
Expert Systems with Applications 41 (2014) 6876–6889
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A unified hyper-heuristic framework for solving bin packing problems
http://dx.doi.org/10.1016/j.eswa.2014.04.043
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +52 8181582045.
E-mail addresses: eunice.lopez@itesm.mx (E. López-Camacho), terashima@

itesm.mx (H. Terashima-Marin), P.Ross@napier.ac.uk (P. Ross), gabriela.ochoa@cs.
stir.ac.uk (G. Ochoa).
Eunice López-Camacho a, Hugo Terashima-Marin a,⇑, Peter Ross b, Gabriela Ochoa c

a Tecnológico de Monterrey, Av. E. Garza Sada 2501, Monterrey, NL 64849, Mexico
b School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
c Computing Science and Mathematics, University of Stirling, Scotland, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 10 May 2014

Keywords:
Bin packing problems
Evolutionary computation
Hyper-heuristics
Heuristics
Optimization
One- and two-dimensional packing and cutting problems occur in many commercial contexts, and it is
often important to be able to get good-quality solutions quickly. Fairly simple deterministic heuristics
are often used for this purpose, but such heuristics typically find excellent solutions for some problems
and only mediocre ones for others. Trying several different heuristics on a problem adds to the cost. This
paper describes a hyper-heuristic methodology that can generate a fast, deterministic algorithm capable
of producing results comparable to that of using the best problem-specific heuristic, and sometimes even
better, but without the cost of trying all the heuristics. The generated algorithm handles both one- and
two-dimensional problems, including two-dimensional problems that involve irregular concave poly-
gons. The approach is validated using a large set of 1417 such problems, including a new benchmark
set of 480 problems that include concave polygons.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Finding an arrangement of pieces to cut or pack inside larger
objects is known as the cutting and packing problem. Besides the
academic interest in this NP-hard problem, there are numerous
industrial applications of its many variants. The one-dimensional
(1D) and two-dimensional (2D) bin packing problems (BPPs) are
particular cases of the cutting and packing problem. The 1D BPP
can be applied, for example, to the assignment of commercial
breaks on television and for copying a collection of files to disks
(Bhatia, Hazra, & Basu, 2009). For the 2D BPP, the case of rectangu-
lar pieces is the most widely studied. However, the irregular case is
seen in a number of industries where parts with irregular shapes
are cut from rectangular materials. For instance, in the shipbuild-
ing industry, plate parts with free-form shapes for use in the inner
frameworks of ships are cut from rectangular steel plates, and in
the garment industry, parts of clothes and shoes are cut from fabric
or leather (Okano, 2002). Other applications include the optimiza-
tion of layouts within the wood, sheet metal, plastics, and glass
industries (Burke, Hellier, Kendall, & Whitwell, 2006). In these
industries, improvements of the arrangement can result in a large
saving of material (Hu-yao & Yuan-jun, 2006).
Hyper-heuristics aim at automating the design of heuristic
methods to solve difficult search problems and providing a more
general procedure for optimization (Burke et al., 2003; Pillay,
2012; Burke, Gendreau, Hyde, Kendall, & Ochoa, 2013). Hyper-
heuristics differ from the widely-used term meta-heuristic: instead
of searching within the space of solutions, they explore the space of
heuristics (Vázquez-Rodríguez, Petrovic, & Salhi, 2007; Pappa et al.,
2013). The idea is to use a variety of methods to discover
algorithms, based on single heuristics, that have good worst-case
performance across a range of problems and are fast in execution
(Ross, 2014). There are two main types of hyper-heuristic: selec-
tion hyper-heuristics, which are methods for choosing or selecting
existing heuristics, and generation hyper-heuristics which focus on
generating new heuristics from components of existing heuristics
(Burke et al., 2013; Burke et al., 2010a). The approach presented
in this paper is of the first type.

Over the last few years, one trend in combinatorial optimization
has been to find more general solvers capable of extending to other
types of problems within a domain and even crossing domain
boundaries. For example, Burke et al. (2010b) conducted an empir-
ical study that ran the same hyper-heuristic strategy in three dif-
ferent domains: 1D bin packing, permutation flow shop and
personnel scheduling. Burke, Hyde, Kendall, and Woodward
(2012) presented a genetic programming system to automatically
generate a good quality heuristic for each instance of the one-,
two-, and three-dimensional knapsack and bin packing problems
with rectilinear pieces; however, because the generated heuristics

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.04.043&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.04.043
mailto:eunice.lopez@itesm.mx
mailto:terashima@itesm.mx
mailto:terashima@itesm.mx
mailto:P.Ross@napier.ac.uk
mailto:gabriela.ochoa@cs.stir.ac.uk
mailto:gabriela.ochoa@cs.stir.ac.uk
http://dx.doi.org/10.1016/j.eswa.2014.04.043
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6877
are instance-specific, the computational costs involved are non-
trivial. Ochoa et al. (2012) proposed a software framework named
HyFlex (Hyper-heuristic Flexible framework) for developing cross-
domain search methodologies along six different optimization
problems.

In this paper, we introduce an evolutionary hyper-heuristic
framework for solving 1D and 2D BPPs (rectangular, convex and
concave shapes) that automatically chooses which heuristic to
apply at each step in building a good solution. The approach
described in this paper is a development of earlier work on solving
the 1D BPP (Ross, Marín-Blázquez, Schulenburg, & Hart, 2003), the
2D regular packing problem (Terashima-Marín, Farías-Zárate, Ross,
& Valenzuela-Rendón, 2006) and the 2D irregular (convex only)
packing problem (Terashima-Marín, Ross, Farías-Zárate, López-
Camacho, & Valenzuela-Rendón, 2010). In that earlier work, the
solution construction process used an ad-hoc simplification of
the current problem state when deciding what to do next and, in
the 2D cases, a large set of possible basic heuristics.

The main contributions of this paper are:

� A unified framework that handles 1D, 2D regular (rectangles),
and 2D irregular (convex and non-convex polygons) packing
problems, together with an empirical analysis of its perfor-
mance on a large unseen set of such problems.
� An experiment-based methodology for deciding which heuris-

tics should be included in the framework.
� A data-mining methodology for choosing the problem-state

representation to be used.
� The creation of a new, large benchmark set of 2D problems that

include some non-convex polygons.

2. Background and related work

Many heuristics have been developed for specific problems but
none of them seems able to provide good-quality results for all
instances. Certain problems may contain features that enable a
particular heuristic to work well, but those features may not be
present in other problems and so might lower that heuristic’s per-
formance. Research in hyper-heuristics has developed algorithms
with some claims to more generality, but there is interest in seeing
whether even more general architectures can be developed, that
are capable of solving many different kinds of problem efficiently.
Recent work by Ochoa et al. (2012), introduced a software frame-
work called HyFlex for the development of cross-domain search
methodologies. The framework provides a common interface for
treating different combinatorial problems and provides the prob-
lem-specific algorithm components. Hyflex can be seen as a bench-
mark framework for developing, testing and comparing the
generality of algorithms such as selection hyper-heuristics. HyFlex
has served to test algorithms in different domains like maximum
satisfiability, one dimensional bin packing, permutation flow shop,
personnel scheduling, traveling salesman and vehicle routing.
Other interesting investigations have been motivated by the
HyFlex system, see for example the work by Burke et al. (2010b)
where several hyper-heuristics combining two heuristic selection
and three acceptance approaches were compared, and other exten-
sions are given in Burke, Gendreau, Ochoa, and Walker (2011). In a
related study, Burke et al. (2012) proposed a general packing meth-
odology that includes 1D, 2D (orthogonal) and 3D (orthogonal) bin
packing and knapsack packing. They presented a genetic program-
ming system to automatically generate a good quality heuristic for
each instance among the different problems considered although
at a non-trivial cost per instance. HyFlex has also served as a
framework for the CHeSC 2011 algorithm competition, won by
Misir, Verbeeck, Causmaecker, and Berghe (2011) with an algo-
rithm which provides an intelligent way of selecting heuristics,
pairing heuristics and adapting the parameters of heuristics online.
They later extended this (Misir, Verbeeck, Causmaecker, & Berghe,
2013) by focusing on the single heuristic sets involved and on the
distinct experimental limits. Other recent research in selection
hyper-heuristics was introduced by Kalender, Kheiri, Özcan, and
Burke (2013) in which a simulated annealing-based move
acceptance method is combined with a learning heuristic selection
algorithm to manage the single heuristics.

HyFlex and related systems use a selection hyper-heuristic
approach which operates on complete candidate solutions, per-
turbing them to try to improve their quality. As such, solving an
instance typically involves some search, although usually limited.
The work presented in this paper instead uses a selection hyper-
heuristic approach that constructs a solution incrementally, each
step of which could be expressed as a simple lookup of what to
do next. The approach uses significant search effort to create such
an incremental solution-builder, but the amortized cost of generat-
ing solutions to unseen problems is then much lower than for
HyFlex-type methods. This framework has also been used for solv-
ing Constraint Satisfaction Problems (Terashima-Marín, Ortiz-
Bayliss, Ross, & Valenzuela-Rendón, 2008).

One of the possible limitations of this approach, as stated by
Sim and Hart (2013), is that if the nature of the unseen problems
changes over time, the system may need periodic re-training.

Other heuristic-selection mechanisms have been used, for
example Cowling, Kendall, and Soubeiga (2000) used a choice func-
tion based on the performance of single and pairs of heuristics.
Burke, Petrovic, and Qu (2006) employed a case-based reasoning
approach to tackle timetabling problems, while Bai, Blazewicz,
Burke, Kendall, and McCollum (2012) proposed a learning
approach by updating the heuristic selection weights depending
on the heuristic performance after each learning period. Walker,
Ochoa, Gendreau, and Burke (2012) used HyFlex to tackle a large
set of instances within the domain of Vehicle Routing Problem
by using two adaptive variants of a multiple neighborhood iterated
local search algorithm.
3. The bin packing problem

The cutting and packing problem has been studied since 1939
(Kantorovich, 1960), even though a more intensive research started
after the middle of the twentieth century. In 2007, Wäscher,
Hausner, and Schumann (2007) suggested a complete problem
typology which is an extension of Dychoff (1990). In that work,
authors state that, in general terms, cutting and packing have a
common identical structure given by a set of large objects that
are to be filled and a set of items with which to do the filling, with-
out overlapping other items or the edges of the objects.

In this paper, we consider the following problem types in
Wäscher et al. typology: (a) the 1D single bin size bin packing
problem, (b) the 2D regular single bin size bin packing problem
as well as (c) the 2D irregular single bin size bin packing problem.

In the 1D BPP, there is an unlimited supply of bins, each with
capacity c > 0, and a set of n items (each one of size si < c) is to
be packed into the bins. The aim is to minimize the total number
of bins used. In the 2D BPP, there is a set L ¼ ða1; a2; . . . ; anÞ of
pieces to pack and an infinite set of identical rectangular objects
into which the pieces are to be packed. The aim is to minimise
the number of objects needed. A problem instance I ¼ ðL; x0; y0Þ con-
sists of a list of elements L and object dimensions x0 and y0. The
term ‘2D regular BPP’ is mainly used when all pieces are rectangu-
lar and the term ‘2D irregular BPP’ refers to the case where pieces
can be polygonal, not just rectangular. We deal only with the off-
line BPP, in which the list of pieces to be packed is given in
advance.



6878 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
There are very few studies available of the 2D irregular BPP,
despite its practical importance. Ponce-Pérez, Pérez-García, and
Ayala-Ramírez (2005) proposed a genetic algorithm based
approach and tested it on one four-piece instance. Okano (2002)
solved three real instances from a problem more general than
our 2D irregular single bin size BPP, using variable bin sizes, where
the solution involves finding appropriate sizes of material objects
(bins) among given standard sizes in order to reduce waste. Babu
and Babu (2001) presented the solution for one instance in which
the objects are all of different size and shapes.

For all non-trivial BPP problems, exhaustive search is impracti-
cal and heuristic methods are needed. For the 2D BPP, heuristic
methods typically involve iterating two actions: first, selecting
both the next piece to be placed and the corresponding object in
which to place it; and then, placing the selected piece in a position
inside the object according to a given criterion. Some approaches
may choose to include local search in these steps. For the 1D
BPP, the placement step is unnecessary. In our approach, the two
actions are done while working with partial solutions because heu-
ristics construct a layout piece by piece, and feasibility is embed-
ded into the heuristic since each piece is placed in a feasible
position on the stock sheet and not moved thereafter.

Some metaheuristics for the 1D BPP have been implemented
(Ducatelle & Levine, 2001; Falkenauer, 1996; Rohlfshagen &
Bullinaria, 2010). For the 2D cutting and packing problem,
Hopper and Turton (2001) reviewed metaheuristic implementa-
tions. Hyper-heuristic search has been applied to the 1D BPP
(Pillay, 2012; Ross et al., 2003; Burke, Woodward, Hyde, &
Kendall, 2007; Marín-Blázquez & Schulenburg, 2006; Sim, Hart, &
Paechter, 2012) and different 2D BPPs (Terashima-Marín et al.,
2006; Terashima-Marín et al., 2010; Burke, Hyde, Kendall, &
Woodward, 2008; Garrido & Riff, 2007).
Fig. 1. Each block in a chromosome represents a point in the space of states labelled
with a single heuristic. The hyper-heuristic solves a problem instance by finding the
closest single heuristic at every solution stage.
4. The evolutionary hyper-heuristic framework

The method presented in this paper is based on a genetic algo-
rithm (GA) that evolves sets of condition-action rules that specify
what to do next in any given problem state. Each individual in
the GA population is a possible hyper-heuristic, specifying a com-
plete set of such condition-action rules. This kind of GA-based
approach has produced encouraging results in previous work
(Ross et al., 2003; Terashima-Marín et al., 2006; Terashima-Marín
et al., 2010).

According to the classification of hyper-heuristic approaches
suggested by Burke et al. (2010a), our GA-generated hyper-heuris-
tics fall into the category of selection hyper-heuristics because they
select the single heuristics to be applied rather than generating
new heuristics from components such as mutation and selection
operators.

The key idea in our constructive approach is to build a complete
solution by deciding what to do at each stage, including the initial
stage. Here, what to do means choosing heuristics to place pieces
and thus extend the solution. Each stage is described by a simpli-
fied representation of the problem state. We hypothesize that if
two states are very similar then we would want to do the same
thing in either state.

The hyper-heuristic has the following general form. Any state of
the partially-solved problem is described using a fixed, simplified
numeric representational scheme that expresses the state as a
point in a unit hypercube of some sort. The GA’s task is to find a
representative set of points within, or close to, this hypercube
and to label each such point with a specific heuristic step. This
set of labelled points represents the hyper-heuristic, and it is uti-
lized as follows. Until a solution is completely constructed, repeat-
edly: (a) encode the current problem state as a vector P; (b) find
the labelled point L that is closest to P (this could be handled by
dividing the space into tiny cubes and simply doing a lookup);
(c) apply the heuristic step specified by that label to extend the
solution. The question of what simplified representation to use is
addressed in Section 5.4.

The type of GA used is a so-called ‘messy’ GA (Deb & Goldberg,
1991; Goldberg, Deb, & Korb, 1989), because of its variable length
chromosomes. Each chromosome is composed of a series of blocks.
Each block represents one labelled point, and consists of a vector
identifying a point in the hypercube, and a final integer that iden-
tifies a heuristic by indexing a fixed array of available heuristics. A
chromosome therefore consists of a number of points in a simpli-
fied state space, each point being labelled with a single heuristic,
exemplifed in Fig. 1 which shows six labelled points h1 . . . h6 and
three successive problem states P; P0; P00 in an overly simplistic
three-dimensional hypercube. Clearly, not every point in such a
hypercube will represent a valid state. For example, it is not very
likely that (say) the features percentage of small items and average
of items sizes would have large values at the same time.

Available problem instances are divided into separate training
and testing sets. In the GA, chromosomes are evaluated using only
a few instances from the training set. The testing set is reserved for
evaluating the performance of the end result of the evolutionary
process.

4.1. The fitness function

Each hyper-heuristic (chromosome) and each individual heuris-
tic can be evaluated on any given problem in the same way:

Q ¼
PN

i¼1U2
i

N
ð1Þ

where N is the total number of objects used and Ui is the fractional
space utilization for each object i, so, 0 6 Ui 6 1. We seek to maxi-
mize Q. A simple application of Lagrange multipliers shows that Q is
minimized when all the Ui are equal (empty space is shared out
equally), and because Q is concave upwards, simple geometric con-
siderations show that Q is maximized at some boundary point when
as many Ui as possible are as large as possible. Now, let QkðHÞ be the
performance of algorithm H on problem k, as defined in (1); if the
fixed heuristics are F1; F2; . . . F6 then define Bk to be the Fi that max-
imizes QkðFiÞ, i.e. the fixed heuristic that gives the best performance
on problem k.



E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6879
Each chromosome is evaluated on some number m of problems
and its fitness is computed as the average difference between the
solution quality obtained by the chromosome with respect to the
result given by the best single heuristic for every particular
instance:

f ðHHÞ ¼
Pm

k¼1ðQ kðHHÞ � Q kðBkÞÞ
m

ð2Þ

Note that f ðHHÞ could be negative if the hyper-heuristic average
performance is below the performance of the best heuristic for
each instance solved. We expect that the evolutionary process
finds a chromosome with positive value of f ðHHÞ.

4.2. The GA cycle

The evolutionary process is given by the following steps:

1. Generate the initial population. Each individual is comprised of
10 to 15 blocks.

2. Randomly assign m ¼ 5 problems from the training set to each
chromosome and compute the chromosome fitness based on
those problems (Eq. (2)).

3. Apply selection with tournament of size 2, crossover and muta-
tion operators to produce two children.

4. Randomly assign m ¼ 5 problems to each new child and esti-
mate its fitness.

5. Replace the two worst individuals with the new offspring pro-
vided they are of better fitness.

6. Assign one additional and new problem to every individual in
the new population and update fitness. Now the fitness on each
individual is based on the number of instances it has seen so
far; at age T P 0, a chromosome’s evaluation is based on a total
of m ¼ 5þ T problems.

7. Repeat from Step 3 until a termination criterion is reached.

If the GA is run with a small population of size P, this means any
chromsome is unlikely to be assessed on very much more than
about 5þ P=2 problems. However, the chromosome’s ancestors
will have collectively seen very many more than this.

The GA uses two crossover and three mutation operators. These
operators were taken from the previous implementation of the
solution model for the 1D BPP (Ross et al., 2003) and the 2D regular
BPP (Terashima-Marín et al., 2006; Terashima-Marín et al., 2010).
The probability for applying each type of crossover or mutation
operator was suggested by some early testing in the investigation
for the 1D case (Ross et al., 2003).

Both of the following crossover operators employed have the
same probability of being chosen. The one-point crossover oper-
ator works at block level, and exchanges 10% of blocks between
parents, meaning that the first child obtains 90% of information
from the first parent, and 10% from the second one, and vice
versa. This operator shuffles blocks, so the blocks passed from
a parent to an offspring are not in consecutive order; that is,
gene linkage is broken. The two-point crossover operator is very
similar to the normal two-point crossover. For each individual,
we first select two blocks and then a point inside each block
is chosen. Since the number of blocks in each chromosome is
variable, the cut points in each parent are independently cho-
sen. However, the points selected inside each corresponding
block are forced to be the same for both parents, to avoid
changing the meaning of any numbers, so that the recombina-
tion produces an exact number of blocks. The blocks and points
are chosen using a uniform distribution. If one parent has a
length of up to two blocks, then the individual is completely
removed and recreated randomly with a number of blocks from
10 to 15. The other selected individual for crossover is copied
exactly. The idea is to penalize chromosomes with a very small
number of blocks.

Three mutation operators are used: add-block, remove-block,
and in-block. Mutation is applied with probability 0.1, and the
specific operator is randomly selected from along these three
choices: in-block is twice as likely to be selected as the other
two. The add-block mutation operator randomly generates a
new block and adds it at the end of the chromosome, unless
the length is 20 or more in which case a random block is deleted
instead. The remove-block mutation operator randomly selects
and eliminates a block within the chromosome unless the length
is 6 blocks or less, in which case it adds a new one. The in-block
operator randomly selects a position inside a random block and
mutates it. If the selected position is a heuristic specifier, a ran-
dom one is chosen. If it is a hypercube co-ordinate, a new value
is chosen from an Nð0:5;0:5Þ distribution and truncated to lie in
the range �2 to 3.

Experiments in this investigation were carried out using a pop-
ulation size of 30, crossover probability of 1.0, mutation probability
of 0.10, and 80 generations. These parameters worked well in pre-
liminary experimentation and were used in previous studies
(Terashima-Marín et al., 2010).
5. Implementation methodology

This section describes the implementation details including
how the set of single heuristics and instances was gathered and
the process for getting an adequate problem-state representation
scheme.
5.1. Set of heuristics used

The following six heuristic approaches were employed. Heuris-
tics are criteria to select the next piece to be placed and the corre-
sponding object to place it. The 1D and 2D cases of the BPP share
the same selection heuristics. For the 2D BPP, a placement heuristic
was additionally used.

1. First Fit Decreasing (FFD). Considers the open objects in the order
they were opened and places the largest piece in the first object
where it fits. If the piece does not fit into any open object, FFD
opens a new object to pack the piece.

2. Filler. Sorts the unplaced pieces in decreasing order of size and
places as many pieces as possible within the open objects. If no
single piece could be placed, it opens a new object and places as
many pieces as possible in it.

3. Best Fit Decreasing (BFD). Sorts the unplaced pieces in decreasing
order of size and places the next piece in the open object where
it best fits, that is, in the object that leaves minimum waste. If
the piece does not fit into any open object, BFD opens a new
object to pack the piece.

4. Djang and Finch with initial fullness of 1/4 (DJD1/4). Places items in
an object, taking items by decreasing size, until the object is at
least one-fourth full. Then, it initializes w ¼ 0, a variable indi-
cating the allowed waste, and looks for combinations of one,
two, or three items producing a waste w or less. If any combina-
tion fails, it increases w by one twentieth of the object. When w
reaches the amount of free space of the object, a new object is
opened.

5. Djang and Finch with initial fullness of 1/3 (DJD1/3). Same as
DJD1/4, once the object is full up to 1/3 it tries combinations
of pieces.

6. Djang and Finch with initial fullness of 1/2 (DJD1/2). Same as
DJD1/4, once the object is full up to 1/2 it tries combinations
of pieces.



6880 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
All of these are one-step constructive heuristics for the offline
BPP. These approaches can often produce reasonable quality solu-
tions with little computational cost (Bennell & Oliveira, 2009).
DJD1/4, DJD1/3 and DJD1/2 are variations of the DJD heuristic
(López-Camacho, Ochoa, Terashima-Marín, & Burke, 2013). In pre-
liminary experimentations, it has been found that DJD1/4, DJD1/3

and DJD1/2, though similar, present a different behavior in different
types of problem instances. For example, 2D instances with huge
pieces are generally better solved by DJD1/4; while DJD1/3 is better
with instances with small pieces (averaging below 1/10 of the
object area). These heuristics were selected from a larger set,
because they produced the best single-heuristic results in a preli-
minary study.

For 2D problems, the heuristic called Constructive Approach
with Maximum Adjacency (CAD) was employed for finding the
actual placement of the selected piece in a valid position inside
the object. This heuristic is partially based on the approach sug-
gested by Uday, Goodman, and Debnath (2001) and adapted by
Terashima-Marín et al. (2010). It explores several possible posi-
tions and the one with the largest adjacency i.e. the common
boundary between its perimeter and the placed pieces and the
object edges is selected as the position of the new piece. In case
of tie, the most bottom-left position is chosen. This heuristic was
chosen because of its good performance in López-Camacho et al.
(2013). There are several approaches to handle the geometry of
irregular shapes, such as the nofit polygon or the phi function
(Bennell & Oliveira, 2009; Alvarez-Valdes, Martinez, & Tamarit,
2013; Bennell, Scheithauer, Stoyan, & Romanova, 2010). In
particular, our implementation is based on trigonometry
(López-Camacho et al., 2013).

Previous studies had included in their heuristic repository every
possible combination of several selection and placement heuristics
considered, without performing any quality filter. Therefore, a very
long list of heuristics comprised the heuristic repository
(Terashima-Marín et al., 2006; Terashima-Marín et al., 2010). As
a consequence, after the hyper-heuristics were built, most of the
single heuristics were not called when solving a large set of
instances. We conjecture that the presence of poor-quality heuris-
tics delays the evolutionary process because it starts with an initial
population with many unnecessary poor-quality hyper-heuristics
and it takes time to weed them out.
Table 1
Description of problem instances.

1D Convex 2D

Type Num. of instances Num. of pieces Type Num. of instanc

DB1 n1 45 50 Conv A 30
DB1 n2 45 100 Conv B 30
DB1 n3 45 200 Conv C 30
DB1 n4 45 500 Conv D 30
DB2 n1 30 50 Conv E 30
DB2 n2 30 100 Conv F 30
DB2 n3 30 200 Conv G 30
DB2 n4 30 500 Conv H 30
Wäscher 17 57–239 Conv I 30
Trip60 20 60 Conv J 30
Trip120 20 120 Conv K 30
Trip249 20 249 Conv L 30
Trip501 20 501 Conv M 30

Conv N 30
Conv O 30
Conv P 30
Conv Q 30
Conv R 30

Total 397 Total 540
5.2. Testbed instances

Our experimental testbed is comprised of a total of 1417
instances which are summarized in Table 1.

The 397 one-dimensional problem instances are from the liter-
ature. The first eight types of 1D instances in Table 1 are from
Scholl, Klein, and Jürgens (1997), where we chose one out of every
four instances in Scholl’s data bases 1 and 2. Next instances come
from Wäscher and Gau (1996) and the last four types of 1D
instances are triplets from Falkenauer (1996) whose optimal solu-
tions have exactly 3 items per bin with zero waste. These instances
that are triplets originally had item sizes rounded to one decimal
place. They were scaled up by a factor of 10 so that all values are
now integers.

We have 540 two-dimensional instances with only convex
polygonal pieces that were randomly generated by Terashima-
Marín et al. (2010). This testbed also includes 30 rectangular
instances (type Conv I). All the 2D convex instances, except type
Conv G, have an optimum with zero waste; therefore, in the opti-
mum solution, all objects must be filled up to 100%.

The 480 new 2D instances containing some non-convex poly-
gons were randomly produced for this study. Of these, 240 were
generated splitting at least five pieces from each instance from
types Conv A, Conv B, Conv C, Conv F, Conv H, Conv L, Conv M and
Conv O, respectively. Convex pieces from these instances were ran-
domly selected and split into two pieces: one convex and one non-
convex. The other 240 of the non-convex instances were produced
by creating new convex instances and then splitting some of the
pieces into non-convex polygons. Types NConv U, NConv W and
NConv X were produced by splitting some pieces from instances
that already had non-convex pieces. The 2D irregular instance set
used in this study can be found at http://paginas.fe.up.pt/�esi-
cup/tiki-index.php.

There is a variety of instance feature values in our experimental
testbed. For example, there are instances whose pieces have an
average size of 1/30 of the object, while other instances have huge
pieces (averaging almost 2/3 of object size). Either the optimum
number of objects or the best-known result ranges between 2
and 273. In the 2D problems, rectangularity (the ratio of the area
of a piece to the area of the smallest enclosing rectangle) varies
between 0.35 and 1.
Non Convex 2D

es Num. of pieces Type Num. of instances Num. of pieces

30 NConv A 30 35–50
30 NConv B 30 40–52
36 NConv C 30 42–60
60 NConv F 30 35–45
60 NConv H 30 42–60
30 NConv L 30 35–45
36 NConv M 30 45–58
36 NConv O 30 33–43
60 NConv S 30 17–20
60 NConv T 30 30–40
54 NConv U 30 20–33
30 NConv V 30 15–18
40 NConv W 30 24–28
60 NConv X 30 25–39
28 NConv Y 30 40–50
56 NConv Z 30 60
60
54

Total 480

http://paginas.fe.up.pt/~esicup/tiki-index.php
http://paginas.fe.up.pt/~esicup/tiki-index.php
http://paginas.fe.up.pt/~esicup/tiki-index.php


Fig. 2. One convex and one non-convex polygon created by the developed
algorithm.

Table 2
Cluster membership for the 1D and 2D instances. According to fitness of the six single
heuristics considered.

Cluster 1D Convex 2D Non convex 2D Total

C1 224 209 287 720
C2 14 58 48 120
C3 4 29 36 69
C4 85 43 41 169
C5 69 103 81 253
C6 1 17 18
C7 19 15 34
C8 19 15 34

Total 397 480 540 1417

E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6881
5.3. Algorithm for producing random instances with non-convex pieces

The process for creating problems with non-convex pieces
starts with a set of convex pieces, each of which is defined by a
set of corners that have integer co-ordinates. Then, a selected con-
vex piece can be split into two pieces, one convex and other con-
cave, by (a) selecting two edges; (b) for each of these two edges,
either choosing an integer-valued interior point or (if none exist)
choosing one of the endpoints of the edge, thus obtaining two
points Q and R on the border of the piece; (c) choosing an inte-
ger-valued interior point P, and joining Q to P to R and then split-
ting the piece into two, one of them being concave (see Fig. 2).

Finally, the algorithm randomizes the order of all the pieces so
that the two parts of a split piece are very unlikely to be adjacent in
the list of pieces.

When this algorithm is applied to an instance that already has
non-convex shapes it is possible to produce U-shaped polygons
or even shapes with an internal empty space reached by a smaller
entrance (resembling letter G). Shapes with holes are not produced
by the algorithm.

5.4. Developing a problem-state representation for the testbed
instances

We need to summarize each instance state by a numerical vec-
tor that quantifies some of its relevant features. Thus, the aim is to
find a feature set that correlates fairly well with performance of the
six heuristics. A great deal of the performance of a selection hyper-
heuristic model may depend on the choice of representation of the
problem state and the choice of the particular set of heuristics used
(Ross, 2014). Messelis and Causmaecker (2014) have also recently
argued that it is crucial to find a set of instance features that cap-
tures the internal structure of a problem domain and that is related
to the performance of an algorithm. Finding such a set is not obvi-
ous. We have adopted the data mining based methodology pro-
posed by López-Camacho, Terashima-Marín, and Ross (2010), in
order to select the most representative features to characterize
an instance of any type (1D, 2D regular, and 2D irregular).

The general methodology comprises six steps that we applied as
follows:

Step 1. Each instance is solved by each of the six single heuristics
and its performance is computed with Eq. (1).

Step 2. The performance of the six single heuristics for each
instance is considered as a vector in R6, normalized to
have length 1. Normalization removes the distinction
between easy or hard instances in the measure of perfor-
mance so that only the relative performance of the various
heuristics matters.

Step 3. All instances are grouped into homogeneous clusters
based on the normalized performance of the six single
heuristics. The clusters will be used in Step 6, to find those
problem-state features that are significant in predicting
the clusters. We chose the k-means clustering technique
which is a widely used algorithm (Arthur & Vassilvitskii,
2006). In this procedure the number of clusters has to be
provided by the user, however there exist some
approaches for selecting a good number of clusters. In
our research, the number of clusters was eight and was
determined according to the Hartigan criteria (Chiang &
Mirkin, 2007). With the number of clusters chosen, 30 ran-
dom k-means initializations were run, and we decided to
use the seed that produces clusters which minimize the
total intra-cluster variance (squared error function), given
by:

Pk
i¼1

P
xj2Si
ðxj � ljÞ

2 where there are k clusters
Si; i ¼ 1;2; . . . ; k, and li is the centroid or mean point of
all the points xj 2 Si. After obtaining the number of
instances associated to each cluster, Table 2 summarizes
the cluster membership according to dimensionality and
convexity. Note that many instance types are split into dif-
ferent clusters. Instances in the same cluster have similar
behavior when solved by the six heuristics considered
and we attempt to find which features these instances
have in common.

Step 4. This step consists of finding instance features that may be
relevant to the ability of the heuristics to solve each
instance. 23 numerical features were computed for each
instance. The last two features are devoted to measure
concaveness. The features are: (1) Number of pieces, (2)
Mean number of sides for the instance pieces, (3) Variance
of the number of sides of all instance pieces, (4) Mean area
for the instance pieces (area for each piece is measured as
a fraction of the object total area), (5) Variance of the area
of all instance pieces, (6) Mean height for the instance
pieces (height for each piece is measured as a fraction of
the object height with the difference between its maxi-
mum and minimum y coordinates), (7) Variance of the
height of all instance pieces, (8) Mean width for the
instance pieces (width for each piece is measured as a frac-
tion of the object width with the difference between its
maximum and minimum x coordinates), (9) Variance of
the width of all instance pieces, (10) Mean rectangularity
for the instance pieces, (11) Variance of the rectangularity
of all instance pieces, (12) Mean ratio (largest side)/(small-
est side) for the instance pieces, (13) Variance of the ratio
(largest side)/(smallest side) of all instance pieces, (14)
Percentage of large pieces (whose area is greater than
1=2 of the object total area), (15) Percentage of small
pieces (whose area is less than or equal to 1=4 of the object
total area), (16) Percentage of right internal angles (respect
to the total angles of all pieces of the instance), (17) Per-
centage of vertical/horizontal sides (respect to the total
sides of all pieces of the instance), (18) Percentage of high
rectangularity pieces (items which rectangularity is



6882 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
greater than 0.9), (19) Percentage of low rectangularity
pieces (items which rectangularity is less than or equal
to 0.5), (20) Percentage of non-convex pieces, (21) Average
of the largest internal angle of all instance pieces, (22)
Mean of the degree of concavity of the instance pieces
(explained below), (23) Average of the proportion (area
of piece)/(area of convex hull) for all instance pieces
(explained below).
All items in 1D instances have only one dimension
(height), so, their width has a variance of zero, meanwhile
2D instances will have a width variance greater than zero.
For 1D instances, the area is computed assuming all items
and bins have a fixed width, which means that area is pro-
portional to height. All 1D items and 2D rectangles have
rectangularity of 1.
The degree of concavity is defined as the concaveness of
the largest internal angle and it can be computed by
DC ¼ B

A (see Fig. 3) (Wang, 1998). For 1D items and 2D con-
vex polygons (including rectangles), the degree of concav-
ity is equal to 1. The degree of concavity for a concave
polygon is more than one.
The convex hull of a given set S of points in the plane, is the
smallest convex polygon that contains all of the points of S.
The area of the convex hull for a non-convex polygon is
greater than the area of the polygon, so the relation (area
of piece)/(area of convex hull) is less than one only when
dealing with non-convex polygons.

Step 5. Eliminate features that are highly correlated. It may hap-
pen that some couple or small sets of features are highly
correlated (positive or negative) since they carry almost
the same information. In this case, we can say we have
equivalent features. The Pearson correlation coefficient
(Rodgers & Nicewander, 1988) measures linear depen-
dence between a pair of variables and it is an immediate
way to perform this (although other measures of associa-
tion exist (Joe, 1989)). For example, in the 2D irregular
BPP average area of pieces and percentage of small pieces
may be strong and negatively correlated. This can happen
for pairs or even for small sets of features where all fea-
tures in the set are highly correlated with all the others.
For every pair or set of equivalent features it is possible
to choose just one of them which would act as the repre-
sentative of the other(s) and delete the others reducing
the total set of features from the 23-feature list generated
in Step 4, 17 features were kept.

Step 6. Select the final set of features among the set of the 17
problem features using Multinomial Logistic Regression
(MLR) (Glonek & McCullagh, 1995).
Upon applying the complete methodology, nine significant
features comprise the numerical representation. We added
a tenth feature regarding the fraction of the instance total
items that remain to be packed, so the GA learning process
can have a sense of how advanced the solution of a given
Fig. 3. Degree of concavity.
instance is. We performed a linear mapping to a fixed scale
making each possible feature value to fall inside the range
from 0 to 1, so each numerical term has the same weight.
This numerical representation is capable of discriminating
among the different categories of instances.

6. Experimental design and results

This section presents the experimental setup as well as the
main results obtained along with the corresponding discussions
and concluding remarks.

A series of experiments were designed in the present study by
arranging the 1417 available instances into two balanced training
and testing sets. In the Experiment 1, the training set was formed
by the following instance types presented in Table 1: DB1 n1
through DB1 n4, Wäscher, Conv A through Conv I and types NConv
A through NConv O. In Experiment 3, every second instance from
the testbed was selected to form the training set. Therefore, half
of instances of every available type are included in the training
set making training and testing sets very similar. Experiments 2
and 4 swap the training and testing sets from Experiments 1 and
3, respectively. Overall, four experiments were conducted.

For each of the four experiments, five GA processes were run
using different seed values for making the random choices
involved. Each run outputs two single hyper-heuristics (the best
performers), and each evaluated on the unseen testing set. This is
done because the fitness of every individual of a GA run is just
an estimate since it is computed after solving a sample of problem
instances (from the training set) during the evolution process. The
hyper-heuristic with the best performance is chosen as the hyper-
heuristic of the run. Overall, 20 hyper-heuristics were employed to
measure the effectiveness of the model, that is, five for each
experiment.
6.1. Comparing results against the best single heuristics

Table 4 shows a hyper-heuristic generated by the first run of
Experiment 1. It has eight blocks and may employ up to five differ-
ent single heuristics (actions) when solving a given problem
instance. Features numbered from 1 to 10 are described in Table 3.
In this example, when the hyper-heuristic is used to solve the
Experiment 1 testing set, it only employs two different actions:
heuristics 1 and 3 (Filler and DJD1/4). This is because the other
blocks represent problem states that were not reached by the
instances solved. Most of the testing instances were solved using
a combination of heuristics 1 and 3, and only 39 solutions of 2D
instances were constructed using one single heuristic.

In general, the hyper-heuristics generated have an average of
11.2 blocks. Since our heuristic repository has 6 single heuristics,
some of them may appear several times in a hyper-heuristic. The
Table 3
Representation of the instance state.

Feature Description

1 Number of pieces
2 Mean area of remaining pieces
3 Variance of the area of remaining instance pieces
4 Mean of the rectangularity of remaining pieces
5 Variance of the rectangularity of remaining pieces
6 Mean of the height of the remaining pieces
7 Variance of the width of the remaining pieces
8 Fraction of remaining pieces in the instance whose area is above

1=2 of the object area
9 Mean of the degree of concavity of the remaining pieces
10 Fraction of the instance total items remaining



Table 4
Hyper-heuristic generated in the first run of Experiment 1.

Block Feature Action

1 2 3 4 5 6 7 8 9 10

1 1.03 1.33 0.80 0.49 0.64 0.22 0.81 0.43 0.91 0.65 0 (FFD)
2 �0.08 0.16 0.77 0.17 0.43 0.74 �0.34 0.37 0.92 0.30 1 (Filler)
3 1.06 0.89 0.40 �0.36 0.70 0.51 �0.03 0.84 1.39 0.36 2 (BFD)
4 0.34 0.91 0.56 0.27 0.41 0.93 0.87 0.82 0.91 0 2 (BFD)
5 1.08 1.25 0.83 1.26 0.51 0.04 0.49 0.02 0.70 0.91 0 (FFD)
6 0.57 0.10 0.46 0.52 0.67 0.39 0.87 0.44 �0.61 0.43 3 (DJD1/4)
7 0.52 0.80 1.14 0.34 0.52 0.33 0.80 1.05 0.17 �0.42 4 (DJD1/3)
8 0.70 1.08 0.87 �0.23 0.52 �0.59 0.89 0.23 0.55 0.31 2 (BFD)

E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6883
six single heuristics considered were employed by at least one of
the hyper-heuristics generated along the experiments.

Each one of the twenty generated hyper-heuristics employed a
combination of two to five single heuristics when solving the test-
ing set of the corresponding experiment. Complete results are
shown in Table 5. Figures in cells indicate the percentage of
instances that employs a particular number of extra objects (left
column) when compared against results provided by the best sin-
gle heuristic for each instance. We present results averaging the
five best hyper-heuristics, each selected from each complete run
in the experiment, as well as the results on the average of the
Table 5
Number of extra objects obtained by hyper-heuristics and single heuristics when compar
percentage of cases). Zero values are displayed as blank cells.

Extra objects Hyper-heuristics Single h

Average 2B-Avg Best FFD

Experiment 1
6 �2 0.6 0.7
�1 0.6 2.8 2.7
0 86.2 93.4 94.9 62.1
1 13.2 3.2 1.7 23.0
2 3.9
3 1.1
P 4 9.9

Experiment 2
6 �2
�1
0 92.6 98.2 100 70.2
1 7.4 1.8 21.1
2 6.2
3 2.4
P 4 0.1

Experiment 3
6 �2 0.3
�1 1.1 0.8
0 94.6 95.9 96.9 66.1
1 5.4 3.0 2.0 21.6
2 5.4
3 2.0
P 4 4.9

6 �2 0.1
�1 1.0 0.8
0 91.7 95.6 97.9 66.1
1 5.1 3.4 1.1 22.4
2 1.6 4.8
3 0.6 1.6
P 4 1.1 5.1

All experiments
6 �2 0.1 0.4
�1 0.1 1.2 1.6
0 91.3 95.8 97.4 66.1
1 7.8 2.9 0.6 22
2 0.4 5.1
3 0.1 1.8
P 4 0.3 5
two-best hyper-heuristics and the best hyper-heuristic per exper-
iment, considering the testing instance set. In general, the average
performance of the five hyper-heuristics produced per experiment
is favorable since it clearly beats four of the single heuristics and it
is very competitive against the other two, DJD1/4 and DJD1/3. Now,
if we observe the performance of the two-best hyper-heuristics
(average) and the best hyper-heuristics per experiment, the results
definitively are better than those provided by any single heuristics.
Two important aspects we can point out here: there is a saving in
the number of objects for a percentage of the instances, and the
largest number of extra objects used by them is no greater than
ed against the results of the best single heuristic for each instance (figures indicate

euristics

Filler BFD DJD1/4 DJD1/3 DJD1/2

63.0 64.5 96.1 93.0 72.0
22.0 20.7 3.9 6.6 14.8
4.1 3.8 0.4 2.8
1.1 1.1 0.8
9.9 9.9 9.6

69.4 70.6 96.3 95.8 72.8
21.8 20.5 3.5 4.2 19.5
6.2 6.4 0.1 6.1
2.4 2.4 1.6
0.1 0.1

66.1 67.2 96.0 94.1 72.2
21.6 20.3 3.8 5.6 17.1
5.4 5.5 0.1 0.3 4.8
2.0 2.0 1.3
4.9 4.9 4.7

66.3 67.8 96.3 94.6 72.6
22.1 20.9 3.7 5.2 17.2
4.9 4.7 0.1 4.1
1.6 1.6 1.1
5.1 5.1 4.9

66.2 67.5 96.2 94.4 72.4
21.9 20.6 3.7 5.4 17.1
5.2 5.1 0.1 0.2 4.4
1.8 1.8 1.2
5 5 4.8



Table 6
Comparison of our approach versus Mumford’s GSA for Scholl and Faulkner instances.

Instance Number of objects

Optimum GSA Best simple heuristic Best hyper-
heuristic

N4C3W2A 203 204 204 204
N4C3W4A 216 217 217 217
N4W1B1R0 167 167 167 167
N4W3B1R0 71 71 72 73

Trip60 20 21 21 21
Trip120 40 41 41 41
Trip249 83 84 84.8 84.75
Trip501 167 168 170.8 170.05

6884 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
one, usually for a small percentage of the instance set. For example,
in Experiment 1 the average of the two-best and the best hyper-
heuristic required one object less in 2.8% and 2.7% of instances,
respectively, and two or more objects less in 0.6% and 0.7% of
instances, respectively. For Experiment 2, the best hyper-heuristic
obtains the same results that the best single heuristic 100% of
times; which means that the hyper-heuristic learns to behave as
the best single heuristic per problem. Along all experiments, the
best hyper-heuristic delivered fewer objects than the best single
heuristic for 2% of the instances. We could state that the hyper-
heuristics produced are capable of learning to perform as well as
the best single heuristic for each instance, and for some cases, even
better. In other words, these hyper-heuristics may be considered as
general solving methods.

It has been confirmed that solving an instance with a hyper-
heuristic is faster than solving it with each of the single heuristics
and then choosing the best result (Terashima-Marín et al., 2010).
We ran the algorithms on a 1.66 GHz PC with 1.98 GB of RAM. Once
the hyper-heuristic is generated, it solves each instance in 20 s on
average.

For most cases, the best hyper-heuristic achieves the same
number of objects than the best single heuristic (higher percent-
ages in Table 5 are in the 0-object row). We ran the non-parametric
Mann–Whitney statistical test for means comparison of extra
objects between 1D and 2D cases. We want to know if the
hyper-heuristic model performance is different for 1D and 2D
instances. For Experiment 1, the extra number of objects delivered
by the best hyper-heuristic is statistically different for 1D and for
2D instances (p-value ¼ 0:001). For the rest of the experiments,
the difference is not significant between 1D and 2D BPP. When
we perform a comparison of means test between results for convex
and non-convex 2D instances, we found that there is a significant
difference only in Experiment 4 (p-value ¼ 0:016). In conclusion,
most of the experiments show that hyper-heuristics performance
is not statistically different for the distinct categories of BPP con-
sidered in this study.

It is difficult to establish a fair comparison between our
approach and other studies since, in order to prove generality,
we used a large set of instances, and many of them, i.e. the non-
convex 2Ds, have not been used in previous studies. An exhaustive
comparison with other algorithms would fall out of the scope of
this investigation. However, in order to provide an idea of the per-
formance of our algorithm over specific instances, we present a
comparison versus an algorithm for solving 1D BPPs and tested it
with some of the same instances that we employed within our
approach (Mumford, 2008). Mumford designed a hybrid (or
memetic) evolutionary algorithm specifically focused on solving
set partitioning problems. She called it Genetic Simulated Anneal-
ing framework (GSA). New genetic operators were devised and a
Fig. 4. Percentage of usage of the single heuristics when solvi
simulated annealing cooling schedule was adopted to maintain a
balance between quality and population diversity. As a part of
the evolutionary process, some grouping and reordering heuristics
are applied to pre-process the chromosomes prior to crossover.
Mumford employed order based representation, a population size
of 300 and the GA run for 250 generations in her experimentation.
Four instances from the Scholl databases and four 20-instance sets
from Falkenauer were solved by both Mumford’s and our approach.
The summary of the results is shown in Table 6. In the first two
Scholl instances, all approaches obtained the same results with
one extra from the optimum solution. For the N4W1B1R0 instance,
all approaches found the optimum number of objects. For the last
of the Scholl instances, its best simple heuristic required an addi-
tional object while the hyper-heuristics employed two more
objects. For the two smaller Falkenauer data sets, our approach
obtained the same results that GSA. Taking into account that both
our simple heuristics and our hyper-heuristics solve every instance
in a single one pass without regrouping, we consider our results to
be very competitive. The GSA is a more complex approach where a
feasible solution is found many times during the GA run.
6.2. Frequency of usage of single heuristics per instance category

There is a correspondence between the category of problem
instances and the single heuristics more often employed within a
hyper-heuristic. This is what we expected since different catego-
ries of instances have different numerical representations; so, the
hyper-heuristics suggest different single heuristics to apply.
Fig. 4 illustrates this fact averaging all runs of Experiment 1. For
1D instances, the Filler heuristic was employed 29.1% of the times,
while this heuristic was chosen only 7.5% of the times when solv-
ing 2D convex instances. We ran a test of contingency table with
the v2 statistic to verify this, concluding that the usage of single
heuristics is indeed related to instance category (p-value
ng the testing set with hyper-heuristics of Experiment 1.



Fig. 5. Percentage of times that a heuristic is called during the solution construction process for (a) 1D and (b) 2D instances. All experiments averaged. Each instance is
analyzed from piece 1 and up to its total number of pieces.

E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6885
< 0:001). Also, there is a significant difference in the employment
of single heuristics between the two types of 2D instances consid-
ered (convex and non-convex). We arrive at the same conclusion
when considering the remaining three experiments (López-
Camacho et al., 2013).

We have found hyper-heuristics that are able to solve well dif-
ferent kind of problem instances by automatically choosing the
proper single heuristic for each type. It is worth mentioning that
the heuristic DJD1/4 was the most used in solving all the instances,
which suggests that this is a very effective and robust heuristic.
Additionally, the plots in Fig. 5 illustrate the percentage of times
that each heuristic is called when solving the testing sets regarding
the percentage on the completion of the solution. For this analysis
we averaged all experiments. For both sets of instances, we observe
that heuristics DJD1/4 and DJD1/3 are the most frequently used, but
there is a decreasing tendency in their usage during the last stages
of the solution construction process.
6.3. Comparing results for convex and non-convex instances

There are 240 convex instances in the testbed that have also
their non-convex version. These are instances types Conv A, Conv
B, Conv C, Conv F, Conv H, Conv L, Conv M and Conv O from Table 1.
Their respective non-convex version have the same pieces, except
for those that were split to generate concaveness (see Section 5.3).
Optimal solutions of the non-convex instances have the same
number of objects than their respective convex instances, with
all objects filled up to 100%. For the 240 convex instances, the
number of pieces goes from 28 to 40. The number of pieces chosen
to be split in each of these convex instances goes from 5 to 24. We
want to compare how single heuristics and hyper-heuristics solve
problem instances that have several pieces in common. These
results are summarized in Table 7. Figures in cells indicate percent-
age of instances where the best single heuristic and the best
hyper-heuristic have employed fewer, equal or more objects to
solve the non-convex version compared with the number of
objects employed to solve each convex instance. For example, the
best single heuristic per instance employed the same number of
objects in 65% of the non-convex instances than the number
of objects employed for their respective convex version. In 0.4%
of the instances (which means only one case), the best single heu-
ristic solved a non-convex instance employing fewer objects than
its convex version. In the rest of the cases, approximately one-
third, solving the non-convex instance requires more objects than
solving the convex instance. Either instances are solved by the best
single heuristic or by the best hyper-heuristic of any experiment,
results are basically the same: in about one-third of the cases, solv-
ing a problem instance with split pieces requires more objects than
solving the original instance. This may be due to the fact that our
general-purpose methodology is not intended to match a piece
with the concavity of other piece where it fits. We are dealing with
a combination of fast single-pass constructive heuristics which
means that all pieces have only one opportunity to couple
with the pieces that perfectly complements them.
6.4. Alternation and interaction of single heuristics within hyper-
heuristics

When a hyper-heuristic solves a given problem instance, it re-
computes the problem state after every heuristic application. Every
time that heuristics FFD, Filler or BFD are applied, only one piece is
placed. In contrast, heuristics DJD1/4, DJD1/3 and DJD1/2 place 1, 2 or
3 pieces (see Section 5.1). Most of the times, successive re-compu-
tations of problem states and application of the corresponding
heuristic, results in an almost-unchanged problem state leading
to the same block in the chromosome. Therefore, it is likely to
apply the same heuristic in a sequence of steps. Moreover, several
blocks may have associated the same heuristic, as it happens in the



Table 7
Solving non-convex instances compared against solving their convex version. Percentage of cases when non-convex instances require fewer, equal and more objects than convex
instances.

Best single heuristic Best hyper-heuristic

Exp. 1 Exp. 2 Exp. 3 Exp. 4

Fewer objects 0.4 1.3 0.8 1.3 0.4
Same number of objects 65 64 63 64 63
More objects 34 35 37 35 37

Table 8
Percentage of single heuristic changes when solving all testing sets.

Heuristic
changes

Number of pieces All instances

Up to 50 51–100 101–200 201–500

0 46.9 48.7 34.6 33.4 45.4
1 27.6 28.0 38.7 37.2 29.3
2 10.0 7.7 8.9 9.7 9.2
3 8.4 7.4 7.6 6.6 7.9
4 2.8 3.2 3.1 4.6 3.1
P5 4.4 4.9 7.1 8.5 5.1

6886 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
hyper-heuristic shown in Table 4. Hence, it is also possible to select
the same single heuristic even when changing blocks in the hyper-
heuristic solution process. Averaging all our experiments, 46.9% of
instances with up to 50 pieces were solved using one single heuris-
tic from start to end (although the choice of this single heuristic
varies from instance to instance); and, 27.6% of these instances
have only one change of single heuristic when building the solu-
tion. This means that one heuristic was employed for placing the
first pieces and then, another heuristic was chosen to finish placing
the rest of the pieces. 10.0% of instances with 50 pieces or less
involved 2 heuristic changes when solved by a hyper-heuristic.
By contrast, there are few instances that were solved with up to
20 heuristic changes. Table 8 shows the results of the analysis of
heuristic alternation. Note that several heuristic changes may
imply that the hyper-heuristic is returning to single heuristics pre-
viously employed in the same problem instance.

We are interested in exploring whether the quality of solutions
is related with the number of heuristic changes performed during
the solution process. Table 9 summarizes results for all experi-
ments to show this fact. Hyper-heuristics perform an average of
2.7 heuristic changes when solving instances that get one object
less than the best single heuristic. The same hyper-heuristics make
1.1 heuristic changes when solving instances whose solution is the
same that the best single heuristic. For those cases where hyper-
heuristics solutions get more objects, more heuristic changes are
done. We conclude that hyper-heuristics perform more heuristic
changes for finding the best as well as the worst solutions. Hence,
a hyper-heuristic that makes few heuristic changes will get a solu-
tion similar to one of the single heuristics. Hyper-heuristics find
Table 9
Average of heuristic changes.

Extra objects against best single heuristic Number of pieces

Up to 50 51–

6 �2
�1 2.4 3.3
0 1.1 1.0
1 1.6 1.7
2 5.3 1.5
3 1.5 5.8
P4 4.0
different solutions when they dare to combine a greater number
of single heuristics. In general, with more changes between single
heuristics, a better solution may emerge (with the risk of getting a
worse solution, though).

Table 10 shows how long are the sequences of the same single
heuristic before changing to another heuristic. For example, in
instances with up to 50 pieces, these sequences have an average
length of 16.9. This means that the same heuristic is applied an
average of 16.9 times before the hyper-heuristic changes to
another single heuristic. For further research, we suggest to use
the same single heuristic a given number of times before recom-
puting the problem state. With this approach, we would expect
to both reduce the computation time and keep the good results.

Also, we analyzed which sequences of single heuristics were
performed during our experiments. We want to know which heu-
ristics tend to follow others during the solution process. For exam-
ple, for 1D instances, 23.1% of all heuristic changes were from
heuristic DJD1/3 followed by DJD1/4 (see Table 11). DJD1/4 is the first
heuristic in 40.8% of all heuristic changes. Tables 12 and 13 show
the corresponding results for 2D convex and non-convex instances
respectively.

Notice that Tables 11–13 are highly asymmetric matrices. For
instances from all types, heuristic BFD almost exclusively goes
before and after heuristics DJD1/4 and DJD1/3. This means that heu-
ristic BFD almost never pairs with heuristics FFD, Filler and DJD1/2.
Moreover, heuristics FFD, Filler and BFD never follow each other
when solving 2D instances. These three heuristics place a piece
one at a time, while the remaining heuristics (DJD1/4, DJD1/3 and
DJD1/2) place groups of 1, 2 or 3 pieces. In conclusion, place-one
heuristics always alternate with the DJD heuristics.

With respect to the computational time, we can confirm that
solving an instance with the hyper-heuristic is faster than solving
the instance with each single-heuristic and then selecting the best
result. Once the hyper-heuristic is generated, it solves each
instance in 21 s in average. However, we are aware that the evolv-
ing process to generate the hyper-heuristic is much slower, since it
is population-based and requires to solve many instances during
the training phase. Table 14 shows a time comparison between
the set of single-heuristics and the hyper-heuristics. The six single
heuristics considered in this research solve instances with a huge
variety of time length. For instance, the fastest single heuristic,
FFD, solves 1D instances in 0.2 s per case, in average; while
DJD1/4 is the most time-consuming heuristic averaging 24.8 s per
All instances

100 101–200 201–500

2.3 2.3
4.0 2.6 2.7
1.2 1.2 1.1
2 2.4 1.8
3.6 4.1 3.2
4.9 3.5 4.5
5.3 8.2 8.2



Table 10
Average length of single heuristic runs.

Number of pieces Average length of heuristics runs

Up to 50 16.9
51–100 31.8
101–200 83.6
201–500 205.3
All instances 41.8

Table 11
Percentage of sequences of single heuristic pairs when solving 1D instances in all
testing sets.

From heuristic To heuristic Total

FFD Filler BFD DJD1/4 DJD1/3 DJD1/2

FFD 0.1 0.8 2.0 2.9
Filler 8.6 0.7 9.3
BFD 0.6 1.8 0.6 3.0
DJD1/4 1.5 6.7 5.7 10.7 16.2 40.8
DJD1/3 4.4 6.9 1.1 23.1 0.4 35.9
DJD1/2 0.3 7.5 0.4 8.2

Total 6.5 14.0 6.8 33.2 22.3 17.3 100

Table 12
Percentage of sequences of single heuristic pairs when solving 2D convex instances in
all testing sets.

From heuristic To heuristic Total

FFD Filler BFD DJD1/4 DJD1/3 DJD1/2

FFD 2.6 0.2 3.8 6.6
Filler 4.7 4.6 9.3
BFD 0.8 2.7 3.5
DJD1/4 7.1 12.6 2.9 8.0 19.0 49.6
DJD1/3 0.6 4.3 6.7 10.5 0.5 22.6
DJD1/2 2.2 5.6 0.5 8.3

Total 9.9 16.9 9.6 24.2 16.0 23.3 100

Table 13
Percentage of sequences of single heuristic pairs when solving 2D non-convex
instances in all testing sets.

From heuristic To heuristic Total

FFD Filler BFD DJD1/4 DJD1/3 DJD1/2

FFD 2.6 0.2 3.1 5.9
Filler 3.7 6.3 0.5 10.5
BFD 0.9 1.9 2.8
DJD1/4 6.1 9.9 3.5 9.4 19.3 48.2
DJD1/3 0.8 5.9 5.2 10.5 0.5 22.9
DJD1/2 1.8 0.1 0.1 7.4 0.5 9.9

Total 8.7 15.9 8.8 25.1 18.3 23.4 100

E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6887
1D instance. The best single heuristic may be different for each par-
ticular case as we have mentioned in previous sections. Moreover,
for many cases the smallest number of objects is obtained by sev-
eral of the six heuristics. We averaged the recorded time employed
by all single heuristics that provided the smallest number of
objects per instance. Table 14 shows that best single heuristics
employ more time than the average heuristic. For example, for
1D instances, the best of the single heuristics employed 21.1 s
per case. The last two columns in the table regard hyper-heuristics.
Each instance in the testbed was assigned to the testing set in two
out of the four experiments. This means that each instance was
solved 10 times by the hyper-heuristics (five hyper-heuristics were
produced by each experiment, one for each complete run). The
next to last column in Table 14 refers to the average of the time
taken by the 10 hyper-heuristics that solve each instance, while
the last column averages the times when the hyper-heuristic
obtained the smallest number of objects. It is worth noting that
Table 14
Average computational time (in seconds) per category of instances.

FFD Filler BFD DJD1/4 DJD1/3

1D 0.2 29.3 5.1 24.8 24.0
2D-cvx 2.5 14.2 2.5 18.5 18.5
2D-Ncvx 2.9 9.2 3.5 18.3 18.3

Total 2.0 16.7 3.6 20.2 20.0
time obtained by the average hyper-heuristic is very similar to
the time obtained by the best hyper-heuristic per case, and both
times are larger than those obtained by any of the single heuristics.
This may be explained by the fact that hyper-heuristics compute
the numerical state after each application of a single heuristic.
Nevertheless, Table 5 shows that results from the produced
hyper-heuristics are better than the average results from single
heuristics.
7. Conclusions and future work

In the present paper we have introduced an evolutionary selec-
tion and constructive hyper-heuristic approach that combines sin-
gle heuristics in such a way that is able to solve efficiently a wide
range of 1D and 2D bin packing problem instances and with no
additional parameter tuning. The 2D set contains pieces with dif-
ferent shapes such as rectangles, convex and non-convex polygons.
Different from the perspective of Ochoa et al. (2012) in terms of
generality which is more oriented to cross-domain heuristic
search, our framework also provides a step towards the develop-
ment of general solvers for optimization problems, but considering
different types of instances within the same domain. The model
automatically selects the best heuristic for a given instance state
during the solution process and its results are comparable, and
sometimes even better, to those of competent single-heuristics
when these are applied in isolation.

Our study has blended various techniques to produce a unified
framework for solving an important combinatorial problem such
as the BPP, with many practical applications in industry. Among
the distinctive characteristics of the proposed framework we could
list the following: the application of a messy-type GA to define a
variable-length chromosomes, each representing a hyper-heuris-
tic; the use of a data mining methodology for determining the rel-
evant feature set in the problem-state representation; the offline
analysis to determine the appropriate set of good-quality single
heuristics as the potential choices of the hyper-heuristics; a ran-
dom 2D non-convex problem instance generator; the use of a large
benchmark set to test the framework; an experimental set up with
a series of statistical tests to prove the significance of the
results; and, an empirical analysis on the application of single
heuristics within the hyper-heuristic model aimed at understanding
DJD1/2 Simple heuristics Hyper-heuristics

Average Best Average Best

24.1 17.9 21.1 21.9 21.8
18.4 12.4 12.8 20.7 20.7
18.3 11.8 12.9 20.6 20.6

20.0 13.7 15.1 21.0 21.0



6888 E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889
interesting aspects such as their frequency, alternations, and inter-
actions. We found that hyper-heuristics tend to choose different
single heuristics for different kind of instances. This is a sign that
the evolutionary process has found that distinct instances states
are more suitable to be solved with different single heuristics.
We found some patterns related with the alternation of single
heuristics.

Each of the hyper-heuristics produced can be considered as
other possible heuristic. If there is enough time for finding a solu-
tion, the general recommendation is to solve the instance at hand
with every single heuristic plus one or several hyper-heuristics,
then choose the best result. If time is a constraint and we need
to choose only one heuristic to find a solution, a good decision is
to employ a hyper-heuristic to do so. Although our constructive
approach has the advantage of providing fast solutions, it is not
intended for cases when more time and computational resources
are available. In those cases, intelligent perturbating strategies, as
in HyFlex, may be applied after the solution is built searching for
an improvement. In our study, performance of the hyper-heuristics
and single heuristics is measured only in terms of how well the
pieces are packed into the objects, i.e. minimizing the waste space
and consequently the number of used bins, but other metrics
might be taken into account, for instance, the speed of heuristics.
In a related study (Gomez & Terashima-Marín, 2012), the 2D BPP
problem has been tackled as bi-objective trying to find the trade-
off between the number of bins and time used to place the pieces.

The fact that hyper-heuristics achieve better results than the
best of the single heuristics justify the existence of hyper-heuris-
tics beyond any simple heuristic, since for some applications like
BPPs, any reduction in material is extremely valuable. In general,
statistical analysis show that hyper-heuristics performance is not
different across the different BPP types considered. So, our hyper-
heuristics achieve some level of generality that crosses several
types of BPP. The proposed framework could be adopted as well
when solving the BPP with some common constraints, for example,
the requirement of guillotinable cuts, different rotation allowed for
different shapes, or object stocks of different size and material
quality. A challenging idea would be to include 3D instances within
the framework with the related implications regarding the repre-
sentation, the set of heuristics, and the evaluation function. This
would be a further step towards generality of hyper-heuristics
when solving other types of BPPs.

The present work opens up interesting research directions that
are briefly described in the following lines. A topic for future work
would be that instead of choosing the closest point to a given prob-
lem state and then apply the labelled heuristic, we may develop a
learning mechanism to select the most appropriate one from vari-
ous options depending, for example, on previous performance,
heuristic speed, as applied in other selection hyper-heuristic
approaches (Kalender et al., 2013; Misir et al., 2013; Gomez &
Terashima-Marín, 2012). Derived for the analysis of the frequency
and alternation of single heuristics, the research can be extended
to explore the application of the same single heuristic several times
before recomputing the instance state for choosing another hyper-
heuristic block. This would reduce the computational time with
the expectation of having competitive results. All features
employed in the instance representation were related to the pieces
to be placed. But, one or several features of the instance state rep-
resentation could actually describe the state of the open objects.
This is because the suitability of one heuristic for solving an
instance state may depend not only on the remaining pieces, but
also, on the state of the objects partially filled. For example, in a
new instance to be solved, all objects are empty; in contrast with
an instance with few pieces remaining where several objects
may have some free areas with different sizes and shapes. As far
as we know, none of the works which have dealt with numerical
representation of instances states for bin packing have considered
this issue. For example, one numerical term in the representation
vector could refer to the number of open objects available to
choose from, or to the open objects percent of free area. The com-
bination of our constructive method with other perturbative
approaches provided in the literature would be worth exploring,
as well, along with the corresponding comparative studies.
Acknowledgments

This research was supported in part by Instituto Tecnológico y
de Estudios Superiores de Monterrey (ITESM) under the Strategic
Project PRY-075 and the Consejo Nacional de Ciencia y Tecnología
(CONACYT) Project under Grant 99695.
References

Alvarez-Valdes, R., Martinez, A., & Tamarit, J. (2013). A branch & bound algorithm
for cutting and packing irregularly-shaped pieces. International Journal of
Production Economics., 145, 463–477.

Arthur, D., & Vassilvitskii, S. (2006). How slow is the k-means method? In SCG ’06:
proceedings of the twenty-second annual symposium on computational geometry
(pp. 144–153). New York, NY, USA: ACM. http://dx.doi.org/10.1145/
1137856.1137880.

Babu, A. R., & Babu, N. R. (2001). A generic approach for nesting of 2-D parts in 2-D
sheets using genetic and heuristic algorithms. Computer-Aided Design, 33,
879–891.

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., & McCollum, B. (2012). A simulated
annealing hyper-heuristics methodology for flexible support. 4OR: A Quarterly
Journal of Operations Research, 10, 43–66.

Bennell, J. A., & Oliveira, J. F. (2009). A tutorial in irregular shape packing problems.
Journal of the Operational Research Society, 60, S93–S105.

Bennell, J. A., Scheithauer, G., Stoyan, Y., & Romanova, T. (2010). Tools of
mathematical modeling of arbitrary object packing problems. Annals of
Operations Research, 179, 343–368.

Bhatia, A. K., Hazra, M., & Basu, S. K. (2009). Better-fit heuristic for one-dimensional
bin-packing problem. In IEEE international advance computing conference (IACC)
(pp. 193–196). IEEE.

Burke, E. K., Woodward, J., Hyde, M. R., & Kendall, G. (2007). Automatic heuristic
generation with genetic programming: evolving a jack-of-alltrades or a master
of one. In Genetic and evolutionary computation conference, GECCO’07 (pp. 7–11).

Burke, E. K., Hyde, M. R., Kendall, G., & Woodward, J. (2008). A genetic programming
hyper-heuristic approach for evolving two dimensional strip packing heuristics.
Technical Report NOTTCS-TR-2008-2. School of Computer Science and
Information Technology. University of Nottingham.

Burke, E. K., Curtois, T., Hyde, M. R., Kendall, G., Ochoa, G., Petrovic, S., Rodríguez, J.
A. V., & Gendreau, M. (2010). Iterated local search vs. hyper-heuristics: towards
general-purpose search algorithms. In IEEE Congress on Evolutionary
Computation (pp. 1–8).

Burke, E., Gendreau, M., Hyde, M., Kendall & Ochoa, G. (2013). Hyper-heuristics: a
survey of the state of the art. Journal of Operational Research Society, 1–30.

Burke, E. K., Gendreau, M., Ochoa, G., & Walker, J. D. (2011). Adaptive iterated local
search for cross-domain optimisation. In N. Krasnogor & P. L. Lanzi (Eds.), GECCO
(pp. 1987–1994). ACM.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P., & Schulenburg, S. (2003). Hyper-
heuristics: an emerging direction in modern research technolology. In
Handbook of metaheuristics (pp. 457–474). Kluwer Academic Publishers..

Burke, E. K., Hellier, R. S. R., Kendall, G., & Whitwell, G. (2006). A new bottom-left-fill
heuristic algorithm for the two-dimensional irregular packing problem.
Operations Research, 54, 587–601.

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. (2010a). In
A classification of hyper-heuristic approaches. International series in operations
research & management science (Vol. 146, pp. 449–468). US: Springer. http://
dx.doi.org/10.1007/978-1-4419-1665-5_15.

Burke, E. K., Hyde, M. R., Kendall, G., & Woodward, J. (2012). Automating the packing
heuristic design process with genetic programming. Evolutionary Computation,
20, 63–89.

Burke, E. K., Petrovic, S., & Qu, R. (2006). Case-based heuristic selection for
timetabling problems. Journal of Scheduling, 9, 115–132.

Chiang, M., & Mirkin, B. (2007). Experiments for the number of clusters in k-means.
In J. Neves, M. F. Santos, & J. M. Machado (Eds.), Progress in artificial intelligence.
Lecture notes in computer science (Vol. 4874, pp. 395–405). Berlin, Heidelberg:
Springer. http://dx.doi.org/10.1007/978-3-540-77002-2_33.

Cowling, P. I., Kendall, G., & Soubeiga, E. (2000). A hyperheuristic approach to
scheduling a sales summit. In E. K. Burke & W. Erben (Eds.), PATAT. Lecture notes
in computer science (Vol. 2079, pp. 176–190). Springer.

Deb, K., & Goldberg, D. E. (1991). mGA in C: A messy genetic algorithm in C.
Ducatelle, F., & Levine, J. (2001). Ant colony optimisation for bin packing and cutting

stock problems. In proceedings of the uk workshop on computational
intelligence.

http://refhub.elsevier.com/S0957-4174(14)00266-8/h0040
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0040
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0040
http://dx.doi.org/10.1145/1137856.1137880
http://dx.doi.org/10.1145/1137856.1137880
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0050
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0050
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0050
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0055
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0055
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0055
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0060
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0060
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0065
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0065
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0065
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0070
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0070
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0070
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0075
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0075
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0080
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0080
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0080
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0085
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0085
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0085
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0090
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0090
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0090
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://dx.doi.org/10.1007/978-1-4419-1665-5_15
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0100
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0100
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0100
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0105
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0105
http://dx.doi.org/10.1007/978-3-540-77002-2_33
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0115
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0115
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0115


E. López-Camacho et al. / Expert Systems with Applications 41 (2014) 6876–6889 6889
Dychoff, H. (1990). A typology of cutting and packing problems. European Journal of
Operational Research, 44, 145–159.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal
of Heuristics, 2, 5–30.

Garrido, P., & Riff, M.-C. (2007). An evolutionary hyperheuristic to solve strip-
packing problems. In Proceedings of the 8th international conference on Intelligent
data engineering and automated learning. IDEAL’07 (pp. 406–415). Berlin,
Heidelberg: Springer-Verlag.

Glonek, G. F. V., & McCullagh, P. (1995). Multivariate logistic models. Journal of the
Royal Statistical Society. Series B (Methodological), 57, 533–546.

Goldberg, D. E., Deb, K., & Korb, B. (1989). Messy genetic algorithms: motivation,
analysis and first results. Complex Systems, 3, 493–530.

Gomez, J. C., & Terashima-Marín, H. (2012). Building general hyper-heuristics for
multi-objective cutting stock problems. Computación y Sistemas, 16, 321–334.

Hopper, E., & Turton, B. C. H. (2001). A review of the application of meta-heuristic
algorithms to 2D strip packing problems. Artificial Intelligence Review, 16,
257–300.

Hu-yao, L., & Yuan-jun, H. (2006). NFP-based nesting algorithm for irregular shapes.
In Symposium on applied computing (pp. 963–967). New York, NY, USA: ACM
Press.

Joe, H. (1989). Relative entropy measures of multivariate dependence. Journal of the
American Statistical Association, 84, 157–164.

Kalender, M., Kheiri, A., Özcan, E., & Burke, E. K. (2013). A greedy gradient-simulated
annealing selection hyper-heuristic. Soft Computing, 17, 2279–2292.

Kantorovich, L. V. (1960). Mathematical methods of organising and planning
production. Management Science, 6, 366–422.

López-Camacho, E., Ochoa, G., Terashima-Marín, H., & Burke, E. K. (2013). An
effective heuristic for the two-dimensional irregular bin packing problem.
Annals of Operations Research, 206, 241–264.

López-Camacho, E., Terashima-Marín, H., & Ross, P. (2010). Defining a problem-state
representation with data mining within a hyper-heuristic model which solves
2D irregular bin packing problems. In Á. F. Kuri-Morales & G. R. Simari (Eds.),
Advances in artificial intelligence IBERAMIA. Lecture notes in computer science (Vol.
6433, pp. 204–213). Springer.

Marín-Blázquez, J. G., & Schulenburg, S. (2006). Multi-step environment learning
classifier systems applied to hyper-heuristics. In Conference on genetic and
evolutionary computation. Lecture notes in computer science (pp. 1521–1528).
New York, NY, USA: ACM.

Messelis, T., & Causmaecker, P. D. (2014). An automatic algorithm selection
approach for the multi-mode resource-constrained project scheduling problem.
European Journal of Operational Research, 233, 511–528.

Misir, M., Verbeeck, K., Causmaecker, P. D., & Berghe, G. V. (2011). An intelligent
hyper-heuristic framework for CHeSC 2011. In Learning and intelligent
optimization – 6th international conference, LION 6, Paris, France, January 16–20,
2012, Revised Selected Papers. In Y. Hamadi & M. Schoenauer (Eds.). Lecture notes
in computer science (Vol. 7219, pp. 461–466). Springer.

Misir, M., Verbeeck, K., Causmaecker, P. D., & Berghe, G. V. (2013). An investigation
on the generality level of selection hyper-heuristics under different empirical
conditions. Applied Soft Computing, 13, 3335–3353.

Mumford, C. L. (2008). An order based memetic evolutionary algorithm for set
partitioning problems. In J. Fulcher & L. C. Jain (Eds.), Computational intelligence:
a compendium. Studies in computational intelligence (Vol. 115, pp. 881–925).
Springer<http://dblp.uni-trier.de/db/series/sci/sci115.html>.

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J., Gendreau, M.,
et al. (2012). Hyflex: a benchmark framework for cross-domain heuristic search.
In Proceedings of the 12th european conference on evolutionary computation in
combinatorial optimization. EvoCOP’12 (pp. 136–147). Berlin, Heidelberg:
Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-29124-1_12.

Okano, H. (2002). A scanline-based algorithm for the 2D free-form bin packing
problem. Journal of the Operations Research Society of Japan, 45, 145–161.

Pappa, G. L., Ochoa, G., Hyde, M., Freitas, A., Woodward, J., & Swan, J. (2013).
Contrasting meta-learning and hyper-heuristic research: the role of
evolutionary algorithms. Genetic Programming and Evolvable Machines, 1–33.
Pillay, N. (2012). A study of evolutionary algorithm selection hyper-heuristics for
the one-dimensional bin-packing problem. South African Computer Journal,
31–40.

Ponce-Pérez, A., Pérez-García, A., & Ayala-Ramírez, V. (2005). Bin-packing using
genetic algorithms. In Proceedings of the 15th international conference on
electronics, communications and computers (pp. 311–314). Washington, DC,
USA: IEEE Computer Society. http://dx.doi.org/10.1109/CONIEL.2005.25.

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation
coefficient. The American Statistician, 42, 59–66.

Rohlfshagen, P., & Bullinaria, J. A. (2010). Nature inspired genetic algorithms for
hard packing problems. Annals of Operations Research, 179, 393–419.

Ross, P. (2014). Hyper-heuristics. In E. K. Burke & G. Kendall (Eds.), Search
methodologies: introductory tutorials in optimization and decision support
techniques (2nd ed., pp. 611–638). New York: Springer.

Ross, P., Marín-Blázquez, J. G., Schulenburg, S., & Hart, E. (2003). Learning a
procedure that can solve hard bin-packing problems: a new GA-based approach
to hyper-heuristics. In Conference on genetic and evolutionary computation.
Lecture notes in computer science (Vol. 2724, pp. 1295–1306). Springer-Verlag.

Scholl, A., Klein, R., & Jürgens, C. (1997). Bison: A fast hybrid procedure for exactly
solving the one-dimensional bin packing problem. Computers & Operations
Research, 24, 627–645.

Sim, K., & Hart, E. (2013). Generating single and multiple cooperative heuristics for
the one dimensional bin packing problem using a single node genetic
programming island model. In C. Blum & E. Alba (Eds.), GECCO
(pp. 1549–1556). ACM.

Sim, K., Hart, E., & Paechter, B. (2012). A hyper-heuristic classifier for one
dimensional bin packing problems: Improving classification accuracy by
attribute evolution. In C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia,
& M. Pavone (Eds.), Parallel problem solving from nature - PPSN XII. Lecture notes
in computer science (Vol. 7492, pp. 348–357). Berlin Heidelberg: Springer.

Terashima-Marín, H., Farías-Zárate, C. J., Ross, P., & Valenzuela-Rendón, M. (2006). A
GA-based method to produce generalized hyper-heuristics for the 2D-regular
cutting stock problem. In Conference on genetic and evolutionary computation
(pp. 591–598). New York, NY, USA: ACM Press.

Terashima-Marín, H., Ortiz-Bayliss, J. C., Ross, P., & Valenzuela-Rendón, M. (2008).
Hyper-heuristics for the dynamic variable ordering in constraint satisfaction
problems. In GECCO ’08: proceedings of the 10th annual conference on genetic and
evolutionary computation (pp. 571–578). New York, NY, USA: ACM<http://
doi.acm.org/10.1145/1389095.1389206>.

Terashima-Marín, H., Ross, P., Farías-Zárate, C. J., López-Camacho, E., & Valenzuela-
Rendón, M. (2010). Generalized hyper-heuristics for solving 2D regular and
irregular packing problems. Annals of Operations Research, 179, 369–392.

Uday, A., Goodman, E. D., & Debnath, A. A. (2001). Nesting of irregular shapes using
feature matching and parallel genetic algorithms. In Goodman, E. D. (Ed.),
Genetic and evolutionary computation conference. Late breaking papers (pp. 429–
434).

Vázquez-Rodríguez, J., Petrovic, S., & Salhi, A. (2007). An investigation of hyper-
heuristic search spaces. In IEEE Congress on Evolutionary Computation (CEC) (pp.
3776–3783). doi: <http://dx.doi.org/10.1109/CEC.2007.4424962>.

Walker, J. D., Ochoa, G., Gendreau, M., & Burke, E. K. (2012). Vehicle routing and
adaptive iterated local search within the hyflex hyper-heuristic framework. In
Learning and intelligent optimization – 6th international conference, LION 6, Paris,
France, January 16–20, 2012, Revised Selected Papers. In Y. Hamadi & M.
Schoenauer (Eds.). Lecture notes in computer science (Vol. 7219, pp. 461–466).
Springer.

Wang, W. X. (1998). Binary image segmentation of aggregates based on polygonal
approximation and classification of concavities. Pattern Recognition, 31,
1503–1524.

Wäscher, G., & Gau, T. (1996). Heuristics for the integer one-dimensional cutting
stock problem: A computational study. OR Spectrum, 18, 131–144.

Wäscher, G., Hausner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183,
1109–1130 [Special issue on Cutting, Packing and Related Problems].

http://refhub.elsevier.com/S0957-4174(14)00266-8/h0120
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0120
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0125
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0125
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0130
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0130
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0130
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0130
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0135
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0135
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0140
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0140
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0145
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0145
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0155
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0155
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0155
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0160
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0160
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0160
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0165
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0165
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0170
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0170
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0175
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0175
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0180
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0180
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0180
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0185
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0185
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0185
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0185
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0185
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0190
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0190
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0190
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0190
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0195
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0195
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0195
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0200
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0200
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0200
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0200
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0200
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0205
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0205
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0205
http://dblp.uni-trier.de/db/series/sci/sci115.html
http://dx.doi.org/10.1007/978-3-642-29124-1_12
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0225
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0225
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0230
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0230
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0230
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0235
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0235
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0235
http://dx.doi.org/10.1109/CONIEL.2005.25
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0245
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0245
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0250
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0250
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0255
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0255
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0255
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0260
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0265
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0265
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0265
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0270
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0270
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0270
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0270
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0275
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0280
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0280
http://doi.acm.org/10.1145/1389095.1389206
http://doi.acm.org/10.1145/1389095.1389206
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0295
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0295
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0295
http://dx.doi.org/10.1109/CEC.2007.4424962
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0300
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0305
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0305
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0305
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0310
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0310
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0315
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0315
http://refhub.elsevier.com/S0957-4174(14)00266-8/h0315

	A unified hyper-heuristic framework for solving bin packing problems
	1 Introduction
	2 Background and related work
	3 The bin packing problem
	4 The evolutionary hyper-heuristic framework
	4.1 The fitness function
	4.2 The GA cycle

	5 Implementation methodology
	5.1 Set of heuristics used
	5.2 Testbed instances
	5.3 Algorithm for producing random instances with non-convex pieces
	5.4 Developing a problem-state representation for the testbed instances

	6 Experimental design and results
	6.1 Comparing results against the best single heuristics
	6.2 Frequency of usage of single heuristics per instance category
	6.3 Comparing results for convex and non-convex instances
	6.4 Alternation and interaction of single heuristics within hyper-heuristics

	7 Conclusions and future work
	Acknowledgments
	References


