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Abstract

With ageing, human voices undergo several changes which aretypically characterized by increased hoarseness and changes in
articulation patterns. In this study, we have examined the effect on Automatic Speech Recognition (ASR) and found that theWord
Error Rates (WER) on older voices is about 9% absolute highercompared to those of adult voices. Subsequently, we compared
several voice source parameters including fundamental frequency, jitter, shimmer, harmonicity and cepstral peak prominence of
adult and older males. Several of these parameters show statistically significant difference for the two groups. However, artifi-
cially increasing jitter and shimmer measures do not effect the ASR accuracies significantly. Artificially loweringthe fundamental
frequency degrades the ASR performance marginally but thisdrop in performance can be overcome to some extent using Vocal
Tract Length Normalisation (VTLN). Overall, we observe that the changes in the voice source parameters do not have a significant
impact on ASR performance. Comparison of the likelihood scores of all the phonemes for the two age groups show that there is
a systematic mismatch in the acoustic space of the two age groups. Comparison of the phoneme recognition rates show that mid
vowels, nasals and phonemes that depend on the ability to create constrictions with tongue tip for articulation are moreaffected by
ageing than other phonemes.
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1. Introduction

Older people form an important user group for a variety of
spoken dialogue systems. Systems with speech based interac-
tions can be particularly useful for older people with mobil-
ity restrictions and visual impairment. One of the main chal-
lenges in developing such systems is to build Automatic Speech
Recognition (ASR) systems that give good performance on older
voices.

With ageing, several changes occur in the human speech
production mechanism consisting of the lungs, vocal cords,and
the vocal cavities including the pharynx, mouth and nose.

In the respiratory system, loss of elasticity [1], stiffening of
the thorax, reduction in respiratory muscle strength [2] and loss
in the diaphragm strength [3] are the most significant changes.
This leads to a reduction in forced expiratory volume and lung
pressure in older people, as a result of which there is a decline
in the amount of air that moves in and out and the efficiency
with which it moves [4, 5].

Changes in the larynx that occur during old age, such as
stiffening of the cartilages [6] to which the vocal cords are at-
tached and degeneration of intrinsic muscles [7] reduce theease
of vocal fold adjustments during phonation [8]. Increase inthe
stiffness of vocal cord cover is also observed, leading to insta-
bility of the vocal fold vibrations [7]. Thickening of laryngeal
epithelium progressively with age has been reported [9] which
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may contribute to the lowering of fundamental frequency and
increased harshness observed in older voices.

Changes observed in the vocal cavity include degeneration
of pharyngeal muscles, decline in salivary function, loss of tongue
strength and tooth loss [10, 4]. Degenerative changes are also
observed in the temporomandibular joint which controls thejaw
movement during speech production [11]. These changes could
considerably effect the articulation of speech. Changes in vo-
cal tract dimensions have also been observed in older speakers
[12], which may affect the resonance patterns in older speakers
resulting in reduction of articulatory precision.

There is, however, a large variability in the extent and the
rate at which voices age. Vocal ageing is not only dependent on
chronological age, but also on several other factors that influ-
ence voice such as lifestyle, medical condition, smoking habits
and profession of the person.

Although there have been numerous studies on the effects
of ageing on voice, there has been limited work to understand
how these changes effect the performance of Automatic Speech
Recognition (ASR) systems. Higher Word Error Rates (WERs)
of about 9–12% absolute in older voices as compared to adult
voices, have been reported in [13, 14]. In a study of speech
recognition for the children and older people [15], it was found
that the WERs increased dramatically for voices above 70 years
of age.

Apart from the difference in acoustics, older people also ap-
pear to differ in linguistic characteristics when interacting with
Spoken Dialogue Systems (SDS) [16]. They tend to use a lot
of words compared to younger adults in their queries and talk
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to systems as if they were humans [17]. This kind of inter-
action style also needs to be accommodated into the design of
ASR systems [18] by appropriate language modeling targeted
towards the user age group.

The speech production mechanism can be viewed as a source
filter model, where the glottal excitation represents the source
and the vocal tract acts as the filter modifying the excitation to
generate the desired sounds. In this article, we focus on the
voice parameters that capture the source characteristics of the
speech and attempt to understand the effect of changes in these
parameters on ASR accuracies. We have compared several im-
portant voice characteristics such as the fundamental frequency,
jitter, shimmer, harmonicity and cepstral peak prominanceof
adult and older voices and wherever the measures differ signif-
icantly, we analysed the effect of changes in these parameters
on ASR performance. We have also compared the average like-
lihoods of the phonemes and phoneme error rate to find out if
the drop in ASR performance with ageing is due to changes in
articulation patterns of a subset of the phonemes.

The organisation of the rest of this article is as follows: In
section 2, the ASR experimental setup is described and the ASR
performance on adult and older voices are compared. Voice
parameters of the two age groups are compared and their effect
on ASR performance is analysed in section 3. In section 4,
the likelihood scores and phoneme error rates for the two age
groups are compared. The results are discussed in section 5
followed by conclusions in section 6. Wherever suitable, the
results have been shown in graphs and the relevant numbers are
tabulated in the Appendix.

2. ASR Performance

2.1. Corpus

Most of the speech corpora used in ASR research have in-
adequate representation of older voices. The Supreme Courtof
the United States (SCOTUS) speech corpus [19] was found ap-
propriate for our experiments as it has sufficient speech data
from healthy older and adult voices. One advantage of this
corpus for ASR experiments is that the recording setup for the
court proceedings has remained the same over a period of time
and hence the variations in noise and microphone characteris-
tics are minimal. The other advantage is that the language used
in the Supreme Court is formal and is fairly similar across all
the speakers.

The SCOTUS corpus has been made public under the Oyez
project1. Each court case recording’s duration is about one hour
and consists of speech from the advocates and judges arguing
the case. These recordings were archived on reel-to-reel tapes,
which were later digitized and made public.

The recordings from later half of 1990s until 2005 have
been used in our experiments. In all, the experimental corpus
contains 534 recordings. It consists of speech from 10 Judges
over several years and about 500 advocates. The birth dates
of the Judges are known and hence their age at the time of an
argument can be precisely calculated. The birth dates of thead-
vocates are not easily available, hence wherever the birth dates

were not available, their age has been approximated by using
the year of their law graduation and assuming their age at grad-
uation to be 25.

In order to obtain the sentence boundaries and speaker turn
alignments in each of these one hour long audio recordings,
forced alignment was performed on each recording using acous-
tic models trained on 73 hours of meetings data recorded by
the International Computer Science Institute (ICSI), 13 hours
of meeting corpora from the National Institute of Standardsand
Technology (NIST) and 10 hours of corpora from Interactive
Systems Laboratory (ISL)[20].

Using this corpus, we have built a state of the art ASR sys-
tem using the Hidden Markov Model Toolkit (HTK)2.

2.2. Feature Extraction

The SCOTUS corpus in MP3 format was first converted to
16 kHz wav format and then parametrised using perceptual lin-
ear prediction (PLP) Cepstral features. A window size of 25ms
and frame shift of 10ms were used for feature extraction. En-
ergy along with 1st and 2nd order derivatives were appended
giving a 39-dimensional feature vector.
Cepstral means and variances were computed for each speaker
in each recording. These were then used to normalise the fea-
ture vectors to minimise any channel introduced effects.

2.3. Acoustic Models

The acoustic models were trained on 90 hours of speech
data from 279 speakers. A major portion of the entire corpus is
from males, hence the training data set is also similarly skewed
in favour of males with around 77 hours of speech from 189
male speakers and 13 hours of speech from 75 female speakers.
Age information of only 61 of the training set speakers is avail-
able. The average age computed over these speakers is 44.3
years (Std.Dev: 10.1). Since most of the speakers used in the
training set are Advocates in the Supreme Court, the average
age over all the speakers is expected to lie in the range 40-50
years.

The acoustic models have been trained as cross-word context-
dependent triphone Hidden Markov Models (HMM) [21], each
state modeled as 18 component Gaussian Mixture Model (GMM)
for all speech phones and 36 component GMM for non-speech
(sil & short pause) models respectively.

2.4. Language Models

The language models were constructed from the transcripts
of 260 United States Supreme Court recordings from the 1970s
comprising of about 2.5 million words. Back off bigram lan-
guage models [22] were constructed from this data. The vo-
cabulary consists of 23445 words. The pronunciations used in
the AMI vocabulary[20] were used for those vocabulary words
common to AMI and the pronunciations for the rest of the vo-
cabulary words were generated using the Festival speech syn-
thesis system [23].

1http://www.oyez.org
2HTK version 3.4http://htk.eng.cam.ac.uk
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2.5. Test utterances

For theadult test set, speech utterances from 27 speakers
(23 Male and 4 Female) in an age range of 30-45 (Average:
41.3) were chosen. For theolder test set, speech data from
12 speakers (10 Male and 2 Female) in the age range 60-85
(Average: 68.4) were used. The speaker set used for testing
is disjoint from the training set speakers. 10 utterances (about
130 seconds on average) for each test speaker were kept aside
for speaker adaptation and the remaining utterances formedthe
test set. In all theadult test set comprises of 4964 utterances
(14.5 hours) and theolder test set comprises of 6652 utterances
(19 hours). The perplexity [22] of the language model on the
adult test set is 178.3 with Out Of Vocabulary(OOV) rate of
3.8% and on theolder test set is 169.7 with OOV rate of 4.3%.

2.6. ASR Word Error Rates

The ASR word error rates onadult andolder test sets are
seen in Figure 1. The results show a significant difference of
9.3% absolute higher WERs for older voices as compared to
adult voices. The WERs difference for males is 8.2% absolute
while for females it is 13.3%. The differences in WERs are
statistically significant withp < 0.001 using the Mann-Whitney
test [24].

Speaker adaptation and speaker normalisation techniques
are often used to improve ASR performance [25]. We have used
the standard Maximum Likelihood Linear Regression (MLLR)
mean adaptation [26] to see if speaker adaptation can allevi-
ate age induced errors in ASR. Using the adaptation set of 10
utterances for each speaker, MLLR transforms were computed
for each speaker and used in decoding the test utterances. One
of the main sources of inter-speaker variability in acoustic fea-
tures is the variation in vocal tract dimensions. Vocal Tract
Length Normalisation (VTLN) is a standard approach used to
overcome this variability. Vocal tract length normalised acous-
tic models were constructed using an iterative approach as de-
scribed in [27]. Using the normalised models, warping factors
were estimated for each of the test speakers from the adaptation
set utterances.

From Figure 1, we observe that though speaker adaptation
and speaker normalisation improve the recognition performance
marginally, the gap between the WERs for adult and older voices
is not bridged. The results for females may not be a true repre-
sentation of the difference as the sample set is very small, but
overall the difference in WERs seem to be large enough for in-
vestigation into the possible causes.

3. Voice Parameter Analysis

Since the number of female speakers in the corpus is very
small, we used only the male speakers test set for voice analysis.
This also helps to keep the analysis free from gender relatedef-
fects. We have analysed and compared the samples of phoneme
‘aa’ from adult and older male speakers.

Voice analysis is typically carried out on sustained vowel
pronunciations in a noise-free recording environment. However
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Figure 1: Comparison of WER on adult and older voices

the SCOTUS corpus is spontaneous speech with a considerable
amount of background noise. Being spontaneous in nature, the
corpus also does not have sustained vowel pronunciations with
durations over a few seconds. Most of the samples of the vow-
els are typically a fraction of a second long and are part of a
longer utterance. In order to pick the best available instances of
the phoneme ‘aa’ from the speech the following procedure was
used.

1. Each utterance was force aligned to triphone transcrip-
tion, in order to determine the frame boundaries and the
likelihood of each triphone in the utterance.

2. All the triphone samples with the centre phoneme ‘aa’
were selected.

3. Out of the selected samples, the ones with negative log
likelihood greater than a threshold of 1000 were rejected.

4. From the remaining, those samples having a duration less
than 0.1 seconds were rejected, to get the final set of
vowel ‘aa’ samples for analysis.

In all, 2970 samples of ‘aa’ from 23 adult male speakers
and 2105 samples from 10 older male speakers were used for
voice analysis. Several voice parameters such as the fundamen-
tal frequency, jitter, shimmer and harmonicity measures were
computed for the selected samples using ‘Praat’ [28].

Apart from these parameter computations on sustained vow-
els, using complete speech utterances cepstral peak prominence
measures and speaking rates were computed and analysed.

Each of the following subsections deals with one voice pa-
rameter analysing if there is a significant difference in the pa-
rameter value between adult and older speakers. Wherever the
difference is significant, we artificially modify those parameters
in clean speech to analyse the effect on ASR performance.

3.1. Fundamental Frequency (F0)

Among the several parameters affected by ageing, the fun-
damental frequencyF0 has been one of the most extensively
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studied. There is no general agreement on the trend of changes
in F0 due to ageing. While results reported in [29, 30] indicate
that theF0 reduces significantly by about 40-60 Hz for both
males and females above 60 years of age, the results reportedin
[31, 4] suggests thatF0 decreases in females after menopause
but in males, it decreases till a certain age around 60 years and
increases again.

The results of the analysis of fundamental frequency are
tabulated in Table 1. We observe that the fundamental frequen-
cies for older voices are about 15 Hz (10%) lower than those of
adult male voices. The differences in F0 measures are statisti-
cally significant atp < 0.001 using Mann-Whitney rank sum
test.

F0
Adult Males Older Males

p-value
Mean Std Mean Std

Median F0 144.4 44.3 128.2 45.4 < 0.001
Mean F0 143.9 43.2 128.0 44.6 < 0.001

Table 1: F0 Analysis.

In order to understand the effect of reduction inF0 on ASR
performance, we artificially reduce theF0 by 10% and compare
the WERs of the original waveforms and modified waveforms.
The factor of 10% was used to reflect the difference in adult and
older voices. For this experiment, the ASR system is the same
as that described in section 2. We use 400 utterances from 8
adult speakers (4 Male and 4 Female) as the test set. For each
waveform, the pitch tier is calculated using using Praat. The
frequencies are then scaled to 0.9 of their original value. Using
the new pitch tier, the waveforms are resynthesized using pitch
synchronous overlap and add (PSOLA) method [32]. Figure 2
shows an example of the waveforms andF0 contours before and
after pitch manipulation.

The word error rates before and after reduction in pitch are
given in Table 2. The WER increases by 1.1% absolute to
33.2% and is statistically significant withp < 0.001 using the
Matched pair sentence segment word error (MAPSSWE) test
[33]. In order to be able to attibute the increase in WER to
the change in fundamental frequency and not to the resynthesis
process, we repeated the resynthesis process described above
without modifying the pitch tier. The WER for the resynthe-
sized waveforms is 32.0 and the difference with respect to the
original waveform is statistically insignificant withp = 0.61
using MAPSSWE test.

We also perform VTLN calculating the warping factors for
each speaker separately for the two sets. Using VTLN, the dif-
ference in WER is reduced to 0.7% absolute atp < 0.01 using
MAPSSWE test.

Word Error Rate (WER) %
Original Reduced pitch p-value

Without VTLN 32.1 33.2 < 0.001
with VTLN 28.8 29.5 < 0.01

Table 2: Word Error Rate with artificial reduction inF0

3.2. Jitter

Jitter is a measure of the cycle-to-cycle variation of the pitch
period. Jitter is caused by instability in the vocal fold vibra-
tions. It correlates with the hoarseness in voice. Increased jitter
with age has been observed in both males and females [34, 4].

For our analysis,the following Jitter measurements as de-
fined in Praat[28] were computed.

• Jitter local (Jit Loc) is the percentage ratio of average
absolute distance between consecutive periods to the av-
erage period.

• Jitter Relative Average Perturbation (Jit RAP)is the ra-
tio of average absolute difference between a period and
the average of it and its two neighbours, to the average
period.

Since the durations of the analysed segments of speech is
small, jitter measures that are averaged over larger numberof
cycles have not been compared.

The variations of each of these jitter measurements are shown
in Table 3. The changes are statistically significant atp < 0.001
using Mann-Whitney rank sum test.

Jitter
Adult Males Older Males

p-value
Mean Std Mean Std

Jit Loc 1.89 1.50 2.41 1.83 < 0.001
Jit RAP 0.85 0.96 1.08 1.14 < 0.001

Table 3: Jitter Analysis

In order to understand the effect of increased jitter on ASR
performance, we artificially introduce jitter into the 400 test
waveforms from 8 speakers.

Pulse positions representing the glottal closures are extracted
from the speech utterances. Each pulse positionPPold is then
perturbed to get a new pulse positionPPnew as follows

PPnew= PPold + r ∗ α ∗ Tavg

where,−0.5 ≤ r ≤ 0.5 is a uniformly distributed random vari-
able, α is a factor controlling the maximum perturbation al-
lowed as a fraction of the average periodTavg.

Using these new pulse positions, the waveform is resynthe-
sized by pitch synchronous overlap and add method to get a
waveform with increased jitter. Figure 3 shows an example of
the waveforms before and after artificial increase in jitter.

Maximum temporal perturbations of 5% (α = 0.05) and
10% (α = 0.10) were introduced into the waveforms. Table
4 shows the ASR WERs on the original waveforms and the
waveforms with increased jitter. Withα = 0.10, the waveforms
sound very hoarse, yet the change in WER with increased jit-
ter is statistically insignificant (using MAPSSWE test) andthe
ASR system performance is seen to be quite robust to jitter vari-
ations.
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Figure 3: Artificial increase in Jitter

Word Error Rate (WER) %
Original α = 0.05 α = 0.10

32.1 32.2 (p = 0.62) 32.4 (p = 0.17)

Table 4: WER: Artificial increase in jitter

3.3. Shimmer

Shimmer is a measure of variability of the peak-to-peak am-
plitude of the signal. This measure also correlates with hoarse-
ness in voice. Shimmer has been found to have a strong correla-
tion with age [29]. Amplitude perturbations have been reported
to increase during old age in [34, 4, 35].

For our study, the following Shimmer measures were com-
puted using Praat

• Shimmer Local (Shim Loc)is the percentage ratio of the
average absolute difference between the amplitudes of
consecutive periods to the average amplitude.

• Shimmer Three point Amplitude Perturbation Quotient
(Shim APQ3)is the average absolute difference between
the amplitude of a period and the average of the ampli-
tudes of its neighbours, divided by the average amplitude.

Table 5 shows that the shimmer measures for older males
are higher compared to the adult males and the results are sta-
tistically significant (withp < 0.001 using Mann-Whitney rank
sum test).

Shimmer
Adult Males Older Males

p-value
Mean Std Mean Std

Shim Loc 10.73 5.22 11.33 5.27 < 0.001
Shim APQ3 4.65 2.70 4.93 2.88 < 0.001

Table 5: Shimmer Analysis.

We artificially introduce shimmer in the test waveforms to
understand the effect of increased shimmer on ASR performance.
Pulse positions representing glottal closures are extracted for
each test waveform. From the location of the pulse positions,
the voiced and unvoiced segments in speech are determined. To
simulate shimmer effects, the speech samplesxold between two
adjacent pulses in voiced segment are scaled to obtainxnew as
follows

xnew= xold ∗ (1+ r ∗ α)

where,−0.5 ≤ r ≤ 0.5 is a uniformly distributed random vari-
able which is fixed for all the speech samples between two ad-
jacent pulses, andα is a factor controlling the maximum pertur-
bation allowed.

An example of the waveform3 before and after artificial in-
troduction of shimmer is seen in Figure 4. Table 6 shows that
perturbations in amplitude between adjacent periods do notef-
fect the ASR accuracies significantly.

3Examples of the original and modified waveforms can be accessed from
http://homepages.inf.ed.ac.uk/s0680896/atypicalSpeech/
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Word Error Rate (WER) %
Original α = 0.05 α = 0.10

32.1 32.1 (p = 0.65) 32.1 (p = 0.13)

Table 6: WER: Artificial increase in shimmer

3.4. Harmonicity

Another voice quality associated with ageing is breathiness.
Breathiness is thought to arise due to incomplete glottal clo-
sure during closed phase of the phonatory cycle. The nearly
sinusoidal shape of the breathy glottal waveforms is responsi-
ble for increase in the relative amplitude of the first harmonic
[36]. Breathy signals tend to have more high frequency energy
than normally phonated signal [37]. Breathy speech also tends
to be less periodic, especially in the mid and high frequencies
where aspiration noise is large [38].

Harmonic to Noise Ratio (HNR) measures the signal to noise
ratio in a periodic waveform and acts as a good indicator of
voice quality. It is computed as the ratio of the noise to the en-
ergy of the signal in the periodic part of the signal [39]. An in-
crease in Noise to Harmonic Ratio (NHR) values in older voices
has been reported in [29].

The results of the analysis of autocorrelation (Autocorr) and
NHR in our experiments are tabulated in Table 7.

A measure that correlates well with breathiness in voice is
Cepstral Peak Prominence (CPP) proposed by Hillenbrand and
Houde [36]. The cepstrum is a Fourier analysis of the logarith-

mic amplitude spectrum of a signal. When the log amplitude of
the spectrum contains regularly spaced harmonics, the Fourier
analysis of the spectrum then captures the periodicity in the
spectrum and will show a peak at a quefrency corresponding
to the spacing between the harmonics. The cepstral peak re-
flects both the level of harmonic structure in the signal and the
overall amplitude of the signal. To normalise for overall am-
plitude, a linear regression line is calculated relating quefrency
to cepstral magnitude. The CPP measure is the difference in
amplitude (in dB) between the cepstral peak and the value of
the regression line at the cepstral peak (illustrated in Figure 5).
CPP is computed on frames of 10 ms and averaged over all the
frames in an utterance. CPP values for breathy voices are lower
than those for normal voice since the cepstral peak is expected
to be smaller in breathy voices due to loss of periodic structure
in higher frequencies of the spectrum.

A smoothed version of CPP called CPPS is computed sim-
ilarly with some additional smoothing. For CPPS, a frame size
of 2ms is used instead of 10ms and 2 levels of smoothing are
applied. First the cepstrum is averaged across time by replac-
ing an unsmoothed cepstrum at a time frame with the average
of itself and the adjacent cepstral frames. A second level of
smoothing is then applied by a running average of the cepstral
magnitude across quefrency for each cepstral frame.

We computed4 CPP and CPPS for all the test utterances of
adult and older speech and the average values are shown in Ta-
ble 7.

4The program cpps.exe available athttp://homepages.wmich.edu/
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Figure 5: Illustration of Cepstral Peak Prominence

Harmonicity
Adult Males Older Males

p-value
Mean Std Mean Std

Autocorr 0.85 0.08 0.85 0.09 0.61
NHR 0.21 0.15 0.21 0.16 0.79
CPP 10.81 0.83 10.69 0.82 <0.001
CPPS 2.71 0.43 2.69 0.40 <0.05

Table 7: Harmonicity Analysis

It is observed that the differences in the harmonicity mea-
sures of adult and older voices are statistically insignificant (by
Mann Whitney rank sum test). Though the changes in CPP and
CPPS measures are found to be statistically significant, theac-
tual difference in the values is very small. CPPS which has been
reported [36] to be better correlated with perceived breathiness
in voice than CPP, differs only by a value 0.02 for the two age
groups. This coupled with the comparative results of NHR sug-
gests that the difference in breathiness chracteristics of adult
and older test sets used in our experiments do not differ much.

4. Phoneme Acoustic Likelihoods and Phoneme Recogni-
tion Rates

From the results in section 3, most of the changes in voice
source parameters seem to have a negligible effect on the ASR
performance. The changes in the articulation pattern during old
age could be a strong factor that effects the ASR performance.
It is hence of interest to see if ageing effects the recognition
performance of certain phonemes more than others. Compar-
ing the average log likelihood of each phoneme for adult and
older speech is likely to give a good indication of the mismatch
between the features.

In order to compare the likelihoods, all the test utterances
(of adult and older male voices) as described in section 2 were
first force aligned to the triphone transcription. The left and
right context in the triphones was stripped and the average neg-
ative log likelihood per frame for the centre phoneme for each
age group were computed.

Figure 6 shows that the likelihood score for older voices
are consistently lower than those of adult voices for all the
phonemes. The difference is statistically significant atp < 0.01
for all phonemes except ‘oy’ for which it is insignificant. We
also observe that the variations in likelihood scores for each
phoneme of older voices is higher than those for adult voicesin-
dicating a larger variability in the pronunciations of all phonemes.

These results indicate that there is a mismatch in the acous-
tic models (which are trained on speech dominated by adult
voices) and feature space of older voices. These results are
consistent with the findings in [13] where for an older test set,
acoustic models trained on older voices resulted in about 3-5%
absolute improvement in WER over acoustic models trained on
younger adult speech. The mismatch in the acoustic space of
younger and older people has also been exploited in speaker
age group classification tasks [40, 41].

To get a picture of the ASR accuracies for individual phonemes
for the two age groups, we trained monophone models, each
phoneme modeled as a three state HMM with 18 Gaussian com-
ponents per state. A phone loop decoder was used to gener-
ate the phoneme sequence hypothesis for the test utterancesof
the two groups. Percentages of correct recognition for each
phoneme is shown in Figure 7.

We observe that the phonemes that are most effected are
‘aa’, ‘ae’, ‘ao’, ‘aw’, and ‘er’ with over 10% drop in recognition

~hillenbr/ has been used for the computation of CPP and CPPS measures
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Figure 6: Average phoneme negative log likelihood per frame
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Figure 7: Phoneme recognition (% Correct)

rates. These phonemes form the mid vowels where the tongue
hump position is located in the central region of the mouth and
the jaw is lowered relatively more than that for other phonemes.
‘hh’ is a whisper sound which also has over 10% lower recogni-
tion rates for older voices. The nasals (‘m’,‘n’,‘ng’) haveabout
3-5% decrease in recognition rates. The phonemes in which the
tongue forms a constriction near the upper teeth (‘t’, ‘th’,‘r’,
and ‘l’) have a drop of around 4% in recognition rates. The
other phonemes that have a drop of around 5% are the affricate
‘jh’ and the unvoiced fricative ‘f’.

These results suggest that certain phonemes that are mainly
dependent on the pronounced jaw movement and certain tongue
movements (creating a constriction with middle of the tongue
and the tongue tip) for clear articulation are the worst affected
in terms of ASR accuracy.

5. Discussion

Many of the voice analysis measures reported in this arti-
cle are somewhat higher than the published values in diagnos-
tic medical research. This is due to the fact that we have not
used sustained vowel pronunciations in clean recording condi-
tions, but extracted sustained phones from spontaneous speech.
Due to chunking, there is also a co-articulation effect at the be-
ginning and the end of each analysed phone sample. However
the same procedure has been applied to both adult and older

voices in similar recording environments to analyse the differ-
ences between the two groups. Indeed our analysis is relevant in
this context as it is made on natural speech which is the typical
input to ASR systems.

Jitter and Shimmer measures have been extensively stud-
ied and have been used by researchers in age recognition from
voice. From our experimental results too, we observe a clearin-
crease in jitter and shimmer values for older voices. These mea-
sures can work well for detection of older voices. In automatic
speech recognition, the human speech production mechanism
is seen as a source filter model, where vocal fold vibrations act
as source forcing air out of the vocal tract channel to generate
speech. Front end feature extraction techniques in ASR suchas
perceptual linear prediction used in our experiments are quite
robust and suppress the variations in the source characteristics.

Language modeling plays a significant role in the perfor-
mance of ASR systems, and hence needs to be taken in account
when comparing ASR performances. However due to the na-
ture of the corpus (being court case arguments), linguisticchar-
acteristics do not vary much across speakers.

The results of the phoneme likelihood scores indicate that
there is a mismatch in the acoustic space of adult and older
voices. Training acoustic models for a particular age groupis
likely to improve the ASR accuracies for that group but is likely
to degrade the performance for another age group. A suitable
solution in such a scenario where speakers from different age
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groups form the users of an ASR system, is to train gender and
age group specific acoustic models and allow the system to pick
the acoustic model that maximises the likelihood score as the
user speaks.

6. Conclusion

In this study we have performed experiments to understand
the difference in ASR performance on adult and older voices.
We then analysed several voice source parameters and found
that the parameter values of fundamental frequency, jitterand
shimmer measures show statistically significant differences in
adult and older voices. Even though older voices show in-
creased Jitter and Shimmer, these measures don’t appear to ef-
fect the ASR performance significantly. Average phoneme like-
lihood scores indicate that older voices are not as well matched
to the acoustic models as adult voices. This could possibly be
overcome by selection of training data targeted towards thedo-
main of older speakers. Phoneme accuracy results also indicate
that mid vowels, nasals and phonemes requiring constriction
with the tongue tip are more effected than other phonemes as a
result of ageing.
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Appendix

Results tables for the graphs in various sections of this arti-
cle are listed here

Word Error Rate (WER) %
Adult voices Older voices p-value

Overall 30.5 39.8 < 0.001
Male 30.3 38.4 < 0.001

Female 32.4 45.7 < 0.001

A.1: Comparison of Word Error Rate on adult and older voices.
(Refer: Figure 1)

Word Error Rate (WER) %
Adult voices Older voices p-value

Overall 29.6 38.3 < 0.001
Male 29.6 37.6 < 0.001

Female 30.0 41.0 < 0.001

A.2: Comparison of Word Error Rate using MLLR speaker
adaptation on adult and older voices. (Refer: Figure 1)

Word Error Rate (WER) %
Adult voices Older voices p-value

Overall 28.8 38.2 < 0.001
Male 28.9 37.4 < 0.001

Female 26.2 41.3 < 0.001

A.3: Comparison of Word Error Rate using Vocal Tract Length
Normalisation on adult and older voices. (Refer: Figure 1)

Phoneme
Negative Log Likelihood Correct (%)

Adult Older
Adult Older

Mean Std Mean Std

aa 65.7 7.1 67.0 7.1 67.5 52.8
ae 66.9 6.9 67.7 7.2 53.2 41.5
ah 68.0 6.0 69.2 6.7 56.8 59.3
ao 66.7 6.7 67.9 6.9 69.3 58.6
aw 65.5 6.1 66.2 6.7 73.2 57.5
ax 67.3 5.9 68.6 6.2 46.6 46.8
ay 66.1 7.0 66.6 7.2 76.1 73.9
b 66.0 6.2 67.8 7.4 67.5 68.0
ch 66.4 5.9 67.3 5.4 76.2 73.3
d 67.7 6.1 69.1 6.7 48.3 50.3
dh 67.4 5.7 69.2 6.1 61.2 60.8
eh 66.7 6.5 67.3 7.0 54.7 54.8
er 66.0 6.4 67.8 6.8 67.8 57.6
ey 63.3 6.6 64.4 6.9 79.3 78.4
f 62.4 5.8 64.4 6.3 83.8 79.4
g 68.2 5.9 70.2 6.1 67.9 73.3
hh 67.8 6.0 69.7 6.5 70.3 59.5
ih 67.8 6.1 68.7 6.3 50.7 49.2
iy 65.7 6.5 66.3 6.9 74.0 71.6
jh 68.0 5.2 68.8 5.6 73.1 67.7
k 67.1 5.7 69.4 6.5 69.7 70.1
l 66.9 6.2 68.7 7.0 64.3 60.2
m 65.2 6.2 67.2 6.7 76.2 73.1
n 66.5 6.3 67.6 6.7 65.7 61.7
ng 65.8 6.1 67.3 6.8 78.1 72.6
ow 67.3 6.6 68.4 7.2 67.8 70.4
oy 67.7 5.4 67.8 5.3 82.4 81.9
p 64.8 5.5 66.2 6.3 72.3 70.6
r 67.5 6.5 68.5 6.9 64.0 60.1
s 64.8 5.9 66.4 6.5 80.1 80.1
sh 62.4 5.8 63.6 6.0 82.1 83.8
t 67.5 6.2 69.0 6.8 41.3 37.1
th 66.1 6.3 68.4 6.6 54.4 50.0
uh 69.6 6.2 70.2 6.5 74.4 74.5
uw 65.7 6.5 67.8 7.2 69.9 68.7
v 64.9 5.8 66.0 6.2 63.9 62.2
w 67.5 6.2 68.9 7.1 81.1 79.0
y 66.7 6.6 68.1 7.0 78.5 77.7
z 66.6 5.7 68.0 6.0 72.4 68.0
zh 64.3 5.8 66.1 6.5 80.2 80.0

A.4: Likelihood scores (Negative log likelihood per frame)and
Correct recognition percentages of all the phonemes (Refer:
Figure 6 & Figure 7)
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