
MISTA 2009

HyFlex: A Flexible Framework for the Design and Analysis
of Hyper-heuristics

Edmund K. Burke · Tim Curtois · Matthew

Hyde · Graham Kendall · Gabriela

Ochoa · Sanja Petrovic · José Antonio

Vázquez-Rodŕıguez

1 Introduction

Despite the success of heuristic search methods in solving real-world computational

search problems, it is often still difficult to easily apply them to new problems, or

even new instances of similar problems. These difficulties arise mainly from the sig-

nificant number of parameter or algorithm choices involved when using these type of

approaches, and the lack of guidance as to how to proceed when selecting them. Hyper-

heuristics are an emergent search methodology, the goal of which is to automate the

process of either (i) selecting and combining simpler heuristics [5], or (ii) generating

new heuristics from components of existing heuristics [6]; in order to solve hard com-

putational search problems. The main motivation behind hyper-heuristics is to raise

the level of generality in which search methodologies can operate. They can be dis-

tinguished from other heuristic search algorithms, in that they operate on a search

space of heuristics (or heuristic components) rather than directly on the search space

of solutions to the underlying problem.

The hyper-heuristic framework presented in [5,10], operates at a high level of ab-

straction and often has no knowledge of the domain. It only has access to a set of low-

level heuristics (neighbourhood structures) that it can call upon, and has no knowledge

of the functioning of those low-level heuristics. The motivation behind this approach

is that once a hyper-heuristic algorithm has been developed, it can be applied to a

new problem by replacing the set of low level heuristics and the evaluation function.

Figure 1 illustrates that there is a barrier between the low-level heuristics and the

hyper-heuristic. Domain knowledge is not allowed to cross this barrier. Therefore, the

hyper-heuristic has no knowledge of the domain under which it is operating. It only

knows that it has n low-level heuristics on which to call, and it knows it will be passed

the results of a given solution once it has been evaluated by the evaluation function. A

well defined interface between the hyper-heuristic layer and the problem domain layer

needs to be provided, which will allow both the communication between the high-level

strategy and the low-level heuristics, and the interchange of relevant non-domain in-

formation between the two layers. Furthermore, such an interface would permit the

rapid incorporation of new problem domains. In other words, once a new domain is

Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Sci-
ence, University of Nottingham, UK E-mail: {ekb,tec,mvh,gxk,gxo,sxp,jav}@cs.nott.ac.uk



Heuristic Repository

Problem Domain

 Problem representation
 Problem instance
 Evaluation function
 Initial (current) solution
 Others…

Domain Barrier

Collect and manage domain-independent information :
number of heuristics, changes in evaluation function, a new
solution or not, distance between two solutions, etc.

Hyper-heuristic

H1

…H2

Hn

Fig. 1 Hyper-heuristic framework performing single point perturbative search

identified, it would be relatively easy for an expert in the domain to produce a module

according to the specifications of the proposed interface.

In this paper we propose a software framework inspired by the hyper-heuristic ap-

proach described above. Our goal is to provide software tool for the implementation

and comparison of different hyper-heuristics. In doing so, we provide a software inter-

face between the hyper-heuristic and the problem domain layers. The idea of having a

software interface for hyper-heuristics was mentioned in [20]. An important feature of

our framework, is that we provide the implementation (currently in Java) of a num-

ber of diverse combinatorial problem domains, including their solution representation,

evaluation function and a set of useful and varied low-level heuristics. These domain

modules encapsulate the problem specific algorithm components, and thus liberate

the hyper-heuristic designer from knowing the details of the underlying applications.

The creative and implementation efforts will instead be focused on the higher-level

hyper-heuristic.

Powerful object oriented frameworks for designing and implementing local search

heuristics and evolutionary algorithms have been proposed [2,14,9]. These frameworks

provide a set of modules for implementing the components of search heuristics, leaving

the implementation of the problem specific algorithm components to their clients or

users. Our HyFlex framework takes the opposite direction! We provide a set of domain

modules that encapsulate the problem specific algorithm components, namely, solution

representation, evaluation function and a set of low-level heuristics for several hard

(real-world) combinatorial problems. What is left to the user is to design high-level

strategies (hyper-heuristics) that intelligently combine the set of heuristics provided.

We argue that our framework provides a valuable tool for researchers that seek to test

their algorithmic ideas on a wide set of problems.



The following section describes in more detail the proposed framework, including

the application domains implemented and their associated heuristics.

2 The Proposed Framework

We extended the original perturbative hyper-heuristic framework (Figure 1) in two

important ways. First, a memory or list of solutions is maintained in the domain layer,

instead of a single incumbent solution. This extension enriches the possibilities for the

hyper-heuristic designer, allowing for example the implementation of population based

approaches. The idea of providing a list of solutions in a hyper-heuristic framework

was first proposed in [25]. Second, a large set of low-level heuristics of different types

is provided. Specifically, we consider four types of low-level heuristics, which to the

best of our knowledge have not been incorporated simultaneously in a hyper-heuristic

framework:
– Mutational or perturbative heuristics: perform a (generally) small change in the

solution, by swapping, changing, removing, adding or deleting solution components.

Note that different mutational heuristics can be easily defined by increasing the

extent of the change in the solution.

– Hill-Climbing heuristics: iteratively make small changes (mutations or perturba-

tions) to the solution, accepting improving or non-deteriorating solutions, until a

local optimum is found or a stopping condition is met. These heuristics differ from

mutational heuristics in that they incorporate an iterative improvement process,

therefore they guarantee that a non-deteriorating solution will be produced. Dif-

ferent hill-climbing heuristics can be defined by both modifying the extent of the

perturbation, or the number of iterations (depth) of the search.

– Ruin & recreate heuristics: partly destroy the solution and rebuild or recreate it

afterwards. These heuristics can be considered as large neighbourhood structures.

They are, however, different from the mutational heuristics in that they can incor-

porate problem specific constructive heuristics to rebuild the solutions. Different

ruin and recreate heuristics can be defined by modifying the extent of the destruc-

tion. The construction process can be handled by different constructive heuristics

each of which can be used to define a different ruin and recreate heuristic.

– Crossover heuristics: combine solution components from two input solutions (par-

ents) to produce a new solution or solutions (offspring). Different variants of a

crossover operator can be defined by modifying the proportion of solution compo-

nents interchanged between parents.
As mentioned above, a number of heuristics of each type can be easily defined

by altering the magnitudes controlling their operation. The framework provides two

general parameters for defining heuristics: intensity of change and depth of search.

These parameters can be varied in the range [0, 1], and their effects are problem and

heuristic dependent. It is the responsibility of the domain module designer to give

an adequate meaning to these parameters (together with their default behavior) and

properly document his/her choices.

In addition to the low-level heuristics described above, each HyFlex problem domain

incorporates:

1. A routine to initialise solutions in the population.

2. A set of interesting instances that can be easily loaded using the method loadInstance(a),

where a is the index of the instance to be loaded.



3. A population of one or more solutions that has to be administered.

Currently 4 domain modules are implemented. Namely, the permutation flowshop

problem, 1D bin packing, boolean satisfiability and personnel scheduling. Below we

overview the main design choices for each domain. Technical reports are available

describing the details of each module [11,17,16,24].

2.1 The permutation flow shop problem

The permutation flow shop problem requires finding the order in which n jobs are to

be processed in m consecutive machines. The jobs are processed in the order machine

1, machine 2, . . . , machine m. Machines can only process one job at a time and jobs

can be processed by only one machine at a time. No job can jump over any other

job, meaning that the order in which jobs are processed in machine 1 is maintained

throughout the system. Moreover, no machine is allowed to remain idle when a job is

ready for processing. All jobs and machines are available at time 0. Each job i requires

a processing time on machine j denoted by pij .

Initialization : Solutions are initialized using the well established NEH procedure [19].

This heuristic has been used as an important component of many effective meta-

heuristics for the permutation flow shop problem. It has been used as both the

initialization procedure of solutions, to be later improved, and also as the improving

mechanism within the main iteration of more elaborate algorithms.

Low-level heuristics : A total of 14 low level heuristics were implemented. Specifically,

5 mutational, 4 local search (inspired by those proposed in [21]), 3 crossover heuris-

tics (classical recombination operators for permutation representation) and 2 ruin

and recreate heuristics (which incorporate the successful NEH procedure in the

construction process). For more details see [24].

Instance data : A total of 120 instances from the widely known Taillard set [23], are

provided. The instance sizes are are given in Table 1, in the format n×m. The job

processing times, on all instances, are uniformly distributed random integers in the

range [1, 99].

2.2 One dimensional bin packing

The one-dimensional bin-packing problem involves a set of integer-size pieces L, which

must be packed into bins of a certain capacity C, using the minimum number of bins

possible. In other words, the set of integers must be divided into the smallest number

of subsets so that the sum of the sizes of the pieces in a subset does not exceed C.

Initialization : Solutions are initialized by first randomizing the order of the pieces,

and then applying the widely known ‘first-fit’ heuristic [18]. This is a constructive

heuristic, which packs the pieces one at a time, each into the first bin that they

will fit into.

Low-level heuristics : 2 mutational, 2 ruin and recreate, repacked with best-fit, and 3

local search heuristics. These heuristics are inspired by those proposed in [1]. For

more details see [17]

Instance data : The problem instances are summarized in table 2. There are 60 in-

stances in total, 20 in each of three classes.



Instance number Size

0-9 20× 5

10-19 20× 10

20-29 20× 20

30-39 50× 5

40-49 50× 10

50-59 50× 20

60-69 100× 5

70-79 100× 10

80-89 100× 20

90-99 200× 10

100-109 200× 20

110-119 500× 20

Table 1 Permutation flowshop module instances.

Set Piece size Bin Number

name distribution capacity of pieces Ref

bp1 Uniform [20,100] 150 1000 [12]

bp2 Triples [25,50] 100 501 [12]

bp3 Uniform [150,200] 1000 100 [22]

Table 2 One dimensional bin-packing instance sets. Each set contains 20 instances.

2.3 Boolean satisfiability

The boolean satisfiability or SAT problem involves determining if there is an assignment

of the boolean variables of a formula, which results in the whole formula evaluating to

true. If there is such an assignment then the formula is said to be satisfiable, and if not

then it is unsatisfiable. The process of finding an assignment that satisfies the formula

is the search problem considered in this domain module.

Initialization : Solutions are initialized by simply randomly assigning a true or false

value to each variable. The problem instances included are examples of the so called

3SAT problem, where each clause contains three variables.

Low-level heuristics : 2 mutational, 4 local search, and 2 heuristics that combine mu-

tation and local search. These heuristics are described in [13], and comprise state

of the art local search heuristics for this problem. For more details see [16]

Instance data : The problem instances are taken from the “Uniform Random-3-SAT”

category on the ‘SATLIB’ website [15]. There are 60 instances in total, 20 from

each of three classes. The instances are summarized in table 3.

2.4 Personnel scheduling

The personnel scheduling problem involves deciding at which times and on which days

(i.e. which shifts) each employee should work over a specific planning period. However,

the personnel scheduling problem is actually a title for a group of very similar problems.



Instance set name Variables Clauses

uf200-860 200 860

uf225-960 225 960

uf250-1065 250 1065

Table 3 Boolean satisfiability module instances.

There is no general personnel scheduling problem. Instead there is a group of problems

with a common structure but which differ in their constraints and objectives. This

creates an additional challenge in implementing a problem domain module for personnel

scheduling. To overcome this we have designed a data file format for which each instance

can select a combination of a objectives and constraints from a wide choice. We then

implemented a software framework containing all the functions for these constraints

and objectives.

Initialization : Initial solutions are created with a hill climbing heuristic which uses a

neighbourhood operator that adds new shifts to the roster.

Low-level heuristics : 3 mutational (including vertical, horizontal and new swaps, see

[11]), 5 local search, 3 ruin and recreate, and 3 crossover heuristics. These heuristics

are taken from previously proposed successful meta-heuristic approaches to nurse

rostering problems [3,4,7,8]

Instance data : The instances have been collected from a number of sources. Some of

the instances are from industrial collaborators. These include: ORTEC an interna-

tional consultancy and software company who specialise in workforce planning solu-

tions and SINTEF, the largest independent research organisation in Scandinavia.

Other instances have been provided by other researchers or taken from various

publications. The collection is a very diverse data set drawn from eleven different

countries. The majority of the instances are real world scenarios. An overview of

the instances can be found in [11], they vary in the length of the planning horizon,

the number of employees and the number of shift types. Each instance also varies

in the number and priority of objectives present1.

3 Discussion

We are proposing a novel framework for supporting research into modern search method-

ologies. The emphasis of our HyFlex framework lies in providing the algorithm com-

ponents that are problem specific, thus liberating our users (algorithm designers) from

needing to know the problem domain’s specific details. The design efforts will instead

be focused on designing high-level strategies to intelligently combine the provided tools.

Preliminary tests on the reusability of the modules have successfully been conducted.

Our motivation is to promote research towards the design of general search methodolo-

gies. We plan to extend the number of problem domains and propose a challenge, based

on our framework, where the winners will be those algorithms with a better overall

performance across all of the different domains. The competition will be ‘fair’ in that

1 The instances can be downloaded from:
http:///www.cs.nott.ac.uk/~tec/NRP/



it will be conducted in a high-level of abstraction: the application domain implemen-

tation details are hidden to the framework users. Using an Olympic metaphor, we are

no longer interested in the 100 meters race, but instead in conducting the Decathlon

of modern search methodologies.

References

1. R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum. A simulated annealing
hyper-heuristic methodology for flexible decision support. Technical report, School of
Computer Science, University of Nottingham, 2007.

2. S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A Platform and Programming
Language Independent Interface for Search Algorithms. In C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, editors, Conference on Evolutionary Multi-Criterion
Optimization (EMO 2003), volume 2632 of LNCS, pages 494–508, Berlin, 2003. Springer.

3. E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A scatter search for the nurse ros-
tering problem. Technical report, School of Computer Science, University of Nottingham,
2007.

4. E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A time predefined variable depth
search for nurse rostering. Technical report, School of Computer Science, University of
Nottingham, 2007.

5. E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Hyper-heuristics:
An emerging direction in modern search technology. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, pages 457–474. Kluwer, 2003.

6. E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward. Exploring
hyper-heuristic methodologies with genetic programming. In C. Mumford and L. Jain,
editors, Collaborative Computational Intelligence. Springer, 2009. (to appear).

7. E.K. Burke, P. Cowling, P. De Causmaecker, , and G. Vanden Berghe. A memetic approach
to the nurse rostering problem. Applied Intelligence, 15(3):199–214, 2001.

8. E.K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem. European Journal of
Operational Research, 188(2):330–341, 2008.

9. S. Cahon, N. Melab, and E-G. Talbi. Paradiseo: A framework for the reusable design of
parallel and distributed metaheuristics. Journal of Heuristics, 10(3):357–380, May 2004.

10. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach for scheduling a
sales summit. In Selected Papers of the Third International Conference on the Practice
And Theory of Automated Timetabling, PATAT 2000, LNCS, pages 176–190, Konstanz,
Germany, 2000. Springer.

11. T. Curtois. A hyflex module for the personnel scheduling problem. Technical report,
School of Computer Science, University of Nottingham, 2009.

12. E Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics,
2:5–30, 1996.

13. A. S. Fukunaga. Automated discovery of local search heuristics for satisfiability testing.
Evolutionary Computation (MIT Press), 16(1):31–1, 2008.

14. L. Di Gaspero and A. Schaerf. Easylocal++: an object-oriented framework for the flexible
design of local-search algorithms. Softw, Pract. Exper, 33(8):733–765, 2003.

15. H. H. Hoos and T. Stützle. Satlib: An online resource for research on sat. In I. P. Gent,
H. V. Maaren, and T. Walsh, editors, SAT 2000, pages 283–292. IOS Press, 2000. SATLIB
is available online at www.satlib.org.

16. M. Hyde. A hyflex module for the boolean satisfiability problem. Technical report, School
of Computer Science, University of Nottingham, 2009.

17. M. Hyde. A hyflex module for the one dimensional bin-packing problem. Technical report,
School of Computer Science, University of Nottingham, 2009.

18. D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case performance
bounds for simple one-dimensional packaging algorithms. SIAM Journal on Computing,
3(4):299–325, December 1974.

19. M. Nawaz, E. Enscore Jr., and I. Ham. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA-International Journal of Management Science,
11(1):91–95, 1983.



20. A. J. Parkes. A proposal for a hyper-heuristics software interface. Oral presentation,
May 2007. Automated Scheduling, Optimisation and Planning Research Group. Internal
Seminar.

21. R. Ruiz and T. G. Stützle. An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. Journal of
Operational Research, 187(10):1143–1159, 2007.

22. P. Schwerin and G. Wäscher. The bin-packing problem: A problem generator and some nu-
merical experiments with ffd packing and mtp. International Transactions in Operational
Research, 4(5):377–389, 1997.

23. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285, 1993.

24. J. A. Vazquez-Rodriguez. A hyflex module for the permutation flow shop problem. Tech-
nical report, School of Computer Science, University of Nottingham, 2009.

25. J. Woodward, A. Parkes, and G. Ochoa. A mathematical framework for hyper-heuristics.
Oral presentation, 2008 September. Workshop on Hyper-heuristics - Automating the
Heuristic Design Process, in conjunction with the 10th International Conference on Parallel
Problem Solving From Nature (PPSN X), Dortmund, Germany.


