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Attempts have been made to eliminate some potential counterexamples to the Andrews-
Curtis conjecture using the combinatorial optimization methods of blind-search and the

genetic algorithms meta-heuristic. Breadth-first search with secondary storage is cur-
rently the most successful method, which raises questions regarding the inferior per-
formance of heuristic search. In order to understand the underlying reasons we obtain
fitness-landscape metrics for a number of balanced presentations and draw conclusions

regarding the likely effectiveness of other meta-heuristics.
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1. Introduction

The Andrews-Curtis conjecture was formulated in 1965 and is of interest in group

theory and low-dimensional topology [2]. It states that “every balanced presenta-

tion of the trivial group can be transformed into the trivial presentation via some

sequence of AC-moves”.

A finite presentation ⟨g1, . . . , gm|r1, . . . , rn⟩ is said to be balanced if m is equal to

n. The trivial presentation of the trivial group of rank r is the balanced presentation

⟨g1, . . . , gr|g1, . . . , gr⟩. The AC-moves are:

AC1. ri → ri
−1

AC2. ri → rirj , i ̸= j

AC3. ri → g∓1rig
±1, for some generator g

These are the regular Nielsen transformations together with conjugation of a rela-
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tor by an arbitrary word in the generators via repeated application of AC3. There

is also a variant of the conjecture featuring a ‘stabilization’ move (i.e. introducing

a new generator y along with the relator y = 1) which is of particular interest

to topologists. The AC-moves on the balanced presentations of rank n generate

a group, ACn, with corresponding action on the set of balanced presentations of

rank n. In the absence of a proof of the conjecture, the status of counterexamples

has attracted attention and there is interest in using computer search to elimi-

nate them (families of potential counterexamples are given in [17] and [19]). Given

a potential counterexample P , the aim is to find a word w in ACn that reduces

P to the trivial presentation (or equivalently to find w−1 transforming the trivial

presentation into P ). Computationally, this can be achieved by the discrete opti-

mization technique known as state-space search, the most näıve exemplars of which

are exhaustive enumeration and randomly generating candidate solutions. In [14],

Miasnikov employed genetic algorithms to determine that all the well-known poten-

tial counterexamples with total length of relators at most 12 satisfy the conjecture.

In particular he solved the m = 2 case from the family of potential counterexam-

ples ⟨a, b|am = bm+1, aba = bab⟩ due to Akbulut and Kirby [1]. In [15], Miasnikov

and Myasnikov extend the length 12 results to include all balanced presentations

with total length of relators at most 12. Havas and Ramsay subsequently employed

breadth-first search modulo AC-equivalence and were able to further extend these

results to the length 13 case [6].

For a balanced presentation of rank n, there are 3n2 AC-moves, and hence

(3n2)l move sequences of length l. Many move sequences will result in the same

presentation so the value of (3n2)l is really only a rough upper bound. Even though

the branching factor is thus somewhat constrained, it remains exponential and sig-

nificant further progress employing main-memory alone is not possible. Bowman

and McCaul [4] extended the breadth-first search approach by making extensive

use of secondary storage indexed via an in-memory hashing scheme, solving all 10

presentations of the form ⟨a, b|a = [am, bn], b = [ap, bq]⟩,m, n, p, q ∈ N having rela-

tor length 14. By employing constraints on the maximum permissible total relator

length for intermediate presentations, they also exhaustively enumerated the m = 3

case for Akbulut-Kirby (currently the smallest potential counterexample) for total

relator lengths from 10 to 17 inclusive, but were unable to find an Andrews-Curtis

trivialization.

This article seeks to better understand why breadth-first search is currently

enjoying greater success than a heuristically-informed technique such as genetic

algorithms. We do this by analyzing the fitness landscape of some potential coun-

terexamples. In the remainder of this article, we apply a series of fitness landscape

analysis techniques to highlight the reasons for the failure of heuristic search and

reach some conclusions regarding the nature of those techniques that are likely to

enjoy greater success than those applied to date.
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2. Methodology

A ubiquitous definition of a fitness landscape [13] is a triple (S, f, d) where S is the

set of states, f : S → R+ is the fitness function and (S, d) is a metric space. We elect

to define landscapes via the triple (S, f,N) where N : S → 2S is a neighborhood of

S, i.e. the set of all states directly reachable from s. The neighborhood induces a

graph Γ with vertex set V = {s ∈ S} and edge set E = {(s, t)|t ∈ N(s)}. We then

take d(s, s′) to be the length of the shortest path between s and s′. In the following

sections, we proceed to detail the components of the triple (S, f,N) used to define

our landscapes and introduce some elementary fitness landscape metrics.

2.1. State-spaces and Neighborhoods

Meta-heuristic state-spaces may be categorized as perturbative or constructive. In

the former case the vertices of the state-space graph are complete solution repre-

sentations, in the latter they are partial solutions, with the mapping from partial

to complete solution being defined in a problem-specific manner. The breadth-first

search approach of [6] is perturbative, while the genetic algorithms approach of [14]

is constructive.

Let BP be the graph generated from the action of all words in ACn on some

balanced presentation P of rank n. The vertices of this graph are balanced presen-

tations of rank n and the edges are the AC-moves. If the Andrews-Curtis conjecture

is true, when P is the trivial presentation of rank n the vertex set of this graph in-

cludes every balanced presentation of that rank. This is the space searched (modulo

constraints on depth and relator length) by the breadth-first search implementa-

tions in [6] and [4]. Let NB(s) be the corresponding neighborhood, i.e. the set of all

presentations obtained from s via the action of a single AC-move.

Let ACk
n be the set of all words in ACn of length k. For dynamically-variable k,

this is the space searched by Miasnikov’s genetic algorithms (his mutation operators

included insertion and deletion of elements in a word). For w ∈ ACk
n, let H1(w) be

the neighborhood of all words in ACk
n with Hamming distance 1 from w.

2.2. Fitness Functions

The fitness function used by Miasnikov attempts to minimize the total length of

relators. Havas and Campbell commented that this could not be expected to be a

good heuristic measure since it behaves in a highly nonmonotonic fashion along the

path to a solution. We compare this relator-length fitness function with two ad-

ditional fitness functions [5]: longest-common-substring yields the length of the

longest common substring between a candidate solution and the target presentation

and substring-edit-distance yields a measure of the number of substitutions, in-

sertions and deletions required to transform the source presentation into the target.

The fitness value for both these functions is determined to be the maximum (re-

spectively minimum) over all pairwise assignments between candidate and target

relators.
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2.3. Fitness Landscape Metrics

Knowledge of the features of a search landscape is of interest both for predicting the

performance and for improving the design of search algorithms. Statistical measures

have been proposed for measuring fitness landscape properties: two of the most

commonly-used landscape analysis techniques (auto-correlation analysis and fitness-

distance correlation) are described in detail below.

2.3.1. Autocorrelation Analysis

An important characteristic of a landscape is its ruggedness, which is related to

the difficulty of an optimization problem for meta-heuristics. Weinberger [20] intro-

duced a procedure to measure the ruggedness of a fitness landscape based on the

autocorrelation function [8]. The idea is to generate a random walk of length T , on

the landscape via neighboring points. At each step, the fitness of the solution en-

countered is recorded and a corresponding time series of fitness values is obtained.

Thereafter, the autocorrelation function of the time series, ρi may be calculated.

This theoretical autocorrelation function ρi can be empirically estimated by ri:

ri =

∑T−i
t=1 (ft − f)(ft+i − f)∑T

t=1(ft − f)2
, (1)

where f is the mean fitness of the T points visited, and i is the time lag or distance

between points in the walk. The assumption underlying the use of this metric is that

the landscape is statistically isotropic, i.e. that the correlation for a single random

walk is representative of the landscape as a whole.

A related measure is the correlation length of a fitness landscape. Several au-

thors have proposed approaches to measure this quantity [8,11,20]. Statistically the

correlation length gives an indication of the largest ‘distance’ (or time lag) between

two points at which the value of one point can still provide information about the

expected value of the other point [8]. In other words, the correlation length is the

largest time lag i for which one can still expect some correlation between two points

i steps apart. We use here the correlation length measure based on the estimated

autocorrelation function [20] ℓ = −1
ln(|r1|) for r1 ̸= 0 (where r1 is defined according to

Eq. 1). Correlation length is inversely proportional to ruggedness, and lower values

are indicative of landscapes that are problematic for heuristic search.

2.3.2. Fitness Distance Correlation

The most commonly used measure to estimate the global structure of fitness land-

scapes is the fitness distance correlation (FDC) coefficient, proposed by Jones and

Forrest [9]. It is used as a measure for problem difficulty in genetic algorithms.

Given a set of points {x1, x2, . . . .xm} and their fitness values, the FDC coefficient
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ϱ is defined as:

ϱ(f, dopt) =
Cov(f, dopt)

σ(f)σ(dopt)
(2)

where Cov(., .) denotes the covariance of two random variables and σ the standard

deviation. The FDC determines how closely related are the fitness of a set of

points and their distances to the nearest optimum in the search space (denoted

by dopt). A value of ϱ = −1.0 (ϱ = 1.0) for maximization (minimization) problems

indicates a perfect correlation between fitness and distance to the optimum, and

thus predicts an easy search. On the other hand, a value of ϱ = 1.0 (ϱ = −1.0),
means that with increasing fitness the distance to the optimum increases too, which

indicates a deceptive and difficult problem. As suggested in [9], a value of fdc ≤ −0.5
(fdc ≥ 0.5) for maximization (minimization) problems is indicative of an easy

problem.

A fitness distance plot can also provide additional insight into the structure of

the landscape [12]. This is done by plotting the fitness of points in the search space

against their distance to an optimum solution. This type of analysis can be used to

investigate not only the correlation between arbitrary points in the search space,

but also the distribution of local optima within the search space. Should the global

optimal be unknown, fitness distance plots can work from a best-known solution,

but this may yield a significantly different plot.

3. Analysis of Andrews-Curtis Landscapes

For our analysis, we considered the following families:

HRm = ⟨a, b|ab = am, ba = bm⟩ as discussed in [6].

AKm = ⟨a, b|am = bm+1, aba = bab⟩ from [1].

We determined values for the correlation lengths for both NB(s) and H1(w) neigh-

borhoods under the action of the three fitness functions described above. We then

present corresponding fitness-distance plots and fitness histograms for the relator-

length fitness function.

3.1. Autocorrelation Analysis

Tables 1-3 give correlation lengths of the relator-length fitness function on the

NB(s) neighborhood for HR2 and the m = {2, 3} cases for AKm. The columns of

tables 1-3 are:

Search-direction A sufficient condition for the success of forward searches is the

reduction of n− 1 relators to primitive elements [14]. We incorporate this con-

dition for success into forward searches. For reverse searches we check modulo

AC-equivalence to see whether the target presentation has been found.
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Whitehead? The approach adopted in [14] was to supplement the AC-moves with

Whitehead automorphisms. For generators gi, gj , with i ̸= j they are given by:

gi → gi
−1, gi → gigj

±1, gi → gj
−1gigj

The addition of Whitehead automorphisms allows for shorter proofs, although

they also increase the branching factor of the search tree.

Total relator-length constraint As observed in [6], the addition of constraints

on the inclusion of a state in the breadth-first search tree makes the state-space

finite (although the search is then no longer guaranteed to find a solution if one

exists).

Search-direction Whitehead? Total relator-length constraint Correlation-length

forward no 15 13.8385

forward yes 15 5.21098

reverse no 15 3.26104

reverse yes 15 5.06388

forward no 19 3.09834

forward yes 19 6.97969

reverse no 19 3.29097

reverse yes 19 4.92711

Table 1. Correlation length of relator-length for state-space BP , P = HR2

It might be expected that the additional success criterion for forward searches

would reduce the predictive quality of their associated fitness function due to the

discontinuity it imposes on the fitness gradient (the “needle in a haystack” effect).

In fact, it was determined that the opposite is true for all of the random-walk

correlations we performed.

Search-direction Whitehead? Total relator-length constraint Correlation-length

forward no 17 2.26545

forward yes 17 6.21152

reverse no 17 3.52197

reverse yes 17 4.30575

forward no 21 3.00571

forward yes 21 5.41039

reverse no 21 2.65021

reverse yes 21 5.09715

Table 2. Correlation length of relator-length for state-space BP , P = AK2



July 29, 2011 13:23 WSPC/INSTRUCTION FILE
andrews-curtis-landscapes-ijac

Fitness Landscapes and the Andrews-Curtis Conjecture 7

Search-direction Whitehead? Total relator-length constraint Correlation-length

forward no 20 2.24334

forward yes 20 2.65731

reverse no 20 3.50911

reverse yes 20 4.78769

forward no 24 3.13675

forward yes 24 2.75453

reverse no 24 3.12792

reverse yes 24 4.85375

Table 3. Correlation length of relator-length for state-space BP ,P = AK3

Search-direction Whitehead? Correlation-length

forward no 3.25263

forward yes 3.66581

reverse no 1.7498

reverse yes 1.65063

Table 4. Correlation length of relator-length in neighborhood H1 of AC5
2 for HR2

Correlation length can be seen to be decrease if the pruning constraint of total

relator-length is relaxed. Correlation lengths were also determined for longest-

common- substring and substring-edit-distance but were found in all cases

to give values close to that of relator-length. Taken together, these observations

imply that none of these fitness functions afford a useful objective measure for

searching the unconstrained landscape.

Tables 4-5 give correlation lengths of the relator-length fitness function for

the H1(w) neighborhood for w ∈ ACk
2 as applied to HR2 and AK2. The choice

of k is motivated by the length of the shortest path to a solution (determined

by breadth-first search as described in more detail in section 3.2). The constraint

on total relator-length is omitted for the ACk
n state-space, since for low values of

relator-length, most solutions in this state-space will fail to meet this constraint.

Once again, no significant difference was observed in the values for the other two

fitness functions.

With the exception of the outlying value of 13.8385, all these landscapes are

moderately rugged [18]. As observed in [10], there is common consensus that the

number of local optima increase with ruggedness and we proceed to investigate this

in the next section.
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Search-direction Whitehead? Correlation-length

forward no 5.75898

forward yes 4.29469

reverse no 3.55046

reverse yes 3.10686

Table 5. Correlation length of relator-length in neighborhood H1 of AC10
2 for AK2

3.2. Fitness Distance Correlation

As discussed above, the main purpose of fitness distance analysis is to explore

the distribution of local optima in the state-space. We examined HR2 and AK2 in-

stances using forward search, relator-length fitness function and without White-

head automorphisms. As discussed above, it is desirable to apply the FDC to an

optimal solution. We therefore employed breadth-first search to find AC trivializa-

tions for HR2 and AK2 using the canonical form described in [4]. The searches

were performed on a 3GHz Pentium R⃝ IV PC with 2 GB RAM. The proof se-

quence for HR2 of (BabAA,AbaBB)→ (BabAA, baBBA)→ (BabAA, aBBAb)→
(BabAA,BA) → (BabAA, ab) → (BabAA, b) of length 5 was obtained in 4 sec-

onds. The proof sequence for AK2 of (aaBBB, abaBAB)→ (aaBBB, babABA)→
(aaBBB, abABaBB) → (bbbAA, abABaBB) → (bAbABa, abABaBB) →
(bAbABa, bABaBBa) → (AbaBaB, bABaBBa) → (AbaBaB,BaBaB) →
(AbaBaB, bAbAb) → (AbaBaB, bAb) → (AbaBaB, b) of length 10 was obtained

in 23 seconds.

The states of the FDC are thus sequences of AC-moves in ACk
2 , with k being

given by the respective lengths of the above proof sequences. Since the rank is equal

to 2 in both cases, the number of AC-moves is equal to 12 and the state-spaces have

sizes 125 and 1210 for the HR and AK instances, respectively. Hamming distance

was again used as the distance metric between sequences. For each instance, 5,000

random candidate solutions were generated. For each of these, 5,000 local optima

were produced by running a next-descent local search algorithm (hill-climber). This

algorithm (detailed in Fig. 1) accepts solutions of improving fitness, and uses a

1-opt neighborhood, which uniformly at random selects a position in the sequence

and replaces it with a randomly-selected AC-move. The results of the analysis are

Instance k Opt min dopt max dopt avg dopt avg dloc N fdc

HR2 5 3 0 5 3.34 4.16 2097 0.61

AK2 10 4 0 10 7.12 8.54 4992 -0.02

Table 6. Results of the fitness distance analysis.
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Procedure

Next-Descent(P : Balanced-Presentation, s : sequence of AC-moves)

π ← permutation of indices of s

for i← 1 to Length(s) do

s′ ← mutate AC-move π[i] of s

P ′ ← apply s′ to P

if relator-length(P ′) < relator-length(P ) then

s← s′

end if

end for

Fig. 1. Pseudo-code for the algorithm iterated to a local optimum. The parameter P is the
source presentation and s represents the incumbent solution.

summarized in Table 6. The first column displays the name of the instance, the

second the sequence length (k), and the third the fitness of the best-known solution

(Opt). Columns three to five display the minimum, maximum and average distance

of the local optima to the global optimum (min dopt, max dopt and avg dopt).

Columns six to seven show the the average distance between local optima (avg

dloc), the number of distinct local optima out of 5,000 (N), and the fitness distance

correlation coefficient.

For both instances, the local optima are distributed across the whole search

space. As the maximum and average distance to the optimum indicate, they are

not clustered around the global optimum. The maximum distance in both cases is

the largest possible (k, the sequence length), and the average distance is greater than

k/2. The average distance between local optima is larger that the average distance

between local optima and the global optimum, suggesting that the global optimum

is centrally located among the optima. The HR2 case shows a positive and large

fitness distance correlation, whereas AK2 shows a small negative correlation. The

number of distinct local optima is less than the half of the sample size (5,000) for

HR2, whereas for AK2 most local optima are distinct. The fitness distance plots for

the two instances are shown in Fig. 2. For all the local optima, the distance to the

global optimum is plotted against the fitness. In both instances, the local optima are

distributed widely across the k possible distances to the global optimum. Moreover,

for some fitness values, there are several local optima at different distances, while for

most fitness values there is not even a single one, which leads to large gaps in fitness

of the local optima. For example, most local optima in AK2 have fitness values in

the range 10 to 15. In both cases, this hints at the existence of large plateaus in the

search landscape.

In order to illustrate the distribution of fitness values of both randomly-

generated candidate solutions and of local optima, Figs. 3 and 4 show histograms of

these values on HR2 and AK2 respectively. Notice that the range of fitness values
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Fig. 2. Fitness distance plots: (a) HR2, (b) AK2
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Fig. 3. Fitness values histogram for HR2. (a) randomly generated points, (b) local optima
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Fig. 4. Fitness values histogram for the AK2. (a) randomly generated points, (b) local optima

naturally reduces for the local optima as compared to the randomly-generated solu-

tions and this reduction is more noticeable in AK2 (Fig. 4). In both instances, the

most remarkable feature of these plots is that the majority of local optima share

a small fraction of the fitness function values, confirming the existence of large

plateaus away from the global optimum. This is again more noticeable in AK2 (see

Fig. 4(b)), where most local optima have a fitness value of 11. This is a clear indi-

cation of the difficulty of searching on these landscapes since such plateaus can act

as traps for any stochastic local search heuristic.
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3.3. Landscape Neutrality

The fitness-distance plots of the previous section suggest that a significant obstacle

to search progress is the presence of extensive plateaus in the fitness landscape.

Formally, we can define a plateau as the transitive closure of neighboring vertices of

equal fitness. One means of depicting these neutral features of a landscape is via the

use of plateau-connection graphs [7]. A plateau-connection graph may be obtained

either from exhaustive enumeration or from sampling the landscape. A plateau is

said to be open iff it contains some vertex having a neighbor with a better fitness

value, otherwise it is said to be closed.
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Figure 5 shows those connected components of the plateau-connection graph for

BP , P = HR2 that lead to a solution. Open plateaus are denoted by an ellipse,

closed plateaus by a rectangle and solutions are denoted by triangles. Nodes are
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annotated as “♯ plateau-size @ fitness”. Figure 6 does the same for the H1, k = 5

case of HR2. Figure 6 is illustrative in that it contains a closed plateau that can act

as a sink, i.e. the search will remain within its basin of attraction unless a succession

of unimproving moves are accepted.

4. Conclusion

We measured local and global properties from the landscapes obtained for both per-

turbative and constructive state-space representations (BP and ACk
n respectively).

We investigated the effect of some alternative fitness functions and concluded that

none of them provide significant information about the larger-scale structure of the

landscape.

By plotting fitness histograms and plateau-connection graphs, we were further

led to conclude that the existence of large plateaus in the search space is the most

significant contribution to the intractability of potential counterexamples. The in-

herent symmetry of the search-space implies the existence of much deeper basins of

this type for larger problem instances. This is the likely explanation for Miasnikov’s

genetic algorithm requiring an uncommonly high (95%) mutation probability, effec-

tively degenerating into random search.
This suggests that the standard palette of meta-heuristics might also perform no

better than random search unless augmented by some mechanism for “reacting on
the fitness function” e.g. by imposing a gradient on plateaus via some tie-breaking
function of the internal structure of a presentation [3]; via the automated generation
of fitness functions that yield more favorable landscapes, or via an adaptive penalty
mechanism (as used in guided local search [16]).
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