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Abstract. Local optima networks are a compact representation of fit-
ness landscapes that can be used for analysis and visualisation. This
paper provides the first analysis of the Asymmetric Travelling Salesman
Problem using local optima networks. These are generated by sampling
the search space by recording the progress of an existing evolutionary al-
gorithm based on the Generalized Asymmetric Partition Crossover. They
are compared to networks sampled through the Chained Lin-Kernighan
heuristic across 25 instances. Structural differences and similarities are
identified, as well as examples where crossover smooths the landscape.

1 Introduction

The global structure of fitness landscapes in combinatorial optimisation is far
from being well-understood, and yet crucially impacts the dynamic of search
heuristics. The operators within such algorithms usually restrict the search space
in some way, potentially over-exploring or missing key parts of the actual land-
scape. Tools to better understand and visualise fitness landscapes are therefore
needed. The symmetric Travelling Salesman Problem (TSP) has been widely
studied. Its more general formulation, the Asymmetric TSP (ATSP) has re-
ceived less attention but is useful to model real-world situations where symme-
try is often a luxury. In this paper, we attempt to provide some insights into its
landscape structure by studying local optima networks.

Local optima networks (LON) are graph-based models of combinatorial fit-
ness landscapes, originally inspired by work on energy landscapes in compu-
tational chemistry [4]. A fitness landscape is compressed into a graph where
nodes are local optima and edges possible search transitions among them [10,
16]. The first model considered binary search spaces and the NK family of land-
scapes; nodes were local optima according to a best-improvement local search
with bit-flip moves, and edges account for transition probabilities among basins
of attraction [10]. This model required a full enumeration of local optima and
basins, and was therefore impossible to scale to realistically sized landscapes.
An alternative definition of edges was later proposed to account for escape prob-
abilities among optima, that is, probabilities to hop from a local optimum to
another after a perturbation (large mutation) followed by local search [17]. Re-
cently, sampling approaches have been developed using escape edges in order to



model landscapes of realistic size [6, 11, 12]. In particular, work on the symmet-
ric travelling salesman problem, has revealed intriguing landscape visualisations,
providing compelling evidence of the existence of multiple valleys or clusters of
local optima (also called funnels) on the studied instances [11, 12]. Most local op-
tima network models so far consider transitions based on perturbation operators.
Ochoa et al. [9] proposed a model where transitions are based on recombination.
Specifically, the deterministic Partition (Tunnelling) Crossover by Tinós et al.
was considered [15], together with efficient procedures for extracting all the lo-
cal optima of NK landscapes of string length up to 30, based on exploiting the
structure of pseudo-Boolean problems with bounded epistasis [3].

The main goal of this article is to model tunnelling crossover networks for
asymmetric travelling salesman instances of realistic size. More specifically, the
contributions are:

1. First study of local optima networks for the asymmetric TSP.

2. An extension of the local optima network model to capture evolutionary
algorithms. This is achieved by incorporating two types of edges: based on
mutation and recombination, respectively.

3. A network sampling mechanism based on instrumenting an existing evolu-
tionary algorithm.

4. Comparing the local optima network structure emerging from an evolution-
ary algorithm against a single-point heuristic (iterated local search).

Following this introduction, the paper presents the crossover operator in Sec-
tion 2. Section 3 provides key definitions for local optima networks and describes
how the network data are gathered. Section 4 presents the instances, which are
analysed in Section 5. The conclusion is found in Section 6.

2 Generalised Asymmetric Partition Crossover

Our study considers the Generalised Asymmetric Partition Crossover (GAPX),
a deterministic recombination operator proposed by Tinós et al. [14] for the
Asymmetric Travelling Salesman Problem. GAPX is based on the Generalised
Partition Crossover (GPX), developed by Whitley et al. [18] for the Symmet-
ric TSP. GAPX and GPX recombine partial solutions that are not shared in
common between two parent solutions. First, a union graph Gu = G1 ∪ G2 is
created from graphs G1 and G2 representing the parent solutions. Then, com-
mon edges are removed from Gu and connected components are identified. Some
of the connected components are the recombining components, i.e., connected
subgraphs that can be deterministically recombined. GAPX and GPX find the
best recombinations among the recombining components in order to generate
the offspring. If the number of recombining components is q, then the best of 2q

offspring is found at computational cost O(n). This is possible because the par-
tial evaluations of each one of the q recombining components are independently
computed.



In GPX, the recombining components are the connected components sepa-
rated from the rest of the graph by exactly two common edges. The remainder
of the graph is also a recombining component. The Lin-Kernighan-Helsgaun
(LKH) algorithm [5] includes a recombination operator, called Iterative Partial
Transcription (IPT), which is similar in effect to GPX.

The GAPX includes enhancements to GPX that allow it to find many more
recombining partitions than GPX and IPT. As a consequence, an exponentially
higher number of offspring is explored. For example, when recombining the two
parents shown in Figure 1.a, GPX (adapted to the Asymmetric TSP) finds q = 2
partitions, while GAPX finds q = 3 partitions. Thus, while GPX finds the best
of 22 = 4 offspring in this example, GAPX finds the best of 23 = 8 offspring.

One enhancement to GPX is that GAPX exploits cuts that break nodes of
degree 4 of Gu as a site for crossover. This is possible by splitting every vertex
of degree 4 in order to create “ghost” vertices (Figure 1.b). According to the
the direction of flow given by the solutions, common edges between the original
vertices and their respective ghost vertices can be created. Such common edges
are candidate sites for crossover when the connected components of the new
union graph are identified.

Fig. 1: Recombining two parent solutions using GAPX. a) Parent solutions are
shown by solid (blue) and dashed (red) lines. b) In a first step, ghost vertices
are inserted after vertices of degree 4. c) Common edges are removed, allowing
to identify 3 partitions.

3 Local optima networks for TSP

Nodes and edges make up the networks. They are defined by the methodology
for extracting the network data which is described in the next subsection. A full
enumeration of the local optima for ATSP instances of non-trivial size is clearly
unmanageable. Therefore, the networks are based on a sample of high-quality
local optima in the search space. We first provide some basic definitions, below,
before describing the sampling algorithm.



3.1 Definitions

Definition 1. A tour is a local optimum if none of its neighbours is shorter than
it. The set of local optima is denoted by LO.

The neighbourhood is imposed by k-opt local search. The later is applied after
a crossover or mutation operation, in the case of an evolutionary algorithm, and
after a perturbation, in the case of an ILS. A k-opt local search considers all
the possibilities of exchanging k edges in a tour and picks the best. The local
optimality criterion is, therefore, rather stringent since only a small number of
tours are k-optimal.

Definition 2. Edges are directed and of different types based on crossover,
mutation, or perturbation. There is an edge from local optimum LOi to local
optimum LOj , if LOj can be obtained after any of those operations to LOi

followed by k-opt search. The set of edges is denoted by E.

In the case of the crossover, a pair of edges is created: one starting from each
parent and targeting the offspring as has been done in [9]. However, the local
optima networks in the latter did not include a second type of edge based on a
mutation operator, which we include here.

Definition 3. The local optima network, LON, is the graph LON = (LO,E)
where nodes are the local optima LO, and edges E are the edges.

3.2 Gathering network data

The GAPX network data is generated by instrumenting and adapting the ge-
netic algorithm from Tinós et al. [14] (see Algorithm 1). After each crossover or
mutation operation, the solution obtained is transformed using 3-opt and each
unique local optimum obtained is stored in LO. We also store, in E, an edge
between the starting and end optima after one of these two operations. If no
improving solution is found during 20 consecutive generations, all the solutions
in the population, except the ones with best fitness, are replaced by random
solutions (followed by 3-opt).

Contrary to the GA from [14], a full 3-opt is performed, not a greedy ver-
sion. This is done after all crossover and mutation operations. The algorithm
can therefore be described as a fully hybrid algorithm. The mutation operator
consists of a sequence of up to 5 double-bridge moves, i.e., exchanges of 4 edges
in a specific pattern. The algorithm is run 100 times with a population of 100
individuals, until a global optimum is found or 100 generations have elapsed.
These parameters also depart from the original ones (300 individuals and 1500
generations), otherwise success rates of 100 % are observed on most instances.
Discriminating between easier and harder instances would therefore be more
difficult.

To provide a basis for the comparison of the GAPX network data, we use
network data from an ILS based on the well-known Lin-Kernighan (LK) heuris-
tic [8]. We instrumented [12] the Chained Lin-Kernighan implementation by



P ← popInit()
while termination condition is not satisfied do

Q(1)← bestSolution(P )
for i← 2 to maxPop do

(p1, p2)← selection(P )
Q(i)← crossover(p1, p2); s← 3opt(Q(i))
LO ← LO ∪ {s}; E ← E ∪ {(p1, s), (p2, s)}
if crossover did not improve the solutions then

best← chooseBest(p1, p2)
Q(i)← doubleBridgeMutation(best); s← 3opt(Q(i))
LO ← LO ∪ {s}; E ← E ∪ {(best, s)}

end

end
if best sol. did not improve in last 20 gen. then Q← immigration(P )
P ← Q

end
Algorithm 1: Local optima network sampling in evolutionary algorithm.

Applegate et al. [2] provided in the Concorde TSP solver [1]. LK applies 2, 3
and higher-order k-opt moves, with k chosen adaptively. The perturbation oper-
ator in Chained-LK is a double-bridge. Let us note that LK is designed for the
symmetric TSP. A conversion step is required to handle ATSPinstances. The
process is described in the next section.

Ensuring fair sampling of local optima in two different algorithms is not
obvious. We chose to first run the hybrid algorithm and record the total number
of edges that had been travelled across the 100 runs for each instance. The ILS
was then executed such that it performed enough runs to have travelled across
as many edges. Each of these runs ends when a global optimum has been found
or when 20n perturbations have been performed, with n being the number of
cities in the original ATSP instance. On the instances where this method does
not lead to at least 100 ILS runs, additional runs are executed to reach 100.

4 Selected ATSP instances

Our study considers the ATSP instances from TSPLIB [13] belonging to different
types, as well as instances generated using the DIMACS symmetric TSP genera-
tor code1. We use two types of generated instances: uniformly distributed cities
(prefixed by E) and clustered cities (prefixed by C). The symmetric instances are
transformed into asymmetric instances by inserting random Gaussian deviations
(with standard deviation equal to 0.2di,j) to each distance di,j . By considering
this variety of instances, our aim is to discover structural differences distinguish-
ing the hard from the easy to solve instances.

The instances from TSPLIB are mostly real-life instances. The br17 instance
is of unknown origin. The two ft instances come from a problem of sequencing

1 dimacs.rutgers.edu/Challenges/TSP/download.html



tasks in a resin production facility. The p43 instance comes from a scheduling
problem in chemical engineering. The ftv instances are vehicle routing problems
of pharmaceutical product delivery in Bologna. The rbg instances are derived
from a stacker crane application in a single aisled automatic storage system. In-
stances ry48p and kro124p are symmetric Euclidean instances made asymmetric
through small random perturbations of their distance matrices.

The Concorde exact solver was used to compute the minimal fitness for the
generated instances. Since Concorde can only handle symmetric TSP instances,
the ATSP instances were transformed into symmetric instances by doubling the
number of cities [7]. Given a set V of n cities and the distance di,j ,∀i, j ∈ V , a
new city n + i is created ∀i ∈ V . The cost of edge (i, n + i) is set to 0,∀i ∈ V ,
the cost of (n + i, j) is set to di,j + M,∀i, j ∈ V , where M is a sufficiently
large number, and the cost of the remaining edges is set to ∞. The value nM
is subtracted from the fitness. The same transformation was used to convert
the ATSP instances into instances that are suitable for Concorde’s Chained-LK
heuristic.

5 Network analysis

The execution and network data generated are summarised in Table 1. GAPX
indicates results for the hybrid algorithm based on the GAPX. CLK indicates re-
sults based on Chained-LK. The Runs column indicates the number of Chained-
LK runs required to traverse at least as many edges as where traversed by 100
runs of the GAPX-based algorithm. Success represents the proportion of runs
that find a global optimum. Unique Opt. refers to the number of unique global
optima. Conn. Comp refers to the number of connected components. Edge Opt.
and Mut. show the proportion of GAPX edges where the end node is already
3-opt before local search and the proportion of edges that are mutation edges,
respectively.

The first observation is that at least one global optimum has been found on
most instances for each solving method. This indicates that, although the algo-
rithms and their parameters may not be perfect, the best solutions are reachable
using these two sampling approaches. We may therefore interpret the results with
a minimal level of confidence that they represent a non-trivial part of the land-
scape. Furthermore, with the chosen parameters, Chained-LK sometimes has
higher success rates than the GAPX-based algorithm, which would tend to show
that the edge budget allocated is sufficient to fairly compare the two types of
networks.

The smallest and easiest instance, br17, exhibits a smooth landscape under
the different operators used. Global optima are found in the first generation or
iteration, which is highlighted by the high number of connected components.
This is an artefact of the sampling algorithms which terminates a run as soon as
a global optimum is found. Thus plateaus of global optima are not fully explored.

At the opposite end, the largest instances (rbg) are very easy for the GAPX-
based algorithm. Chained-LK, on the other hand, struggles and its 100 separate
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(a) Hybrid GA (b) Chained-LK

Fig. 2: Subsets of local optima networks for rbg323 under a fitness threshold of
1331. The hybrid GA network is further simplified by selecting only the 10 largest
components (513 nodes). The global optima, with fitness 1326, are painted red.
The Chained-LK network contains 3883 nodes in 7 components indicated by
different colours, the smaller one on a plateau of fitness 1329, the others on a
plateau of fitness 1331.

runs end up in 100 different funnels (connected components). However, the mean
fitness of the Chained-LK nodes is lower than that of GAPX nodes. This show-
cases GAPX’s ability to tunnel through what is a totally different landscape for
Chained-LK. It is interesting to note that, as opposed to other instances, the
majority of nodes generated through crossover are not 3-optimal and that there
is a low proportion of mutation edges as well. GAPX combined with 3-opt are
thus able to drive the search through the landscape largely without mutation.
Figure 2 shows a subset of the local optima networks for rbg323 very close to
the global optima. The structure difference is striking, with the Chained-LK net-
work stuck on two plateaus. In contrast, the slightly smaller 200-city generated
instances proved too challenging for both approaches under the chosen set of
parameters.

Connected-component-wise, Chained-LK has a tendency to generate land-
scapes with fewer components while finding more unique global optima in gen-
eral. This is perhaps surprising given that the local search also encountered fewer
unique nodes and edges.

Pearson’s correlation coefficients where computed for pairwise comparisons
of several execution and landscape features. One of them is the mean normalised
fitness of nodes, not displayed in Table 1, which is always under 0.3 units. It is
negatively correlated with the number of edges (-0.64) and nodes (-0.62) for
Chained-LK but there is no correlation for GAPX. It is the opposite for the
number of connected components, which is not correlated to the mean normalised
fitness for Chained-LK but shows a negative correlation (-0.67) for GAPX.



The number of connected components is strongly correlated (1.0) to the
number of unique local optima for Chained-LK and to a lesser degree (0.72)
for GAPX. In the context of crossover and mutation networks, the proportion
of crossover edges that end in a local optima before the application of 3-opt is
strongly correlated (0.92) to the proportion of mutation edges. This indicates
that mutation is usually required to increase diversity.

This work is a first attempt at sampling and analysing crossover networks of
modestly large permutation problem instances. As such it has some limitations.
For example, the nodes’ mean in-degree across instances ranges between 1 and 3.
This is different from the results obtained by [9] where the mean in-degree ranged
from 0.8 to 245 for exhaustively sampled NK-landscapes. This could simply be
due to the nature of ATSP landscapes, to the use of mutation edges or be the
result of some bias in the sampling. Further work will investigate such issues.

6 Conclusion

Local optima networks help to better understand the global structure of combi-
natorial landscapes by providing a relatively compact representation. Neverthe-
less, sampling is required to study instances on non-trivial sizes. We have done
this here for the Asymmetric TSP with networks generated from an evolutionary
and an iterated local search algorithm. We have presented evidence of their dif-
ferences and similarities. On some larger real-life instances the crossover-based
algorithm produced networks that were drastically different from the other ap-
proach, effectively demonstrating the tunnelling behaviour of carefully designed
crossover operators.

This work only scratches the surface of the use of local optima networks for
understanding evolutionary algorithms and the structure of non-trivial combina-
torial problem instances. Further work will look at improving the sampling, both
in the methodology and the quantity of data points gathered. We also intend to
carry out systematic investigations of a wide range of instances with different
characteristics.
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1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003),
http://www.math.uwaterloo.ca/tsp/concorde.html

2. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling
Salesman Problems. INFORMS Journal on Computing 15, 82–92 (2003)



3. Chicano, F., Whitley, D., Sutton, A.M.: Efficient identification of improving moves
in a ball for pseudo-boolean problems. In: Genetic and Evolutionary Computation
Conference (GECCO). pp. 437–444. ACM (2014)

4. Doye, J.P.K.: The network topology of a potential energy landscape: a static scale-
free network. Physical Review Letter 88, 238701 (2002)

5. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research 126(1), 106–130 (Oct 2000)

6. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven Local Optima Network Char-
acterization of QAPLIB Instances. In: Proceedings of the 2014 Conference on Ge-
netic and Evolutionary Computation. pp. 453–460. GECCO ’14, ACM, New York,
NY, USA (2014)

7. Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric traveling sales-
man problems. Operations Research Letters 2(4), 161–163 (Nov 1983)

8. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research 21, 498–516 (1973)

9. Ochoa, G., Chicano, F., Tinos, R., Whitley, D.: Tunnelling crossover networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
pp. 449–456. ACM (2015)

10. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). pp. 555–562. ACM (2008)

11. Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The Multi-Funnel Structure of
TSP Fitness Landscapes: A Visual Exploration. In: Artificial Evolution: 12th Inter-
national Conference, Evolution Artificielle, EA 2015. Lecture Notes in Computer
Science, vol. 9554, pp. 1–13. Springer (2016)

12. Ochoa, G., Veerapen, N.: Deconstructing the Big Valley Search Space Hypothe-
sis. In: Evolutionary Computation in Combinatorial Optimization, EvoCOP 2016.
Lecture Notes in Computer Science, vol. 9595, pp. 58–73. Springer (2016)

13. Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4), 376–384 (1991), http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/

14. Tinós, R., Whitley, D., Ochoa, G.: Generalized Asymmetric Partition Crossover
(GAPX) for the Asymmetric TSP. In: Proceedings of the 2014 Conference on
Genetic and Evolutionary Computation. pp. 501–508. GECCO ’14, ACM, New
York, NY, USA (2014)

15. Tinós, R., Whitley, L.D., Chicano, F.: Partition crossover for pseudo-boolean opti-
mization. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII, Aberystwyth, United Kingdom, January 17 - 20, 2015. pp. 137–
149 (2015)

16. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Transactions on Evolutionary Computation 15(6), 783–797 (2011)
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