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Abstract

With ageing, human voices undergo several changes whidlypially characterized by increased hoarseness and ekang
articulation patterns. In this study, we have examined ffeceon Automatic Speech Recognition (ASR) and found thatWbed
Error Rates (WER) on older voices is about 9% absolute higherpared to those of adult voices. Subsequently, we cordpare
several voice source parameters including fundamentquéscy, jitter, shimmer, harmonicity and cepstral peakmpnence of
adult and older males. Several of these parameters shoatistdly significant diference for the two groups. However, artifi-
cially increasing jitter and shimmer measures do rtgat the ASR accuracies significantly. Artificially lowerittge fundamental
frequency degrades the ASR performance marginally butdfap in performance can be overcome to some extent usingl Voca
Tract Length Normalisation (VTLN). Overall, we observettttze changes in the voice source parameters do not haveificsigh
impact on ASR performance. Comparison of the likelihoodesmf all the phonemes for the two age groups show that tkere i
a systematic mismatch in the acoustic space of the two agggraComparison of the phoneme recognition rates show tttht m
vowels, nasals and phonemes that depend on the ability abeccenstrictions with tongue tip for articulation are meffected by
ageing than other phonemes.
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1. Introduction may contribute to the lowering of fundamental frequency and
. . increased harshness observed in older voices.

Older people form an important user group for a variety of  changes observed in the vocal cavity include degeneration
spoken dialogue systems. Systems with speech based interag yharyngeal muscles, decline in salivary function, Idgsogue
tions can be particularly useful for older people with mebil strength and tooth loss [10, 4]. Degenerative changes see al
ity restrictions and visual impairment. One of the main ehal ypsenvedin the temporomandibular joint which controlséive
lenges in developing such systems is to build Automatic 8pee movement during speech production [11]. These changed coul
Recognition (ASR) systems that give good performance 0‘WO'dconsiderably ffect the articulation of speech. Changes in vo-

voices. cal tract dimensions have also been observed in older speake

With ageing, several changes occur in the human speeqfi 2] which may #ect the resonance patterns in older speakers
production mechanism consisting of the lungs, vocal cadd, resulting in reduction of articulatory precision.

the vocal cavities including the pharynx, mouth and nose. There is, however, a large variability in the extent and the
In the respiratory system, loss of elasticity [1]ff&hing of  51e at which voices age. Vocal ageing is not only dependent o

the thorax, reduction in respiratory muscle strength [ b3S ¢pronological age, but also on several other factors tHat-in

in the diaphragm strength [3] are the most significant change ence voice such as lifestyle, medical condition, smokirigjtsa

This leads to a reduction in forced expiratory volume angjlun 4,4 profession of the person.

pressure in older people, as a result of which there is amcli Although there have been numerous studies on ffezts

in the amount of air that moves in and out and tffiecncy  of ageing on voice, there has been limited work to understand

with which it moves [4, 5]. _ how these change#ect the performance of Automatic Speech
Changes in the larynx that occur during old age, such agecognition (ASR) systems. Higher Word Error Rates (WERS)

stiffening of the cartilages [6] to which the vocal cords are at-of 5pout 9-12% absolute in older voices as compared to adult

tached and deg.eneration ofiqtrinsic mu§cles [7] reducealge voices, have been reported in [13, 14]. In a study of speech

of vocal fold adjustments during phonation [8]. Increasthim recognition for the children and older people [15], it wasrid

stiffness of vocal cord cover is also observed, leading to insta 5t the WERS increased dramatically for voices above 76syea
bility of the vocal fold vibrations [7]. Thickening of langeal ¢ age.

epithelium progressively with age has been reported [SEthi  apart from the diference in acoustics, older people also ap-

pear to difer in linguistic characteristics when interacting with
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to systems as if they were humans [17]. This kind of inter-were not available, their age has been approximated by using

action style also needs to be accommodated into the design tife year of their law graduation and assuming their age at-gra

ASR systems [18] by appropriate language modeling targetedation to be 25.

towards the user age group. In order to obtain the sentence boundaries and speaker turn
The speech production mechanism can be viewed as a souatggnments in each of these one hour long audio recordings,

filter model, where the glottal excitation represents theree  forced alignment was performed on each recording usingscou

and the vocal tract acts as the filter modifying the excitatm tic models trained on 73 hours of meetings data recorded by

generate the desired sounds. In this article, we focus on ththe International Computer Science Institute (ICSI), 18rso

voice parameters that capture the source characteridtiteo of meeting corpora from the National Institute of Standamad

speech and attempt to understand thieat of changes in these Technology (NIST) and 10 hours of corpora from Interactive

parameters on ASR accuracies. We have compared several irBystems Laboratory (ISL)[20].

portant voice characteristics such as the fundamentalénecy, Using this corpus, we have built a state of the art ASR sys-

jitter, shimmer, harmonicity and cepstral peak prominaote tem using the Hidden Markov Model Toolkit (HTK)

adult and older voices and wherever the measut@srdiignif-

icantly, we analysed theffect of changes in these parameters2.2. Feature Extraction

on ASR performance. We have also compared the average like- The SCOTUS corpus in MP3 format was first converted to
lihoods of the phonemes and phoneme error rate to find out if 6 kHz wav format and then parametrised using perceptual lin
the drop in ASR performance with ageing is due to changes igar prediction (PLP) Cepstral features. A window size of 85m
articulation patterns of a subset of the phonemes. and frame shift of 10ms were used for feature extraction. En-
The 0rganisati0n of the rest of this article is as follows: In ergy a|0ng with 1st and 2nd order derivatives were appended
section 2, the ASR experimental setup is described and tfe ASgjying a 39-dimensional feature vector.
performance on adult and older voices are compared. VoiC€epstral means and variances were computed for each speaker
parameters of the two age groups are compared and tfiedte in each recording. These were then used to normalise the fea-

on ASR performance is analysed in section 3. In section 4yre vectors to minimise any channel introducéigets.
the likelihood scores and phoneme error rates for the two age

groups are compared. The results are discussed in section253. Acoustic Models
followed by conclusions in section 6. Wherever suitable, th The acoustic models were trained on 90 hours of speech

results haye been showr_l in graphs and the relevant numieers Hata from 279 speakers. A major portion of the entire corpus i
tabulated in the Appendix. from males, hence the training data set is also similarlyveke
in favour of males with around 77 hours of speech from 189

2. ASR Performance male speakers and 13 hours of speech from 75 female speakers.
Age information of only 61 of the training set speakers isilava
2.1. Corpus able. The average age computed over these speakers is 44.3

Most of the speech corpora used in ASR research have iryears (Std.Dev: 10.1). Since most of the speakers used in the
adequate representation of older voices. The Supreme Gburt training set are Advocates in the Supreme Court, the average
the United States (SCOTUS) speech corpus [19] was found agge over all the speakers is expected to lie in the range 40-50
propriate for our experiments as it hasffitient speech data Years.
from healthy older and adult voices. One advantage of this The acoustic models have been trained as cross-word centext
corpus for ASR experiments is that the recording setup fer th dependent triphone Hidden Markov Models (HMM) [21], each
court proceedings has remained the same over a period of ting$ate modeled as 18 component Gaussian Mixture Model (GMM)
and hence the variations in noise and microphone characterifor all speech phones and 36 component GMM for non-speech
tics are minimal. The other advantage is that the language us (sil & short pause) models respectively.
in the Supreme Court is formal and is fairly similar acrods al
the speakers. 2.4. Language Models

The SCOTUS corpus has been made public under the Oyez The language models were constructed from the transcripts
project. Each court case recording’s duration is about one houof 260 United States Supreme Court recordings from the 1970s
and consists of speech from the advocates and judges arguisgmprising of about 2.5 million words. Backfdigram lan-
the case. These recordings were archived on reel-to-nee$fa guage models [22] were constructed from this data. The vo-
which were later digitized and made public. cabulary consists of 23445 words. The pronunciations used i

The recordings from later half of 1990s until 2005 havethe AMI vocabulary[20] were used for those vocabulary words
been used in our experiments. In all, the experimental ®rpucommon to AMI and the pronunciations for the rest of the vo-
contains 534 recordings. It consists of speech from 10 Jidgecabulary words were generated using the Festival speech syn
over several years and about 500 advocates. The birth datésesis system [23].
of the Judges are known and hence their age at the time of an
argument can be precisely calculated. The birth dates aidhe

. N . 1 .
vocates are not easily available, hence wherever the bititsd Jhttp://www. oyez. org
HTK version 3.4nttp://htk.eng.cam.ac.uk
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2.5. Test utterances 60

For theadult test set, speech utterances from 27 speakers =2jﬁ::§3:§zz g WILLR
(23 Male and 4 Female) in an age range of 30-45 (Average: 5o | I Adut voices using VTLN |
41.3) were chosen. For thalder test set, speech data from %g:g:::g:z: g MLLR B
12 speakers (10 Male and 2 Female) in the age range 60-8% ] Older voices using VTLN

(Average: 68.4) were used. The speaker set used for testing 4o _— .
is disjoint from the training set speakers. 10 utterancbsya

130 seconds on average) for each test speaker were kept asid
for speaker adaptation and the remaining utterances fotheed
test set. In all theadult test set comprises of 4964 utterances
(14.5 hours) and theldertest set comprises of 6652 utterances 200 .
(19 hours). The perplexity [22] of the language model on the
adult test set is 178.3 with Out Of Vocabulary(OOV) rate of
3.8% and on theldertest set is 169.7 with OQV rate of 4.3%.

30 b

Word Error Rate (%)

2.6. ASR Word Error Rates o o S = L
The ASR word error rates oadult andolder test sets are
seen in Figure 1. The results show a significafiiedence of Figure 1: Comparison of WER on adult and older voices

9.3% absolute higher WERs for older voices as compared to

adult voices. The WERs filerence for males is 8.2% absolute

while for females it is 13.3%. The filerences in WERs are the SCOTUS corpus is spontaneous speech with a considerable

statistically significant witlp < 0.001 using the Mann-Whitney amount of background noise. Being spontaneous in natwe, th

test [24]. corpus also does not have sustained vowel pronunciatiahs wi
Speaker adaptation and speaker normalisation techniquésirations over a few seconds. Most of the samples of the vow-

are often used to improve ASR performance [25]. We have usedls are typically a fraction of a second long and are part of a

the standard Maximum Likelihood Linear Regression (MLLR) longer utterance. In order to pick the best available instarof

mean adaptation [26] to see if speaker adaptation can allevihe phoneme ‘aa’ from the speech the following procedure was

ate age induced errors in ASR. Using the adaptation set of 10sed.

utterances for each speaker, MLLR transforms were computed

for each speaker and used in decoding the test utterances. On

of the main sources of inter-speaker variability in acaufta-

tures is the variation in vocal tract dimensions. Vocal Trac . . o

Length Normalisation (VTLN) is a standard approach used to 2. All the triphone samples with the centre phoneme ‘aa

overcome this variability. Vocal tract length normalisexas- were selected. _ .

tic models were constructed using an iterative approacteas d  3- Out of the selected samples, the ones with negative log

1. Each utterance was force aligned to triphone transcrip-
tion, in order to determine the frame boundaries and the
likelihood of each triphone in the utterance.

scribed in [27]. Using the normalised models, warping festo likelihood greater than a threshold of 1000 were rejected.

were estimated for each of the test speakers from the adaptat 4. Fromthe remaining, those samples having a duration less

set utterances. than 0.1 seconds were rejected, to get the final set of
From Figure 1, we observe that though speaker adaptation ~ Vowel ‘aa’ samples for analysis.

and speaker normalisation improve the recognition peréoroe In all, 2970 samples of ‘aa’ from 23 adult male speakers

marginally, the gap between the WERs for adultand oldemic 5nq 2105 samples from 10 older male speakers were used for

is not bridged. The results for females may not be a true repre,gjce analysis. Several voice parameters such as the fuerdam

sentation of the dierence as the sample set is very small, but frequency, jitter, shimmer and harmonicity measuresewe

overall the dfference in WERs seem to be large enough for in'computed for the selected samples using ‘Praat’ [28].

vestigation into the possible causes. Apart from these parameter computations on sustained vow-
els, using complete speech utterances cepstral peak prongn
measures and speaking rates were computed and analysed.

3. Voice Parameter Analysis Each of the following subsections deals with one voice pa-
rameter analysing if there is a significanffdrence in the pa-

Since the number of female speakers in the corpus is veryameter value between adult and older speakers. Wherewer th

small, we used only the male speakers test set for voicesisaly difference is significant, we artificially modify those paramete

This also helps to keep the analysis free from gender rekfted in clean speech to analyse thféeet on ASR performance.

fects. We have analysed and compared the samples of phoneme

‘aa’ from adult and older male speakers. 3.1. Fundamental Frequency ¢F

\Voice analysis is typically carried out on sustained vowel Among the several parameterexted by ageing, the fun-
pronunciations in a noise-free recording environment. B\  4amental frequencfo has been one of the most extensively



studied. There is no general agreement on the trend of ceang8d.2. Jitter

in Fo due to ageing. While results reported in [29, 30] indicate  jjtter is a measure of the cycle-to-cycle variation of tHelpi
that theF, reduces significantly by about 40-60 Hz for both period. Jitter is caused by instability in the vocal fold néb
males and females above 60 years of age, the results re;imrtedﬁons_ It correlates with the hoarseness in voice. Increfiter

[31, 4] suggests thaf, decreases in females after menopausey;ith age has been observed in both males and females [34, 4].
butin males, it decreases till a certain age around 60 ye&ts a  For our analysis,the following Jitter measurements as de-

increases again. _ fined in Praat[28] were computed.
The results of the analysis of fundamental frequency are

tabulated in Table 1. We observe that the fundamental freque o Jitter local (Jit Loc)is the percentage ratio of average
cies for older voices are about 15 Hz (10%) lower than those of absolute distance between consecutive periods to the av-

adult male voices. The flerences in FO measures are statisti- erage period.
cally significant atp < 0.001 using Mann-Whitney rank sum
test. ¢ Jitter Relative Average Perturbation (Jit RAR)the ra-
tio of average absolute filerence between a period and
o Adult Males | Older Males p-value the average of it and its two neighbours, to the average
Mean | Std | Mean | Std period.
Median FO| 144.4 | 44.3| 128.2 | 45.4| <0.001
Mean FO | 143.9 | 43.2| 128.0 | 44.6 | <0.001 Since the durations of the analysed segments of speech is
small, jitter measures that are averaged over larger number
Table 1: FO Analysis. cycles have not been compared.

The variations of each of these jitter measurements arershow
in Table 3. The changes are statistically significant at0.001

In order to understand thdfect of reduction ifFg on ASR . .
using Mann-Whitney rank sum test.

performance, we atrtificially reduce ttg by 10% and compare
the WERs of the original waveforms and modified waveforms.
The factor of 10% was used to reflect th&eience in adult and Jitter
older voices. For this experiment, the ASR system is the same
as that described in section 2. We use 400 utterances from 8
adult speakers (4 Male and 4 Female) as the test set. For each
waveform, the pitch tier is calculated using using Praate Th
frequencies are then scaled to 0.9 of their original valugng

the new pitch tier, the waveforms are resynthesized usitoi pi . .
synchronous overlap and add (PSOLA) method [32]. Figure 2 In order to understand thetect of increased jitter on ASR

shows an example of the waveforms dhgtontours before and performance, we artificially introduce jitter into the 408st
after pitch manipulation, waveforms from 8 speakers.

The word error rates before and after reduction in pitch are Pulse positions representing the glottal closures areetetd

given in Table 2. The WER increases by 1.1% absolute tgrom the speech utterances. Eac;h pulse poskBy is then
33.2% and is statistically significant wifh < 0.001 using the perturbed to get a new pulse positiBfney as follows
Matched pair sentence segment word error (MAPSSWE) test
[33]. In order to be able to attibute the increase in WER to
the change in fundamental frequency and not to the resyistheSyhere,—0.5 < r < 0.5 is a uniformly distributed random vari-

process, we repeated the resynthesis process describee ab@ple « is a factor controlling the maximum perturbation al-
without modifying the pitch tier. The WER for the resynthe- |qyed as a fraction of the average peri o

Adult Males | Older Males
Mean | Std | Mean | Std
Jit Loc 1.89 | 1.50| 2.41 | 1.83| <0.001
JtRAP| 0.85 | 0.96| 1.08 | 1.14 | <0.001

p-value

Table 3: Jitter Analysis

PPnewz PP0|d + I *xq@* Tavg

sized waveforms is 32.0 and thefference with respect to the  ysing these new pulse positions, the waveform is resynthe-
orl_gmal waveform is statistically insignificant with = 0.61  gjzeqg by pitch synchronous overlap and add method to get a
using MAPSSWE test. waveform with increased jitter. Figure 3 shows an example of

We also perform VTLN calculating the warping factors for {ne waveforms before and after artificial increase in jitter
each speaker separately for the two sets. Using VTLN, the dif  paximum temporal perturbations of 5% (= 0.05) and
ference in WER is reduced to 0.7% absolut@at 0.01 using 109 @ = 0.10) were introduced into the waveforms. Table
MAPSSWE test. 4 shows the ASR WERs on the original waveforms and the
waveforms with increased jitter. Wiila = 0.10, the waveforms
sound very hoarse, yet the change in WER with increased jit-
ter is statistically insignificant (using MAPSSWE test) ¢hd
ASR system performance is seen to be quite robust to jitrér va
ations.

Word Error Rate (WER) %
| Original | Reduced pitch | p-value
Without VTLN 32.1 33.2 <0.001
with VTLN 28.8 29.5 <0.01

Table 2: Word Error Rate with artificial reduction Fy
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Figure 3: Artificial increase in Jitter
Word Error Rate (WER) % . Adult Males | Older Males
Shimmer -value
Ofiginal [ @=005 | =010 Mean | Sid | Mean | Sid | P
| 321 [322(p=062)]324(p=017)]| Shim Loc | 10.73 ] 5.22 11.33 [ 5.27 | <0.001
Shim APQ3| 4.65 | 2.70| 4.93 | 2.88 | <0.001
Table 4: WER: Atrtificial increase in jitter ) )
Table 5: Shimmer Analysis.
3.3. Shimmer We artificially introduce shimmer in the test waveforms to

Shimmer is a measure of variability of the peak-to-peak amynderstand theffect of increased shimmer on ASR performance.
plitude of the signal. This measure also correlates with$®a  py|se positions representing glottal closures are extdaftir
ness in voice. Shimmer has been found to have a strong correl@ach test waveform. From the location of the pulse positions
tion with age [29]. Amplitude perturbations have been régdr  the voiced and unvoiced segments in speech are determioed. T

to increase during old age in [34, 4, 35]. simulate shimmerféects, the speech sampleg; between two
For our study, the following Shimmer measures were comyzdjacent pulses in voiced segment are scaled to oktainas
puted using Praat follows

e Shimmer Local (Shim Lod3 the percentage ratio of the
average absolute fiierence between the amplitudes of Xnew = Xoig * (1 +1 + @)
consecutive periods to the average amplitude. where,—0.5 < r < 0.5 is a uniformly distributed random vari-
able which is fixed for all the speech samples between two ad-
e Shimmer Three point Amplitude Perturbation Quotientjacent pulses, andis a factor controlling the maximum pertur-
(Shim APQ3])s the average absoluteflirence between pation allowed.
the amplitude of a period and the average of the ampli-  An example of the waveforfrbefore and after artificial in-
tudes of its neighbours, divided by the average amplitudeyoduction of shimmer is seen in Figure 4. Table 6 shows that

Table 5 shows that the shimmer measures for older male(j&erturbations in amplitude between adjacent periods defot
are higher compared to the adult males and the results are s gt the ASR accuracies significantly.

tistically significant (withp < 0.001 using Mann-Whitney rank
sum test).

SExamples of the original and modified waveforms can be aecefem
http://homepages.inf.ed.ac.uk/s0680896/atypicalSpeech/
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Figure 4: Artificial increase in Shimmer

Word Error Rate (WER) % mic amplitude spectrum of a signal. When the log amplitude of
Original[ =005 | «=010 the spectrum contains regularly spaced harmonics, theidtour
| 321 [321(p=0.65)]321(p=013)] analysis of the spectrum then captures the periodicity & th
spectrum and will show a peak at a quefrency corresponding
Table 6: WER: Artificial increase in shimmer to the spacing between the harmonics. The cepstral peak re-

flects both the level of harmonic structure in the signal dred t
overall amplitude of the signal. To normalise for overall-am
3.4. Harmonicity plitude, a linear regression line is calculated relatingfgency

Another voice quality associated with ageing is breattines t0 cepstral magnitude. The CPP measure is tfierince in
Breathiness is thought to arise due to incomplete glotel cI amplitude (in dB) between the cepstral peak and the value of
sure during closed phase of the phonatory cycle. The nearltpe regression line at the cepstral peak (illustrated i ®).
sinusoidal shape of the breathy glottal waveforms is respon CPP is computed on frames of 10 ms and averaged over all the
ble for increase in the relative amplitude of the first haripon framesin an utterance. CPP values for breathy voices aerlow
[36]. Breathy signals tend to have more high frequency Qnergthan those for normal voice since the cepstral peak is egfdect
than normally phonated signal [37]. Breathy speech alsdgten to be smaller in breathy voices due to loss of periodic stmect
to be less periodic, especially in the mid and high frequesici In higher frequencies of the spectrum.
where aspiration noise is large [38]. A smoothed version of CPP called CPPS is computed sim-

Harmonic to Noise Ratio (HNR) measures the signal to noiséarly with some additional smoothing. For CPPS, a frame siz
ratio in a periodic waveform and acts as a good indicator off 2ms is used instead of 10ms and 2 levels of smoothing are
voice quality. It is computed as the ratio of the noise to the e applied. First the cepstrum is averaged across time by cepla
ergy of the signal in the periodic part of the signal [39]. A i ing an unsmoothed cepstrum at a time frame with the average
crease in Noise to Harmonic Ratio (NHR) values in older wwice Of itself and the adjacent cepstral frames. A second level of

has been reported in [29]. smoothing is then applied by a running average of the cdpstra
The results of the analysis of autocorrelation (Autocond a Magnitude across quefrency for each cepstral frame.
NHR in our experiments are tabulated in Table 7. We computetil CPP and CPPS for all the test utterances of

A measure that correlates well with breathiness in voice ig¢dult and older speech and the average values are shown in Ta-

Cepstral Peak Prominence (CPP) proposed by Hillenbrand arfle 7.
Houde [36]. The cepstrum is a Fourier analysis of the lobarit

4The program cpps.exe available &ttp://homepages.wmich.edu/
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Figure 5: lllustration of Cepstral Peak Prominence

Harmonicity Adult Males | Older Males p-value
Mean | Std | Mean | Std
Autocorr 0.85 | 0.08| 0.85 | 0.09 0.61
NHR 0.21 | 0.15| 0.21 | 0.16| 0.79
CPP 10.81 | 0.83| 10.69| 0.82 | <0.001
CPPS 2.71 | 0.43| 2.69 | 0.40| <0.05

Table 7: Harmonicity Analysis

It is observed that the fierences in the harmonicity mea-
sures of adult and older voices are statistically insigaifiqby
Mann Whitney rank sum test). Though the changes in CPP and
CPPS measures are found to be statistically significanathe
tual difference in the values is very small. CPPS which has been
reported [36] to be better correlated with perceived brieatss
in voice than CPP, dfiers only by a value 0.02 for the two age
groups. This coupled with the comparative results of NHR sug
gests that the tlierence in breathiness chracteristics of adult
and older test sets used in our experiments do rtgrdinuch.

4. Phoneme Acoustic Likelihoods and Phoneme Recogni-
tion Rates

From the results in section 3, most of the changes in voice
source parameters seem to have a negligitieceon the ASR
performance. The changes in the articulation pattern duwid
age could be a strong factor thdfexts the ASR performance.

It is hence of interest to see if ageinfexts the recognition
performance of certain phonemes more than others. Compar-
ing the average log likelihood of each phoneme for adult and
older speech is likely to give a good indication of the misthat
between the features.

In order to compare the likelihoods, all the test utterances
(of adult and older male voices) as described in section 2wer
first force aligned to the triphone transcription. The lefida
right context in the triphones was stripped and the average n
ative log likelihood per frame for the centre phoneme forteac
age group were computed.

Figure 6 shows that the likelihood score for older voices
are consistently lower than those of adult voices for all the
phonemes. The fference is statistically significant pt< 0.01
for all phonemes except ‘oy’ for which it is insignificant. We
also observe that the variations in likelihood scores farhea
phoneme of older voices is higher than those for adult vdices
dicating a larger variability in the pronunciations of dignemes.

These results indicate that there is a mismatch in the acous-
tic models (which are trained on speech dominated by adult
voices) and feature space of older voices. These results are
consistent with the findings in [13] where for an older tedf se
acoustic models trained on older voices resulted in abd%3-
absolute improvement in WER over acoustic models trained on
younger adult speech. The mismatch in the acoustic space of
younger and older people has also been exploited in speaker
age group classification tasks [40, 41].

To get a picture of the ASR accuracies for individual phongme
for the two age groups, we trained monophone models, each
phoneme modeled as a three state HMM with 18 Gaussian com-
ponents per state. A phone loop decoder was used to gener-
ate the phoneme sequence hypothesis for the test utterafhces
the two groups. Percentages of correct recognition for each
phoneme is shown in Figure 7.

We observe that the phonemes that are mésiceed are
‘aa’, ‘ae’, ‘ao’, ‘aw’, and ‘er’ with over 10% drop in recogtidon

~hillenbr/ has been used for the computation of CPP and CPPS measures
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Figure 7: Phoneme recognition (% Correct)

rates. These phonemes form the mid vowels where the tongumices in similar recording environments to analyse theedi
hump position is located in the central region of the moutth an ences between the two groups. Indeed our analysis is relievan
the jaw is lowered relatively more than that for other phoeem this context as it is made on natural speech which is the &pic
‘hh’is a whisper sound which also has over 10% lower recogniinput to ASR systems.

tion rates for older voices. The nasals (‘m’,'n’,'ng’) haabout Jitter and Shimmer measures have been extensively stud-
3-5% decrease in recognition rates. The phonemes in which tHed and have been used by researchers in age recognition from
tongue forms a constriction near the upper teeth (‘t’, ‘th, voice. From our experimental results too, we observe a abear

and ‘I") have a drop of around 4% in recognition rates. Thecrease in jitter and shimmer values for older voices. Thesa-m

other phonemes that have a drop of around 5% arefthieate =~ sures can work well for detection of older voices. In autdmat

‘ih’ and the unvoiced fricative ‘f’. speech recognition, the human speech production mechanism
These results suggest that certain phonemes that are mairiy/seen as a source filter model, where vocal fold vibrati@hs a

dependent on the pronounced jaw movement and certain tongas source forcing air out of the vocal tract channel to gdrera

movements (creating a constriction with middle of the tasigu speech. Front end feature extraction techniques in ASRasich

and the tongue tip) for clear articulation are the wotféeted perceptual linear prediction used in our experiments aitequ

in terms of ASR accuracy. robust and suppress the variations in the source charstatsri
Language modeling plays a significant role in the perfor-

mance of ASR systems, and hence needs to be taken in account

when comparing ASR performances. However due to the na-
Many of the voice analysis measures reported in this artifure of the corpus (being court case arguments), lingussta-

cle are somewhat higher than the published values in diagno@cteristics do not vary much across speakers.

tic medical research. This is due to the fact that we have not The results of the phoneme likelihood scores indicate that

used sustained vowel pronunciations in clean recordingiieon there is a mismatch in the acoustic space of adult and older

tions, but extracted sustained phones from spontaneoesispe Voices. Training acoustic models for a particular age gnsup

Due to chunking, there is also a co-articulatidteet at the be- likely toimprove the ASR accuracies for that group but iglik

ginning and the end of each analysed phone sample. Howevkt degrade the performance for another age group. A suitable

the same procedure has been applied to both adult and old@p!ution in such a scenario where speakers froffecint age

5. Discussion

9



groups form the users of an ASR system, is to train gender ando]
age group specific acoustic models and allow the system ko pic
the acoustic model that maximises the likelihood score as th[lll
user speaks.

[12]

6. Conclusion

In this study we have performed experiments to understanfi3]
the diference in ASR performance on adult and older voices.
We then analysed several voice source parameters and found
that the parameter values of fundamental frequency, jitel  [14]
shimmer measures show statistically significarifedences in
adult and older voices. Even though older voices show in-

. : 15]
creased Jitter and Shimmer, these measures don’t appéar to (L;
fect the ASR performance significantly. Average phonene lik
lihood scores indicate that older voices are not as well heatc  [16]
to the acoustic models as adult voices. This could possibly b
overcome by selection of training data targeted towardslthe
main of older speakers. Phoneme accuracy results alsaiedic
that mid vowels, nasals and phonemes requiring constnictio
with the tongue tip are mordiected than other phonemes as a1
result of ageing.

(17]
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Appendix

Results tables for the graphs in various sections of this art

cle are listed here

A.1: Comparison of Word Error Rate on adult and older voices

Word Error Rate (WER) %
| Adult voices | Older voices | p-value

Negative Log Likelihood

Correct (%)

Overall 30.5 39.8 < 0.001
Male 30.3 38.4 < 0.001
Female 32.4 45.7 < 0.001

(Refer: Figure 1)

A.2: Comparison of Word Error Rate using MLLR speaker
adaptation on adult and older voices. (Refer: Figure 1)

Word Error Rate (WER) %

| Adult voices | Older voices | p-value

Overall 29.6 38.3 < 0.001
Male 29.6 37.6 < 0.001
Female 30.0 41.0 < 0.001

Word Error Rate (WER) %

Phoneme Adult Older

Niean | Sd Ve | S Adult | Older
aa 657 | 71| 670 | 7.1 | 675 52.8
ae 66.9 6.9 67.7 7.2 53.2 41.5
ah 68.0 | 6.0 | 69.2 | 6.7 | 56.8 59.3
ao 66.7 | 6.7 | 679 | 6.9 | 69.3 58.6
aw 655 | 6.1 | 66.2 | 6.7 | 73.2 57.5
ax 673 | 59| 686 | 6.2 | 46.6 46.8
ay 66.1 | 70| 666 | 7.2 | 76.1 73.9
b 66.0 | 6.2 | 678 | 74| 675 68.0
ch 66.4 | 59| 673 | 54| 76.2 73.3
d 677 | 6.1 | 69.1 | 6.7 | 48.3 50.3
dh 674 | 57| 69.2 | 6.1 | 61.2 60.8
eh 66.7 6.5 67.3 7.0 54.7 54.8
er 66.0 | 64| 678 | 6.8 | 67.8 57.6
ey 63.3 | 66| 644 | 69| 79.3 78.4
f 624 | 58| 644 | 6.3 | 83.8 79.4
g 68.2 | 59| 70.2 | 6.1 | 679 73.3
hh 678 | 6.0 | 69.7 | 65| 70.3 59.5
ih 67.8 | 6.1 | 68.7 | 6.3 | 50.7 49.2
iy 65.7 | 65| 66.3 | 6.9 | 74.0 71.6
jh 680 | 52| 688 | 56| 73.1 67.7
k 67.1 5.7 69.4 6.5 69.7 70.1
| 669 | 6.2 | 687 | 7.0 | 64.3 60.2
m 65.2 | 6.2 | 67.2 | 6.7 | 76.2 73.1
n 66.5 | 6.3 | 676 | 6.7 | 65.7 61.7
ng 658 | 6.1 | 673 | 6.8 | 78.1 72.6
ow 673 | 66 | 684 | 7.2 | 67.8 70.4
oy 677 | 54| 678 | 5.3 | 824 81.9
p 648 | 55| 66.2 | 6.3 | 72.3 70.6
r 675 | 65| 685 | 6.9 | 64.0 60.1
s 648 | 59| 664 | 65| 80.1 80.1
sh 624 | 58| 636 | 6.0 | 82.1 83.8
t 675 | 6.2 | 69.0 | 6.8 | 41.3 37.1
th 66.1 | 6.3 | 684 | 6.6 | 544 50.0
uh 696 | 6.2 | 70.2 | 65| 744 74.5
uw 65.7 | 65| 678 | 7.2 | 69.9 68.7
v 649 | 58| 66.0 | 6.2 | 63.9 62.2
w 675 | 6.2 | 689 | 7.1 | 81.1 79.0
y 66.7 | 66 | 68.1 | 7.0 | 78.5 77.7
z 666 | 5.7 | 68.0 | 6.0 | 724 68.0
zh 643 | 58| 66.1 | 6.5 | 80.2 80.0

| Adult voices | Older voices | p-value

Overall 28.8 38.2 < 0.001 A.4: Likelihood scores (Negative log likelihood per fransejd
Male 28.9 37.4 < 0.001 Correct recognition percentages of all the phonemes (Refer
Female 26.2 41.3 < 0.001 Figure 6 & Figure 7)

A.3: Comparison of Word Error Rate using Vocal Tract Length
Normalisation on adult and older voices. (Refer: Figure 1)
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