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Abstract

In this paper, we investigate the employment of evolutionary algo-
rithms as a search mechanism in a decision support system for design-
ing chemotherapy schedules. Chemotherapy involves using powerful anti-
cancer drugs to help eliminate cancerous cells and cure the condition. It is
given in cycles of treatment alternating with rest periods to allow the body
to recover from toxic side-effects. The number and duration of these cycles
would depend on many factors, and the oncologist would schedule a treat-
ment for each patient’s condition. The design of a chemotherapy schedule
can be formulated as an optimal control problem; using an underlying
mathematical model of tumour growth (that considers interactions with
the immune system and multiple applications of a cycle-phase-specific
drug), the objective is to find effective drug schedules that help eradicate
the tumour while maintaining the patient health’s above an acceptable
level. A detailed study on the effects of different objective functions, in
the quality and diversity of the solutions, was performed. A term that
keeps at a minimum the tumour levels throughout the course of treatment
was found to produce more regular treatments, at the expense of impos-
ing a higher strain on the patient’s health, and reducing the diversity of
the solutions. Moreover, when the number of cycles was incorporated in
the problem encoding, and a parsimony pressure added to the objective
function, shorter treatments were obtained than those initially found by
trial and error.

keywords: evolutionary algorithms, evolution strategies, objective function,
optimal control, cancer chemotherapy, cancer model, cycle-phase-specific drugs.

1 Introduction

Chemotherapy involves using anti-cancer drugs to help control or prevent the
growth of cancerous tumours. A cell is considered cancerous when it has lost

∗Automated Scheduling, Optimisation and Planning Group, School of Computer Sci-
ence and IT, University of Nottingham, Nottingham NG8 1BB, UK. gxo@cs.nott.ac.uk,

ekb@cs.nott.ac.uk
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its ability to regulate cell growth and division (mitosis). Thus, cancer consists
of the rapid uncontrolled growth of malignant cells. The main objective in
cancer chemotherapy is to kill the cancerous cells. Chemotherapy creates a
damaging range of side-effects, and so it is normally given in cycles of treatment
which alternate with rest periods, to allow the body to recover. Several cycles
of treatment are needed, as chemotherapy only attacks cells that are actively
dividing. At any one time, some cancer cells will be dormant, and may not be
killed until a later round of drug treatment. The number and duration of these
rounds depends on many factors including the type of cancer, how advanced it
is, and the general health of the person being treated. An oncologist schedules
the chemotherapy treatment for each person.

Considering the complexity of designing a schedule that achieves certain
goals whilst moderating the cancer drug’s toxic side-effects, the idea of provid-
ing computer-based decision support systems, is appealing. We propose evo-
lutionary algorithms (EAs) as a search tool in a decision support system for
designing chemotherapy schedules. Using an underlying mathematical model
that captures the essential qualitative features of a cancer tumour, the purpose
is to use the chemotherapy to control the system, and drive it into a desirable
(minimal) tumour level after which the body could eliminate the remaining
cancerous cells. This problem can be formulated as an optimisation problem,
specifically an optimal control problem which refers to the problem of finding a
control scheme for a given dynamical system such that a certain optimality cri-
terion is achieved. The design of chemotherapy schedules has been formulated
before from the point of view of optimal control [10, 3, 2], solving the stated op-
timisation problem either analytically or numerically. However, for increasingly
complex and realistic cancer models, analytical or traditional numerical meth-
ods are no longer applicable, and some authors have turned to meta-heuristics
to optimise chemotherapy schedules. Petrovski, McCall and colleagues, have
extensively and successfully used EAs and other modern heuristics in this do-
main [11, 13, 12]. Villasana and Ochoa [16], compared the performance of three
meta-heuristics (genetic algorithms, evolution strategies, and simulated anneal-
ing) in a similar problem. The main difference between the approaches of these
two group of authors, lies in the underlying mathematical model of tumour
growth. Whilst Petrovsky et al. considered the Gompertz growth model with
linear cell-loss effect [18], without including interactions with the immune sys-
tem; Villasana et al. employed a more realistic cancer model [17], including the
interactions between tumour cells and immune cells; and differentiating between
cell phases for subsequent treatment with a cycle-phase-specific drug (see section
2). Another important difference lies in the number of drugs modelled, whilst
Petrovsky et al. consider a combination of drugs, Villasana et al. model a single
cycle-specific agent. Finally, the solution representation in both groups differs,
with the former using binary encoding for values representing drug concentra-
tions at discrete times, and the latter employing real valued vectors representing
time lengths of application and resting periods.

The present study extends our previous contribution [16], by comparatively
assessing the effects, on both the quality and diversity of the solutions, of dif-
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ferent formulations of the objective function. We first considered the relative
importance of maintaining low tumour levels versus assuring the patient health
(measured by the level of immune cells); and, secondly, the inclusion of a term
that keeps at a minimum the tumour levels throughout the course of treatment
(in addition to the standard term that measures tumour levels at the end of
the treatment). A third study modified both the problem encoding and the
objective function by considering treatments with a variable number of cycles,
with a parsimony pressure that favours shorter treatments.

The paper is organised as follows. Section 2 gives a brief background on
chemotherapy and cycle-phase specific drugs. Section 3 describes the under-
lying mathematical model of cancer growth; highlighting its advantages and
disadvantages as compared to other models in the literature. Thereafter, sec-
tion 4 describes in detail the mathematical formulation of the problem, includ-
ing three different studies that extended our previous formulation in [16]. The
Methods section (section 5), describes relevant implementation issues such as
the problem’s encoding, formulation of the different objective functions, type
and parameter settings of the evolutionary algorithm used, and the performance
measures devised to gauge both the quality and diversity of the solutions. Sec-
tion 6 presents and discusses our results, and finally section 7 sumarises and
further discusses our findings.

2 Biomedical Background

All chemotherapy drugs work by attacking cells that are dividing rapidly. Nor-
mal cells divide at a rate that is tightly controlled by the body. However, in
cancer cells, the division goes wrong, leading to the uncontrolled production of
new cells and the formation of a tumour or blood cancer. Chemotherapy drugs
interfere with the division of these cells and may cause the cancer to recede
completely. The treatment reduces the number of cancerous cells to a minimum
level, at which point other mechanisms (e.g. the immune system and the natural
death of cells) will remove the remaining tumour cells.

Cycle-phase-specific drugs are those acting on a specific phase of the cell
cycle, which is the process between two cell divisions or mitosis. The cell cycle
encompasses four stages: G1, S, G2, and M , where G1 and G2 are resting phases
(or Gap periods), S is the synthetic period, and M or mitosis is the time during
which cells segregate the duplicated DNA material between daughter cells.

An example of a cycle-phase-specific drug is Taxol (Paclitaxel) which has
shown high efficacy in the treatment of breast, ovarian, head and neck cancer.
The action of this drug is carried through different mechanisms: it inhibits
mitosis, induces apoptosis (programmed cell death), and enhances tumour radio-
sensitivity. Today, Paclitaxel is used either as a single agent or accompanied
by other drugs. The optimal scheduling of, and possible drug interactions, for
Paclitaxel are not fully understood [6].

In medical practice, there are standard protocols and approved maximum
dosages for known commercial drugs (provided by institutions such as the FDA
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- US Food and Drug Administration). However, it is often the case that the
oncologist would have to tailor the treatment according to the patient’s charac-
teristics and disease progression in a trial and error procedure.

3 Mathematical Model for Tumour Growth

Cancer is among the most common causes of death in the developed world. It
is therefore not surprising that scientists around the world have been trying
to accurately model the disease. The overall goal is to gain understanding of
the disease, and thereby design better treatments to eradicate it, or at least
to improve the patient’s quality of life. Different types of models have been
proposed, and each contributes in its own way to a better understanding of
cancer dynamics.

The patient’s model used in this work [17] is a competition model of tumour
growth that includes the immune system response, and a cycle-phase-specific
drug chemotherapy. The model considers three populations of cells: immune
system, tumour during interphase (period comprising G1 through G2), and tu-
mour during mitosis. Delay differential equations are used to take into account
the phases of the cell cycle. Previously reported models, do not segregate the
phases in which cells are vulnerable, instead the devised compartments usually
comprise proliferating and non-proliferating cells. Moreover many models do
not include the interactions with the immune system. Given that many cancer
drugs are cycle-phase-specific, and the immune system plays a vital role in fight-
ing the disease, we argue that a deeper understanding of efficient protocols can
be achieved with a model that separates the cell stages and includes interactions
with the immune system. The model has limitations at the moment, it considers
treatments with a single cancer drug, whereas in medical practice it is common
to use drug cocktails (infusions of various drugs during the treatment period).
Another aspect not considered by our model, is the phenomenon of drug resis-
tance often occurring in cancer cells. Nevertheless, the model is close enough
to many situations, to mean that its study represents significant potential for
deepening our understanding of this aggressive and often fatal disease.

In our underlying cancer model, TI(t) and TM (t) denote the population of
tumour cells during interphase and mitosis at time t respectively. I(t) represents
the immune system population at time t, that we take as the cytotoxic T cells
(CTL) (See [17] for a full discussion). Let u(t) be the concentration of drug
present at time t, and τ be the resident time of cells in interphase. The governing
equations for the system with multiple applications of the drug are:
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T ′

I = 2a4TM − (c1I + d2)TI − a1TI(t − τ)

T ′

M = a1TI(t − τ) − d3TM − a4TM − c3TMI

−k1(1 − e−k2u)TM

I ′ = k +
ρI(TI + TM )3

α + (TI + TM )3
− c2ITI − c4TMI

−d1I − k3(1 − e−k4u)I

u′

1 = −λ1u1 + c(t) (1)

u′

2
= −λ2u2 + c(t)

where ′ denotes derivatives with respect to time and with initial data given by:

TI(t) = φ1(t) for t ∈ [−τ, 0]
TM (t) = φ2(t) for t ∈ [−τ, 0]

I(t) = φ3(t) for t ∈ [−τ, 0]
u1(0) = 0
u2(0) = 0

The drug free system corresponding to model equations (1) can have up to 5
different fixed points depending on the parameter values (see [17]), one of which
is always present, namely (0, 0, k/d1). This fixed point represents the desirable
scenario of a tumour-free environment with a positive immune population.

Paclitaxel has a decay rate that can be modelled with two separate elimina-
tion terms: a fast decay rate while the drug is distributed through the blood to
the tissues, and a second, slower rate in the peripheral compartment or tissue
[14]. Thus the decay function is expressed as:

decay(t) = r1e
−λ1t + r2e

−λ2t (2)

with r1, and r2 representing real non dimensional constants.
Letting u1 and u2 be such that the concentration of drug at any given time

is a linear convex combination represented by u(t) = r1u1(t)+ r2u2(t). The last
two equations of system (1) model this situation with multiple drug applications
in time, identified with the function c(t), which is the concentration of Paclitaxel
that goes in the system at time t. With this choice and initial conditions we
get,

u(t) = c(t) ∗ decay(t)

where ∗ denotes convolution.
Parameter estimation was performed on the drug free system [17], and the

information available for Paclitaxel in [7, 19, 1] was used for estimating the drug
terms. The system was then non-dimensionalised and scaled so model quantities
are close to unity. Notice that the parameters will vary between tumour types
and from patient to patient. The set of parameters used in this study, represents
a patient with a rapidly growing tumour and an immune system not able to
control the tumour progression, resulting in her/his eventual death if un-treated.
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4 Problem Formulation

In the design of an effective chemotherapy, two conflicting objectives are at play:

1. To eradicate the tumour

2. To ensure that the chemotherapy side-effects are maintained at an accept-
able level

Therefore, in our formulation, the goal is to design effective treatments with
the single agent Paclitaxel on the model described in (model equations 1), so
that the conflicting objectives mentioned above, are satisfied. In mathematical
terms, the goal is to drive the dynamical system model inside the estimated
basin of attraction of the tumour free fixed point, while maintaining the immune
system population at an acceptable level.

In our initial formulation [16], the main objective was to minimize the aver-
age and final tumour size, and the patient’s health was modeled as a restriction
on the immune system’s level. The problem was, therefore, stated as follows:

Min TI(tf ) + TM (tf ) + 1

tf

∫ tf

0
TI(t) + TM (t)dt

s.t Equations in system (1)
(3)

along with the added restriction:

I − γIthr ≥ 0

Notice that there is no methodological way to determine the threshold im-
posed over the immune system. In practice, we want the patient to be as healthy
as possible. In our experiments we required that the immune system does not
fall below its initial state. The control function c(t) (that appears in the model
equations 1) is the amount of drug introduced into the system as a function of
time, determining the scheduling and dosing of the drug.

Pontryagin’s Maximum Principle was used to obtain the necessary condi-
tions for an analytical solution to this problem [16]. It turned out that such a
solution is prohibitive (as are also numerical solutions) which justifies the use
of meta-heuristics in our approach. The analysis also revealed that the problem
is singular (the Hamiltonian’s gradient does not provide information about the
control when it is zero). This occurs when the controls appear linearly in the
state equations [8]. In consequence, formulations of the objective function that
do not have the control variable explicitly, will not change the singular property
of the problem. Since the amount of drug (the control variable) in this formu-
lation is bounded below and above, the candidate solutions are bang − bang,
which means that the optimal control switches from one extreme to the other
at certain times (i.e. is never strictly in between the bounds).

Below, we describe three studies that extended our initial formulation, mainly
by modifying the objective function. Further details and implementation are
discussed in section 5.
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First Study (OF1) : The first objective function considers the tumour level
deviation, at the end of treatment, from a desired level which is inside the
tumor-free basin of attraction. The patient’s health is again modeled as a
restriction on the immune system’s level. We assign weights to these con-
tending objectives, and study the effects of different weight combinations
(from a discretised grid of weights wi ∈ [0..1] and

∑

= 1 ) on the quality
of the solutions.

Second Study (OF2) : The second objective function considers not only the
tumour levels at the end of treatment, but also the average tumour level

throughout the course of treatment, 1

Tf

∫ Tf

0
(TM + TI)dt. This term may

be important to prevent spikes for the tumor orbit which can compromise
the patients’ health. Such spikes were seen in [3], and the integral term
was included in our initial formulation [16] to rule out this undesirable
behaviour. We study in detail, here, the effect of including such a term
on the quality of the solutions.

Third Study (OF3) : We modified both the problem encoding, by allowing
treatments of a variable number of cycles, and the objective function by
favouring shorter treatments. The idea behind this formulation is to au-
tomatically find the shortest possible treatment that achieves the desired
goals. Shorter treatments would lessen the patient’s burden.

5 Methods

Since the control variable is the amount of drug administered, and solutions are
bang-bang, the problem reduces to finding the times where the solution c(t)
switches from “on” to “off”. That is, the times at which we begin and cease
administering the drug. Each of these on-off switches constitutes a chemother-
apy cycle. In order to admit variable time intervals, these switching times
were encoded as real numbers. Two types of control variables are distinguished:
administration-time lengths and resting-time lengths (measured in days). These
variables are intercalated and concatenated to encode a potential solution to the
problem of designing an effective chemotherapy (see figure 1).

The range of values for administration and resting times were set as follows.
According to the literature, the maximum tolerated dose for Paclitaxel is 5
days of infusion at 30 mg/m2/day, every three weeks [7] which imposes an
upper bound for drug administration times. A lower limit of 3 hour infusions
is also a common practice when using Paclitaxel. Thus, the range of values for
application-times was set to be [0.2, 5]1. On the other hand, the resting-times
were set in the interval [0, 30] days , where 0 means that there is no resting
period and the treatment continues, and 30 days (4 weeks) follows the current

1Notice that 3 hours corresponds to 0.125 as a fraction of a day, however, we decided to
round this value to 0.2, as 0.125 was found to be too small to provide visible differences in
our simulations.

7



resting  

time 1
application 

time n

resting  

time 2
resting  

time n

application 

time 1

application 

time 2     . . .

Figure 1: Schematic view of a candidate solution (control variable). Both the appli-
cation and resting times are real numbers representing days.

practice in a standard chemotherapy schedule (i.e, infusions taking up to a week
and a resting period of at least 3 weeks). An external parameter, NC, indicates
the number of treatment cycles.

The course of treatment is simulated starting from a constant initial function
outside the tumour-free basin of attraction. Specifically, the initial conditions
were set as (TI(0), TM (0), I(0)) = (1.3, 1.2, 0.9), where these values represent
the populations of tumour cells (in interphase and mitosis) and immune system
cells, normalised by a factor of 106. These values are taken as an example, and
actually represent a specific patient2 with a tumour which cannot be controlled
by her/his own immune system. Therefore, the goal is to apply the drug to drive
the tumour population inside the tumour-free basin of attraction (which in our
simulations is given by (T ∗

I , T ∗

M ) = (0.3, 0.3)), while maintaining the immune
system level above its initial value (Ithr = 0.9).

5.1 Proposed Objective Functions

Three objective functions were considered:

Objective Function 1 (OF1) : The equation |TM − T ∗

M | + |TI − T ∗

I | was
used for measuring the distance between the final tumour level to the
desired target value. This term penalizes excursions, both upper and
lower, from the desired level ((T ∗

I , T ∗

M ) = (0.3, 0.3)). The objective func-
tion can, therefore, be formulated as the combination of the two goals:
J1 = r1(|TM − T ∗

M |+ |TI − T ∗

I |) + r2(immune restriction), with r1, and r2

real positive constants, such that r1 + r2 = 1. We wish to assess the rela-
tive importance of each term, thus we systematically explored the range of
factors between 1/4 and 3/4 with a step of 1/4, that is, pairs (r1, r2), taken
from the set {(1/4, 3/4), (1/2, 1/2), (3/4, 1/4)}. The set of weights (0,1)
and (1,0) were not tested as they do not consider both goals simultane-
ously. We express the immune restriction as the violation of the threshold
imposed on the immune system, which is written mathematically as:

Immune Restriction=

{

0 if I(t) > Ithr

Ithr − I(t) if I(t) ≤ Ithr
(4)

where Ithr = 0.9.

2According to the oncologists consulted during Dr. Villasana’s doctorate degree (personal
cominucation).
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This study assumed a constant number of cycles, set to 12, which gives
24 switching times. Therefore, candidate solutions are vectors of 24 real
numbers. We found, empirically, [16] that 12 treatment cycles were enough
to drive the tumour towards the target value.

Objective Function 2 (OF2) : The objective function was stated as J2 =

r1(|TM −T ∗

M |+ |TI −T ∗

I |)+ r2(immune restriction)+ 1

Tf

∫ Tf

0
(TM + TI)dt.

The problem encoding and number of treatment cycles was set as in the
first study.

Objective Function 3 (OF3) : We incorporated, within the problem encod-
ing, an additional integer variable representing the number of cycles. This
parameter was allowed to vary in the range of 6 to 12. These values were
set according to our simulations, since we noticed that under 6 cycles the
system could not enter the basin of attraction, and less than 12 cycles were
in general able to reach this basin. Therefore, restricting this range would
reduce the search space and thus produce a faster search. An additional
term was added to the objective function to penalise long treatments.
Thus, the objective function used is the following:

J3 = (|TM − T ∗

M | + |TI − T ∗

I |) + (immune restriction) + NC/k

where NC is the number of treatment cycles, and k = 120 is a constant
selected to properly scale this term to the same order of magnitude of
the remaining terms in the objective function. The appropriate order of
magnitude is roughly 10 ∗ NC, since 12 cycles is the maximum. We use
this scale as a reference.

5.2 An Evolutionary Algorithm

To solve the minimization problems described above, we selected the de-randomised
Evolution Strategy (ES) with covariance matrix adaptation (CMA-ES)[5]. This
is a state of the art evolutionary algorithm, that was found to have convergence
velocity improvements over other evolutionary strategies on a large function op-
timization test suite [4]. Notice also that this was, by far, the best performing
algorithm in our previous study [16], where we compared it with a Genetic Al-
gorithm with real-number encoding, and a Simulated Annealing algorithm with
various neighborhood operators. Moreover, the authors[5] provide a freeware,
modular, and well documented Matlab implementation, with useful default set-
tings for its strategy parameters. Specifically, the number of offspring λ, has a
value of λ = 4+b3 lnNc (where N is the problem size, in our case 24); the num-
ber of parents, µ, is set to µ = bλ/2c; and the weights (wi, · · ·wµ) for weighted
recombination, are given by:

wi = ln
λ + 1

2
− ln i
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for i = 1 · · · , µ. We selected these default values. As the stopping criteria, a
fixed number of iterations was set for each objective function individually after
observing very little decrease in its evaluation through successive iterations.
Notice the plateaus seen in figures 2, and 3, which also reveal the very fast
speed of convergence of this algorithm.

5.3 Performance Measures

In order to asses the relative merits of the proposed objective functions, two
sets of measures where devised. The first set gauges the quality of the solutions,
whereas the second set measures the diversity of the best solutions across several
runs. The interest of gauging the diversity of the obtained solutions, lies in the
consideration that providing different solutions with similar quality, could be an
advantage for a decision maker using our proposed automated system. In such
a case the medical practitioner would have several treatment suggestions that
he or she could asses according to other external factors not considered in the
model.

We ran 10 experiments for each objective function. We are aware that 10
replicas is a small number for statistical analysis purposes. Thus we rely on a
study of typical runs, and stress the qualitative value of the results. It is worth
mentioning that each function evaluation required the integration of a DDE
(Delay Differential Equations) system for large periods of time. Thus, a single
run of the evolutionary algorithm took in the order of three days to complete
on a up to date PC (Pentium 4, 3.4 GHz). Performing any extensive statistical
analysis of the results was, therefore, no feasible on our current implementation.

5.3.1 Quality Measures

The best individual at the end of each of the 10 run was taken in order to report
some simple statistics (mean, maximum, minimum, and standard deviation), of
the measures described below:

Area under the Solution Curve (AUC) : given a solution vector, AUC is
the integral under the control variable that represents the total amount
of drug given during the course of treatment. This quantity is important
because a treatment schedule that minimises the total amount of drug
may be generally preferred.

Tumour Deviation from the desired level (TD) : is the quantity calcu-
lated as |TM − T ∗

M | + |TI − T ∗

I |, that is the amount of the tumour level
deviation from its desired target at the end of treatment.

Immune System Health (ISH) : is the s the average immune system’s level,
calculated with the difference

ISH =

∫ Tf

0

I(t)dt − Ithr ∗ Tf .
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this measure accounts for the average immune level through the course of
the entire treatment minus the established threshold (Ithr). Notice that
ISH gives the average deviation above the threshold, but it does not give
information about possible immune population drops below Ithr.

In general, we should favour treatments with low AUC and TD values, and
high ISH values.

5.3.2 Diversity Measures

In order to measure the diversity of the treatments obtained across several
runs, we considered the best solution at the end of each of the 10 runs for each
objective function, and calculated the following metrics:

Deviation from Average Best Solution (DAB) : is a vector containing
the standard deviations of each of the treatment cycles (application and
resting times), from the average best treatment values.

Moment of Inertia (Inertia) : proposed by Morrison and De Jong [9],is in-
spired by concepts from mechanical engineering, specifically on the mo-
ment of inertia which measures the mass distribution of an object. The
centroid of a set of p points in a k-dimensional space has coordinates given

by ci =
∑ p

j=1
xi,j

p
, fori = 1, 2, . . . , k, where xi,j is the ith coordinate in the

jth point. The moment of inertia of the set of p points, is given by:

Inertia =
k

∑

i=1

p
∑

j=1

(xi,j − ci)
2

.

The higher the values in the vector DAB, the higher the diversity of the set
of best solutions. Similarly, the higher the value of I the higher the diversity of
this set.

6 Results

Table 1 summarises the quality measures for the three objective functions ex-
plored. We found no observable differences between the measures of the three
weight combinations (r1, r2) considered for OF1, which suggest that these weights
do not greatly affect the portion of the search space being explored by this func-
tion. In consequence, and for the sake of simplicity, we report results for an equal
distribution of weights (that is, r1 = r2). As for OF3, where the number of cy-
cles of a treatment was also subject to evolution, solutions with 10, 11 and 12
cycles were obtained and reported.

The efficient convergence behaviour of the CMA-ES can be appreciated in
Figures 2 and 3 for OF1 (with different weight combinations) and OF2, respec-
tively. Notice that the convergence for OF2 is somewhat slower as compared
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Table 1: Quality measures for OF1 and OF2 with 12 cycles, and for OF3 with 10, 11,
and 12 cycles. AUC represents the total amount of drug given, TD the tumour level
deviation from the desired target, and ISH the immune system health. Treatments
with low AUC and TD values, and high ISH values, are preferred.

OF1 OF2 OF3(10) OF3(11) OF3(12)

Mean 40.526 40.519 38.3579 39.3832 40.9365
Max 41.202 40.601 40.5871 40.3464 43.3180

AUC
Min 40.008 40.427 33.1596 35.4110 39.9468
Std 0.370 0.056 2.6189 1.4673 1.0934

Mean 0.009 0.010 0.0484 0.0209 0.0184
Max 0.010 0.011 0.1744 0.1060 0.0739

TD
Min 0.008 0.010 0.0085 0.0087 0.0085
Std 0.001 0.000 0.0592 0.0302 0.0245

Mean 9.2944 11.5093 8.4338 8.5121 9.0263
Max 11.0767 12.5324 9.5778 10.8347 11.2354

ISH
Min 7.6793 11.1424 7.3929 6.0307 7.1073
Std 1.3467 0.4442 0.8147 1.7208 1.3229

to that of OF1, requiring more iterations to reach a plateau. Notice that these
curves show the objective function values. This measure is not adequate to com-
pare the solution’s quality, since the weights have an effect on the mean value
of the objective function, and this does not properly reflect the tumor levels at
the end of treatment. Thus, although in Figure 2, it appears that the weight
combination producing the best performance is (r1, r2) = (1/4, 3/4), a closer
look revealed that all the weight combinations produced similar values for the
three quality measured considered (i.e. tumour levels at the end of treatment
(TD), total amount of drug given (AUC), and immune system health (ISH)).

We see from Table 1, that there is no observable quantitative difference in
AUC and TD between the chemotherapy schedules obtained with OF1 and
OF2 (that incorporates the integral term). The main differences are seen in the
qualitative features, and diversity measures of the schedules. Table 2 shows the
diversity measures of the solutions obtained with OF1 and OF2. The first row
shows the moment of inertia (Inertia), and the remaining rows the standard
deviations of each of the treatment cycles (application and resting times), from
the average best treatment values. Notice that, the Inertia value is lower for
OF2. Moreover, across all the cycles the diversity in the schedules produced by
OF2 is much lower, reaching zero for most application periods. In both OF1

and OF2, there is greater variability in the resting periods as compared to the
application periods. These qualitative differences can be further appreciated in
Figures 4 and 5, which illustrates the best obtained schedules with OF1 and OF2,
respectively (where best means lower tumour value at the end of treatment).

The treatment obtained with OF2 shows a more regular pattern, with short
resting periods of about 10 days in the first half of the cycle, and longer rest-
ing periods towards the end of the treatment. OF2 stresses the importance of
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Figure 2: Average best performance of the algorithm (CMA-ES) using OF1 for the
three different combinations of weights considered.
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Figure 3: Average best performance of the algorithm (CMA-ES) using OF2 (which
includes the integral term).
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Table 2: Diversity measures for OF1 and OF2 with 12 cycles. Inertia refers
to the Moment of Inertia. A stands for Application periods, and R for resting
periods.

Period OF1 OF2

Inertia 9498.3 437.4

A 0.1929 0.1610
Cycle 1

R 5.2004 0.2387
A 1.1581 0

Cycle 2
R 8.5673 0.2427
A 1.3401 1.0443

Cycle 3
R 8.1281 0.2752
A 1.0475 0

Cycle 4
R 8.7046 0.2599
A 1.7431 0

Cycle 5
R 8.8508 0.4638
A 0.6741 0.0014

Cycle 6
R 9.0996 6.3292
A 1.1146 0

Cycle 7
R 9.6003 0.0284
A 1.6767 0.0049

Cycle 8
R 7.8766 0
A 0.5452 1.0535

Cycle 9
R 12.2226 0.0152
A 1.8878 1.7673

Cycle 10
R 10.1883 0
A 1.0541 1.9505

Cycle 11
R 10.7173 0
A 1.4727 0

Cycle 12
R 10.5228 0

minimizing the tumour levels from the beginning of the treatment, whilst OF1

does not reinforce this behaviour. We hypothesize that this relaxation on initial
minimization explains the greater variability in the solutions found when using
OF1. Thus, while OF2 produces more regular treatments; OF1 has the potential
of producing a variety of schedules which increases the options available to the
oncologist when designing a chemotherapy schedule. Notice that having regular
patterns of treatments (with fixed resting and application times) could also be
considered to be advantageous from the patient’s point of view, given logistic
and personal circumstances.

In our experiments, we did not observe the spikes of the tumour orbit re-
ported in [3], that can compromise the patients’ health. Thus, the necessity
of the integral term can be questioned. Furthermore, when we analysed the
patient outcome under the best treatments, the one obtained with OF1 is, on
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Figure 4: The best chemotherapy schedule obtained with OF1. (a) Application and
resting times for each cycle. (b) Application times (horizontal lines at level1), and
resting times (horizontal lines at level 0. (c) Behavior of the dynamical system across
the treatment time: TM = tumour level in mitosis, TI = tumour level in interphase,
and CTL = immune system level.

average, more considerate of the immune system, in the sense that the immune
level fluctuates around a higher level than the initial state. Meanwhile the best
treatment obtained with OF2 is more severe with the immune system at the
initial stages of the treatment, even minimally violating the immune restriction
(see Figure 6). However, the values for ISH in table 1 are higher than those
for OF1, but this measure reflects the average immune system dynamics, hiding
its particular features and possible violations of the imposed restriction. We
conjecture that the need for the integral term for chemotherapy scheduling is
dependent on the underlying model dynamics. For the mathematical model in
[3], Jeff’s phenomenon was explained through the appearance of these spikes
in the solutions for their proposed optimal control formulation (which was also
singular). The mathematical model used here explains such a phenomenon as
instability with respect to the delay parameter [15, 17].

With respect to our third study, OF3, the intention was to let the evolution-
ary algorithm design not only the course of treatment for a pre-fixed number
of cycles, but also to provide the minimum number of cycles needed to achieve
the desired goals, which would lower the patient’s burden by minimizing the
treatment length. In this study, the number of cycles was encoded as an addi-
tional “gene” at the end of the chromosomal representation, and this parameter
was allowed to vary in the range of 6 to 12. We conducted enough simulations,
to accumulate at least 10 experimental results for each of the number of cycles
predicted by the algorithms (10, 11, and 12). On average, we observed that 30%
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Figure 5: The best chemotherapy schedule obtained with OF2 (including the integral
term). (a) Application and resting times for each cycle. (b) Application times (hori-
zontal lines at level1), and resting times (horizontal lines at level 0. (c) Behaviour of
the dynamical system across the treatment time: TM = tumour level in mitosis, TI =
tumour level in interphase, and CTL = immune system level.

of the experiments resulted in treatments consisting of 10 cycles, 45% of treat-
ments had 11 cycles, and 25% were 12 cycles long. Therefore, approximately
75% of all outcomes predicted shorter treatment schedules than previously used.
In this experiment it makes sense to monitor the health of the immune system,
because shorter treatments can take a toll on the body’s ability to sustain them.

The quality measures obtained with OF3 are outlined in table 1. Notice that,
as expected, the lower the number of cycles the lower the amount of drug is used
by the schedule (AUC). All the obtained solutions reached tumour levels inside
the desired basin of attraction. Moreover, the immune system restriction was not
violated throughout the course of the simulated treatments with 11 cycles, while
small movements below the Ithr = 0.9 level were observed in one experiment
with 12 cycles, and another with 10 cycles. Comparing these results with those
of the OF1, we observe that there is no observable quantitative differences.
This shows that it is possible to attain the desired goals with less treatment
cycles than those previously used. This would imply a treatment reduction
of approximately 6 months. The ISH values obtained for the experiments
with 12 cycles are similar to those obtained with OF1 and OF2, because the
number of cycles are the same in each case. Meanwhile, this measure is lower
for experiments with 10 and 11 cycles. This is due to a reduction in treatment
times, because the amount of drug needed to drive the tumour to the desired
level seems to be roughly around 40 (see AUC values in table 1). So, there is
less time for the immune system to recover with these shorter treatments. The
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Figure 6: Immune system performance when minimizing with OF1 and OF2.

diversity of the obtained solutions, was similar to that observed for OF1. Thus,
for the sake of brevity we report the Inertia measures only (Table 3). Notice
that it has the same order of magnitude as OF1, and greater diversity for OF3

with 11 cycles.

Table 3: Diversity measure (Inertia) for OF3 and solutions with 10, 11, and 11 cycles

10 Cycles 11 Cycles 12 Cycles
Inertia 7526.1 7722.2 5481.8

7 Discussion and Conclusions

We have studied the effects, on the quality and diversity of the solutions, of dif-
ferent objective functions in an optimal control formulation of cancer chemother-
apy. A highly competent evolutionary algorithm (CMA-ES) was used to ad-
dress the formulated search problem, and the patient’s dynamic was simulated
through a mathematical model of tumour growth that includes interactions
with the immune system and multiple applications of a single cycle-phase spe-
cific drug. The goal of the chemotherapy is to eradicate the tumour, while
maintaining the drug side-effects above an acceptable level. These conflicting
objectives were captured in a single-objective function (to be minimised) with
several terms: (a) the deviation of the tumour level at the end of treatment,
from a desired (low) level, (b) the tumour level throughout the course of treat-
ment, and (c) the amount of violation to a threshold imposed on the immune
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system. It is worth noticing that, since this threshold on the immune system
reflects the patient’s state of health, treatments with different severities can be
obtained by modulating this value. The effect of these terms on the quality and
characteristics of the treatments produced, was carefully analysed. We found
that the relative weights of terms (a) reaching tumour level close to the de-
sired target, and (c) securing immune system level above the pre-established
threshold; did not produce an observable effect on the quality and features of
the obtained solutions On the other hand, including a term that considers the
tumour level throughout the course of treatment (b), produced treatments with
similar quality measures, but with different features (for example, a more regu-
lar treatment pattern). This term was also found to double the computational
time, and drastically decrease the variability of the solutions obtained. Thus,
the requirement of this term in a formulation depends on the underlying model
dynamics, and treatment goals. Finally, when the number of treatments cy-
cles was incorporated in the problem encoding, and a parsimony pressure was
included to the objective functions, the proposed approach obtained shorter
treatments (with a lower number of treatment cycles) than those initially found
by a trial and error procedure.

This study testifies that the outcome from a computational tool supporting
the design of cancer chemotherapy schedules, greatly depends on the formula-
tion of the desired treatment goals, and the modelling of patient dynamics. This
confirms that these systems are in no way a substitute for the practitioner but
rather a decision support tool at their disposal. However, the potential versatil-
ity of such decision support systems, serving as test-beds for newly discovered
drugs and able to be tailored to each patient needs, should encourage their
improvement. Motivated by this line of thinking we are currently exploring a
multi-objective formulation that would produce, not a single outcome, but a set
of alternative treatments, leaving the final decision to the practitioner.
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