scaling). The reference speakers selected for

augmentation are the ones that lie within the spherical manifold with the target speaker

at the center with a radius ofdTI. In practice, the dimension of the speaker space is

large and the selection manifold is a high dimensional ellipsoid.
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8.4 Experiments

The experiments were carried out on the AMI and SCOTUS corpora.

8.4.1 Experiments with the AMI corpus

8.4.1.1 Setup

Features

The waveforms were parametrised into 39 dimensional PLP based features with

first and second order derivatives

Acoustic models

The ICSI-NIST-ISL acoustic models were MAP adapted with 40 hours of speech

from the AMI corpus. With 8 and 16 Gaussian components per state for speech and si-

lence respectively, the SI model comprised 3712 independent states with 29720 Gaus-

sians in total.

Language models

Back-off bi-gram language models and vocabulary of size 50002 words were built

using transcripts of several meeting corpora including Switchboard, Call Home, Fisher,

ICSI, NIST, ISL and other web data resources [Hain et al., 2005b].

Reference set

The reference speaker set comprised of 69 speakers used to MAP adapt the SI

models and 78 speakers not used in the training set. Each speaker had about 30 minutes

of speech data on average.

Test set

The test speaker set in this corpus consisted of 42 speakers with 200 utterances as

test data per speaker and a small adaptation set separate from the test set.

8.4.1.2 Procedure for speaker selection

The means of all the Gaussians in the SI acoustic models were clustered into 1000

groups using k-means clustering for each of the two corpora.The centroids of each

of these clusters were used as the sample points for computing the acoustic distance

between speakers. From each of the reference speakers’ data, MLLR and MAPLR

mean transforms were computed using a two class regression tree, one for speech and

one for non-speech. Three sets of adaptation data were used with different amounts

of data for the test speakers viz., 1)10-15 seconds of speechper speaker 2) About 30
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seconds per speaker and 3) About 1 minute per speaker. Adaptation transforms were

computed from all the adaptation sets using the actual transcripts for supervised case

and using the hypotheses from first pass decoding for unsupervised case. For each of

the test speakers, acoustically closest speakers were chosen as described in section 8.3.

8.4.1.3 Results

The baseline results for the AMI corpus are shown in Table 8.2. The baseline WER

of 46.3% is much higher than 39% WER reported on the same corpusin [Hain et al.,

2008], but our experimental setup is quite different from the original AMI setup. The

ICSI-NIST-ISL models were adapted to the AMI domain with only40 hours of in

domain data, in order to keep aside seperate speaker set as reference speakers. Addi-

tionally the test set in our experimental setup is also different from the AMI set. Hence

the difference in WER is not surprising.

The WERs with speaker adaptation are also tabulated in Table 8.2. When only 10-

15 secs of adaptation data is available, it is seen that speaker adaptation is not optimal.

The WERs increase in most cases.

Speaker independent 46.3

Adaptation Data 15s 30s 60s

MLLR Supervised 50.2 46.0 43.9

MLLR Unsupervised 51.5 47.5 45.3

MAPLR Supervised 48.1 45.3 43.7

MAPLR Unsupervised 49.3 46.7 45.1

Table 8.2: AMI Corpus: Baseline results (WER %)

In order to understand if there is merit in adapting the acoustic models for a tar-

get speaker with speech from other speakers, an oracle styleexperiment was setup.

For each of the 42 test speakers, the test utterances were decoded with MLLR trans-

forms generated from each of the 78 reference speakers not present in the training set.

The reference speakers were then sorted in increasing orderof WER and the speech

from top 10 speakers in the sorted list was chosen as the adaptation data. A WER of

45.4% was obtained using such adapted models. From the baseline results shown in

Table 8.2, we observe that more than 30 seconds of adaptationdata is required from

the target speaker to achieve similar improvement in accuracy under the same experi-

mental setup. This reinforces the hypothesis that speech data from acoustically similar
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speakers can be shared to improve ASR WERs.

Reference Speakers Train set Train + Add Set

Adaptation Data 15s 30s 60s 15s 30s 60s

MLLR Supervised 46.2 45.6 45.5 45.9 45.6 45.2

MLLR Unsupervised 47.4 46.2 45.8 46.8 45.9 45.4

MAPLR Supervised 46.1 45.7 45.4 45.8 45.7 45.3

MAPLR Unsupervised 47.1 46.1 45.7 46.2 45.9 45.7

Table 8.3: AMI Corpus: Results with augmented adaptation data (WER %)

Results with adaptation using augmented data using automatic speaker selection

procedure are shown in Table. 8.3. It capture WERs using 1) onlythe training set

speakers as reference speakers and 2) Training set speakersand additional speakers

(Train + Add Set). The results show a significant reduction inWER with augmented

adaptation data when the adaptation data is limited to 10-15seconds. The WER reduc-

tion is significant atp< 0.001 using MAPSSWE test. As the adaptation data from the

target speaker increases, the benefit from using other speakers’ speech reduces.

Augmenting the adaptation data is seen to be particularly advantageous in the unsu-

pervised case which is often the situation for practical systems. It is also observed that

accuracies with MAPLR mean adaptation are overall better than MLLR mean adapta-

tion. With augmented adaptation data, an improvement of 4.2% relative for supervised

case and 4.5% relative for unsupervised case are achieved.

Using speakers additional to the training set speakers, a further improvement in

recognition accuracies can be achieved as seen in Figure 8.2.

8.4.2 Experiments on SCOTUS Corpus

The main motivation to extend the experiment to SCOTUS corpusis to get a feel for

the kind of improvements in ASR accuracies for younger and older adults using this

approach.

8.4.2.1 Setup

ASR system

The SI acoustic models used are the same as those described insection 8.2. Back-

off bigram language models and the vocabulary were constructed from the transcripts
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Figure 8.2: Augmentation of adaptation data. Results on the AMI corpus
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of the Supreme Court of the United States proceedings resulting in 23445 words types.

Reference Set

The reference speaker set consists of speech data from 267 training set speakers

and 282 additional speakers not used in the training set. Each reference speaker had

about 8 to 20 minutes of available data with an average of 12 minutes per speaker.

Test Set

The test speaker set comprised of 27 younger adults and 12 older adults disjoint

from the training and additional speaker set. Each test speaker had about 60 minutes

of data and a small set of about 3 minutes kept aside as the adaptation data.

8.4.3 Results

The same procedure as described in the AMI experiments abovewere followed even

for the SCOTUS corpus.

The baseline results for the younger and older adults are shown in Tables 8.4 and

8.5 respectively. The results shown in these tables are withadaptation sets of 15 secs,

30 secs and 60 secs which are a subset of the 120 second adaptation data used for

speaker adaptation results shown in section 4.2.1.1. It is again seen from these results,

that speaker adaptation with very little adaptation data can be a tricky issue.

Speaker Independent 30.4

Adaptation Data 15s 30s 60s

MLLR Supervised 30.9 30.3 29.8

MLLR Unsupervised 31.0 30.4 30.0

MAPLR Supervised 30.5 30.0 29.7

MAPLR Unsupervised 30.6 30.1 29.9

Table 8.4: SCOTUS Corpus: Baseline results (WER %) for younger adult speakers

The results with augmented adaptation data for younger and older adults are dis-

played in Tables 8.6 and 8.7 respectively.

From figures 8.3 and 8.4, it is seen that trends in WER improvements similar to

those observed on AMI corpus are repeated on SCOTUS corpus as well. The gains for

younger adults by data augmentation is higher than those forolder adults. However, it

must be noted that the number of older speakers in the training corpus as well as the

additional set is extremely low. Hence suitable augmentation data for older speakers
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Speaker Independent 40.4

Adaptation Data 15s 30s 60s

MLLR Supervised 40.4 39.8 39.7

MLLR Unsupervised 41.0 40.3 40.0

MAPLR Supervised 39.8 39.5 39.3

MAPLR Unsupervised 40.3 39.8 39.8

Table 8.5: SCOTUS Corpus: Baseline results (WER %) for older adult speakers

Reference Spkrs Train set Train + Add set

Adaptation Data 15s 30s 60s 15s 30s 60s

MLLR Supervised 30.4 30.2 30.1 29.6 29.5 29.5

MLLR Unsupervised 30.4 30.2 30.2 29.5 29.5 29.5

MAPLR Supervised 30.4 30.2 30.2 29.7 29.7 29.6

MAPLR Unsupervised 30.4 30.2 30.2 29.7 29.7 29.6

Table 8.6: SCOTUS Corpus: Results with augmented adaptation data (WER %) on

younger adult speakers

Reference Spkrs Train set Train + Add set

Adaptation Data 15s 30s 60s 15s 30s 60s

MLLR Supervised 39.6 39.6 39.6 39.7 39.7 39.6

MLLR Unsupervised 39.6 39.6 39.7 39.7 39.7 39.7

MAPLR Supervised 39.7 39.7 39.7 39.7 39.7 39.5

MAPLR Unsupervised 39.6 39.7 39.7 39.8 39.7 39.7

Table 8.7: SCOTUS Corpus: Results with augmented adaptation data (WER %) on

older adult speakers
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is not readily available from the reference speakers. Despite that, there are minor

improvements in WERs observed even for older adult speakers.
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Figure 8.3: Augmentation of adaptation data. Results on the SCOTUS corpus for

younger adult male speakers

8.4.4 Discussion

A simple and efficient method to improve the ASR accuracies with small amounts of

adaptation data is described. Other approaches on similar tasks such as eigenvoices

have been shown to improve performance in smaller systems, but scaling the eigen-

voices approach as described in Kuhn et al. [2000] to our larger system led to Principal

component analysis on a large matrix (2.5million x 250), which was computationally

expensive. Due to the high dimensionality, all the eigenvectors generated had similar
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Figure 8.4: Augmentation of adaptation data. Results on the SCOTUS corpus for older

adult male speakers
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eigenvalues. Choosing the top 20 of them as basis results in loss of information and an

increase in WER of 6.2%.

The distance metric proposed, is efficient in memory usage and computational

complexity. The storage requirements are anm× (m+1) matrix per reference speaker

andK sample vectors in the acoustic space. The computation of thedistance between

two speakers involves only a few matrix operations. To speedup the computations

|ck| terms could be precomputed and stored. To save on the time required for com-

puting the regression transforms, sufficient statistics for the reference speakers can be

computed offline.

Another feature of this approach is that there is no manual tuning or thresholding

involved. The threshold is implicitly determined by the distance of the target speaker

from the speaker independent model. If no reference speakeris close enough to the

target speaker, only the available adaptation data for the test speaker is used. This

approach is expected to work better with the availability ofa larger and more varied

reference speaker set in terms of age and gender. Furthermore, if the speech from a

target speaker is available in the reference set, it is very likely to be selected first as

augmentation data and improve the recognition accuracy significantly.

The MLLR/MAPLR WERs on AMI corpus with 15 seconds adaptation data are

significantly higher as compared to the results with SI models. Despite this, the linear

transform matrices still capture sufficient information about the speaker to be able to

select augmentation data.

In both of our systems, the number of reference speakers werelimited to a few

hundred. If thousands of reference speakers are available in the selection pool, then

computing the distance of the target speaker to all the speakers can be time consuming.

A possible solution to this problem is

• project all the reference speakers (N) and SI model to ap dimensional space

(p<< N) using MDS.

• Selectp non-coplanar speakers in thisp dimensional space as reference points.

• For a target speaker compute the distance from thesep reference speakers and

project the target speaker into this reduced dimensional space using triangulation

method.

• Select the augmentation speakers satisfyingd̃TRi ≤ d̃TI, whered̃ is the euclidean

distance.
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8.5 Summary

In this chapter, a simple approach to compute distance between speakers using regres-

sion matrices as speaker features is proposed and discussed. Experimental results show

that speakers acoustically close to the target speaker can be affectively selected from a

pool of reference speakers to augment the adaptation data for the target speaker. It is

a general speaker adaptation strategy that is applicable for speakers of all genders and

ages. This approach works well when the adaptation data fromthe target speaker is

very limited and gives significant reduction in WER. It is seen to be particularly useful

when the adaptation is unsupervised which is often the case in practical deployments

of ASR systems. However when sufficient adaptation data is available from the target

speaker, augmenting it with speech from other speakers is not beneficial.

Results on SCOTUS corpus also suggest that for such a speaker selection strategy

to work well for speakers of all age groups, a diverse set of reference speakers in terms

of gender and age is desirable.



Chapter 9

Conclusions

9.1 Summary

In this thesis, we focused on the problem of Automatic SpeechRecognition for the

domain of older voices. While there are several subsystems inan ASR system, the

problem was investigated from an acoustic modeling point ofview. The main questions

that this work attempted to answer are as follows:

• What is the impact of changes that take place in speech production due to ageing

on ASR accuracies?

• How can the acoustic modeling component of the ASR system be improved for

the target domain of older speakers?

In order to answer the above questions, several research objectives as mentioned in

section 1.2 were set a forth. The outcomes of the experimentsto address each of those

objectives are summarised below.

ASR accuracies for older voices

To start with, baseline experiments were set up with three different corpora viz., SCO-

TUS, MATCH and JNAS having substantial amount of speech from older speakers.

Results on SCOTUS and MATCH corpora show about 9-11% higher WERs for older

adults as compared to younger adults which are consistent with results from such pre-

vious studies by Wilpon and Jacobsen [1996] and Anderson et al. [1999] on different

corpora. Longitudinal study on the WERs of older speakers in the SCOTUS corpus

134
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showed increase in WER with age. The differences in the WER could not be allevi-

ated even with the use of state-of-the-art speaker adaptation and speaker normlisation

techniques. Results on JNAS corpus which has an extensive setof speakers from both

the age groups display about 4.5% higher WER for older speakers. The performance

deterioration was found to higher for elderly males with an increase of 7.7% in WER.

These results laid the foundation for further investigation into the possible causes and

look for other strategies to improve the acoustic models.

Impact of changes in glottal source characteristics on ASR acc uracies

The investigation was started with careful analysis of glottal source characteristics. The

following parameters that correspond to glottal source characteristics were analysed :

Fundamental frequency, jitter, shimmer and Harmonic to noise ratio. These param-

eters strongly correlate with the change in pitch, hoarseness and breathiness usually

associated with older voices.

Comparative analysis on the male speakers on SCOTUS corpus showed a decrease

in fundamental frequency measures and an increase in jitterand shimmer measures that

are associated with vocal cord instability. Harmonic to noise ratio analysis showed lit-

tle differences between the two age groups. The parameters where there was significant

change with ageing, were then then analysed carefully to understand the impact of the

changes on ASR accuracies. Speech from younger adults was artificially modified to

reflect the changes observed in the above parameters and ASR accuracies compared.

Decrease inF0 by 10% increased the WER by 1.1% absolute. However, it was shown

that this can be compensated to some extent using vocal tractlength normalisation.

ASR experiments with artificial increase in jitter and shimmer measures showed that

these changes do not have a significant impact on WERs.

While Glottal source parameters provide strong acoustic cues of ageing and help in

perception of speaker age by humans as well as machines, it isinteresting to find that

their impact on ASR accuracies in minimal.

Study of the articulatory changes in older voices

One important characteristic that is often associated witholder voices is less precise

articulation. An ASR system was set up in a phoneme loop decoder mode for com-

puting phoneme recognition accuracies. Phoneme errors foryounger and older adults

on two different corpora viz., SCOTUS and JNAS were compared.The motivation
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behind this set of experiments was to see if any strong patterns emerge in the changes

in articulatory pattern of certain phonemes with ageing. Although the results show

that some lower vowels are commonly more affected due to ageing, there is a great

degree of variability in the results across different corpora and across different speak-

ers. Analysis of vowel space area bounded by the first and second formants indicated

vowel centralisation with ageing thereby decreasing the discrimination capacity be-

tween vowels.

Impact of slower speaking rate on ASR accuracies

Another important articulatory change associated with older voices is the decrease in

speaking rate. While there has been some research work previously [Fosler-Lussier

and Morgan, 1999] that concludes that WERs for faster speech ishigher, there has

not been much insight into the impact of slower speech. To understand this better,

transition parameters of the acoustic models trained on older speakers were modified

to reflect the slower speech of older speakers and vice versa.Experimental results on

ASR WERs showed that there is an increase in insertion errors with slower speech

decoded with acoustic models trained on faster speech and this impact was found to be

more pronounced for older male speakers than their female counterparts.

Hierarchical models based on gender and age group

With the results from the analysis of glottal source characteristics suggesting little im-

pact on ASR accuracies and with high variability of the results in articulatory changes

across corpora and speakers, it became evident that it is difficult to exploit such infor-

mation directly to improve the ASR accuracies.

Hence in order to answer the problem of better acoustic models for older speakers,

we first looked at experiments to understand the acoustic separability of speakers in

terms of their age group based on the feature vectors used in ASR systems. The speaker

age group recognition task gave a classification accuracy ofaround 70% using two

different approaches based on SVMs and repeated bisection clustering.

Inspired by these results, we looked at the use of hierarchical acoustic models built

in supervised manner based on gender and age groups of the training set speakers.

Results on JNAS corpus showed a 2% absolute improvement in accuracies over the

baseline results. The results also indicated that there is additional gain in accuracies

for older adults in using gender and age dependent models over just gender dependent
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models. Hierarchical models built in an unsupervised manner were also seen to achieve

comparable accuracies to those of supervised models.

We then looked at a simple strategy to modify the transition parameters of the

HMMs such that there is an increase in state persistence to suit slower speaking rate.

Results indicated that there is value in such a method especially when there is a mis-

match in the speaking rate of training and test set speakers.

Augmentation of adaptation data with speech from other acou stically close speak-

ers

Typically the adaptation data available for a target speaker in practical deployments of

ASR systems is quite limited. To address this problem, a method to use speech data

from acoustically close speakers for adaptation was explored.

A distance metric based on the adaptation transforms was proposed to compute

the acoustic distance between speakers. Using this metric,A strategy was devised

to select speech data from acoustically close speakers to augment the adaptation data

for the target speaker. Adaptation with augmented data was seen to give significant

improvements in accuracies especially when the adaptationdata is limited to a few

seconds. The improvements in accuracies were found to be even better in unsupervised

adaptation. While the method is a general purpose technique for all speakers, the

improvements for older speakers was analysed in particularon the SCOTUS corpus.

Favourable results were achieved for both younger and olderadults on this corpora.

9.2 Future work

The three corpora used in this thesis have certain limitations. The SCOTUS corpus has

few older speakers and is very specific to the legal domain where the speaking styles

of the speakers are constrained. MATCH corpus is conversational in nature but the

amount of speech data available is limited. JNAS has a good balance of speakers in

age and gender but it is read speech. For this kind of study, itis desirable to have large

amount of conversational speech with a good balance of speakers in terms of age and

gender.

An interesting finding that has come out from the experimentson MATCH corpus is

the difference in language patterns used by younger and older adults while interacting

with dialogue systems. While the focus of this thesis has beenon acoustic modeling,
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it would be interesting to carry forward the work to understand the subtleties involved

in the language modeling for older adults especially in conversational speech.

The age range of the older speakers used in our experiments are between 60-80

years with the bulk of them in the age group of 60-70 years. It would be interesting

to extend the experiments on speaker characterisation in acoustic space for speakers

further into older age. Speakers in age range above 70 years of age is of particular

interest in this research since they are the real target group that would benefit from

research in this direction. Data from such older speakers would also highlight other

disfluencies such as breathiness and slurred speech due to vocal ageing that are not

prominent in the data used in this thesis.

In this thesis, the methodologies employed are targeted towards improving the ASR

systems for the domain of older voices. However what is interesting is to build upon the

findings in this thesis to construct more generalised acoustic models that are agnostic

to variations in age.
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Appendix: Experimental result tables

Word Error Rate (WER) %
Younger adult voices Older adult voices Difference p-value

Overall 30.4 40.4 10.0 < 0.001
Male 30.1 38.8 8.7 < 0.001

Female 32.4 46.1 13.7 < 0.001

Table A.1: Comparison of WER (%) on younger adult and older adult voices in the
SCOTUS corpus

Word Error Rate (WER) %
Younger adult voices Older adult voices Difference p-value

Overall 29.6 38.7 9.1 < 0.001
Male 29.5 38.1 8.6 < 0.001

Female 30.0 41.0 11.0 < 0.001

Table A.2: Comparison of WER (%) using MLLR speaker adaptation on younger adult
and older adult voices in the SCOTUS corpus

Word Error Rate (WER) %
Younger adult voices Older adult voices Difference p-value

Overall 28.7 38.6 9.9 < 0.001
Male 28.7 37.9 9.2 < 0.001

Female 28.2 41.3 13.1 < 0.001

Table A.3: Comparison of WER (%) using vocal tract length normalisation on younger
adult and older adult voices in the SCOTUS corpus

139
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Word Error Rate (WER) %
Younger adult voices Older adult voices Difference p-value

Overall 27.9 37.6 9.7 < 0.001
Male 27.9 37.1 9.2 < 0.001

Female 28.1 39.4 11.3 < 0.001

Table A.4: Comparison of WER (%) using speaker adaptive training on younger adult
and older adult voices in the SCOTUS corpus

Word Error Rate (WER) %
Speaker ID

Age 02 03 04 05 07 08 10
59 32.0
60 34.9 32.4
61 33.0 32.7
62 41.4 31.1 34.5
63 34.7 42.8 32.0 33.6
64 35.8 44.3 31.2 33.6
65 34.2 45.0 31.9 35.1
66 38.3 43.1 32.2 49.8 33.7
67 36.4 47.0 33.8 51.1 35.0
68 40.3 45.0 53.7 35.7
69 35.5 43.5 56.2 41.0
70 37.4 47.7 55.3 42.6
71 38.9 60.4 41.2
72 55.3 44.2
73 57.7 45.3
74 61.8 42.7
75 44.0
79 42.6
80 44.2
81 43.4
82 46.2
83 40.0
84 43.6
85 44.7
86 45.4
87 50.6

Table A.5: WER (%) with increasing age on older adult voices in the SCOTUS corpus



Appendix A. Appendix: Experimental result tables 141

Word Error Rate (WER) %
Speaker ID

Age 02 03 04 05 07 08 10
59 31.3
60 32.5 31.7
61 31.1 31.5
62 40.4 29.4 32.7
63 33.7 40.4 30.0 31.8
64 34.3 42.9 29.1 31.6
65 32.4 43.6 30.5 33.8
66 36.3 41.4 30.6 40.0 32.7
67 36.1 45.1 32.5 40.7 33.6
68 37.8 43.6 41.3 34.7
69 34.0 42.6 46.9 35.0
70 35.1 46.6 43.1 36.5
71 36.6 45.6 35.3
72 43.2 38.3
73 44.5 37.6
74 47.6 36.1
75 37.6
79 40.1
80 42.1
81 41.2
82 44.1
83 38.7
84 41.3
85 41.4
86 41.3
87 47.0

Table A.6: WER (%) with increasing age on older adult voices using MLLR speaker
adaptation in the SCOTUS corpus

Word Error Rate (WER) %
Young speakers Older speakers

Language model WER Language model WER
LM-All-1 24.0 LM-All-1 39.3

LM-Young-1 22.0 LM-Young 45.6
LM-Older 25.9 LM-Older-1 40.4

Table A.7: Comparison of WER (%) of young and older voices on MATCH corpus using
different language models
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Word Error Rate (WER) %
Young speakers Older speakers

Acoustic model WER Acoustic model WER
Baseline (AMI) 22.4 Baseline (AMI) 33.9

AMI + MATCH Young-1 10.8 AMI + MATCH Young 38.3
AMI + MATCH Older 13.8 AMI + MATCH Older-1 25.2

Table A.8: Comparison of WER (%) of younger and older voices on MATCH corpus
using different acoustic models.

Phoneme
Younger adult males Older adult males
F1 (Hz) F2 (Hz) F1 (Hz) F2 (Hz)

aa 725.1 1395.0 671.4 1409.9
uw 429.6 1761.1 404.7 1786.7
iy 429.0 2026.5 378.7 2054.9
ae 622.8 1727.2 567.8 1680.0
ih 481.6 1948.6 507.7 1976.5
ax 519.4 1825.2 556.3 1916.1
eh 571.1 1677.7 518.9 1700.9
er 552.2 1605.4 491.6 1653.0
ah 582.7 1578.7 558.1 1659.7
ao 579.6 1293.6 579.7 1327.5
uh 477.8 1610.2 430.6 1661.4

Table A.9: F1 and F2 for the monophthongs in the SCOTUS corpus
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Correct recognition (%) of phonemes
Phoneme Occurrence (%) Younger male adults Older male adults Difference

aa 1.8 61.4 46.7 14.7
ae 3.6 46.6 36.8 9.8
ah 2.2 50.2 52.8 -2.6
ao 1.6 59.6 48.9 10.7
aw 0.4 67.8 52.2 15.6
ax 9.0 39.5 40.9 -1.4
ay 1.5 72.6 69.9 2.7
b 1.6 62.1 62.5 -0.4
ch 0.5 71.4 69.4 2.0
d 3.9 37.2 41.2 -3.9
dh 3.9 53.6 53.8 -0.2
eh 2.9 48.4 48.6 -0.2
er 2.2 63.5 53.2 10.3
ey 1.7 75.3 74.6 0.8
f 1.6 80.2 75.5 4.6
g 0.8 60.4 67.8 -7.3
hh 0.9 60.8 49.2 11.6
ih 6.5 44.6 44.1 0.6
iy 2.9 69.5 67.4 2.1
jh 0.7 69.0 64.2 4.8
k 3.6 63.3 64.9 -1.6
l 3.2 59.4 55.5 3.9
m 2.2 71.9 68.7 3.2
n 7.2 57.5 54.8 2.7
ng 0.9 71.1 66.6 4.5
ow 1.1 63.1 64.8 -1.7
oy 0.1 80.2 78.3 1.9
p 1.9 68.8 67.2 1.6
r 4.4 55.5 53.9 1.6
s 5.4 75.2 75.3 -0.1
sh 0.9 77.3 80.1 -2.8
t 8.7 33.4 31.1 2.3
th 0.6 48.3 44.1 4.3
uh 0.5 65.2 68.3 -3.2
uw 1.3 63.1 63.3 -0.2
v 1.9 58.4 57.5 0.9
w 2.1 74.2 71.7 2.5
y 1.0 68.2 69.6 -1.5
z 2.7 68.1 64.2 3.9
zh 0.1 73.9 74.7 -0.7

Table A.10: Correct recognition (%) of phonemes on younger and older adult males in
the SCOTUS corpus
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Correct recognition (%) of phonemes
Phoneme Occurrence (%) Younger male adults Older male adults Difference

a 13.9 71.1 65.1 6.0
i 9.4 65.0 52.6 12.4
u 5.7 61.4 57.8 3.6
e 6.2 68.2 62.0 6.2
o 9.7 68.4 71.3 -2.9
a: 0.1 85.6 82.7 2.9
i: 0.2 83.3 78.8 4.5
u: 0.8 34.0 87.8 -53.8
e: 0.8 81.6 86.3 -4.7
o: 2.6 89.2 88.0 1.2
N 4.0 83.1 80.8 2.3
w 1.5 88.3 85.1 3.2
y 1.3 67.9 55.0 12.9
j 1.4 78.8 76.8 2.0

ky 0.5 85.4 90.8 -5.4
by 0.0 52.2 83.3 -31.1
gy 0.1 68.7 47.6 21.1
ny 0.1 100.0 88.9 11.1
hy 0.1 86.1 62.2 23.9
ry 0.2 75.0 64.8 10.2
py 0.0 78.6 100.0 -21.4
p 0.4 76.8 78.9 -2.1
t 4.8 80.2 78.2 2.0
k 6.8 72.9 71.1 1.8
ts 1.0 77.7 70.3 7.4
ch 1.0 77.2 78.9 -1.7
b 1.1 81.2 74.8 6.4
d 2.4 73.4 73.2 0.2
g 2.4 55.4 49.5 5.9
z 0.6 81.8 64.3 17.5
m 2.7 80.1 70.4 9.7
n 5.3 59.0 60.6 -1.6
s 3.1 87.3 76.1 11.2
sh 2.6 78.4 79.7 -1.3
h 1.4 78.3 80.7 -2.4
f 0.4 90.2 78.3 11.9
r 4.0 73.1 63.1 10.0
q 1.3 85.5 87.9 -2.4

Table A.11: Correct recognition (%) of phonemes on younger and older adult males in
the JNAS corpus 101

101Phonemesmyanddyhave not been shown in the table since no instances were foundin the test set
for atleast one of the age groups
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Duration (Frames) per phoneme
Phoneme Occurrence Younger adult males Older adult males

aa 1.8 9.6 10.0
ae 3.6 8.9 9.6
ah 2.2 6.9 7.6
ao 1.6 9.0 10.3
aw 0.4 13.0 14.0
ax 9.0 6.1 7.1
ay 1.5 11.5 13.3
b 1.6 7.5 8.3
ch 0.5 10.3 10.9
d 3.9 7.0 8.2
dh 3.9 6.0 6.9
eh 2.9 7.3 8.0
er 2.2 10.0 11.0
ey 1.7 11.0 12.3
f 1.6 11.1 12.2
g 0.8 6.2 7.2
hh 0.9 8.0 7.6
ih 6.5 6.4 7.5
iy 2.9 10.4 11.7
jh 0.7 8.8 9.3
k 3.6 8.7 9.3
l 3.2 8.1 9.1
m 2.2 6.8 7.6
n 7.2 7.3 8.5
ng 0.9 8.5 10.3
ow 1.1 11.5 12.7
oy 0.1 10.5 11.9
p 1.9 9.3 10.5
r 4.4 6.5 7.5
s 5.4 10.1 10.5
sh 0.9 9.0 8.8
t 8.7 8.4 9.7
th 0.6 8.6 9.6
uh 0.5 5.1 5.8
uw 1.3 10.6 12.0
v 1.9 7.4 8.7
w 2.1 6.7 7.6
y 1.0 6.3 6.9
z 2.7 11.6 12.7
zh 0.1 7.8 8.2

Table A.12: Speaking Rate (Frames/Phoneme) on the SCOTUS Corpus
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Phoneme Occurrence

Expected Frames/Phoneme Frames/Phoneme
(using model parameters) (using forced alignment)

Male Female Male Female
Young Old Young Old Young Old Young Old

a 13.87 6.8 8.5 7.5 8.5 6.7 8.4 7.6 8.4
a: 0.15 13.2 18.1 13.9 18.3 8.3 9.7 8.9 10.0
b 1.11 6.4 8.4 7.1 8.9 6.7 8.0 7.4 8.4
by 0.04 11.0 14.0 10.8 14.0 8.8 9.5 8.1 10.6
ch 1.01 11.4 13.8 12.2 14.9 10.5 11.9 10.8 12.0
d 2.40 4.7 6.9 5.1 7.1 5.1 7.1 5.6 7.3
dy 0.00 14.8 17.3 13.0 22.5 12.3 14.4 11.5 10.8
e 6.17 7.3 9.5 8.2 9.8 7.6 9.4 8.4 9.7
e: 0.76 13.7 18.5 15.0 19.6 10.5 12.6 11.1 13.3
f 0.41 8.4 12.3 9.2 12.3 7.9 11.1 7.7 11.8
g 2.45 4.9 6.4 5.3 7.0 4.8 6.0 5.3 6.9
gy 0.11 10.9 13.1 10.7 12.8 8.8 9.5 8.4 9.4
h 1.41 7.4 9.7 8.7 10.3 7.3 8.5 8.4 9.3
hy 0.13 9.8 11.8 11.0 12.7 8.3 9.1 9.2 10.6
i 9.36 6.7 8.8 7.1 8.7 7.1 9.2 7.5 8.6
i: 0.21 14.5 19.9 16.0 20.0 9.4 12.0 10.1 11.9
j 1.43 9.3 11.8 9.6 11.8 9.3 11.0 9.7 11.0
k 6.77 7.1 8.6 7.8 10.1 6.9 7.7 7.1 8.8
ky 0.47 11.1 14.3 12.0 15.5 8.7 10.0 9.0 10.8
m 2.70 7.0 8.9 7.8 9.8 7.8 9.3 8.5 10.2
my 0.01 11.6 14.2 11.9 15.3 9.0 8.9 7.7 11.2
N 4.02 7.6 11.7 7.7 11.3 7.4 11.6 7.2 10.9
n 5.30 4.7 6.9 5.6 7.8 5.1 7.4 5.9 8.5
ny 0.07 12.5 14.4 13.4 15.5 10.0 11.6 11.1 12.3
o 9.66 6.4 9.0 7.1 8.7 6.8 9.6 7.6 8.8
o: 2.55 13.0 18.0 14.4 19.0 12.3 15.2 13.3 16.2
p 0.38 7.1 9.3 7.7 11.5 5.1 6.3 5.1 9.8
py 0.02 9.8 11.8 9.5 12.7 6.2 6.7 5.8 7.8
q 1.29 9.1 13.5 9.8 14.1 10.2 15.0 11.4 15.0
r 4.03 4.7 6.0 5.2 6.3 5.3 6.5 5.7 6.8
ry 0.21 9.3 11.9 9.8 12.2 7.6 9.2 8.2 9.7
s 3.09 10.5 13.7 11.2 14.6 10.7 12.7 11.0 13.2
sh 2.62 11.6 14.8 12.8 16.0 12.1 14.4 12.9 15.2
t 4.82 5.7 7.9 6.5 9.4 5.5 6.8 5.8 7.9
ts 1.00 11.4 13.9 12.8 15.1 10.7 12.0 11.5 12.8
u 5.65 5.5 6.5 6.1 6.8 5.3 6.4 6.0 6.7
u: 0.83 10.8 15.8 12.1 17.0 9.2 12.7 9.9 13.9
w 1.54 8.1 10.3 8.7 10.4 8.3 9.6 9.0 10.2
y 1.29 7.5 10.0 8.3 9.8 7.2 9.4 8.3 8.9
z 0.64 8.2 10.3 8.5 10.4 7.7 8.5 8.3 8.9

Table A.13: Speaking rate (Frames/Phoneme) on the JNAS corpus
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W. Endres, W. Bambach, and G. Flösser. Voice spectrograms as a function of age, voice

disguise, and voice imitation.The Journal of the Acoustical Society of America, 49

(6B):1842–1848, 1971. 12

P.L. Enright, R.A. Kronmal, T.A. Manolio, M.B. Schenker, and R.E. Hyatt. Respi-

ratory muscle strength in the elderly. Correlates and reference values. American

Journal of Respiratory and Critical Care Medicine, 149:430–438, 1994. 7

Carole T. Ferrand. Harmonics-to-noise ratio: An index of vocal aging. Journal of

Voice, 16:480–487, 2002. 15

Eric Fosler-Lussier and Nelson Morgan. Effects of speakingrate and word frequency

on pronunciations in conversational speech.Speech Communication, 29(2-4):137–

158, 1999. 98, 136



Bibliography 151

M.J.F Gales. Maximum Likelihood Linear Transformations for HMM-based speech

recognition.Computer Speech & Language, 12(2):75–98, 1998. Speech recognition

systems;. 51, 52

M.J.F. Gales. Cluster Adaptive Training of Hidden Markov Models. IEEE Transac-

tions on Speech and Audio Processing, 8(4):417 – 428, 2000. ISSN 1063-6676.

57

M.J.F. Gales and P.C. Woodland. Mean and variance adaptationwithin the MLLR

framework.Computer Speech and Language, 10(4):249–264, 1996. 51

G. Garau, S. Renals, and T. Hain. Applying Vocal Tract Length Normalization to

Meeting Recordings. InProceedings of Interspeech, pages 265–268, 2005. 47

J.-L. Gauvain and Chin-Hui Lee. Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains.IEEE Transactions on Speech

and Audio Processing, 2(2):291–298, 1994. ISSN 1063-6676. 54

Kallirroi Georgila, Maria Wolters, Vasilis Karaiskos, Melissa Kronenthal, Robert Lo-

gie, Neil Mayo, Johanna Moore, and Matt Watson. A fully annotated corpus for

studying the effect of cognitive ageing on users’ interactions with spoken dialogue

systems. InProceedings of the 6th International Conference on LanguageResources

and Evaluation, 2008. 65

Kallirroi Georgila, Maria Wolters, Johanna D. Moore, , and Robert Logie. The

MATCH corpus: A corpus of Older and Younger users’ interactions with Spoken

Dialogue Systems.Language Resources and Evaluation, to appear, 2009. 64

Matteo Gerosa, Diego Giuliani, Shrikanth Narayanan, and Alexandros Potamianos. A

review of asr technologies for children’s speech. InProceedings of the 2nd Work-

shop on Child, Computer and Interaction, WOCCI ’09, pages 7:1–7:8, New York,

NY, USA, 2009. ACM. ISBN 978-1-60558-690-8. doi: http://doi.acm.org/10.1145/

1640377.1640384. URLhttp://doi.acm.org/10.1145/1640377.1640384 . 2

L. Gillick and S.J. Cox. Some statistical issues in the comparison of speech recognition

algorithms. InICASSP, volume 1, pages 532–535, May 1989. doi: 10.1109/ICASSP.

1989.266481. 82

I.J Good. The population frequencies of species and the estimation of population

parameters.Biometrika, 27(10):1032–1043, 1953. 40

http://doi.acm.org/10.1145/1640377.1640384


Bibliography 152

T. Hain, P. Woodland, T. Niesler, and E. Whittaker. The 1998 HTK system for tran-

scription of conversational telephone speech. InIEEE ICASSP, volume 1, pages

57–60, 1999. 47

T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat, M. Lincoln,I. McCowan,

D. Moore, V. Wan, R. Ordelman, and S. Renals. The 2005 AMI systemfor the

transcription of speech in meetings. InProceedings of the Rich Transcription 2005

Spring Meeting Recognition Evaluation, 2005a. 64, 68

Thomas Hain, John Dines, Giulia Garau, Martin Karafiat, Darren Moore, Vincent Wan,

and Steve Renals. Transcription of conference room meetings: an investigation. In

Interspeech, 2005b. 124

Thomas Hain, Lukas Burget, John Dines, Giulia Garau, Martin Karafiat, David van

Leeuwen, Mike Lincoln, and Vincent Wan. The 2007 AMI(DA) System for Meeting

Transcription. InMultimodal Technologies for Perception of Humans, LectureNotes

in Computer Science, volume 4625, pages 414–428, 2008. 35, 125

J.D. Harnsberger, R. Shrivastav, W.S. Jr Brown, H. Rothman, andH. Hollien. Speaking

rate and fundamental frequency as speech cues to perceived age. Journal of voice,

22(1):58–69, 2008. 17

Fredric J. Harris. On the use of windows for harmonic analysis with the discrete

Fourier transform. InProceedings of IEEE, 1978. 25

Trey Hedden and John D. E. Gabrieli. Insights into the ageingmind: a view from

cognitive neuroscience.Nature Reviews Neuroscience, 5:87–96, 2004. 11

Hynek Hermansky. Perceptual linear predictive (PLP) analysis of speech.The Journal

of the Acoustical Society of America, 87(4):1738–1752, 1990. 21, 26

James Hillenbrand and Robert A. Houde. Acoustic correlates of breathy vocal quality:

Dysphonic voices and continuous speech.Journal of Speech and Hearing Research,

39:311–321, 1996. 15, 88

James Hillenbrand, Ronald A. Cleveland, and Robert L. Erickson. Acoustic correlates

of breathy vocal quality.Journal of Speech and Hearing Research, 37:769–778,

1994. 15



Bibliography 153

M Hirano, S Kurita, and S Sakaguchi. Ageing of the vibratory tissue of human vocal

folds. Acta Otalaryngologica, 107:428–433, 1989. 9

Mei-Yuh Hwang and Xuedong Huang. Subphonetic modeling withMarkov states -

Senone. InIEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing, volume 1, pages 33–36, 1992. 37

ISO-226:. Acoustics – normal equal loudness level contours, 2003. 21

Katunobu Itou, Mikio Yamamoto, Kazuya Takeda, Toshiyuki Takezawa, Tatsuo Mat-

suoka, Tetsunori Kobayashi, Kiyohiro Shikano, and ShuichiItahashi. The design

of the newspaper-based Japanese large vocabulary continuous speech recognition

corpus. InICSLP, 1998. 65

Katunobu Itou, Mikio Yamamoto, Kazuya Takeda, Toshiyuki Takezawa, Tatsuo Mat-

suoka, Tetsunori Kobayashi, Kiyoshiro Shikano, and Shuichi Itahashi. JNAS:

Japanese speech corpus for large vocabulary continuous speech recognition re-

search.The Journal of the Acoustical Society of Japan, 20(3):199–206, 1999. 65

F. Jelinek. Continuous speech recognition by statistical methods.Proceedings of IEEE,

64(4):532–556, 1976. 28

Frederick Jelinek and Robert L. Mercer. Interpolated estimation of Markov source

parameters from sparse data. InProceedings of the Workshop on Pattern Recognition

in Practice, pages 381–397, 1980. 42

Daniel Jurafsky and James H. Martin.Speech and Language processing: An Intro-

duction to Natural Language Processing, Computational Linguistics, and Speech

Recognition. Prentice Hall, 2 edition, 2008. 41

J.C. Kahane.Aging Communication processes and disorders, chapter Anatomic and

physiologic changes in the aging peripheral speech mechanism, pages 21–45. Grune

& Stratton, Incorporated, 1981. 7

J.C. Kahane and J. Hammons.Laryngeal Function in Phonation and Respiration.,

chapter Developmental changes in the articular cartridge of the human cricoary-

tenoid joint, pages 14–28. San Diego, College Hill Press, 1987. 9

George Karypis.CLUTO : A Clustering Toolkit, 2003. 108



Bibliography 154

S. Katz. Estimation of probabilities from sparse data for the language model compo-

nent of a speech recognizer.IEEE Transactions on Acoustics, Speech and Signal

Processing, 35:400–401, 1987. 40

Tatsuya Kawahara, Tetsunori Kobayashi, Kazuya Takeda, Nobuaki Minematsu, Kat-

sunobu Itou, Mikio Yamamoto, Atsushi Yamada, Takehito Utsuro, and Kiyohiro

Shikano. Japanese Dictation Toolkit: Plug-and-Play framework for speech recogni-

tion R&D. In ASRU, pages 393–396, 1999. 76, 77

K. Kevin and D.R. Philips. Global aging: The challenge of success.Population Refer-

ence Bureau, Vol 60, No 1, 2005. 1

R.J. Kilch. Relationships of vowel characteristics to listener ratings of breathiness.

Journal of Speech and Hearing, 25:574–580, 1982. 15

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language mod-

eling. In IEEE International Conference on Acoustics, Speech and Signal Process-

ing, volume 1, pages 181–184, 1995. 41

Marcel Kockmann, Lukas Burget, and Jan Cernocky. Brno University of Technology

system for Interspeech 2010 paralinguistic challenge. InInterspeech, 2010. 60

H Koshino, T Hirai, T Ishijima, and Y Ikeda. Tongue motor skills and masticatory

performance in adult dentates, elderly dentates, and complete denture wearers.The

journal of prosthetic dentistry, 77:147–152, 1997. 11

R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski. Rapid speaker adaptation in

eigenvoice space.IEEE Transactions on Speech and Audio Processing, 8(6):695 –

707, 2000. ISSN 1063-6676. 58, 119, 130

Akinobu Lee, Tatsuya Kawahara, and Shuji Doshita. An efficient two-pass search

algorithm using word trellis index. InInternational Conference on Spoken Language

Processing, pages 1831–1834, 1998. 77

Akinobu Lee, Tatsuya Kawahara, and Kiyohiro Shikano. Julius an open source real-

time large vocabulary recognition engine. InEurospeech, pages 1691–1694, 2001.

45

L. Lee and C. Rose. Speaker normalisation using efficient frequency warping proce-

dures. InIEEE ICASSP, pages 353–356, 1996. 47



Bibliography 155

C.J. Leggetter and P.C. Woodland. Maximum likelihood linear regression for speaker

adaptation of continuous density hidden Markov models.Computer Speech and

Language, 9(2):171–185, 1995a. ISSN 0885-2308. 50

C.J. Leggetter and P.C. Woodland. Flexible speaker adaptation using maximum like-

lihood linear regression.Proc ARPA Spoken Langauge Technology Workshop, 9:

171–185, 1995b. 50

N. Levinson. The Wiener RMS error criterion in filter design andprediction.Journal

of Mathematics and Physics, 25(4):261–278, 1947. 27

S.E Linville. Voice Quality Measurement, chapter The Aging Voices, pages 359–376.

Singular Thomson Learning, 2000. 12, 13, 15

S.E Linville. Vocal Aging. Singular Thomson Learning, San Diego, 2001. 2, 6, 9, 10,

14, 17

S.E Linville. The aging voice.The ASHA Leader, 21:12–14, 2004. 7, 9

Sue Ellen Linville. Source characteristics of aged voice assessed from long-term av-

erage spectra.Journal of Voice, 16:472–479, 2002. doi: 10.1016/S0892-1997(02)

00122-4. 17

Julie M. Liss, Gary Weismer, and John C. Rosenbek. Selected acoustic characteristics

of speech production in very old males.Journal of Gerontology, 45:2, 1989. 95

Patricia Lynne-Davies. Influence of age on the respiratory system. Geriatrics, 32:

57–60, 1977. 7

D. Mahler, R. Rosiello, and J. Loke. The aging lung.Clinics in geriatric medicine, 2:

215–225, 1986. 7

J. Makhoul. Linear prediction: A tutorial review.Proceedings of the IEEE, 63(5):

561580, 1975. 27

H.B. Mann and D.R. Whitney. On a test whether one of two random variables is

stochastically larger than the other. InAnn. Math. Statistics, volume 18, pages 50–

60, 1947. 69

Yuji Matsumoto, Akira Kitauchi, Tatsuo Yamashita, and Yoshitaka Hirano. Japanese

morphological analysis system ChaSen version 2.0 manual. Technical Report

NAIST-ISTR99009, Nara Institute of Science and Technology,1999. 77



Bibliography 156

John McDonough, William Bryne, and Xiaoqiang Luo. Speaker normalisation with all

pass transforms. InProceedings of ICSLP, 1998. 48

P. Mermelstein. Distance measures for speech recognition,psychological and instru-

mental. In C. H. Chen, editor,Pattern recognition and artificial intelligence, pages

374–388. Academic Press, New York, 1976. 21

Florain Metze, Jitendra Ajmera, Roman Englert, Udo Bub, FleixBurkhrdt, Joachim

Stegmann, Christian M̈uller, Richard Huber, Bernt Andrassy, Josef Bauer, and

Bernard Littel. Comparison of four approaches to age and gender recognition for

telephone applications.ICASSP, 4:1089–1092, 2007. 60, 107

Nobuaki Minematsu, Mariko Sekiguchi, and Keikichi Hirose.Automatic estimation of

one’s age with his/her speech based upon acoustic modeling techniques of speakers.

In International Conference on Acoustics, Speech and Signal Processing, volume 1,

pages 137–140, Orlando, FL, 2002. 59

Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted automata in

text and speech processing. In12th biennial European Conference on Artificial

Intelligence, 1996. 44

Eric Moulines and Francis Charpentier. Pitch-synchronous waveform processing tech-

niques for text-to-speech synthesis using diphones.Speech Communication, 9(5-6):

453–467, 1990. 82

C Müller and F Burkhardt. Combining short-term cepstral and long-term prosodic

features for automatic recognition of speaker age. InInterspeech, 2007. 59

Christian M̈uller. Automatic recognition of speakers’ age and gender onthe basis of

empirical studies.Proc. of Interspeech, 2006. 59

Christian M̈uller, Frank Wittig, and Jorg Baus. Exploiting speech for recognising

elderly users to respond to their special needs.Eurospeech, pages 1305–1308, 2003.

1, 59

Kevin P. Murphy. Hidden semi-Markov models (HSMMs). Tech-

nical report, University of British Columbia, 2002. URL

http://www.cs.ubc.ca/ ˜ murphyk/Papers/segment.pdf . 116

http://www.cs.ubc.ca/~murphyk/Papers/segment.pdf


Bibliography 157

M. Nakayama. Histological study on aging changes in the human tongue. Nippon

Jibiinkoka Gakkai kaiho, 94:541–555, 1991. 11

H. Ney, U. Essen, and R. Kneser. On structuring probabilisticdependences in stochas-

tic language modelling.Computer Speech and Language, 8(1):1 – 38, 1994. ISSN

0885-2308. 37, 41

Y Normandin.Hidden Markov Models, maximum mutual information estimation and

the speech recognition problem. PhD thesis, McGill University, 1991. 28

K. Oura, H. Zen, Y. Nankaku, A. Lee, and K. Tokuda. Hidden semi-markov model

based speech recognition system using weighted finite-state transducer. InIEEE

International Conference on Acoustics, Speech and Signal Processing, pages I–I,

2006. 116

Friedrich P. Paulsen and Bernhard N. Tillmann. Degenerativechanges in the human

cricoarytenoid joint. Archives of otolaryngology, head & neck surgery, 124:903–

906, 1998. 8

Michael Pitz, Sirko Molau, Ralf Schluter, and Hermann Ney. Vocal tract normalization

equals linear transformation in cepstral space. InEurospeech, 2001. 48

D. Povey and P.C Woodland. Minimum phone error and I-smoothing for improved

discriminative training. InIEEE International conference on Acoustics, Speech and

Signal Processing, 2002. 28

M. L. Pretterklieber. Functional anatomy of the Human Intrinsic Laryngeal Muscles.

European Surgery, 35:250–258, 2003. 8

Lawrence Rabiner and Biing-Hwang Juang.Fundamentals of Speech Recognition.

Prentice-Hall Signal Processing Series, 1993. 5

L.R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition.Proceedings of the IEEE, 77(2):257 – 86, 1989. ISSN 0018-9219. 30,

100

L.A Ramig and R.L Ringel. Effects of physiological aging on selected acoustic char-

acteristics of voice.Journal of Speech and hearing Research, 26:22–30, 1983. 2,

12, 14, 15



Bibliography 158

Lorraine Olson Ramig, Steven Gray, Kristin Baker, Kim Corbin-Lewis, Eugene Buder,

Erich Luschei, Hillary Coon, and Marshall Smith. The aging voice: A review, treat-

ment data and familial and genetic perspectives.Clinical Linguistics and Phonetics,

53:252–265, 2001. 2, 7, 12

Steve Renals and Thomas Hain. Speech recognition. In Alex Clark, Chris Fox, and

Shalom Lappin, editors,Handbook of Computational Linguistics and Natural Lan-

guage Processing. Wiley Blackwell, 2010. 2

D.W Robinson and R.S Dadson. A re-determination of the equal-loudness relations

for pure tones.British Journal of Applied Physics, 7(5):166–181, 1956. 21, 26
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