
Journal of Heuristics manuscript No.
(will be inserted by the editor)

Mapping the Global Structure of TSP Fitness Landscapes

Gabriela Ochoa · Nadarajen Veerapen

Received: date / Accepted: date

Abstract The global structure of combinatorial landscapes is not fully understood,
yet it is known to impact the performance of heuristic search methods. We use a so-
called local optima network model to characterise and visualise the global structure
of travelling salesperson fitness landscapes of different classes, including random and
structured real-world instances of realistic size. Our study brings rigour to the charac-
terisation of so-called funnels, and proposes an intensive and effective sampling pro-
cedure for extracting the networks. We propose enhanced visualisation techniques,
including 3D plots and the incorporation of colour, sizes and widths, to reflect rele-
vant aspects of the search process. This brings an almost tangible new perspective to
the landscape and funnel metaphors. Our results reveal a much richer global structure
than the suggestion of a ‘big-valley’ structure. Most landscapes of the tested instances
have multiple valleys or funnels; and the number, disposition and interaction of these
funnels seem to relate to search difficulty on the studied landscapes. We also find that
the structured TSP instances feature high levels of neutrality, an observation not pre-
viously reported in the literature. We then propose ways of analysing and visualising
these neutral landscapes.

Keywords Fitness landscapes · Local optima networks · Funnels · Global structure ·
Neutrality · Travelling salesman problem · TSP · Lin-Kernighan heuristic · Iterated
local search · Visualisation

1 Introduction

The global structure of realistic combinatorial fitness landscapes is still little under-
stood, yet it clearly impacts the performance of heuristic search methods. A way of
characterising a landscape global structure under a given neighbourhood operator is
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by considering the distribution of its local optima. Boese et al (1994) conjectured
that the search space of travelling salesman instances under 2-exchange moves has a
‘globally convex’ or ‘big-valley’ structure, in which local optima are clustered around
one central global optimum. This globally convex structure has subsequently been
observed in other combinatorial fitness landscapes such as the NK model (Kauff-
man and Levin 1987), graph bipartitioning (Merz and Freisleben 1998), and flowshop
scheduling (Reeves 1999). Under this view, there are many local optima but they are
easy to escape from, with the coarse level gradient leading to the global optimum.
This hypothesis has become generally accepted and has inspired the design of lo-
cal search heuristics referring to a similar principle with different names: adaptive
multi-starts, large-step Markov chain, soft-restarts, chained local search and iterated
local search. The notion of a big-valley is related to the notion of a ‘funnel’ structure
from the study of energy landscapes in theoretical chemistry, as discussed further in
Section 2.2.

However, recent studies on TSP landscapes have revealed a more complex picture
(Hains et al 2011; Ochoa and Veerapen 2016b). The big-valley seems to decompose
into several sub-valleys or multiple funnels. This helps to explain why certain iterated
local search heuristics can quickly find high-quality solutions, but fail to consistently
find the global optimum in cases where the global optimum is known. A similar
multi-funnel structure has been observed on some continuous optimisation problems
(Locatelli 2005; Lunacek and Whitley 2006; Lunacek et al 2008), where its impact
on search difficulty has been established. In particular, landscapes with more than one
funnel, where the global optimum is located in a deep, narrow funnel are significantly
harder. The literature on characterising the multi-funnel structure of combinatorial
landscapes is mostly lacking. This is partly due to the lack of adequate tools to study
their complexity. We propose using local optima networks to analyse and visualise the
global structure of combinatorial fitness landscapes. Local optima networks compress
the whole search space into a graph, where nodes are local optima and edges are
transitions among them with a given search operator (Tomassini et al 2008; Verel
et al 2011). The model emphasises the number, distribution and most importantly, the
connectivity pattern of local optima. Modelling landscapes as networks introduces a
new set of metrics to analyse fitness landscapes and, interestingly, the possibility of
visualising them.

This article complements and extends our recent work on local optima network
analysis of TSP fitness landscapes (Ochoa and Veerapen 2016a,b). Our previous work
considered only a handful of instances of size up to 700 cities, and deliberately ex-
cluded degenerate instances (i.e. instances featuring neutrality). The sampling pro-
cess was less intensive, and the characterisation of funnels incomplete. The main
contributions of this article are:

1. An intensive sampling procedure, which allows the extraction of local optima
networks for larger TSP instances (of up to 1500 or so cities) of different types,
including both random and structured real-world instances (city instances and
drilling problems).
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2. An empirical characterisation and modelling of funnel floors, which requires both
the identification of sink nodes, and the incorporation of higher-level plateau-
nodes to model instances with neutrality.

3. A rigorous empirical characterisation of funnel basins, using the notion of mono-
tonic sequences from theoretical chemistry (Berry and Kunz 1995).

4. Enhanced visualisation of the multi-funnel structure, including 3D plots, alterna-
tive graph layouts, and the incorporation of colour, nodes sizes and edge widths,
to reflect relevant aspects of the search process.

5. A correlation study identifying connections between heuristic search performance
and the global structure of the studied TSP instances.

The remainder of this article is organised as follows. The next section gives rel-
evant background on TSP solvers and the notion of ‘funnel’. Section 3 defines the
local optima network model considered. Section 4 describes the proposed empiri-
cal methodology, including the procedures and conceptual tools for extracting the
network data, detecting the funnel floors and calculating the funnel basins. It also de-
scribes the TSP instances studied. Section 5 overviews our results including an anal-
ysis and visualisation of local optima networks, a more traditional fitness-distance
analysis, a study of the impact of the sampling parameters and a correlation study be-
tween heuristic search performance and global landscape metrics. Finally, Section 6
summarises our main findings and suggests directions of future work.

2 Background and Related Work

2.1 TSP solvers

This section describes the TSP solvers used in our study both for comparison pur-
poses and as part of the sampling procedure implemented.

2.1.1 Concorde

Concorde is currently the best-performing exact TSP solver (Applegate et al 2007,
2003a). It has been used to solve the largest non-trivial TSP instances (of up to 85900
cities) for which provably optimal solutions are known. Concorde is based on a com-
plex Branch & Cut algorithm that uses a multitude of heuristic mechanisms to achieve
good performance on a wide range of TSP instances. For example, it carries out a lim-
ited number of iterations of the Chained Lin-Kernighan heuristic (described below)
during the initial stages of its computation to determine an initial upper bound to the
objective value. Additionally, an exact mixed integer program solver is used to com-
pute and refine the lower bound by solving a relaxed linear program of the problem.

2.1.2 The Chained Lin-Kernighan heuristic

The Lin-Kernighan (LK) algorithm (Lin and Kernighan 1973) is a powerful and well-
known heuristic for finding approximate solutions to the TSP. For about two decades,



4 Gabriela Ochoa, Nadarajen Veerapen

it was the best local search method, and nowadays it is a key component of many
state-of-the-art TSP solvers. LK-search is based on the idea of k-exchanges: take
the current tour and remove k different links from it, which are then reconnected
in a new way to achieve a legal tour. Figure 1a illustrates a 2-exchange move. A
tour is considered to be ‘k-opt’ if no k-exchange exists which decreases its length.
LK-search applies 2, 3 and higher-order k-exchanges. The order of a change is not
predetermined, rather k is increased until a stopping criterion is met. Thus many kinds
of k-exchanges and all 3-exchanges are included. There are many ways to choose
the stopping condition and the best implementations are rather involved. We use the
implementation available in the Concorde software package (Applegate et al 2003a),
which uses do not look bits and candidate lists.

The overall tour-finding strategy using LK-search was, previously, to repeatedly
start the basic LK routine from different starting points keeping the best solution
found. This practice ended in the 1990s with the seminal work of Martin et al (1992),
who proposed the alternative of kicking (perturbing slightly) the LK tour and reap-
plying the algorithm. If a better tour is produced, the old LK tour is discarded and the
new one kept. Otherwise, the search continues with the old tour and kicks it again.
This simple yet powerful strategy is nowadays known as iterated local search. It was
named Chained Lin-Kernighan (Chained-LK) by Applegate et al (2003b), who also
provided an improved implementation to solve large TSP instances. The kick or es-
cape operator in Chained-LK is a type of 4-exchange (depicted in Fig. 1b), named
double-bridge by Martin et al (1992). It consists of two 2-exchanges, each of which
is a ‘bridge’ as it takes a legal, connected tour into two disconnected parts. The com-
bination of both bridges must then be chosen in order to produce a legal final tour.
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(b) Double-bridge

Fig. 1: Illustration of tours obtained after 2-exchange and double-bridge moves.

2.2 The notion of funnel

The intuition behind the concept of a ‘funnel’ is captured by Figure 2 where two
funnels are depicted as two groups of local optima which are close in configuration
space within a group, but well-separated between groups.
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Fig. 2: Depiction of two funnels.

The term ‘funnel’ was introduced in the protein folding community to describe
“a region of configuration space that can be described in terms of a set of downhill
pathways that converge on a single low-energy structure or a set of closely-related
low-energy structures” (Doye et al 1999). It has been suggested that the energy land-
scape of proteins is characterised by a single deep funnel, a feature that underpins
their ability to fold to their native state. In contrast, some shorter polymer chains
(polypeptides) that misfold are expected to have other funnels that can act as traps.
Approaches to elucidate the global landscape structure have led to the concept of dis-
connectivity graphs (Becker and Karplus 1997; Doye et al 1999; Wales 2005), also
known as barrier trees (Flamm et al 2002). In the context of energy landscapes, Berry
and Kunz (1995) first introduced the term monotonic sequence to describe a sequence
of local minima where the energy of minima is always decreasing. The set of mono-
tonic sequences that lead to a particular minimum was termed ‘basin’; in this sense
a ‘basin’ is analogous to a protein folding ‘funnel’. The collection of local optima
associated to a funnel has also been termed ‘super-basin’ in the literature introducing
disconnectivity graphs (Becker and Karplus 1997).

Energy landscapes in theoretical chemistry and fitness landscapes in optimisation
are conceptually related, as has been already observed by Stadler (2002). This rela-
tionship is particularly close for continuous optimisation. Locatelli (2005) studied the
sources of difficulty in continuous optimisation and finds that it is not strictly related
to the number of local optima, but to how chaotic their positions are. Lunacek and
Whitley (2006) propose a metric, dispersion, that quantifies the proximity of the best
regions in the search space. A high dispersion metric indicates the presence of mul-
tiple funnels. In a follow up work, Lunacek et al (2008) studied abstract landscapes
with two funnels and find that evolutionary algorithms mostly fail when the global
optimum is located in a proportionally smaller funnel. Recent work on exploratory
landscape analysis of continuous search spaces reveals that multimodality and global
structure are among the most important high-level properties that help differentiate
between problem classes (Bischl et al 2012; Kerschke et al 2015).

The literature is much more scarce for discrete search spaces. The notion of a
big-valley discussed in the introduction is clearly related to the notion of a single fun-
nel structure, and fitness distance scatter plots and correlation metrics are a standard
tool in landscape analysis. Other approaches to understanding the global structure of
combinatorial landscapes have been applied to small and simplified problems. Barrier
trees have been applied to discrete optimisation problems where the notions of local
optima, basins and saddle points are clearly defined, for instance in the context of
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spin-glasses (Hordijk et al 2003). Flamm et al (2002) have extended these definitions
so that barrier trees can be constructed for highly degenerate problems (i.e landscapes
with neutrality). They present empirical results for binary strings of up to length 10.
Hallam and Prugel-Bennett (2005) construct barrier trees for MAX-SAT problems
with up to 40 variables using branch-and-bound to find only the best local optima in
the space.

Daolio et al (2011) studied the community structure of local optima networks
on two classes of instances of the quadratic assignment problem. The two prob-
lem classes give rise to different configuration spaces, with the so-called real-like
instances revealing a modular structure. The approach is based on a full enumera-
tion of local optima. Therefore, instances of size up to 10 were analysed. In a fol-
low up work with a data-driven approach, the modularity of instances up to size 32
was studied (Iclanzan et al 2014). This work, however, did not relate the community
structure to the notion of funnels. Herrmann et al (2016) recently established a con-
nection between groupings (communities) in local optima networks and the notion
of funnels. They extracted the networks of NK landscapes of length 20 and various
levels of epistasis, and applied a community detection algorithm. Results confirm that
landscapes consist of several clusters and the number of clusters increases with the
epistasis level. A higher number of clusters, and a larger size of the cluster containing
the global optimum were found to lead to a higher search difficulty.

3 The Local Optima Network Model

This section describes the local optima network model used in our study. We start
by defining the notion of fitness landscapes, and follow by formalising the notions of
nodes and edges of the network model.

A fitness landscape (Stadler 2002) is a triplet (S,N, f ) where S is a set of potential
solutions i.e. a search space; N : S−→ 2S, a neighbourhood structure, is a function that
assigns to every s∈ S a set of neighbours N(s), and f : S−→R is an objective function
(also called fitness function) that can be pictured as the height of the corresponding
solutions.

The search space of a TSP instance of size m is the set of permutations of the
m cities. The objective function f is given by the length of the tour, which is to be
minimised. In order to model TSP fitness landscapes, we adapted the local optima
network model with escape edges (Verel et al 2012). To construct these networks,
we need to define their nodes and edges. The definitions are related to the search op-
erators being modelled, specifically, the local search heuristic and escape operators.
Our study considers those within the Chained Lin-Kernighan algorithm, namely, the
Lin-Kernighan local search heuristic and the double-bridge escape move (described
in Section 2.1.2).

Local optima. A local optimum, which in the TSP is a minimum, is a solution s∗

such that ∀s ∈ N(s∗), f (s∗)≤ f (s). Notice that the inequality is not strict, in order to
allow the treatment of the neutral landscape case.
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The neighbourhood N is imposed by LK-search, which considers variable val-
ues of k. The local optimality criterion is, therefore, rather stringent. Only a small
proportion of all possible solutions are LK-optimal. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L and its cardi-
nality by n.

Escape edges. Edges are directed and based on the double-bridge operator. There is
an escape edge from local optimum x to local optimum y, if y can be obtained af-
ter applying a double-bridge kick to y followed by LK-Search. Edges are weighted
with estimated transition probabilities between the connected nodes. These probabil-
ities are estimated by the sampling process. Specifically, edge weights are integers
indicating the number of times an edge was visited during the sampling process (de-
scribed in Section 4.1). The set of escape edges is denoted by E.

Local Optima Network (LON). A local optima network is a graph LON = (L,E)
where nodes are the local optima L, and edges E are the escape edges. Edges are
directed and weighted. Weights indicate transition probabilities.

4 Empirical Methodology

Our approach extracts and analyses local optima networks of TSP instances of realis-
tic sizes and different types. The objective is to map and characterise the landscapes’
global structure. Clearly, a full enumeration of the local optima for TSP instances of
non-trivial size becomes unmanageable. Therefore, networks are constructed from a
sample of high-quality local optima in the search space. This section starts by describ-
ing our sampling methodology and procedure for constructing the LONs. Thereafter,
we describe the approach for characterising the funnel structures, which requires both
detecting the funnel floors, and computing their basins.

4.1 Sampling the network data

To extract the network data, we considered the Chained-LK implementation of Con-
corde (see Algorithm 1). Instead of discarding the search history, we store, in L, every
new improving LK local optima found during the search process. We also create and
store, in E, a directed edge between the starting and ending optima after a double-
bridge followed by LK. Edges only go from a node with higher cost to a node of equal
or lower cost, in order to store the monotonic sequences and thus identify funnels (see
Section 4.2). We keep count of the number of times an edge is visited, this number is
stored as the edge’s weight.

A thousand independent runs of Chained-LK are executed for each TSP instance.
We consider two initialisation mechanisms, one producing better initial solutions than
the other, in order to have a broader picture of the search space. Half of the runs use
the Quick-Borůvka method, the default initialisation for Concorde’s Chained-LK,
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Data: I, TSP instance
Result: L, set of local optima,

E, set of escape edges
L←{}; E←{}
for i← 1 to 1000 do

sstart ← initialSolution()
sstart ← LK(sstart)
L← L∪{sstart}
while j < 10000 do

send ← applyKick(sstart)
send ← LK(send)
j← j+1
if Objective(send)≤ Objective(sstart) then

L← L∪{send}
E← E ∪{(sstart ,send)}
sstart ← send
j← 0

end
end

end
Algorithm 1: Local optima network sampling combining 1000 runs of Chained-
LK.

which is based on the minimum-weight spanning tree algorithm of Borůvka (Apple-
gate et al 2003b). The other half starts from a random solution. The default kicking
procedure in Concorde’s Chained-LK is used: the edges involved in the double-bridge
are selected using random walks along connected vertices. Each Chained-LK run
continues until at least 10 000 consecutive iterations are performed without finding
an improving solution. The network is thereafter created by the combination of the
unique nodes and edges produced by this sampling process.

4.2 Identifying funnel structures

The challenge is to devise an approach for identifying funnel structures, for different
types of TSP instances, once the local optima networks have been extracted. Our ap-
proach adapts the notion of monotonic sequences from theoretical chemistry (Berry
and Kunz 1995). We consider a monotonic sequence as a sequence of local optima
where the evaluation of solutions is non-deteriorating. The collection of monotonic
sequences leading to the same lowest minimum correspond to the so-called ‘mono-
tonic sequence basins’ (Wales 2005). These structures have also been called ‘super-
basins’ in the theoretical chemistry literature (Becker and Karplus 1997). We choose
here to call them ‘funnel basins’ or simply ‘funnels’ borrowing from the protein fold-
ing literature. We can distinguish the primary funnel, as the one involving monotonic
sequences that terminate at the global optimum. The primary funnel is separated from
other neighbouring secondary funnels by transition states laying on a so-called ‘pri-
mary divide’ (Berry and Kunz 1995). Above such a divide, it is possible for a local
optima to belong to more than one funnel thorough different monotonic sequences.
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Our approach requires us to empirically locate the lowest cost minima which
potentially lie at the bottom funnels, and thereafter compute each funnel basin. These
procedures are described below.

4.2.1 Identifying the funnel floors

Hains et al (2011) considered funnel floors (or funnel bottoms) as those solutions em-
pirically found after considerable search effort. Specifically, for each TSP instance,
Chained-LK was run until at least 10 000 iterations without finding an improving
tour, and this procedure was repeated 1000 times from different starting solutions.
However, runs were considered separately and the intermediate local optima and tran-
sitions among them discarded, therefore, the number of funnel floors was overesti-
mated.

We propose a refinement of this approach to more accurately estimate the num-
ber of funnels. We keep a similar computational effort, but store all the different local
optima visited across the 1000 runs, and combine them into a single local optima
network. This allows us to merge local optima transitions found across different runs.
We name the solutions found at the end of each run (i.e. 10 000 consecutive iterations
without an improvement) as attractors rather than as funnel bottoms. Our local op-
tima network data shows two interesting features. First, solutions attracting the search
process are not always single solutions, but are often part of connected local optima
plateaus. Second, attractor nodes are not always at the bottom of funnels: a single
run is trapped in an attractor, but when combining the 1000 runs into a single LON,
many attractors show escape paths to solutions with lower evaluation. Therefore, in
order to refine the process of detecting the conjectured funnel floors, we propose con-
structing a sub-network from the LON, where nodes are the attractors: the Attractor
Network (AN). Once this network is constructed for a given instance, we detect its
sinks, i.e. nodes without outgoing edges. We consider these sinks as the solutions
at the bottom of funnels, which produced a reduced number of funnels for the stud-
ied instances as compared to previous work (Hains et al 2011; Ochoa and Veerapen
2016b). We overview below the notation and procedures used to detect the number
of funnel floors.

– Attractor nodes are empirically determined as those local optima at which Chained-
LK stalls after a large search effort (10 000 consecutive iterations without finding
an improving solution in our implementation). The set of attractor nodes is de-
noted by A, and its cardinality by a.

– A sink node, is an attractor node without outgoing edges to other attractor nodes
of lower evaluation. Sink nodes are conjectured to be at the bottom of a funnel
structure. The set of sink nodes is denoted by S and its cardinality by s.

– A plateau node, is a higher-level node compressing a group of local optima with
the same objective function value belonging to a connected component according
to the escape edges defined in Section 3. Plateau nodes can also be characterised
as attractors or sinks.

– Attractor-plateau nodes are calculated by compressing connected attractor nodes
at the same objective function level. The set of attractor-plateau nodes is denoted
by Ap, and its cardinality by ap.
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– A sink-plateau node, is an attractor-plateau node without outgoing edges to other
attractor-plateau nodes. The set of sink-plateau nodes is denoted by Sp and its
cardinality by sp.

Our previous local optima network models of TSP landscapes (Ochoa and Veer-
apen 2016b) involved a less extensive sampling and did not consider plateau nodes.
However, the study of a more varied set of instances revealed neutrality (i.e. different
solutions with the same objective function value) on the landscapes of most struc-
tured instances, especially those of drilling problems. The random instances do not
show neutrality, but many of the city instances and a large proportion of the drilling
problems do reveal plateaus that can be extensive. It was, therefore, necessary to in-
clude plateau nodes, and to define two auxiliary network models (described below)
in order to algorithmically detect the sink nodes, and thus funnel floors.

– Attractor Network (AN), the sub-graph AN = (A,Ea) of LON where nodes are the
attractors A, and edges Ea ⊆ E are the escape edges connecting them.

– Attractor-plateau Network (ANp), the graph ANp = (Ap,Ep) formed by contract-
ing the nodes and edges of the Attractors network AN.

Figure 3 illustrates the attractor and attractor-plateau networks for the well-studied
TSPLIB instance att532 (more details in Table 1), which consists of the 532 largest
cities of the USA and considers pseudo-Euclidean distances between them. The pro-
cedure by Hains et al (2011), estimated four funnels for this instance. Our analysis,
instead, suggests that it has only two funnels, whose sinks are represented in red and
yellow in Figure 3. As the figure indicates, there are 48 attractor nodes (a), which are
compressed into 7 plateau-attractor nodes (b). Not all the 7 plateau-attractor nodes
are funnel floors, as most of them have outgoing edges to other nodes. Instead only
two of them, the sinks coloured in yellow and red in plot (b), are conjectured to be
at the bottom of funnels. The whole sampled local optima network for this instance,
including nodes within 1% in evaluation from the global optimum cost, is visualised
in Fig. 5 (a).

4.2.2 Identifying the funnel basins

Once the funnel sinks are detected, we can proceed to identify the funnel basins
(see Algorithm 2). This is done by finding all the local optima in the network which
are reachable from each funnel sink (sink-plateau for the instances with neutrality).
Breadth-First-Search is used for this purpose. The set of unique solutions in the com-
bined paths to a given funnel sink corresponds to the funnel basin. The cardinality of
this set corresponds to the funnel size. Notice that the membership of a solution to a
funnel might be overlapping, that is, a solution may belong to more than one funnel,
in that there are paths from that solution to more than one funnel sink. The relative
size of the primary funnel (or any other secondary funnel) is calculated as its size
divided by the total number of local optima.

As described above, funnel sinks are nodes without outgoing edges in the attractor
network, which is a sub-graph of the sampled local optima network (LON). When
considering the whole LON, out-going edges might exist between sub-optimal sinks
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Fig. 3: Visualisation of the attractor network (a), and the same network (b) after com-
pressing plateau nodes for a selected instance with 532 cities (att532). In the attractor
network, each node is a local optimum with size proportional to its in-strength (i.e.
the weighted in-degree). In the attractor-plateau network, nodes are rectangular with
width proportional to the number of nodes in the plateau. The instance contains two
funnel sink-plateaus, visualised in red (the global optima) and yellow (the secondary
funnel sink), the legend indicates their cost values. Grey nodes are above (i.e higher
cost) than their respective sinks.

and local optima with lower evaluation, which are not sinks themselves, but belong
to a different basin. In consequence, before identifying the funnel basins for each
sub-optimal sink, we remove all its outgoing edges. This is done by the function
disconnectSinks(LON, S) in Algorithm 2.

4.3 Instances

Table 1 summarises the TSP instances studied. We consider 20 instances of moder-
ate size (in the range of 500 to 1500 or so cities) and different types. The first 10
instances are randomly generated using the DIMACS generator1. Half of these are
composed of uniformly distributed cities (prefixed by ‘E’), while in the other half,
the cities are clustered (indicated by a ‘C’). The suffix number ‘.x’ in the instance
name indicates, as per DIMACS convention, a seed of x+10000. These synthetic in-
stances are part of a larger set of 200 instances that we generated, with the number of
cities being uniformly selected in the range [400,1600]. These are used in Section 5.6
for a correlation study between landscape metric and heuristic search performance.

1 dimacs.rutgers.edu/Challenges/TSP/download.html

dimacs.rutgers.edu/Challenges/TSP/download.html
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Data: LON: sampled local optima network, S: funnel sinks
Result: bsizes: basin sizes vector, basins: funnel basins vector,
boverlap: set of local optima in more than one basin

i← 0
DLON← disconnectSinks(LON, S)
for s ∈ S do

basins[i]← breadthFirstSearch(DLON, s)
bsizes[i]← length(basins[i])
i← i+1

end
boverlap←{}
for i, j ∈ range(1, length(S) do

boverlap← boverlap∪ intersection(basins[i], basins[ j])
end

Algorithm 2: Identifying funnel basins. Function disconnectSinks(LON, S) re-
moves all outgoing edges from sub-optimal sinks in LON.

The bottom 10 instances in Table 1 are well-known instances from TSPLIB (Reinelt
1991). A popular way of constructing TSP instances is to choose a set of actual cities
and define the cost of travel between any two cities as the distance between them.
The first 5 TSPLIB instances are constructed in such a way. The last 5 arise from
the task of drilling holes in printed circuit boards. The types of edge weights are as
follows. EUC-2D refers to the Euclidean distance of points in a 2D plane rounded to
the nearest integer. ATT refers to a pseudo-Euclidean distance where the sum of the
squares is divided by 10 and the square root of this value is then rounded to an integer.
GEO refers to the integer geographical distance computed from latitude and longitude
coordinates on the surface of a sphere representing an idealised Earth.

The third column in Table 1 reports the success rate of the 1000 Chained-LK
runs used for extracting the network data. By success rate, we mean the ratio of runs
that found at least one global optimum. The last two columns give information on
the solving difficulty of each instance. Specifically, we report the mean run time and
the mean number of branch-and-bound nodes required by Concorde (interfaced with
IBM ILOG CPLEX 12.6 as its mixed integer solver) to solve the instances to optimality
on a 3.4 GHz Intel Core i7-3770 CPU across 10 runs. Although Concorde is an exact
solver, the means are computed since it uses Chained-LK to generate initial solutions.
Therefore, times include the Chained-LK time to compute initial solutions. This leads
to different execution times and branch-and-bound trees. A number of branch-and-
bound (B&B) nodes equal to 1 indicates that the lower and upper bounds found in
the initial stages of the Concorde solving process match, and thus no actual tree was
explored.

5 Results

The results and analysis are reported in the following six subsections. We start by re-
porting general statistics of the sampled local optima networks across the instance set.
Subsection 5.2 concentrates on features characterising the landscapes’ global struc-
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Table 1: TSP instances with number of cities as suffix, edge type, Chained-LK suc-
cess rate, and features resulting from running the Concorde solver: running time and
number of branch-and-bound (B&B) nodes.

Instance Edge Type CLK Success Concorde solver

Optimum Run time (s) B&B nodes

Random uniform instances
E506.25 EUC-2D 0.957 16 313 719 12.0 6.2
E755.73 EUC-2D 0.128 20 158 565 28.0 8.0
E1010.37 EUC-2D 0.478 22 904 325 18.3 3.8
E1243.85 EUC-2D 0.030 25 227 141 118.4 38.0
E1521.33 EUC-2D 0.030 28 027 563 239.8 74.6

Random clustered instances
C506.25 EUC-2D 0.329 6 816 950 8.0 5.6
C755.73 EUC-2D 1.000 9 867 050 3.2 1.0
C1010.37 EUC-2D 0.112 10 716 003 41.7 14.2
C1243.85 EUC-2D 0.136 12 943 477 110.3 33.6
C1521.33 EUC-2D 0.178 13 608 402 34.5 6.2

Somewhat structured instances (city problems)
att532 ATT 0.437 27 686 10.3 6.2
gr666 GEO 0.183 294 358 7.3 3.4
pr1002 EUC-2D 0.673 259 045 3.3 1.0
rl1304 EUC-2D 0.286 252 948 19.4 1.0
nrw1379 EUC-2D 0.008 56 638 34.5 12.6

Highly structured instances (drilling problems)
u574 EUC-2D 0.442 36 905 4.1 1.4
rat783 EUC-2D 0.959 8806 4.0 1.2
u1060 EUC-2D 0.214 224 094 35.2 15.4
d1291 EUC-2D 0.258 50 801 1098.5 37.4
fl1577 EUC-2D 0.012 22 249 292.3 9.8

ture. Subsection 5.3 visualises the local optima network of some selected instances.
Thereafter, Subsection 5.4 provides a more classic fitness landscapes analysis. We
finish with a study of the effects of sampling parameters on the landscape metrics
(Subsection 5.5), and a correlation study between landscape metrics and heuristic
search performance (Subsection 5.6).

5.1 General network metrics

Table 2 reports basic statistics of the sampled local optima networks, including the
number of unique global optima go, the number of different local optima n, the num-
ber of unique objective function evaluations evals, and the relationship between these
two values n/evals as an indication of the amount of neutrality in the landscape. The
table also reports the number of connected components c, the proportion of nodes in
the network from where there is a path to a global optimum pgo; and the average ¯lgo
and maximum lgo path length from any node in the network to a global optimum. The
last two columns report the average d̄ and maximum dmax in-strength (i.e. incoming
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weighted degree, where the weight of an edge is the number of times it was traversed
during sampling) of nodes in the networks.

Results show that, as expected, the number of global optima and the average
and maximum path length to a global optimum generally increase with the num-
ber of cities for each instance class. There are, however, striking differences among
the classes. The randomly generated instances always show a single global opti-
mum and each local optima has a different objective function value (as indicated by
columns evals and n/evals). This is not the case for the structured instances, where
several global optima are generally the norm. Indeed global optima seem to be located
in large plateaus (of several thousands of nodes) for some of the drilling instances.
The high amount of neutrality is also revealed by the smaller number of objective
function levels as compared to the number of optima, with the ratio being as large as
several hundreds or thousands. This is probably because several pairwise distances
between cities are the same, and some of these distances are rather small. Therefore,
several city orderings will have the same evaluation. The structured instances also
show longer path lengths to a global optimum, which can be in part explained by
high amount of neutrality.

The average in-strength, d̄, is usually quite low since most nodes are visited only
once. Higher values indicate either that multiple runs find the same nodes or that there
is cycling between nodes of equivalent evaluation. This cycling is also why dmax is
quite high for some instances.

A surprising consequence of sampling and modelling the local optima networks
for the very neutral instances such as u1060 and fl1577, is that the number of con-
nected components (c in Table 2) equals the number of runs in the sampling process
(1000). This means that each run traverses a different set of solutions, in other words,
there are no shared local optima among the runs, even though many runs reach the
same objective function values. We suspect that these instances contain such large
plateaus, that runs (starting from different initial points) explore completely different
parts of them. For example, the number of different global optima found by our sam-
pling process on instance u1060 is 163 569. The metric n/evals in Table 2, gives an
estimate of the average size of plateaus for each instance, which can be as large as
several hundred.

5.2 Funnel metrics

Table 3 reports metrics describing the global structure of the random instances. We
report the proportions of: solutions in the primary funnel (i.e the funnel containing the
global optimum) fgo, solutions in the largest funnel (which can be the primary funnel)
flg, and solutions belonging to more than one funnel fov. The table also reports the
number of attractors a and funnel sinks s. The proportion of the in-strength (i.e. the
weighted in-degree) of global optimum sinks to the in-strength of all sinks, dgo, is
given and the Chained-LK success rate from Table 1 is reproduced in the last column
for comparison purposes.

Results suggest that the number of funnels generally increases, and the size of
the primary funnel decreases, with increases to the number of cities on both instance
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Table 2: Local optima network metrics. Number of unique global optima go, num-
ber of unique local optima n, number of unique objective function evaluations evals,
relationship between number of nodes and unique evaluations n/evals, number of
connected components c, proportion of nodes from where there is a path to a global
optimum pgo, average path length to a global optimum ¯lgo, maximum path length to
a global optimum lgo, average in-strength of nodes d̄ and maximum in-strength dmax.

go n evals n/evals c pgo ¯lgo lgo d̄ dmax

E506.25 1 14 730 14 304 1.03 1 1.00 10.08 30 1.37 957
E755.73 1 24 774 23 569 1.05 1 0.42 16.87 47 1.14 255
E1010.37 1 39 685 36 923 1.07 1 1.00 23.69 74 1.12 478
E1243.85 1 50 779 46 366 1.10 46 0.12 31.46 79 1.04 105
E1521.33 1 64 146 58 309 1.10 190 0.11 37.57 103 1.00 30

C506.25 1 19 099 16 842 1.13 1 1.00 12.99 36 1.24 622
C755.73 1 32 040 28 937 1.11 1 1.00 18.68 64 1.12 1000
C1010.37 1 48 319 40 724 1.19 1 0.85 30.00 91 1.07 250
C1243.85 1 59 894 52 929 1.13 3 0.57 34.75 105 1.04 349
C1521.33 1 81 957 70 488 1.16 1 0.48 44.79 142 1.03 257

att532 2 23 851 827 28.84 1 1.00 14.95 48 9.01 17 803
gr666 2 33 892 7598 4.46 1 0.78 21.04 62 1.86 5227
pr1002 1 54 821 7542 7.27 13 0.98 30.82 95 1.08 673
rl1304 1 50 670 11 328 4.47 2 0.79 29.19 92 1.10 286
nrw1379 96 226 763 1330 170.50 292 0.07 71.26 238 2.28 180

u574 4 28 115 1230 22.86 1 0.79 16.86 51 9.77 30 388
rat783 1024 112 911 264 427.69 1 1.00 37.08 281 7.76 1748
u1060 163 569 1 396 071 5579 250.24 1000 0.16 586.04 3431 1.02 4
d1291 512 943 430 3398 277.64 215 0.11 111.53 2143 1.49 837
fl1577 22 628 4 266 040 3445 1238.33 1000 0.01 1878.45 9695 1.01 4

classes. The random uniform instances (prefixed with ‘E’), show a larger number
of funnels and a smaller primary funnel, when compared to the clustered instances
(prefixed with ‘C’). These metrics change faster with the instance size on the uniform
instances, specially the number of funnels. The proportion of solutions in more than
one funnel is also larger for the uniform instances, which is expected given the larger
number of funnels. By virtue of its definition, the relative in-strength of globally
optimal sinks is closely related to success rate, but it is not exactly the same, as can
be observed from the table.

Table 4 reports global metrics for the structured instances. Since these instances
contain neutrality, the attractor-plateaus networks (ANp) are constructed in order to
identify the plateau-sink nodes, and thus the number of funnels. Results suggest that
the number of funnels is less correlated to the instance size as it is the case for the
random instances. Since some of the instances here exhibit several primary funnels,
note that fgo represents the relative size of largest of those funnels. Other instance
features seem to influence the landscape global structure. The number of funnels
on the structured instances is somewhere in between that of the uniform and the
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Table 3: Random instances global structure metrics. Relative sizes of the primary
funnel fgo, the largest funnel flg, proportion of solutions in more than one funnel fov,
number of attractor local optima a, number of funnel sinks s, and relative in-strength
of global optimum sinks dgo. Chained-LK success rates are reproduced in the last
column for comparison purposes.

fgo flg fov a s dgo CLK

E506.25 0.99 0.99 0.50 4 2 0.75 0.96
E755.73 0.37 0.59 0.44 17 10 0.21 0.13
E1010.37 0.92 0.92 0.86 33 12 0.50 0.49
E1243.85 0.05 0.22 0.46 214 148 0.03 0.03
E1521.33 0.05 0.05 0.17 372 327 0.03 0.03

C506.25 1.00 1.00 0.00 5 1 1.00 0.33
C755.73 1.00 1.00 0.00 1 1 1.00 1.00
C1010.37 0.81 0.81 0.72 39 7 0.32 0.11
C1243.85 0.43 0.43 0.37 29 9 0.16 0.14
C1521.33 0.48 0.51 0.07 28 8 0.47 0.18

Table 4: Structured instances global structure metrics. Relative sizes of the primary
funnel fgo, the largest funnel flg, proportion of solutions in more than one funnel fov,
number of attractor local optima a, number of plateau attractors ap, number of sink-
plateau nodes sp, and relative in-strength of global optimum sinks dgo. Chained-LK
success rates are included. For the very neutral instances (nrw1379, u1060, d1291,
fl1577) a range instead of a single value is reported.

fgo flg fov a ap sp dgo CLK

att532 0.89 0.89 0.37 52 8 2 0.55 0.44
gr666 0.74 0.74 0.66 55 29 13 0.26 0.18
pr1002 0.64 0.64 0.46 60 53 50 0.51 0.67
rl1304 0.74 0.74 0.59 38 33 16 0.34 0.29
nrw1379 <0.01–0.02 0.02–0.04 0.11–0.95 54 325 86– 473 61– 442 0.01 0.01

u574 0.79 0.79 0.29 26 6 2 0.53 0.44
rat783 0.82 0.82 0.10 10 104 5 4 0.86 0.96
u1060 <0.01 <0.01 0 –0.94 757 533 90–1000 90–1000 0.21 0.21
d1291 0.03–0.08 0.03–0.08 0.50–0.86 476 107 116– 294 98– 275 0.22 0.26
fl1577 <0.01 <0.01 0 –0.94 1 838 082 55–1000 55–1000 0.01 0.01

clustered random instances (see Table 3). The uniform random instances show the
largest number of funnels in the studied set.

For the instances with high levels of neutrality, i.e. nrw1379 and the drilling prob-
lems except u574 and rat783, it was not possible to assess whether the attractor local
optima at a given objective function level fully connected into a single plateau or
groups of plateaus sharing the same objective function value. The plateaus are poten-
tially very large, with the sampling process not guaranteeing their full exploration.
Alternatively there may be multiple plateaus for a single objective function level. We
therefore used two different methods to estimate bounds for the different metrics.
The first method approximates the plateaus by assuming that they are indeed con-
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nected. With this approach, instances such as d1291 and fl1577, reveal a relatively
small number of funnels despite their large number of different local optima. The
second method does not assume that there is a single plateau for each objective func-
tion level, instead it considers all connected nodes sharing the same evaluation as
different plateaus. This leads to 1000 such plateaus, the same as the number of runs,
for instances u1060 and fl1577. Further discussion of this issue, through the analysis
of distances between solutions, is presented in Section 5.4. Note that for these two
instances, fgo and flg have very small ranges and are thus summarised by a single
value.

A thorough study of these highly neutral instances may require additional sam-
pling efforts and additional analysis to characterise the extent of the plateaus. We
leave that for future work. Nevertheless, the global structure in terms of the num-
ber of funnels does not seem to differ significantly from that of the city instances
or clustered random instances, if we assume that plateaus are indeed connected. We
argue that search difficulty on very neutral landscapes relates not only to the multi-
funnel structure, but also to the size and location of the plateaus. A large plateau at
the global optimum level may reflect an easy to search instance, while a large sub-
optimal plateau may act as a trap that is difficult to escape from.

5.3 Network visualisation

One of the advantages of modelling a system as a network, is the possibility of visu-
alising it. This is one of the strengths of the proposed approach, as it allows a more
accessible way of grasping the complexities of landscapes global structure.

Software for analysing and visualising networks is currently available in various
languages and environments. Here we use the R statistical language together with the
igraph package (Csardi and Nepusz 2006). Layout algorithms are at the core of net-
work visualisation, they assign vertices to positions in a metric space. Force-directed
methods model the pairwise attraction and repulsion of vertices, and are known to
reflect the community structure or modularity of a network (Noack 2009). We, there-
fore, use them in order to visually characterise the landscapes’ multi-funnel structure.
Funnels can be visually identified as modules in the network. As our model indicates,
nodes are LK-search local optima and edges represent escape transitions according
to double-bridge moves. We decorated them to reflect features relevant to search dy-
namic. The size of nodes is proportional to their incoming strength (weighted incom-
ing degree), therefore, it reflects the extent to which nodes attract the search dynam-
ics. The colour of nodes reflects their funnel membership. We used the heat colours
palette, a sequential colour scheme skewed to the reds and yellows. Red identifies the
global optima, and the yellow colour gradient reflects an increase in cost. The edges’
widths are proportional to their weight, which indicates the frequency of transitions.
That is, the most frequently visited edges are thicker. We present both 2D and 3D
images. In Ochoa and Veerapen (2016a), we proposed a 3D visualisation where the
x and y coordinates are, as usual, determined by a graph layout algorithm; the in-
novation is to use the objective function as the z coordinate. This provides a clearer
representation of the funnel sink and basin concepts, bringing an almost tangible as-
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pect to the landscape and funnel metaphors. The global optimum can be identified in
the 3D plots as the node with the lowest z coordinate.

In order to have manageable images, we plotted the networks corresponding to the
subset of local optima within 0.1% or 0.05% in evaluation from the global optimum.
We also removed self-loops for improved visibility. Figures 4 and 5 illustrate local
optima networks for selected random and structured instances, respectively.

The plots in Figures 4a and 4b illustrate how the number of funnels rapidly in-
creases with the number of cities for the uniform random instances. Instance E1243.85
features 76 and 19 funnels for solutions within 0.1 and 0.05% in evaluation from
the global optimum, while instance E755.73, have 4 and 2, respectively. The size of
the funnel containing the global optimum is much smaller for E1243.85 as compared
with the smaller uniform instance E755.73 and the clustered instance of the same size
C1243.85. Indeed, instances E755.73 (Fig. 4a) and C1243.85 (Fig. 4b) have a similar
Chained-LK success rate despite their difference in size, which indicates the impor-
tance of global structure in search difficulty. Both instances feature a large secondary
funnel coloured in orange, which acts as a strong attractor of the search process as
indicated by the size of its funnel sink.

Figure 5 illustrates the local optima networks for solutions within 0.1% in objec-
tive function value from the optimal solution for 2 city instances att532 and pr1002,
and one drilling problem u574. Instances att532 (Fig. 5a) and u574 (Fig. 5c) have a
similar CLK success rate and also a similar global structure for solutions within 0.1%
in evaluation from the global optimum cost. They both feature two funnels visualised
in red (the primary funnel) and yellow (the secondary funnel). In att532 the two fun-
nels are overlapping, whereas in u574 they are separated (for solutions within 0.1 %
in evaluation, but they may overlap at higher solution costs). An important difference
between the random (Fig. 4) and the structured instances (Fig. 5) is that the latter
show neutrality. This is reflected by the number of global optima (a single one for
all the studied random instances), and 2 and 4 for att532 and u574, respectively. The
neutrality can also be appreciated at higher solution costs on the 3D plots for att534
and u574, where several solutions are located at the same objective function level.

The global structure of city instance pr1002 (Fig. 5b) is strikingly different. It
clearly has a large primary funnel sink visualised in red, which reflects the high CLK
success rate (0.67) of this instance. There are however 3 secondary funnels whose
sink solutions have an evaluation 80 units higher than the optimum (visualised in or-
ange and yellow). It is important to note that these 3 nodes do not form a plateau de-
spite having the same objective function values, they are not connected with double-
bridge moves according to our sample. These 3 funnels have several connections to
other solutions in the primary funnel, although they do not connect directly to the
primary funnel sink. Therefore, they are separate funnels according to our empiri-
cal definition. The visual depiction however, seems to reflect that they belong to the
primary funnel, which suggests that there might be hierarchies of funnel structures.

For some of the studied instances, each sampling run visits a different set of solu-
tions. This leads to as many connected components as there are runs, as is the case for
instances u1060 and fl1577. Furthermore, each component consists of a long chain
of nodes with some small loops when plateaus are explored. The previously used
network visualisation provides relatively little information for such cases. Figure 6
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(a) E755.73, 0.1%, 4 funnels, CLK success: 0.13

(b) E1243.85, 0.5%, 19 funnels, CLK success: 0.03

(c) C1243.85, 0.5%, 3 funnels, CLK success: 0.14

Fig. 4: Local optima networks for selected random instances. Images are shown in 2D
and a 3D projection. Funnel structures are visualised in colours, with red indicating
the funnel containing the global optimum, and the yellow gradient an increase in
cost. Grey nodes are those belonging to more than one funnel. The legend indicates
the sinks cost difference from the global optimum. Node sizes are proportional to
their incoming strength.
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(a) att532, 0.1%, 2 funnels, CLK success: 0.44

(b) pr1002, 0.1%, 5 funnels, CLK success: 0.67

(c) u574, 0.1%, 2 funnels, CLK success: 0.44

Fig. 5: Local optima networks for selected structured instances. Images are shown in
2D and a 3D projection. Funnel structures are visualised in colours, with red indicat-
ing the funnel containing the global optimum, and the yellow gradient an increase in
cost. Grey nodes are those belonging to more than one funnel. The legend indicates
the sinks cost difference from the global optimum. Node sizes are proportional to
their incoming strength.
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presents an alternative visualisation for instances where different runs do not share
any common solutions. Blue dots represent single solutions. Red lines represent con-
secutive solutions in a plateau, i.e. the solutions have the same cost, and the length
of the line is proportional to the number of solutions in the plateau. Each run is dis-
played as one column of dots and lines since there is no overlap between the solutions
found in different runs.

Figure 6 specifically shows the top 25 largest components, i.e. runs, containing
the 25 largest plateaus. A marked difference can be observed in the distribution of
solutions and plateaus between the two instances. For u1060, there is usually a single
plateau at the end of the run that is very close to the global optimum. The latter is
not actually reached for the top 25 runs with largest plateaus. For fl1577, runs usually
encounter a number of different plateaus, manage to escape from them, and finally
get stuck in a non-optimal plateau. The globally optimal value is reached in only 3 out
of 25 runs. The fact that u1060 has fewer plateaus to escape than fl1577 provides an
explanation for its higher success rate in finding a global optimum out of 1000 runs.
The visualisation provides a straight-forward view of the distribution of plateaus.

A question that remains is whether all the plateaus with equal evaluation found
across the different runs are actually a single very large plateau. We attempt to answer
this by analysing the distance between solutions in Section 5.4.

5.4 Distance analysis

In addition to visualising and analysing the networks, it is also useful to examine
the landscapes using the pairwise distances between nodes. We consider the bond
distance in particular, which is defined as the difference in the number of common
edges, or bonds, between two solutions. It corresponds to the number of edges within
a solution minus the number of edges that are in common between the two solutions
considered.

Bond distance heatmaps can be useful to quickly assess how close pairs of so-
lutions are to each other. Figure 7 displays the pairwise bond distance between sink
nodes or nodes within sink-plateaus for the six instances visualised in Figures 4 and 5.
The objective function of each node is displayed on the vertical axis. The plot is mir-
rored along the diagonal. For E1243.85 and pr1002, only the ten best local optima are
considered and, in both cases, these nodes are sink nodes and are not part of a plateau.
For the other four instances, there are ten or fewer nodes to consider. The colour gra-
dient allows us to clearly distinguish the two plateaus within instances att532 and
u574. The bond distance within these plateaus is lower than 15 units and generally
only in single digits, showing that the solutions are very similar, as expected.

When considering highly neutral instances, like u1060 and fl1577, where each run
produced a new connected component, an important question is whether the different
plateaus found at the same objective function value are actually part of some very
large plateau or if they are an artefact of the stochasticity of the sampling method.

Figure 8 attempts to provide some insight by visualising the distribution of pair-
wise bond distances between sink-plateau nodes sharing the same evaluation. In prac-
tice, because each sink-plateau contains several hundred nodes, we choose the node
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Fig. 7: Heatmaps for pairwise bond distance between sink nodes or nodes within
sink-plateaus. Labels on the y-axis indicate objective function but omitted on the
x-axis. Only the 10 best nodes are considered for E1243.85 and pr1002. For both,
the nodes considered are sink nodes and are not part of a plateau. The two sink-
plateaus in att532 and u574 are clearly identified by the nearly-white shading between
neighbouring nodes (low bond distance).
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with the highest density as the representative of a given sink-plateau. Ties are bro-
ken randomly. Each representative node is then compared to the other representative
nodes that share the same evaluation. The plot has bond distance as x-axis, frequency
of occurrence as y-axis and the objective value of each node pair is colour-coded as
shown in the legend.

For the two instances, the distributions appear multimodal with one major peak.
This was confirmed using Hartigan’s Dip test (Hartigan and Hartigan 1985; Maechler
2016) which rejected the null hypothesis of unimodality (p-value < 2.2×10−16 ). The
smallest bond distance found for u1060 is 17, while it is 42 for fl1577. The largest
bond distances are 193 and 199 for u1060 and fl1577, respectively. The distances
are fairly large, meaning that it is not easy to move between plateaus sharing the
same evaluation. Still, for u1060, the smaller distances may indicate that these is a
roundabout way to bridge the disconnected plateaus. For fl1577, the larger distances
indicate it is unlikely that the presence of multiple sink-plateaus is purely the result
of the sampling process. However, we cannot conclusively confirm that the sink-
plateaus found are actually separate either. There might be some pathways between
sink-plateaus with the same evaluation if plateaus were explored for more than 10 000
iterations.

5.5 Effects of sampling methodology

In this subsection we investigate the influence of the stopping criterion and of the
number of runs on the networks and their metrics. In a sense, these parameters affect
the “depth” and “width” of the sampled networks.

We first consider the impact of using fewer than 10 000 consecutive iterations
without improvement as the stopping criterion, and whether this threshold is sufficient
for the different metrics to converge. For 18 of the 20 instances, we generate networks
for 1000 to 10 000 iterations without improvement, with steps of 1000. The instances
left out are those with high neutrality, u1060 and fl1577, for which 1000 runs are not
enough to find common solutions between runs. For these instances, a new sampling
methodology that considers the extensive neutrality needs to be devised, but this is
left as future work.

For each (metric, instance) couple, values outside the [0,1] range are normalised
and, for each stalling iteration increment, the average is computed across the in-
stances. Results are presented in Figure 9 where each line joins the average values
across instances for each metric. The success rate is highlighted by the red line. Some
of the curves are markedly non-monotonic. This is an artefact of using independent
subsets of runs for each stalling threshold. In addition, the normalisation exacerbates
the differences between those subsets.

As can be observed, on average the different metrics have approximately con-
verged when 10 000 non-improving iterations are used as stopping criterion. For
many metrics the majority of the change in values occurs before the 5000 iterations
mark. For a few (a, ap and sp), this happens later, around the 9000 iterations mark.
The two weighted degree metrics (d̄ and dmax) naturally do not converge since more
connections between already discovered nodes appear, especially in sink plateaus.
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Fig. 8: Frequency of occurrence of bond distances when considering one node per
sink-plateau of u1060 and fl1577. For each objective function level of sink-plateaus,
bond distances are computed between all pairs of representative nodes. Columns are
stacked and coloured according to the objective value of the plateau. The full plot is
inset on the top right and the main plot is a zoomed-in version showing the bottom
region.
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Fig. 9: Influence of stopping criterion on metrics. Each line represents the average
value of one metric across instances. The red line is the success rate.

Overall, these findings suggest that the stopping criterion is appropriate and the sam-
pled landscapes would not differ greatly with a higher threshold.

We repeated a similar experiment for the number of runs with values from 100
to 1000 with steps of 100. The stopping criterion is fixed to 1000. Normalisation
was performed where necessary as described earlier. We discarded a few data points
for which no global optimum was found since several of our metrics take the global
optima into account. Results are presented in Figure 10.

In this scenario, the metrics fall within two broad categories: ones that are rela-
tively constant and those whose value increases. The latter are metrics that depend
on the size of the sample: for instance, the number of local optima and unique evalu-
ations, the in-strength, and the maximum length of a path to a global optimum. The
number of clusters and of attractor and sink plateaus also increases on average across
the instances. However, when looking at instances individually, they have converged
by 1000 runs for smaller instances such as att532. Let us note that the number of
global optima remains more or less constant, except for those instances that have a
lot of them.

Metrics that maintain relatively constant values are those describing properties
of the sampled network with respect to the whole: the proportion of nodes for which
there is a path to a global optimum, the average length of such a path, the relative sizes
of funnels and the relative in-strength of global optimum sinks. On the whole, these
metrics might seem preferable since they do not depend on the number of runs. Nev-
ertheless, metrics where convergence with respect to the number of runs is unlikely
may still be useful and some arbitrary number of runs should be chosen, probably
related to the available computing budget.

5.6 Correlation study

In order to obtain more general insights into how different landscape features affect
search difficulty, we conduct a correlation study of the different metrics studied in
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Fig. 10: Influence of number of runs on metrics. Each line represents the average
value of one metric across instances. The red line is the success rate.

Table 5: Strongest correlations between success rate and features. T indicates the type
of feature: instance (I) or network structure (S) related.

Uniform Instances Clustered Instances

T Feature Corr. T Feature Corr.

S Rel. in-strength of sub-opt. sinks (dngo) −0.95 S Rel. in-strength of sub-opt. sinks (dngo) −0.84
I Sum of lowest edge values −0.85 S Path length to global opt. ( ¯lgo) −0.71
S Avg. path length to global opt. ( ¯lgo) −0.85 S Unique opt. per unique evals (n/evals) −0.65
I Number of cities −0.84 S Number of unique local optima (n) −0.65
I Edge value mode frequency −0.84 S Num. of unique evaluations (evals) −0.65

I Nearest-neighbour dist. mean 0.89 I Nearest-neighbour dist. median 0.58
I MST distance median 0.89 S Rel. size of largest funnel ( flg) 0.60
I MST distance mean 0.89 I MST distance mean 0.60
I MST distance sum 0.89 S Rel. size of global opt. funnel ( fgo) 0.66
S Rel. in-strength of opt. sinks (dgo) 0.95 S Rel. in-strength of opt. sinks (dgo) 0.84

this paper with respect to the success rate across 1000 runs. To assess the relative
quality of local optima network and global structure metrics as estimators of success,
we also include 64 features based on TSP instance characteristics. These include
features that describe the edge cost distribution, cluster characteristics and minimum
spanning trees (MSTs). They are computed using the tspmeta R package (Mersmann
et al 2013).

Pearson correlations are calculated across two separate sets of instances: 100 uni-
form and 100 clustered instances. For the sake of clarity, only the top 5 positively and
negatively correlated features are presented in Table 5.

We found both instance and network structure features that strongly correlate
with Chained-LK success rate. The features showing the strongest correlations differ
between both sets of instances. On clustered instances, a higher number of struc-
tural features show a strong correlation while the opposite is observed on uniform
instances. However, on the two instance sets, the average path length to a global
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optimum, ¯lgo, is strongly correlated to success. Also, dgo, the normalised incoming
strength of global-optimum sinks and its complement, dngo, the incoming strength
of non-globally optimum sinks show strong correlations. This is because sub-optimal
sinks act as traps to the search process, from where Chained-LK search cannot escape
with its perturbation operator. For clustered instances, several of the top correlations
are related to neutrality (n, evals, n/evals).

When considering all network structure metrics discussed previously in this pa-
per, almost all of them produced correlation values below −0.4 or above 0.4. The
features with low correlation values for clustered instances are the number of con-
nected components (c), the proportion of solutions in more than one funnel ( fov) and
the mean and maximum in-strength (d̄ and dmax). In contrast, for uniform instances,
the dmax shows a strong correlation (0.74) and it is only fov that exhibits a low cor-
relation value with success. Overall, this suggests that the metrics studied reflect the
search dynamics of Chained-LK.

6 Conclusions

Revealing what makes a combinatorial problem hard remains an open challenge. In
this quest, understanding the global structure of the underlying landscapes is essen-
tial. There are few attempts in the literature to analyse, let alone visualise, the global
structure of combinatorial landscapes. This is due in part to the lack of adequate tools
to study their complexity. Local optima networks help to fill this gap. In our sample
of TSP problem instances, we found evidence of multiple funnels, instead of a single
big-valley as previously believed, in TSP landscapes of moderate size (500 to over
1500 cities). Good local optima decompose into multiple valleys of different depths,
each channelling the search process to a separate low cost solution or group of so-
lutions. We also found evidence of high amounts of neutrality or extensive plateaus
at the local optima network level in several of the structured instances (i.e. city and
drilling problems).

Our data-driven approach models realistic landscapes as networks, empirically
characterises the notion of funnels according to notions from theoretical chemistry,
and proposes novel 2D and 3D network visualisations. This brings new quantitative
and visual insights into landscapes’ global structure. The 3D plots provide a concrete
and intuitive illustration of the fitness landscape and funnel metaphors. The depic-
tion of edges incoming strength as node sizes, visually reveals the strong attractors
of the search process. We also propose alternative visualisation tools for analysing
very neutral, and conduct a distance analysis. Finally, we conduct a correlation study
between Chained-LK success rate and both landscape and TSP instance features.

We found significant differences among the studied instance classes. Randomly
generated instances have a single global optimum and reveal null or very small neu-
trality. On the other hand, structured instances from the TSPLIB generally have more
than one different global optima, with some instances featuring a large global opti-
mum plateau. This is probably because there are many pairwise city distances with
the same value. Within the same instance class, the number of funnels generally
increases, while the size of the funnel containing the global optima generally de-
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creases with the size of the instance. However, the instance class strongly influences
the global structure. The random uniform instances revealed a much larger number
of funnels as compared with the other instances studied, which explains why these
instances are generally harder to solve with heuristic search methods.

Our correlation study reveals that Chained-LK success is strongly correlated to
several landscape structural features. On clustered instances a higher number of struc-
tural features show high correlations, as compared to the uniform instances where a
large number of instance features show strong correlations. For both instance types,
however, the features showing the strongest correlation are the incoming weighed de-
gree of the global optimal sink and its complement, the incoming weighed degree of
the sub-optimal sinks. This confirms the importance of landscapes global structure in
explaining search difficulty: sub-optimal sinks act as traps to the search process, from
where Chained-LK cannot escape with its perturbation operator.

The impact of neutrality on search difficulty is harder to assess, and this will mo-
tivate future work with additional sampling mechanisms to explore the extent of local
optima plateaus. Preliminary experiments adding a stronger perturbation to Chained-
LK proved to help in smoothing the funnel structure, that is, reducing the number of
funnels and making the global optima more reachable (Ochoa and Veerapen 2016a).
Future work will expand this study, explore the role of crossover operators in land-
scapes with multiple funnels, and apply the methodology to other combinatorial op-
timisation problems.
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