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Error Thresholds and Optimal Mutation Rates in
Genetic Algorithms
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Summary

When applying a genetic algorithm to solve a given probldma,designer faces a large number
of choices, with little theoretical guidance and few ruléshmmb about how to proceed. Among
these choices, the setting of evolutionary parameters ifeutation rate, recombination rate, pop-
ulation size and selection parameters) is important simee values determine the performance
of the algorithm to a great extent. However, finding a good lwoation of parameters is not
an easy task since they interact with one another non-lynead cannot be optimised one at a
time. Moreover, ‘optimal’ parameter settings are belietceble problem-dependent. The mutation
rate is acknowledged as one of the most sensitive paramstegood heuristics for setting the
mutation rate are welcomed.

This thesis brings the fundamental notion of #reor thresholdsof replication from molec-
ular evolution into the field of evolutionary computationtrd@ thresholds are intuitively related
to the idea of an optimal balance between exploration antb#apon in genetic search. So, it
is hypothesised and empirically demonstrated here, that giresholds are related to the more
familiar notion of optimal mutation rates in GAs. This findisheds new light on the sensitivity
of the mutation rate and points toward useful heuristicsé&ting this parameter. Some results on
the effects and usefulness of recombination are also prxbemhis dissertation also introduces
consensus sequenpkts, which are adapted from theoretical biology, as a niewalisation tool
to the genetic algorithms community. They are used for lngagrror thresholds on general land-
scapes, and are shown to reveal several features of thecipelstructure. The insights and
empirical evidence gathered here support a heuristic #tatasrate based on one mutation per
genotype, to be scaled according to the selection presadralao potentially modified for very
redundant genotypes. However, since the selection peesaarbe controlled, this rule is shown
to hold over a wide range of problem types.
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Chapter 1

Introduction

Darwin’s theory of evolution through natural selection isiarvellous scientific idea; simple, yet
powerful, it is able to explain the origins and diversity i€ lon Earth. It also explains the broad
range of complex adaptations of living organisms to theuiremment. The process of natural
evolution only requires four basic conditions: A populatar group of entities, variation among
the members of the population, hereditary transmissiondxat parents and offspring, and a sort-
ing process that changes the proportion of different imhligis within the population over the
generations. Chief among these sorting processeshangce(random variation in the survival
or reproduction of different variants) amatural selection(consistent, non-random differences
among variants in their rates of survival or reproductidi)tglyama, 1998). All these compo-
nents, considered at an abstract level, may be easily inguiegd in a computer program giving
rise to artificial evolutionary systems. In the 1950s and0E3veral computer scientists indepen-
dently studied evolutionary systems with the idea thatioh could be used as an optimisation
tool for engineering problems. Among these early approgctiieee major methodologies have
consolidated over the last three decadegolutionary ProgrammingFogel et al., 1966)Evolu-
tion StrategiegRechenberg, 1973), artgenetic AlgorithmgHolland, 1975).

Genetic Algorithms (GAs) are stochastic search methodsrinaic the process of natural
evolution. They maintain a population of potential solagdo a given problemir{dividualsor
genotypers The ability of each individual to solve the problem is maasl by afitness function
To simulate evolution, the population is subject to geneigation (nutationandrecombinatiof
and survival of the fittessglection through an iterative process that generates increasoegtegr
solutions. Besides classic applications in function andimioatorial optimisation, GAs have been
applied successfully in a wide range of real-world domaircdliding the design of telecommuni-
cation networks, computer programs, electronic circuatispt controllers, and biochemical drugs.
Applications oriented research is quite successful andirkmies the field (if one considers the
number of published papers). In contrast, the theoreticaidiations are still weak. Consequently,
new users fall repeatedly in the same traps, because the@nbr few rules of thumb for GA
design and parameterisation.

Research attempting to improve the design and parametensd GAs can be focused along
two lines: theoretical and empirical (Fogel, 1995). Theotletical approach seeks to discover
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mathematical truths about algorithms which will, hopejfuitiold over a broad application domain.
The empirical approach attempts to assess algorithm pegface in specific domains through sta-
tistical means. Both procedures are inherently limitedtHéeatical proofs about the properties
of algorithms may seem at first sight more powerful than mergiecal evidence. EAs, however,
incorporate complex non-linear stochastic process. Toenfaknal analysis tractable, the actual
algorithm has to be simplified. Moreover, only very simplg-fwoblems are tackled, missing the
complexities of real-world domains. Hence, one may legitity question the practical relevance
of such theoretical studies. On the other hand, through guiria approach, algorithms can be
tested over successive trials on a specific problem, andist&tal estimation of their performance
can be determined. Although the performance of an algordhrone sample problem may not
convey general information, the position adopted in thésikis that it is possible to induce gen-
eral properties of complex algorithms by assessing thefopeance across a variety of landscape
structures. Moreover, with this approach, and assumingldhdscapes can be characterised by
certain features, specific algorithm properties may betitied for different kinds of landscapes.

Another source of inspiration towards understanding arpaving the practice of GAs is still
natural evolution, and particularly molecular evolutidolecular evolution has been a source of
inspiration for evolutionary computation techniques. Aacrete example, molecular biologists
have discovered non-functional sequences of DNA, cafiedns the work of Levenick (1991,
1999) and others (Wu & Lindsay, 1995), demonstrates thahdegtion of introns into bit strings
can improve the performance of GAs. In a similar vein, thestk attempts to bring the notion of
error threshold from the field of molecular evolution to the field of GAs. It alseeks to assess
the relevance and potential practical applications oftibigon in the context of GAs. Specifically,
research from molecular evolution suggests that:

The speed of the [evolutionary] optimization can be tunedhgyreplication preci-

sion. Optimization will be fastest close to the error thidhsince too exact copying
reduces the chance of producing new advantageous mutantsature, a number
of viruses have been shown to operate close to their erresliotd. This enhances
their flexibility to adapt to a continuously changing fitné&ssdscape. [(Bonhoeffer &
Stadler, 1993), p. 365].

Moreover, analytical expressions of the error thresholdionple landscapes, suggest how
other components in the evolutionary process will affet threshold. Hence, this thesis postu-
lates that this knowledge may provide useful insights inedesign of effective GAs, and may
help to predict the effects and interactions of evolutignearameters in the search process.

1.1 Quasispecies and Error Thresholds

Quasispecies theory was derived by Eigen and Schuster)i®d@scribe the dynamics of repli-
cating nucleic acid molecules under the influence of mutasiod selection. The theory was
originally developed in the context of pre-biotic evoluti¢studies of the origin of life), but in a
wider sense it describes any population of reproducingrosgas. A quasispecies is defined as the
stationary population distribution of replicating macmetules under mutation and selection.

1The error threshold of replication is defined as the minireglication accuracy necessary to maintain the genetic
information in the population.
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The most prominent feature of the quasispecies model isdbgeace of an error threshold of
replication. If replication were error free, no mutants \Wbarise and evolution would stop. On
the other hand, evolution would also be impossible if thererate of replication were too high
(since selection would not be able to maintain the genetarmmation in the population). The
notion of error threshold allows us to quantify the resgtminimal replication accuracy that still
maintains adaptation.

1.2 Error Thresholds and Optimal Mutation Rates

The notion of error threshold is intuitively related to tliked of an optimal balance betweex-
ploitationandexplorationin genetic search. Too low a mutation rate implies too lg{ploration;

in the limit of zero mutation, no new individuals would arized the search process would stag-
nate. On the other hand, with an excessively high mutatiteh(cdose to 1.0), the evolutionary
process would degenerate into random search with no eaptwitof the information acquired in
preceding generations.

Any optimal mutation rate must lie between these two extserbat its precise position will
depend on the other evolutionary parameters and the ckdsticts of the problem at hand. It can,
however, be postulated that a mutation rate close to the gmeshold would be optimal for the
problem under study, because it would maximise the seansé thwough mutation subject to the
constraint of not losing information already gained.

Some biological evidence supports the idea that evolusiefféctive close to the error thresh-
old; certain viruses (such as the HIV virus), which are vdficient evolving entities, seem to
operate very close to their error threshold (Nowak & Schyué®92; Bonhoeffer & Stadler, 1993).
Moreover, the existence of a relationship between errastimlds and optimal mutation rates
has been suggested before in the evolutionary computatimmeinity (Hesser & Manner, 1991;
Kauffman, 1993). Neither of these works, however, confirmekistence of such a relationship,
nor explore the relevance of the notion of error thresholtiéncontext of genetic algorithms.

1.3 Aims

The purpose of this thesis is to bring the notion of errorghadds from the field of molecular
evolution to the field of genetic algorithms, and to estdbtise relevance of this notion in the
context of GAs. More precisely, the aims of this work are i&iving:

¢ To establish whether the phenomenon of an error threshaltdeabserved in populations
of bit strings evolving under a GA

¢ To relate error thresholds to the more familiar notion ofiopd mutation rates in GAs

¢ To propose general principles for setting near-optimalwgianary parameters in GAs in
the light of this new knowledge

To achieve this, it is necessary to:

¢ Estimate both error thresholds and optimal mutation ratea wide range of landscape
structures including real-world domains, and compareghes® measures against each
other.
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¢ Study the effect of modifying other evolutionary paramet@uch as string length, recom-
bination, selection pressure, population size, populagplacement, and elitism) on both
error thresholds and optimal mutation rates.

1.4 Organisation

This dissertation is organised as follows:

Chapter 2 introduces the general field of evolutionary cammpen, and describes in detail the
most widely known of its approaches: genetic algorithms $§5AThe different components and
variants of GAs are discussed, revealing the GA as a familgigdrithms rather than a single
algorithm. The chapter also discusses the many decisivaolvéd when designing a GA. Among
such decisions, parameter setting is discussed in mori, @etéh a classification of approaches to
parameter setting is proposed. Also, a detailed review pfagehes so far for effective setting of
the mutation rate is presented.

Chapter 3 discusses the notioritriess landscapesd presents some properties of landscapes
that are known to have an influence on evolutionary searctalstt describes the families of
abstract fitness landscapes and real-world domains thatarkas test problems throughout this
dissertation.

Chapter 4 surveys relevant knowledge about quasispediesreor thresholds from molecular
evolution. A preliminary empirical study demonstrating texistence of error thresholds in GAs
evolving on simple landscapes is presented. This studgpdejges experiments from a molecular
biology paper (Boerlijst et al., 1996), but uses a GA insteathe quasispecies model as the
underlying model of evolution. Some additional experinsarging sexual selection, not included
in (Boerlijst et al., 1996), are presented. In particulagatative mating (preference for similar
organisms) and dissortative mating (preference for diésimmates) are studied.

Chapter 5 introducesonsensus sequericglots. These plots, borrowed and adapted from
molecular biology, are new to the genetic algorithms comitgurThey constitute an empirical
approach for locating error thresholds on complex landssapConsensus sequence plots are
then used to study the effect of modifying various evolutignparameters on the magnitude of
error thresholds. Specifically, genotype length, seleqgii@ssure, population size, elitism, steady-
state population replacement, recombination, and assertaating, are considered. Thereafter,
the occurrence of error thresholds is investigated on a vadge of landscape structures: from
smooth to very rugged, and from abstract landscapes tove@ddt domains. The existence and
characteristics of the error threshold are shown to depetitfitness landscape structure. Hence,
it is postulated that consensus sequence plots may servealsfar visualising the structure of a
fithess landscape.

Chapter 6 explores the postulated relationship between gmresholds and optimal mutation
rates. The correlation between these two measures is add®gssomparing error thresholds (as
estimated in Chapter 5) with optimal mutation rates (asresd in this chapter) on both abstract
landscapes and real-world domains. The effect of modifyiagous evolutionary parameters
on the magnitude of optimal mutation rates is also studigdally, optimal mutation rates are
investigated on a wide range of landscape structures.

2The termsequencss in this thesis interchangeable with string or genotype.
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Chapter 7 presents a summary, and discusses the main atiommiband limitations of this
dissertation. Some suggestions for further research soedédcussed.

1.5 Published Work

Some of the work contained in this dissertation has preWdusen published elsewhere, specifi-
cally:

¢ Most of Chapter 4 has been published as:

Ochoa, G., Harvey, I. (1998) Recombination and Error Thoktshin Finite Populations.
Foundations of Genetic Algorithms pp. 245-264.

¢ Parts of Chapters 5 and 6 appeared in:

Ochoa, G., Harvey, |., Buxton, H. (1999). On Recombinatioa @ptimal Mutation Rates.
Proceedings of the Genetic and Evolutionary Computationf@€ence Vol. 1, pp. 488—
495.

Ochoa, G., Harvey, I., Buxton, H. (1999). Error Thresholdd ¢heir Relation to Optimal
Mutation RatesProceedings of the 5th European Conference on Advancedificiat Life,
LNAI 1674, pp. 54-63.

Ochoa, G., Harvey, I., Buxton, H. (2000). Optimal Mutatioat&s and Selection Pressure
in Genetic AlgorithmsProceedings of the Genetic and Evolutionary Computationf@e
ence pp. 315-322.

Ochoa, G. (2000). Consensus Sequence Plots and Error dhasshiools for Visualising
the Structure of Fitness Landscapiarallel Problem Solving from Nature Mpp. 129-138.



Chapter 2

Genetic Algorithms: Algorithm Design and
Parameter Setting

Evolutionary Computatioembraces computer-based search methods inspired by thenigns

of natural evolution. Several approaches to evolutionamgpmutation have been proposed, which
are generally referred to as evolutionary algorithms (EA&mong these approaches, genetic
algorithms (GAs) are probably the most widely known. The fi@rt of this chapter introduces
GAs and describes in detail their major components (Se&idh It also discusses the informal,
but widely used, notion aselection pressuref an evolutionary algorithm (Section 2.3).

Given the diversity and possible parameterisations of éi@us GA components, the designer
faces a large number of choices about how to proceed whegiag@a GA to a given problem.
The second part of this chapter discusses such choicesawimphasis on how to set the various
evolutionary parameters (Section 2.5). A classificatiommfroaches to GA parameter setting
is proposed (Section 2.5.1). Then, a critical review onroptisettings for the mutation rate is
presented, following the proposed classification (Se@i6i.

2.1 Evolutionary Computation

Evolutionary ComputatioEC) models natural evolution in the design and impleméranf
computer-based problem solving tools (Spears et al., 1998r the last few decades, several
EC models have been proposed and studied, they are codllgatdferred to agvolutionary Al-
gorithms(EAs) and share the conceptual framework of simulatingrmahgyolution. The theory
of evolution was proposed in the 19th-century by Charlesarawho provided a scientific ex-
planation, essentially correct but incomplete, of how etioh occurs. Natural selection was the
fundamental concept in his explanation. Later, worlkgeneticsa science born in the 20th cen-
tury, revealed in detail how natural selection works andttethe development of the modern
theory of evolution, also calledeo-Darwinian theoryThis modern theory can be summarised in
the following six propositions (Patterson, 1999):

1. Reproduction: ‘Like begets like’, reproduction in a population of orgamis produces de-
scendent populations of similar organisms.
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2. Excess The reproductive potential of the parent population alsvgyeatly exceeds the
actual number of its descendants.

3. Variation: Members of a population always vary. Much of this variati®transmitted to
the descendants (heritable), and novelties (mutationg)appear.

4. Environmental Selection The space and resources of the environment are limitedhago t
there is a competition within and between populations. vidldials possessing favourable
characteristics, of whatever sort, will tend to competecessfully and leave more descen-
dants than other, less lucky individuals.

5. Divergence The environment varies with time and from place to placeitdlele variations
that suit a particular environment will be selected thenel, so populations will diverge and
differentiate as each becomes adapted to its own conditions

6. Common Ancestry. The principle of divergence has no limit, and the diversityife on
Earth can be explained by divergent descendent lineagesifrare or less remote common
ancestors.

Evolutionary Algorithms mimic natural evolution. Specéily, they model the first four
propositions discussed above using algorithmic analagidghe following elements:

¢ Arepresentation of candidate solutions to the problemadiha

A population of these candidate solutions

¢ Mechanisms for generating new solutions from members otineent population (opera-
tors such mutation and recombination)

¢ An evaluation or fitness function to assess the quality @ghef a given solution

A selection method which gives better chances of survivgbiad solutions

Figure 2.1 outlines a typical evolutionary algorithm. A péggion of M individuals is ini-
tialised and then evolved from generatido generatiot+ 1 by successive applications of fithess
evaluation, selection, recombination and mutation.

Historically, there have been three well-defined approstthevolutionary computation: “evo-
lutionary programming” (Fogel et al., 1966), “evolutiomagegies” (Rechenberg, 1973), and “ge-
netic algorithms” (Holland, 1975). Although similar at thegghest level, these approaches differ
in the way they implement an EA. The differences touch allabpects of EAs, including the
choices of representation for the individual structurgpes of selection mechanisms, forms of
variation operations, and measures of performance. Therrd#dferences are, however, in the
choice of representations, and emphasis and use of variaperators. Evolutionary program-
ming (EP) uses representations that are tailored to thdgmrolomain. Similarly, evolutionary
strategies (ES), due to initial interest in hydrodynamitirojsation problems, use real-valued vec-
tor representations. On the other hand, genetic algorittaws traditionally used a more domain
independent representation, namely, binary strings. idegavariation operations, both EP and
ES use mutation as the main operator, and propose a formf-afdagbtive mutation; whereas GAs
emphasise recombination as the main search operator, andutation as a secondary operator
applied with a small constant probability.
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Procedure EA {
t = 0; /* Initial Generation */
initialise population(t);
evaluate(t);
until (done) {
t = t+1;
parent_selection(t);
recombine(t);
mutate(t);
evaluate(t);

select_survivors(t);

Figure 2.1:The outline of an evolutionary algorithm.

Although it is not possible to present here a thorough oesn\of all variants of evolutionary
algorithms; it is worth mentioningorder-based genetic algorithn{&oldberg, 1989)classifier
systemgHolland, 1986; Goldberg, 1989), amgbnetic programmingKoza, 1992; Kinnear, Jr.,
1997), as branches of genetic algorithms that have dewgtioptheir own directions of research
and application. Order-based GAs are used in combinatopigisation problems where the
search space is the space of permutations (e.g. the trayséilesman problem); they work directly
on the permutation, applying specialised genetic opesgimg. inversion and reordering) that
preserve permutations. Classifier systems use an evaduyi@igorithm to search the space of
production rules of a learning system that can induce andrgége. Genetic programming applies
evolutionary search to the space of computer programs ingqubge suitable for modification by
mutation and recombination. The dominant approach usels|8fe programming language, but
other languages including machine code have also been kKiseteér, Jr., 1997).

In the last few years, there has been widespread interamthmmg researchers studying var-
ious evolutionary computation methods, and the boundaseseen GAs, EP, ES, and other ap-
proaches have disappeared to some extent. Nowadays thégemetic algorithm” is often used
to describe a method far from its original definition, whichywse other representations than bit
strings. This thesis, however, adheres to the traditioimarip string representation, and concen-
trates on the GA approach to evolutionary computation.

2.2 Genetic Algorithms

GAs were developed by John Holland, who summarised his wordaptive plans in a book
entitled “Adaptation in Natural and Artificial Systems” (Hend, 1975). Holland was interested
in a general theory of adaptive systems rather than pracpgalications; his book, however,
constituted the starting point of all known GA applicatioiise major classic applications of GAs
are search, optimisation, and machine learning (Goldd®8Q). There is, however, an increasing
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recognition that GAs provide a tool in areas where standppiaaches fail. The current range
of successful applications is broad and touches fields &ss#as engineering, natural sciences,
medicine, economics, and business.

The following subsections describe the basic GA comporemds/ariants.

2.2.1 Representation or Coding

It is assumed that a potential solution to a problem may beesemted as a set of parameters
(known asgene$. These parameters are joined together to form a stringloésgreferred to as
achromosomer genotypg Traditionally chromosomes in a GA population take therfaf bit
strings. However, several other genetic representatiavs been implemented with success.

2.2.2 Fitness Function

A fitness function must be devised for each problem to be dolvehe purpose of the fithess
function is to provide a measure of the quality of a candidatation or chromosome. For many
problems (e.g. function and combinatorial optimisatiatgyising a suitable fitness function is
straightforward, but this is not always the case for reattavapplications.

2.2.3 Genetic Operators

Genetic operators introduce diversity in the populatibaytcreate new individuals from structures
in the current population. In GAs, there are two main typegefetic operators: mutation and
recombination, which roughly resemble mechanisms in ahaagexual and sexual reproduction
respectively. Each operator has an associated paramateoifitrols the probability of its appli-
cation. How to set these operator parameters is still a mafttiscussion in the field. Section 2.5
summarises research work on GA parameter settings.

Mutation

Mutation of a bit involves flipping it: changing a 0 to 1 or vigersa. The probability that a bit
will be flipped is given by a parameter (the mutation rate)e Bits of a string are independently
mutated — that is, the mutation of a bit does not affect théabdity of mutation of other bits.
Traditionally, mutation in GAs is considered to be a secopdperator whose role is to restore lost
genetic material. Some researchers claim, however, thattation-selection method constitutes
a powerful search algorithm, and that the importance of tirartan GAs has been underestimated
while the role of recombination has been overestimatedgffah& Eshelman, 1991; Fogel, 1995;
Back, 1996).

Recombination

Recombination or crossover is considered the main seareratop in GAs. This operator pro-
duces offspring by merging portions of two selected parete idea behind recombination is
that segments from different parents should be combinedderdao produce new individuals
that benefit from advantageous bit combinations of bothrgareThe application of recombina-
tion is controlled by a parameter (the recombination ra&e\veral recombination operators have
been proposed. The most widely known are one-point, moititpand uniform crossover. In
one-point recombination, a single cut-point is randombgsted within the two parents; then the
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segments before the cut-points are swapped over. Multitpecombination is a generalisation
of this idea, introducing a higher number of cut-points.ohnfiation is then swapped between
pairs of cut-points. In uniform crossover (Syswerda, 198%8¢hanged segments reduce to single
bits, cut-points are not used, instead a global parameticates the probability of exchanging
each bit between the two parents. Considerable work hasdwenin comparing recombination
operators, but there is no conclusive agreement on whasis hds likely that the right choice
would be problem-dependent. A consensus seems to be, howleaketwo-point and uniform
recombination are generally preferable to one-point rdgoation.

2.2.4 Selection

Selection allocates reproductive opportunities for eagamism in the population. The fitter the
organism, the more times it is likely to be selected for répistion. Selection has to be balanced
with variation from mutation and recombination — tkgploitation-exploratiorbalance. Any
efficient optimisation algorithm must balance these twoti@mtictory forces:explorationto in-
vestigate new areas in the search spacegaptbitationto make use of information gained so far
to find better solutions. Selection in GAs is the componerninipaletermining the character of
the search process; too-strong selection means that sofabptghly fit individuals will take over
the population, reducing the diversity required for furtbleange and progress, whereas too-weak
selection will result in very slow evolution.

Numerous selection schemes have been proposed in thediteraHowever, there are no
conclusive guidelines as to which method should be prefetti@s is still an open question for
GAs. The following subsections describe the most commosédiselection methods.

Proportional Selection

Fitness proportional selection is the classic GA seleati@chanism. In this mechanism the re-
productive opportunities of an individual is given by itsifiss divided by the average fitness of the
population. The most common method for implementing propoal selection is the so-called
roulette wheel- a stochastic method for producing the expected numbeifsgraig for each in-
dividual in the population. However, with the populatiores typically used in GAs, the actual
number of offspring allocated using the roulette wheel roéftis often far from its expected value.
To minimise these sampling errors, Baker (1987) proposeslhhamethod callegtochastic uni-
versal samplingSUS). SUS is also more computationally efficient and is ehds most modern
implementations. Thus, itis used in the experiments ofttiesis.

Scaling Methods

Scaling the objective function values is a widely accepteatiice in GAs. This is done for two
reasons. First, to map objective function values to pasitivmbers, since the standard GA selec-
tion mechanism (fitness proportional selection) requicsstjve fithess values and a maximisation
problem. Second, to keep appropriate levels of compet#inong the individuals throughout a
GA run.

Several scaling methods have been proposed, ranging fropiesiinear transformation to
methods that consider some population measures (e.g. sfist@sdard deviation) for perform-
ing an appropriate mapping (see (Goldberg, 1989; Mitcli€IB6) for an overview on scaling
mechanisms). But again, there are no rigorous guidelingswakich method should be preferred.
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Rank Selection

In rank selection, individuals in the population are rankedording to fitness. The expected
number of offspring of each individual depends on its rartkeathan on its absolute fitness.
There is no need for scaling in this case, since absolutes§itualues are not considered. The
linear rankingmethod proposed by Baker (1985) works as follows: indivisirathe population
are ranked in increasing order of fithess, from Mdthe population size). The user chooses the
expected number of offspring (or expected valivigx (Max > 1) of the individual with rank\.
The expected value of each individuah the population at timeis given by:

rank(i,t) —1

M-1
whereMin is the expected value of the individual with rank 1. Givend¢bastraintdMax> 1 and
yiExpVali,t)= M (since population size is constant from generation to geiuer), it is required
that 1< Max < 2 andMin = 2— Max At each generation, individuals in the population are
ranked and expected values are assigned according to &g2ati. Baker (1985) recommended
Max= 1.1 and showed that this scheme compared favourably to piopalselection on some
selected test problems.

ExpVali,t) = Min+ (Max— Min) (2.1)

Tournament Selection

In tournament selectiom individuals are chosen at random from the population. Thesfitof
these individuals is selected for reproduction. Then,ralraturned to the original population and
can be selected again. This process is repeated as oftenessasy to fill the new population. A
common tournament size rs= 2 (binary tournaments). Tournament selection is similaatk
selection in terms afelection pressurgsee Section 2.3), but is computationally more efficient and
more amenable to parallel implementation.

(M4 A)— and (p,A)—Selection

The (u+ A)— and(p,A)—selection mechanisms come from the evolution strategigsrumity,
but they have been tested in the context of GAs (Back, 1999211996). These two methods
differ from the standard GA selection mechanisms in that:

e Offspring and parent populations may have different sizes umber of parents\ =
number of offspring).

¢ Both methods are completely deterministic, there are rexeh probabilities.

¢ Both methods definitely exclude the worst individuals ingbeulation rather than sampling
them with small probability (Back, 1996).

In (p,A)-selection, thet best individuals out of th& offspring are selected to become parents
of the next generation, while ifp+ A)-selection theu best individuals are selected from the
set ofu parentsand A offspring. Thus, thép+ A) scheme is elitist (see Section 2.2.6) since it
will only accept improvements; it may seem more effectivéirat glance because it guarantees
the survival of the fittest individuals, but it has severaladivantages when compared foA )-
selection. Particularly, it is not well suited for optimgi multimodal functions and for achieving
self-adaptatiorof the mutation rates. Thus$p,A)-selection is generally recommended (Back,
1996).
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2.2.5 Population Replacement

Two basic models of population replacement may be diststgadin GAs: thgenerationamodel
where the whole population is replaced in each generatiahtteesteady-statenodel where only

a few individuals (typically one or two) are replaced in egemeration. In between these two
extremes @eneration gagDeJong, 1975) may be defined as the proportion of indiviiwalich
are replaced in each generation. Most GA implementatioms hised a generational model; this
approach is supported by the work of Grefenstette (1986). odemecent trend, however, has
favoured steady-state replacement (Whitley, 1989; D4@81). In the steady-state approach, two
choices have to be considered. First, how to select twoiithdials to be parents; and second, how
to select one or two unlucky individuals from the populatiome killed off. This can be done in
several ways, including:

1. Selection of parents according to fitness, and selecficeptacements at random
2. Selection of parents at random, and selection of replantby inverse fithess

3. Selection of both parents and replacements accordingpas§/inverse fitness

For example, Whitley’s GENITOR algorithm, select parerdsarding to their ranked fitness val-
ues, and the offspring replace the two worst members of thalption (Whitley, 1989).

The main difference between a generational GA and a stdatlySA is that, in the latter, pop-
ulation statistics (such as average fitness) are computedesich mating, and the new offspring
are immediately available for reproduction. Such a GA tfeeeshas the opportunity to exploit
a promising individual as soon as it is created. HoweverdBeilg and Deb (1991) found that
the advantages claimed for steady-state replacementlated¢o an initial growth rate in perfor-
mance. According to them, the same effect could be obtaipéadoeasing the selection pressure
(e.g. using exponential fitness ranking, or large tourndrsiges in tournament selection). They
found no evidence that steady-state replacement is furmtaityebetter than generational.

This thesis uses a generational GA as the default approacstdady-state GAs are also tested
to explore the effect of population replacement on bothréimeshold and optimal mutation rates.

2.2.6 Elitism

The termelitism first introduced by DeJong (1975), describes the idea afimietg the best or some
of the best individuals at each generation. In generatiGae, elitism is explicitly implemented
by copying the best individual from generation to generatién steady-state GAs an implicit
elitism is achieved if only the least fit individuals are stéel for replacement.

Elitism is widely used in practice, and it may seem more ¢iffecat first glance because it
guarantees the survival of the fittest individuals, howex@on-elitist strategy that allows tempo-
rary deterioration to be accepted may help to leave themegfiattraction of a local optimum and
reach a better optimum.

The experiments in this dissertation use non-elitist GAa dsfault, but the effect of elitism
on both error thresholds and optimal mutation rates is aiptoead.
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2.2.7 Termination Criteria

Traditionally, a GA run finishes after a fixed number of getierss. Often, a fixed number of
function evaluations is considered instead of a fixed nunobgrenerations. This is a sensible
choice because function evaluation is generally the moapooationally expensive task of a GA.
Moreover, this approach allows fair comparisons betweerigional and steady-state GAs, and
between GAs in general and other search methods, to be pedorSometimes, termination is
controlled by a genotype diversity measure which gaugeawbeage convergence of individuals
in the population. Other termination criteria commonlydisee: (i) simply that the optimum is
reached (this is case with abstract test functions used pirsal studies), (ii) fixed computational
time and, (iii) after a number of generations without an iayement.

2.2.8 Performance Measures

Given that GAs are stochastic methods, conclusions cam hevdrawn from a single run. Instead,
statistics (e.g. average, median) from a sufficiently largeber of independent runs should be
considered. Thus, the standard performance measures fera@@Athe average and best fithness
values averaged over several runs. Within a given run, theflteess could be either the current
best in the population, or the best fitness attained so faesdlmeasures are considered after a
fixed termination criterion, or over fixed intervals throwgiithe GA run.

DeJong (1975) devised two measures to quantify the efisotiss of different GAs, one to
gauge ongoing performance, and the other to gauge congergean optimal solution. He called
these measures on-line (ongoing) and off-line (convergeperformance respectively. The on-
line performance at timeis the average fitness of all function evaluations up to actlding
timet. The off-line performance at tinte is the average, ovérsteps, of the best fitness value at
each step.

Another GA performance measure is the number of generatipfisnction evaluations re-
quired before the GA finds an acceptable solution (or theadloptimum if it is known before-
hand). The goal is to minimise the number of generations ctfan evaluations required for
finding the solution. The number of evaluations is often gmrefd as a measure (over the number
of generations), because in almost all GA applicationsuhetfon evaluations dominate execution
time.

Finally, in his dissertation, Spears (1998) comments #itdtpugh it is a common practice to
run GAs to some termination criteria and then report resritg after termination, this approach
ignores the dynamic aspects of GAs and can lead to overlyrglecenclusions. Conclusions can
be surprisingly dependent on the termination criteriggrofeversing if a different cut-off is used.
Thus, it is a good practice to always show results over thdewm time of a GA.

2.3 Selection Pressure

Selection or selective pressure is an informal term widalgauin the GA community to indi-
cate the strength of a selection mechanism. Loosely, tleets@h pressure indicates the ratio of
maximum to average fitness (or expected selection valug¢sgipopulation. In an attempt to for-
malise the notion of selection pressure, Goldberg and D@®l(llintroduced the idea ¢dékeover
time. This approach reflects the effect of selection in theeabe of any genetic operator (such
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as mutation or recombination). The idea is to count the nurobgenerations needed to produce
a population consisting completely of the best individwmathie initial population. The intuition
behind this is that small takeover times characterise gtsetective pressure, which corresponds
to exploitative search, whereas large takeover times ctearse weak selective pressure, corre-
sponding to explorative search.

Back (1996) analysed four selection mechanisms (prapmatiselection, rank selection, tour-
nament selection angdu,A)-selection) considering takeover times. He ordered theketion
mechanisms according to increasing selection pressupgrticular when “standard” values of
control parameters were assurhe@ihe ordering is as follows:

1. Proportional selection
2. Linear ranking
3. Tournament selection

4. (K,A)-selection

Selection mechanisms 2, 3 and 4, are based on rank ratheothiaw fitness values. Ac-
cording to Back’s analysis, there is a strong differencevben proportional selection, having
a takeover time of orden(MInM) (whereM is the population size), and rank-based methods
with a general takeover time of ordeInM), that is, a factor oM faster. Moreover, rank-based
mechanisms allow explicit control over the selection puessEach of them has a single control
parameter that can be tuned for varying the strength of sefecFor example, in tournament
selection, a common tournament size is 2, but selectivespresncreases steadily for growing
tournament sizes.

2.4 GA Design

In view of the various GA selection mechanisms, populatEplacement approaches, possible
choice of operators, and ranges for evolutionary parasietiee GA is not a single algorithm but
rather a class of related algorithms. Moreover, there angatyg as many different GAs as there
are GA projects. To complicate matters further, theretil{tf any) theoretical guidance, and few
rules of thumb to assist the user in the design of an evolatioapproach to a given problem.
When applying an evolutionary algorithm to a given probléwn major steps are needed:
(i) selecting an adequate representation, and (ii) desigand implementing a fithess function.
These two elements form the bridge between the problem xdoanel the algorithm framework.
If the selected algorithm is the GA, these further decisiuase to be made:

1. Selection method: how to perform selection

2. Choice of operators: what genetic operators to use

3. Parameter settings: how to set the values for the variatseters

The issues addressed in this dissertation are mainly deiatde third choice, namely, how to

set the values for the various evolutionary parametersreftie, the next section discusses this
in more detail.

1The standard control parameters of selection mechanisesfar rank selectionMax = 1.1), for tournament
selection (tournament size = 2), and {prA)-selection /A = 7).
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2.5 GA Parameter Setting

The values of the evolutionary parameters strongly detegrthe performance of the algorithm.
Specifically, they determine whether the algorithm will fimehear-optimal solution and whether
it will find such a solution efficiently. But finding a good comhtion of parameters is not an
easy task. The evolutionary parameters interact with onghan non-linearly, thus they cannot
be optimised one at time. Moreover, the ‘optimal’ parametting is likely to depend on the
problem at hand.

During the 70’s and 80’s, a standard GA using bit strings-poiat recombination, bit-flip
mutation, and roulette wheel selection (with or withoutisin) was widely used. Algorithm
design was thus limited to choosing the so-called contrchpeters, such as population size,
mutation rate (per bit), and recombination rate. Most neteas based their choices on “tuning”
the parameters by trial and error, that is, experimentirtd different values and selecting those
producing the best results.

At that time, three major empirical studies attempted tovjgl® a good combination of pa-
rameter values. The first study (DeJong, 1975), proposest auée of five functions and studied
the on-line and off-line performance (defined in Section®.an them. His results suggested the
following parameter values:

¢ population size: 50 - 100
e crossover rate: 0.6
e mutation rate (per bit): 0.001

These settings (along with De Jong’s test suite) becamelyvitked in the GA community,
even though it was not clear how well they would perform onbpems outside De Jong'’s test
suite.

Ten years later, Grefenstette (1986) suggested a diffeygmmbach, he used a “meta-GA’ to
evolve parameter combinations for the problems in De Jaegissuite. This method produced
an interesting parameter combination which significarmttréased the on-line performance, but
was unable to outperform De Jong’s values for off-line penance. Grefenstette recommended
values were (values to optimise the off-line performaneegaven in parentheses):

¢ population size: 30 (80)
e crossover rate: 0.95 (0.45)
e mutation rate (per bit): 0.01 (0.01)

Notice that Grefenstette’s results suggest a smaller jpdipalsize and higher operator prob-
abilities than De Jong'’s. This was an interesting experinimrt again, in view of the specialised
test suite, it is not clear how generally these recommeaodstiold.

Later on, Schaffer et al. (1989) carried out extensive stdith high CPU time, to explore a
wide range of parameter combinations. They used the onvigesure to gauge GA performance,
expanded De Jong's suite with new five functions, and empl@ray codéto represent variables.
Schaffer et al. found that the best settings for populatio®, £rossover rate, and mutation rate

2A Gray code represents each number in the sequence of istg@jeR-—1} as a binary string of length in an
order such that adjacent integers have Gray code repréisesttnat differ in only one bit position.
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were independent of the problem in their test suite. Thesmge were similar to those found by
Grefenstette:

e population size: 20 - 30
e crossover rate: 0.75-0.95
e mutation rate (per bit): 0.005 - 0.01

Notice that the purpose of the three approaches descrilmee@ atas to find an effective and
general combination of parameters. In other words, the lyidg assumption was that the rec-
ommended values can be applied to a wide range of optimisptablems. Formerly, GAs were
seen as robust problem solvers that exhibit approximaleysame behaviour over a wide range
of problems. However, the contemporary view on evolutigr@amputation holds that specific
problems (problem types) require specific algorithm sefopsatisfactory performance (Eiben
et al., 1999).

To summarise, it seems very difficult to formulat@riori general principles about parameter
settings, in view of the variety of problem types, encodjrysd performance criteria that are
possible in different applications. Moreover, it has beeggested that the optimal population
size, recombination rate, and mutation rate are likely @nge over the course of a single run
(Mitchell, 1996). Many researchers in the evolutionary poitation community consider that the
most promising approach is talaptthe parameter values in real time through the ongoing search
This has long been the approach in the evolution strategigsnunity. There have also been
several approaches to adaptation of evolutionary parasieté&As. Before discussing them, let
us first present a global taxonomy of parameter settings ia iB8pired by the classification of
Eiben et al. (1999).

2.5.1 Classification of Approaches to Parameter Setting

Eiben et al. (1999) distinguish two major forms of settingletionary parameters: parameter
tuning and parametecontrol. By parameter tuning the authors mean the common practice of
somehow finding good parameter values before the run, amdrthning the algorithm using
these values, which remain fixed during the run. By paranuetetrol, they refer to the alternative
of starting a run with initial parameter values which arergied during the run.

Eiben et al. (1999) further categorise the approaches tanpeter control according to two
aspects, namely, the type of update mechanism, and the Epaw@nt subject to changes. They
distinguish three types of update mechanismsterministi¢c adaptive and self-adaptive and
the following EA components: representation, fithess flmctoperators and their probabilities,
selection method, population replacement, and populatizen The following describes the three
types of approach for changing the value of a parameter @ategnechanism):

¢ Deterministic: When the value of a parameter is altered by some deternginise. This
rule modifies the parameter without using any feedback fioensearch. Usually, a time-
varying schedule is used, i.e. the rule is applied after dgfieed number of generations
since the last rule activation.

¢ Adaptive: When some feedback from the search is used to determinérdation and/or
magnitude of the parameter change.
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¢ Self-Adaptive: Here the parameters to be adapted are encoded into theygea@nd un-
dergo evolution through mutation and recombination. Theais that better values of the
encoded parameters lead to better individuals, which imaue more likely to survive and
reproduce and hence, propagate these better parametes.valu

| follow here the classification discussed above but with sonodifications and extensions.
The terms parametéuning and control are substituted bgtaticanddynamicparameter setting
respectively. These latter terms, in my opinion, bettetwagpthe essential difference between the
two approaches. Moreover, | suggest that static paramettémg should be divided into two cate-
gories, namely, parametermingand parametdneuristics By parameter tuning, | understand the
common practice of finding good parameter values for a givehlpm by trial and error, whereas
parameter heuristics refer to rules of thumb that have vagpticability. Static parameter heuris-
tics and dynamic deterministic setting, may also be furtiieded into empirical and theoretical
approaches. Figure 2.2 shows both the global taxonomy afhpeter setting as suggested by
Eiben et al. (1999) (left), and the modified version propaeedis section (right).

Parameter Setting Parameter Setting
. (before the run) (during the run)
(before the run (during the run)
Static Setting Dynamic Setting
Parameter Tuning Parameter Control
Tuning Heuristics Deterministic Adaptive  Self-Adaptive
Deterministic ~ Adaptive  Self-Adaptive Empirical Theoretical Empirical Theoretical

Figure 2.2: Global taxonomy of parameter setting in EAs. Left, clasatfin suggested by Eiben et
al.(1999). Right, modified version proposed in this section

2.6 Optimal Mutation Rates

It has been suggested that the most sensitive of GA parasigstéie mutation rate (Schaffer et al.,
1989; Back, 1996). Moreover, mutation rates are the mabjestiof this dissertation. Therefore,
this section presents a critical review of approaches fptifeal’ setting of the mutation rate

according to the classification proposed above (Figurerigt).

2.6.1 Static Setting

Tuning

By tuning | refer to the common practice of finding the evalugry parameters ‘by hand’, that is,
by experimenting with different values and selecting thesoproducing best results. When using
this approach, researchers report the parameter valudstagether with their results, without
much justification of the choices made.

Heuristics
Several authors have tried to find useful heuristics forirgptoptimal’ mutation rates. These
attempts may be divided into empirical and theoretical.

¢ Empirical Approaches: Recapitulating from the empirical approaches describ&erction
2.5, the values proposed for the mutation rate (per bit) weke= 0.001 (DeJong, 1975),
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pm = 0.01 (Grefenstette, 1986), arm, € [0.0050.01] (Schaffer et al., 1989). Schaffer
et al. (1989) also arrived at an empirical expression byetitting of their data is the
population size ant the chromosome length):

1.75

P VT

The limitation of these early approaches lies in the spiseiditest suites used (from standard
function optimisation problems). It is not clear how the GAl werform with these settings
outside the particular test suites used. Others have fotmes§ functions for which these
mutation rate values are not optimal (e.g. Smith and Fodaa96)).

(2.2)

¢ Theoretical Approaches Muhlenbein (1992), following earlier work by Bremermaira¢
(1966), theoretically analysed optimal mutation ratesaf@imple asexual GA with popu-
lation size 1 on the simpl®nemaxfunctior?. Using an approximation of the probability
for improving the fitness function by mutation, the authaivad at an optimal mutation
rate (per bit)pm = 1/L, whereL is the string length. Given the extremely simplified algo-
rithm and fitness function, the practical relevance of thsuit is questionable. However,
the heuristic ofpy, = 1/L has produced surprisingly good results in practice, antbeil
discussed later on (Section 2.6.3).

2.6.2 Dynamic Setting
Deterministic

These approaches alter the value of a parameter by somendestic rule. Deterministic dynamic
approaches may also be categorised into empirical andetiesr

¢ Empirical Approaches: Fogarty (1989) empirically examined the effect of varyitng

mutation rate over time and across the bit representatidndifiduals. He found that
varying the mutation rate in either or both of these ways ifigmtly improved the GA
performance in the problem studied (an industrial appbeatout only when starting from
a conservative initial population of all zeros (whereas stendard practice in GAs is to
start from a randomly initialised population). This stuttpwever, makes an important
contribution, since it was the first time that the mutaticie iaas changed during the run of
a GA.

¢ Theoretical Approaches Hesser and Manner (1991) theoretically analysed thertkpee
of the mutation rate upon both the population size and thebsome length. They used ar-
guments from the theory of GAs, stochastic processes, audldtical biology. The authors
introduced a time-dependency into the mutation rate, coifg the findings of Fogarty
described above. They proposed an expression for optirtiagef the mutation rate (per
bit) for a special GA-variant on the Onemax problem:

_ [ exp-y3)
pm(t)—\/g o (2.3)

whereq, 3,y are constants tied to the particular fitness function, nahdL are the pop-
ulation size and the string length. Notice that this expogsis similar to that proposed by
Schaffer et al. (Equation 2.2), in that the optimal mutatiate is inversely proportional to
both the square root of the string length and the populaize sThe practical relevance
of this study is questionable given that a special GA and g s@nple function were used.
However, the idea of a using a time-varying mutation rate agesn proved useful.

3The Onemax or counting-ones function gives the number of &shit string. Thus, the fittest string is the string
of all ones.
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Back (1992) presented an analysis of optimal mutatiorsredea simplified GA (no re-
combination and population size of 1) on the Onemax functiée found that the optimal
mutation rate strongly depends on the current Hamming ritistéo the optimal solution.
In other words, the mutation rate should not be constanthouilg decrease over time dur-
ing the search. The author presented an approximated deHedwptimal setting of the
mutation rate (per bit), in terms of the current fitness vélue

pm( fa) = 2 ! (2.4)

fat+1)—L

The usefulness of this expression is questionable sincdisit@nce to the optimum is not
known in real applications. Moreover, this analysis onlglas for a simplified GA on the
very simple Onemax function.

In a later paper, Back and Schitz (1996) proposed a detestigi mutation rate schedule
analogous to the expression derived for the Onemax fun¢iqnation 2.4). They used a
time-dependent per bit mutation rgpg(t) wheret € 0,1,...,T— 1 denotes the generation
counter, and is a given maximum number of generations. From the conditmiO) =
1/2 andpm(T — 1) = 1/L, their formulation produced:

1

) ————
P>

(2.5)

The authors commented that it is not clear whether this guben of the distance to the
optimum by the generation number is useful. But, in theidgtthey found that the schedule
represented by Equation 2.5 outperformed two other appesafor optimal setting of the
mutation rate (a self-adaptive approach, and the statiddieup,, = 1/L per bit) on a test
suite of 3 combinatorial optimisation problems (Back & 8t 1996).

Adaptive
These approaches use some feedback from the search toidetérendirection and/or magnitude
of the parameter change. The idea of an adaptive controleofrilitation rate comes from the
evolution strategies community (Rechenberg, 1973). In Ghsilar approaches have been used
to adjust both mutation and recombination rates; the ide¢a isse the quality of the offspring
generated by an operator as a measure to adapt the propabitg application. This measure is
also calledoperator productivity The earliest of these techniques was devised by Davis §1989
His method keeps records, for each member of the populatimut which operators were used
to produce them and their ancestors, and any improvemeinththaperators were able to attain.
Davis showed that this method improved the performance & assome problems. Some years
later, Julstrom (1995) proposed a similar technique theatires less bookkeeping. Each member
of the population has a tree attached to it depicting theaipes used to create it. When a child
of improved fitness is produced, this tree is used to assigitdo each operator. Both Davis and
Julstrom methods periodically process this informatioadgust the operator settings; and both
have been observed to effectively adapt the operator gsttin

Tuson (1995), Tuson and Ross (1998) object that the aboveogietequire much additional
bookkeeping. According to them, it is entirely possibletthasimpler approach would work
just as well. Hence, they investigated a simpler approacbBRA (Cost Operator Based Rate
Adaptation) (Corne et al., 1994), originally devised foapting operator settings in time-tabling



clliaptlerl 2. ‘sclicuc AIJOorItTs. AIgOTitiT vesigh alid Falaelloetudrly U

problems. Initial operator settings are provided and thep@Aodically swaps them between op-
erators, giving the highest probability to the operatot ties been producing the most gains in
fithess. Although COBRA was shown to exhibit improved perfance in time-tabling problems,
when compared to a similar GA with fixed operator settingg@et al., 1994), no improvement
in performance was found on the test problems studied bymmasd Ross (1998). According to
the authors, however, the GA was often less sensitive tanitialioperator settings when COBRA
was used, which in some applications may be useful.

Adaptive approaches are based on the principle that dymadlgnahanging fithesses of opera-
tors should keep up with their actual usefulness at diftestages of the search, causing the GA to
use them at appropriate rates at different times. Accorttiriditchell (1996), this ability for the
operator fitness to keep up with the actual usefulness offtleators has not been tested in any
way. She comments further that a big question for adaptipecgehes to setting parameters is:

How well does the rate of adaptation of parameter settingshrthe rate of adap-
tation in the GA population? The feedback for setting patansecomes from the
population’s success or failure on the fitness functionjtoatght be difficult for this
information to travel fast enough for the parameter sestbogstay up to date with the
population’s current state [(Mitchell, 1996), p. 177].

Self-Adaptive
Here the parameters to be adapted are encoded into the gesaiyd undergo evolution through
mutation and recombination. Self-adaptive control of matestep-sizes is traditional in evolution
strategies (Back, 1996). Several attempts have been rodatng this idea to GAs. The work of
Back (1991) includes mutation rates a as part of the gerggiresentation of individuals (encoded
as bit-strings). Hence, mutation rates are subject to atlaptas well as the objective variables.
Back experimented with two types of selection mechanisgrBnctive selectioandpreservative
selectiort. As test functions, he selected 3 functions from the classitnisation test suites. His
results suggest that self-adaptation of mutation ratedvargageous and possible for GAs, but
only when extinctive selection is used (that is for a veryhhéglection pressure). In this study,
however, the author compared the self-adaptive approagtiesa standard GA with a per bit
mutation rate opy,, = 0.001. This value was selected without any particular justiion (besides
being a common figure in standard GAs). One objection to thisikcal comparison is then, that
a mutation rate opy, = 0.001 is probably very far from optimal (indeed too low) as distzalue
for the test suite selected.

Later on, Back and Schiitz (1996) compared three diffepptoaches for optimal mutation
rate setting:

e A constant setting —pm = 1/L per bit
¢ A deterministic time-varying mutation rate schedule

¢ A self-adaptation mechanism

4An extinctive selection mechanism definitely excludes somdiwiduals from being selected, whereas preservative
mechanisms always assign selection probabilities grélader zero to all individuals. According to Back’s analysis
extinctive selection imposes a much higher selection press
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As test functions, they selected 3 combinatorial optinnsgproblems. The deterministic mu-
tation rate schedule used was the one described abovedi$2d8.2, Equation 2.5). Regarding
the self-adaptation mechanism, the authors proposed amadint over the approach presented in
(Back, 1991). They acknowledged that the previous approas of limited success and postu-
lated that the binary representation of mutation rates trss@ hampered the efficient fine-tuning
by self-adaptation. Thus, they proposed a self-adaptatgshanism where mutation values were
encoded as real numbers, and were subject to evolution timubnly (no recombination). The
authors presented a comparison among the three proposataonuegimes (listed above) on the
combinatorial test problems. When comparing the self-adapegime with the static regime,
results suggest that the self-adaptive mutation rate Héeylperformance on average, but not with
respect to the number of times that optimal solution wasdoUrhe deterministic control regime
was the best of the three, regarding both average final fiamebthe number of runs that yield the
optimum. It should be noticed, however, that this study Us@d without recombination, and the
differences in performance were, in my opinion, not dramati

The work of Smith and Fogarty (1996) investigated the useeoiegjcally encoded mutation
rates within a steady-state GA. They tested several seteafid deletion policies, and included
a form of local search in their self-adaptive mechanism. &s problems they used tiK
model (described in Chapter 3) with several value afhich covered a range of landscape struc-
tures from smooth to very rugged. A comparison between teedmf-adaptive GA found, and
a GA with standard fixed mutation rates was presented. Foed fralues for the per bit muta-
tion rate were selected for comparisorpy, = 0.001 (DeJong, 1975pm = 0.01 (Grefenstette,
1986),pm = 1/L (whereL is the string length), angy, = 1.75/M+/L (whereM is the population
size) (Schaffer et al., 1989). Two studies were carried dte first compared the self-adaptive
GA (with local search), against the standard steady-stAté{&hout local search) with the four
selected static mutation values. Results indicated tleas#fi-adaptive GA significantly outper-
formed the standard steady-state GA for all the fixed mutataues, withp, = 1/L giving the
best results among the static settings. A second (morecfainparison also included local search
on the standard steady-state GA. Agan,= 1/L per bit produced the best performance among
the static mutation values. In this case, results ith= 1/L were similar to the self-adaptive GA
on the simplest landscapes, and significantly better fosélifeadaptive GA on the more complex
landscapes.

A study of self-adaptive parameter settings was also choig by Tuson and Ross (1998).
They used real numbers to encode both mutation and recotidriparameters in each individual.
Two types ofmeta-operatorgi.e. the operators applied to the encoded operator ssjtingre
tested. Firststrongly disruptiveoperators, which tend to produce children quite differeainf
their parents; and secondeakly disruptiveperators, which produce children that are similar to
their parents. They found that the choice of these metaabperhad a dramatic effect: disruptive
operators were found to remove the ability to adapt as theyr@e any information gained by
selection. The use of low disruptive operators improvedenaisomewhat, but the occurrence of
adaptation was unreliable and depended on the problem uNmisingly, when no adaptation took
place, the effect upon performance was often detrimentaireblver, performance also declined
even when adaptatiatid take place. The authors argued that it takes time for opgparameters
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to evolve to the right values, by which time much of the usséarch has already been performed,
and, hence, the impact of the evolved settings is much reddeis, setting appropriate operator
values at the start of the GA run appears to be important. Tasd Ross concluded by saying

that: “Operator adaptation was not found to be as universedeful as earlier studies on this

subject have implied, in that it will not necessarily produesults that are superior to modest
hand-tuning ...".

2.6.3 Discussion

All the approaches described above for effectively settirgmutation rate have intrinsic lim-
itations. Hand tuning is time-consuming and often not \@abTheoretical approaches are, in
general, of questionable practical relevance since treepased on very simplified algorithms and
fitness functions. Early empirical approaches using stahfdaction optimisation test suites, are
of restricted generality.

Both adaptation and self-adaptation of operator parasdtave a computation overhead.
Moreover, the application of these techniques for settirggrhutation rate in GAs has shown,
in my opinion, only limited success. Since adaptation ariagkaptation are successful within
the evolution strategies community, this issue deservéisduinvestigation in the context of GAs.

In my opinion, the most useful guideline so far for an effeetand general setting of the
mutation rate in GAs is the heuristic suggestimg= 1/L (per bit). This figure has appeared
several times in the evolutionary computation literatdriee earliest appearance | can trace back
was due to Bremerman et al. (1966) as quoted by Back (1996p, meJong (1975) suggested
this value as quoted by Hesser and Manner (1991). The wokkibienbein (1992) states that
pm = 1/L is optimal for general unimodal functions. This setting hls® produced good results
for several NP-hard combinatorial optimisation problemshsas the multiple knapsack problem
(Khuri, Back, & Heitkotter, 1994), the minimum vertex @vproblem (Khuri & Back, 1994), the
maximum independent set problem (Back & Khuri, 1994), atiérs (Back & Khuri, 1994). The
work of Smith and Fogarty (1996) found L as the best fixed setting for the mutation rate, giving
results comparable to their best self-adaptive method.eiCdhthors have found a dependence
of effective mutation rates upon the string lengithalthough they had not explicitly suggested
pm = 1/L (Schaffer et al., 1989; Hesser & Manner, 1991; Back, 12993).

Thus, there may well be some true principle underlying tl@sristic. It is argued, in this
thesis, that this principle is related to the notion of ethweshold from molecular evolution. The
error threshold is the minimal replication accuracy thal staintains genetic information in the
population. Chapter 4 discusses this notion in more detai; Chapter 6 studies its relationship
with the more familiar notion of an optimal mutation rate ih& Let us, however, anticipate
here that the theoretical expression of the error threstrola simplified landscape (a single peak
landscape) igpm = In(o)/L (per bit) (Eigen & Schuster, 1979), whekes the genotype length
and o is the superiorityparameter of the master sequence. The master sequencecis et
fittest sequence in the population, amds the factor by which selection of this master sequence
exceeds the average selection of the rest of the populatiather wordsg is a measure of the
selection pressure. A resemblance between the expressienrér thresholds and the heuristics
of pm = 1/L (per bit) is observed if one assumes that the ratio of maxirtuuaverage fitness in
the population (the selection pressurexi, which is the case for linear ranking (wilthax = 2,
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see Equation 2.1), and tournament selection with tournagies of 2.

The idea of optimal mutation rates being related to erroegholds is implicitly suggested
by Harvey (1992, 1997), who presents a GA framework (SAGA&rsgly designed for evolving
genetically converged populations of variable length g@mes. In this framework, mutation is
considered as the primary search operator. The mutatierigatlected following the expression
of error thresholds on a single peak landscppe= In(o)/L (whenever the value af may be
estimated or approximated). A further adjustment of thislgline is suggested in the presence
of redundancy or junk in the genotype. If the target mutataie is, for example, 1 mutation per
genotype on the assumption of no redundancy, in the presémaek this should be increased so
as to give an expected 1 mutation pem-redundanpart of the genotype (again, whenever the
proportion of redundancy may be estimated). This adjustweas empirically validated in the
context of evolvable hardware experiments (Harvey & Thammp4996).

2.7 Summary

This chapter introduced the general field of evolutionarypatation and described in more detail
the most widely known of its approaches: genetic algorit@@#4s). The different components
and variants of GAs were described, revealing that the GAfasraly of algorithms rather than a
single algorithm. Indeed, there are as many different GAba® are GA projects. To complicate
matters further, there is little (if any) theoretical guida, and few rules of thumb to assist the
designer when applying a GA to a given problem. Thus, thersepart of the chapter discussed
the many decisions involved when designing a GA. One of satlofsdecisions, the parameter
settings, was discussed in more detail, and a classificatiapproaches to parameter setting was
proposed. The main concern of this thesis is the mutati@) sat a review of approaches so far
for effective setting of the mutation rate was presenteds Téview was structured according to
the suggested classification of approaches.

All the approaches discussed in this chapter for a neammaptetting of the mutation rate
have intrinsic limitations. A promising guideline is, hovee, the heuristic suggesting, = 1/L
wherelL is the string length. This heuristic has appeared sevenastiin the GA literature, has
produced good results in practice, and seems to be supdwoytdte notion of error threshold
(discussed in detail in Chapters 4 and 5). Bearing in mingtstulated underlying relationship
between error thresholds and optimal mutation rates, @nh&pof this thesis attempts to assess
the generality of thepy, = 1/L heuristic, find further adjustments, and detect the limft&
applicability. First, however, Chapter 3, describes thees landscapes used as test problems
throughout this dissertation.



Chapter 3

Fitness Landscapes and Test Problems

The notion of fitness landscapes was introduced to desdrébdyinamics of adaptation in nature
(Wright, 1932). Since then, it has become a powerful metaphevolutionary theory. Fitness
landscapes are also well suited to describe the dynamiatifigial evolution. Hence, evolution
(natural or artificial) can be seen as an adaptive-walk ov@nass landscape. Identifying the
structure of fithess landscapes may be helpful in both priedithe performance and improving
the design of evolutionary algorithms.

This chapter is structured in two main sections. SectiorirBrbduces the notion of fithess
landscapes and presents some properties of landscapesdhatown to have an influence on
evolutionary search. It also discusses briefly some appesagroposed so far for analysing the
structure of fithess landscapes. Section 3.2 describegihigds of abstract landscapes and real
world-domains that will be used as test problems througliuistdissertation. It also justifies
this particular choice of test problems. Two real-world @éams were selected for study (Section
3.2.2), namely, a combinatorial optimisation problem —Mhdtiple Knapsack problem, and an
engineering problem — the design of an optimal aircraft \M3ox.

3.1 Fitness Landscapes

The biologist Sewall Wright (1932) envisioned the conseges of natural selection as an adap-
tive walk over a fitness landscape. Natural organisms candveed by theirgenotypewhich is
the genetic ‘encoding’ of the organism, or theirenotypewhich is the actual form and behaviour
of the organism. An abstract notion fifnesscan be assigned to each phenotype that measures
its ability survive and reproduce. Evolution is then vievasda process that searches, by means
of genetic operators like mutation and recombination, @&$isnandscape of possible genotypes,
looking for genotypes that encode highly fit phenotypes. ddeling on the distribution of phe-
notypes, the fithess landscape can be more or less hilly. yithage many peaks of high fithess
flanked by ridges and cliffs falling to profound valleys ofditness. Or it may be smooth, with
low hills and gentle valleys.

In this framework, adaptive evolution is a hill-climbinggmess. The population is a tight or
loose cluster of individuals located in the landscape. Komeand recombination move individ-
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uals (or their offspring) to neighbouring points in the spa®©ver time, the cluster of individuals
will flow over the fitness landscape. In the simplest casesptipulation will climb to and clus-
ter about one of the possible multiple peaks. In more compéees, the population cluster may
spread widely across the landscape, passing through a weatges somewhat below the fitness
peaks (Kauffman, 1993).

3.1.1 Fitness Landscapes in Sequence Space

Although the notion of fitness landscapes was first introdunehe context of evolution at the
level of organisms, it has recently gained relevance in trgext of evolution at the molecular
level. In molecular evolution the space of all possible @uniations can be captured by the notion
of protein spaceor more generallgequence spagdaynard Smith, 1970). Molecules (such as
proteins and nucleic acids) consist of specific sequencestrings) drawn from finite alphabets.
Consider sequences of letters drawn from an alphab&tbaracters. If the sequence is of length
L, then there ar@" possible sequences of that length. For example there &ngdBible proteins
of L amino acids and4possible poly-nucleotides df nucleotides. This means that even for
moderate sequence lengths a “hyper-astronomically” latgaeber of different variants can be
formed. Let us imagine all possible sequences to be arraimggdequence space such that two
sequences are neighbours if one can be converted into artiesingle point mutation. Thus
the sequence space is formed by a set of sequences (of utgfogthL) together with a definition
of distance between sequences. An appropriate definitigivés by the Hamming distance
For a binary alphabet, sequence space can be visualisedLadiarensional hypercube (Figure
3.1). Once we have defined the sequence space, the missimgeent of a fitness landscape
is @ mapping from sequences to real numbers. These numbastiraghe sequences ability to
perform a given function.

0000
I, )

0 00 01 000 001

D )
® 100 101

010 011
O
1 10 11
110
111 1111

G

Figure 3.1:Visualising sequence space. Hypercubes for sequencehiengt 1 throughL = 4. Edges
connect sequences of Hamming distance one.

3.1.2 Fitness Landscapes in Evolutionary Computation

The fitness landscape metaphor can be used for search irajeB®en an optimisation problem,
the set of possible solutions can be coded using stringeoif@lly) fixed length from some finite

1The Hamming distance counts the number of positions whesseguences differ.
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alphabet. This encoding generatespresentation spacevhich is a high dimensional space of all
possible strings of a given length. There is als@aghbourhood relatiothat defines which points
in the representation space are connected. This relatipendis on the specific search operator
(e.g. mutation) or combination of operators (e.g. mutasiod recombination), used to search the
space. Finally, there is a fitness function that assignsesktmalue to each possible string or point
in the space (Hordijk, 1997). To summarise, a fitness larmisissdefined by:

1. Arepresentation space (all possible strings in the engdd
2. A neighbourhood relation denoting which points in theespntation space are neighbours

3. Afitness function that assigns a fitness value to each pothe space

3.1.3 Properties of Fitness Landscapes

In the context of evolutionary computation, it is importéamidentify the features of landscapes
that influence the effectiveness of evolutionary searclthmowledge may be helpful for both
predicting the performance and improving the design of EA® following properties are known
to have a strong influence on evolutionary search (Merz &skeben, 1999).

¢ the fitness differences between neighbouring points inghddcaper(ggedness
¢ the number of local optima or peaks in the landscape,
e the distribution of the local optima in the search space, and

¢ the topology of the basins of attraction of the local optima.

An important characteristic of a landscape isitggednesswhich is related to the difficulty
of an optimisation problem for evolutionary algorithms. @tscape where nearby points tend
to have similar fithess values, is callsghooth On such a landscape it will be easy to find good
optima: there will be few peaks, and local information alibetlandscape can be used effectively
to direct the search. On the other hand, a landscape whergynaaints tend to have dissimilar
fitness values, is calledigged On such a landscape it will be difficult to find a good solution
there will be many peaks, and local information becomesvalssble. Hence, the global structure
of a landscape can range from very smooth to very rugged.

Selective Neutrality

The view of adaptive evolution as a hill-climbing process lbmminated evolutionary biology
since the introduction of the fitness landscape metaphoigfw/r1932). The importance k-
lective neutrality” as a factor in evolution has, however, been stressed mogeathgcin partic-
ular from the study of quasispecies (Eigen, 1971; Eigen &uStdr, 1979), and the analysis of
RNA evolution (Fontana & Schuster, 1987; Huynen, 1995).eResh on the evolution of RNA
molecules, both in vitro and through simulation, suggdsts the evolutionary process is shaped
by a high degree of redundancy in sequence-struttuegpings; there are many more sequences

°The Neutral theory of evolution suggests that evolutiomatrnolecular level is dominated by non-adaptive neutral
changes (Kimura, 1982).

3The function of proteins and nucleic acids is determinedhjrt3D structure. The so call@drtiary structure
refers to the looping and folding of the molecule chain bgotruitself.
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than structures, and sequences folding into the same wtetante (almost) randomly distributed in
sequence space. Two consequences of this redundancy amtgnigor evolution. First, the space
of possible structures is covered by small connected regiosequence space. Second, the exis-
tence of extendedeutral networkgi.e. sets of equal-fitness sequences that can reach eaah oth
via elementary genetic variation steps such as point nanatiThese two consequences explain
how evolution in nature can effectively find solutions to gdex problems on very large search
spaces. In the presence of neutral networks, populatiand @eing caught in evolutionary traps
and eventually reach the global optimum through a compalsiteamics of adaptive walks and
random drift (Schuster, 1994). The whole picture can beuragtin the term “smoothness within
ruggedness”, on average the landscape may be very ruggethebe exist paths that percolate
through genotype space on which the structure remainsaredl{Huynen, 1995).

To summarise, this subsection concerning the propertiEsdscapes, distinguishes two im-
portant landscapes features, namely, (i) ruggedness,iiametrality. These features will be
considered when selecting the fithess landscapes used asaielems throughout this disserta-
tion (Section 3.2).

3.1.4 Landscape Analysis Techniques

This section briefly describes various techniques for dhgithe structure of landscapes. The
global structure of landscapes can be mathematically sgpdeby the landscaperrelation struc-
ture, which is determined by the fitness differences betweenhfeigring points. Small differ-
ences give a highly correlated landscape, while largereiffees give an uncorrelated landscape.
In between, there is a whole range of more or less correlatedstapes. From this correlation
structure, ecorrelation lengthcan be derived. The correlation length measures the lafdisst
tance” between two points at which the fitness of one poifitstivides information about the
expected fitness of the other point. Several methods for umieasthe correlation structure and
correlation length of a fitness landscape have been propogkd literature (Weinberger, 1990;
Lipsitch, 1991; Manderick et al., 1991; Hordijk, 1997).

Measuring the correlation characteristics of a fithessdaaple is an easy and reliable way to
assess its ruggedness. However, the correlation measungdggeneralised and often insuffi-
cient information about the landscape structure. Vasdiegarty, and Miller (2000) proposed a
newinformation analysi®f fithess landscapes. They defined and studied three bésimition
characteristics of landscapes: information content,igartformation content, and information
stability. This information analysis is different from ethstatistical approaches, and gives us a
notion of the interplay between the smooth, rugged, andrflattfal) landscape areas.

The following section will describe the landscapes usedeas firoblems in the empirical
chapters of this dissertation. A justification of the parae choices of test problems will also be
provided.

3.2 Test Problems

This section describes the test problems used in this tisiser. First, a group of abstract fit-
ness landscapes were selected: Royal Staircase funchidhtandscapes, andNK landscapes
with neutrality NKF). This selection is consistent with the belief, held in tthissertation, that
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ruggedness and neutrality are two important landscaperésatound in real-world applications.
The Royal Staircase family of functions is a very simple glagfunctions that allows neutrality
to be modelled and tuned. TINK family of landscapes is a problem-independent model for con
structing landscapes that can gradually be tuned from dmtoougged. Finally, th&lKF family

of landscapes allows both ruggedness and neutrality todmbughly tuned. By using these three
abstract models, a wide range of landscape structures caxph®ed, some of which might share
features with landscapes from practical applications.

Second, in order to study whether the issues explored indibigertation carried over from
abstract landscapes to real-world applications, twowaald domains were selected: a combina-
torial optimisation problem — the Multiple Knapsack pramleand an engineering problem —
the design of an optimal aircraft Wing-Box. This selectioasssomewhat arbitrary, but again is
consistent with the following criteria. First, both are qaex problems: the Wing-Box is an engi-
neering design problem based on real data and constramdtsha Multiple Knapsack is a highly
constrained combinatorial optimisation problem known éod\t>-hard. Second, both problems
were available and relatively easy to implement, and ttiadlh have a natural bit string encoding
which was a requirement for the study of error thresholdsdi#@hally, the Wing-Box problem,
as originally designed, has a redundant encoding whiclwatidhe study of neutrality in a real-
world domain. A non-redundant encoding of this problem was proposed and tested with the
purpose of comparing results with both type of encodings.

It is worth observing, however, that other real-world peshs may have very different char-
acteristics from these two problems selected here.

3.2.1 Abstract Fitness Landscapes

Royal Staircase Functions

The Royal Staircasé class of functions was proposed by van Nimwegen and Cruld{fi®98)
for analysing epochal evolutionary search. They justiBittiparticular choice of fitness function
both in terms of biological motivations and artificial evitin issues. Although simple, Royal
Staircase functions capture some essential elements fmundmplex problems, namely, highly
degenerate genotype-to-phenotype maps, and the existtextended neutral networks (defined
in Section 3.1.3). The working hypothesis is that many reafeh problems have genotype search
spaces which decompose into a number of such neutral netwbhnks idea is supported by obser-
vations in problem domains as diverse as molecular folddupster, 1994), evolvable hardware
(Harvey & Thompson, 1996; Vassilev, Miller, & Fogarty, 1998nd evolutionary robotics (Har-
vey et al., 1997). One symptom of evolutionary search in tleegnce of neutral networks is the
existence of long periods of fithess stasis (search alongiaateetwork) punctuated by occa-
sional fitness leaps (transitions to a higher neutral ndtyvdrhe Royal Staircase class of fithess
functions capture these essential elements in a simplified {van Nimwegen & Crutchfield,
1998). A formal definition of the Royal Staircase class ofchions is given below.

1. Genotypes are specified by binary strigss;s,...s., S € {0,1}, of lengthL = NK, where
N is the number of blocks and the number of bits per block.

2. Starting from the first position, the numlés) of consecutive 1s in a string is counted.

4These functions are related to the more famiRayal Roadunctions (Mitchell et al., 1992).
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3. The fitnessf(s) of strings with 1(s) consecutive ones, followed by a zero,fis) = 1+
|1(s)/K|. The fitness is thus an integer between 1 Aind 1, corresponding to 1 plus the
number of consecutive fully-set blocks starting from tHe le

4. The single global optimum &= 1-; namely, the string of all 1s.

Fixing N andK determines a particular problem or fitness landscape. Asamp@e, Table
3.1 provides an exhaustive listing of a simple Royal Staedanction withN = 2, K = 2.

String  Fitness
1111 3

1100
1101
1110
0100
0101
0110
0111
1000
1001
1010
1011
0000
0001
0010
0011

P P PP R R RRRRRERERNMNODDN

Table 3.1:Exhaustive listing of a simple Royal Staircase functiorwitimber of block® = 2, and block
sizeK = 2. The single optimum is the string of all 1s.

NK Landscapes

The NK family of landscapes was introduced by Kauffman (1989) iteorto have a problem-
independent model for constructing fitness landscapesc#mgradually be tuned from smooth
to rugged. In theNK model,N refers to the number of genes in the genotype (i.e. the string
length) andK, to the number of genes that influence a particular geireother words, the fitness
contribution of each gene is determined by the gene itsal Igl other genes in the genotype.
According to Kauffman, most properties of this model areejpehdent of the alphabet si2e
hence the simplest caseAdt= 2 (i.e. bit strings) is here considered.

The fitness of a bit string of lengthN is determined as follows. Every Litcontributes to
the total fithess of the string. The fitness contributiéi ¢f each bit depends on its value (0
or 1), and on the value df other bits in the string (& K < N—1). These dependencies are
called epistatic interactions Hence, the fitness contribution of one bit depends on theevet
K + 1 bits, giving rise to 2+ possibilities, called neighbourhood configurations. Eefcthese

S5Notice that the meaning of parametarandK differs from their meaning on the Royal Staircase classuétions.
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configurations is assigned a random number uniformly thisteid over{0.0,1.0]. Therefore, the
fitness contributiorf; of each biti (0 < i < N) is specified by a lookup table of‘2* random
numbers between 0.0 and 1.0. To compute the fitness of thre strings, the fitness contribution
from each bit is averaged as follows:

1 N
f(s9)= 3. 6 3.1)

For a given bit, the set oK epistatic interactions may be either randomly selectednsist
of the immediately adjacent bits. Here, the second modehtefactions (nearest neighbour) is
considered.

Figure 3.2 and Table 3.2 give an example ®fl& landscape instance witlh = 5 andK = 2.
Bit interactions follow the nearest neighbour model, wheegenotype forms a torus. Therefore,
the first bit is linked to the last and second bits; the secahdinked to the first and third;
and so on (Figure 3.2). Table 3.2 (the lookup table) showditiess contribution of each bit as
determined by its value and the value of the two bits to whitias interactions.

Neighbourhood Bit; Bito Bits Bity Bitg
000 0.968| 0.067| 0.345| 0.653| 0.854
001 0.267| 0.576| 0.021| 0.275| 0.073
010 0.288| 0.174| 0.511| 0.793| 0.139
011 0.915| 0.986| 0.912| 0.287 | 0.913
100 0.302| 0.457| 0.521| 0.245]| 0.456
101 0.128| 0.233| 0.604 | 0.754 | 0.543
110 0.698| 0.645| 0.400| 0.237]| 0.141
111 0.936| 0.112| 0.313| 0.432| 0.834

Table 3.2:Lookup table oNK landscape instancdl(= 5,K = 2).

Bitl =—= Bit2<—= Bit3—> Bit4&—= Bit5

Figure 3.2:Nearest neighbour epistatic interactioNX landscapeN = 5,K = 2).

As an example of how to compute the fithess of a genotype usiokup Table 3.2, let us
consider the string ‘00010’. Table 3.3 shows both the neighitood configuration and fithess
contribution of each bit in ‘00010’ (following lookup Tab&?2). The fitness of the entire string is
then computed using Equation 3.1 producing 0.461.

By increasing the value df from O toN — 1, NK landscapes can be tuned from smooth to
rugged. WherK is small, neighbouring strings will have small differenéeditness, because
the bits that are different in the two strings will influendee tcontribution of only few bits in
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Bit Position | Value | Neighbourhood Contribution
1 0 000 0.968
2 0 000 0.067
3 0 001 0.021
4 1 010 0.793
5 0 100 0.456

Table 3.3:Calculating the fitness of ‘00010’. Neighbourhood configioraand fitness contribution of
each bit according to lookup Table 3.2.

each string. The extreme casekot 0 yields a single-peaked and smooth ‘Fujiyama’ landscape.
WhenK is large, on the other hand, neighbouring strings will hargé differences in fitness,
because the differing bits of the two strings will influenbe fitness of a large number of bits
in each string. WherK assumes its largest possible vallke£ N — 1), the fitness landscape
will be completely random or “uncorrelated”, because climgthe value of only one bit changes
the fitness contribution of all bits in the string, so the @a¥eiitness of neighbouring strings will
be totally different. TheNK landscape, however, was invented not to explore the twemer
landscapes, but to have a model which allows the construcfi@an ordered family of tunable
correlated landscapes.

NK Landscapes with Neutrality (NKF Landscapes)

Newman and Engelhardt (1997) introduced a family of lanplesavith a tunable degree of neu-
trality (let us call it theNKF model). A similar tunable model with neutralitil K p model) was
also proposed by Barnett (1997). TRN&KF model is a generalisation of KauffmamK landscape
described above. Every himakes a contributiof to the fitness of the stringg The magnitude of
this contribution depends on its value and the valulé okighbouring bits. For a binary alphabet,
there are +1 possible neighbourhood configurations, and herfce possible values of;. As

in Kauffman’sNK model, these values are selected at random. However, iNkhmodel, the
values are random real numbers in the interv@l0 fj < 1.0, whereas in th& KF model the
values aréntegersin the range G< f; < F. For example, ifF = 2, each contributiorf; is either
zero or one. To compute the fitness of the entire stjrige fitness contribution from each bit is
averaged as follows:

1 N
(&= gr g (3.2)

The fitness of all strings thus falls in the interval [0,1]datfiere areNF — N + 1 possible
values in this range. In the limit whefe — o, the probability that two sequences have the same
fitness becomes vanishing small, so the model has no néytmad is equivalent to thdK model.
However, wherf is finite, the probability of two sequences having the samed# is finite. So the
model has neutrality, and the degree of neutrality inciease decreases. Neutrality is greatest
whenF takes the smallest possible value of 2.
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3.2.2 Real-World Domains
Two real-world domains were selected as test problems. @reegescribed below.

Multiple Knapsack Problem

The combinatorial optimisation problem described heréedahe 1/0 multiple knapsack problem,
follows the specifications given by Khuri et al. (1994). Thisblem is a generalisation of the 0/1
simple Knapsack problem where a single knapsack of cap@ciéydn objects are given. Each
object has a weighw; and a profitp;. The objective is to fill the knapsack with objects producing
the maximum profiP. In other words, to find a vector= (xg,Xo,...,%n) Wwherex € {0,1}, such
thaty L, wix < Cand for whichP(x) = ¥iL, pix is maximised.

The multiple version consists @f knapsacks of capacitiag, c,,...,Ccyn andn objects with
profits p1, po,..., pn. Each object ham possible weights: objectweighswi; when considered
for inclusion in knapsack (1 < j < m). Again, the objective is to find a vect®e= (x1,X2,...,%n)
that guarantees that no knapsack is overfillgfl:; wijx < c; for j = 1,2,...,m; and that yields
maximum profitP(x) = YiL; pix. A formal definition of the 1/0 multiple knapsack problem is
given below:

Problem instance:

Knapsacks: 12,...,m

Capacitiescy, Cy,...,Cm

Objects: 12,...,n

Profits: p1, p2, ..., Pn

Weights:wij, Woj,...,Wahj(1 < j <m)

Capacities and profits are positive numbers while weiglgsiannegative.
Feasible solution:A vectorx = (X1, Xz, ..., %n) wherex; € {0,1} such that:

SLiwijx <cjforj=1,2.....m

Objective function: A function P(x) = S, piXi, wherex = (X1,%2,...,%y) is a feasible
vector.

Optimal Solution: A feasible vector that gives the maximal profit; i.e. that ma@ges the
objective function.

This problem leads naturally to a binary encoding. Eachgiix, . . . X, represents a potential
solution. If theith position has the value 1 (i.&. = 1) then thath object is in all knapsacks; other-
wise, itis not. Notice that a string may represent an infdasiolution. A vectok = (Xq, X2, . .., Xn)
that overfills at least one of the knapsacks; i.e., for wiith wijx > ¢; for some 1< j <m, is
an infeasible string. Rather than discarding infeasibiags and thus ignore infeasible regions
of the search space, the approach suggested by Khuri e984)1s to allow infeasible strings
to join the population. A penalty term reduces the fithessif#asible strings. The farther away
from feasibility, the higher the penalty term of a string.uBhthe following fitness function was
defined §is the number of overfilled knapsacks):
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f(x):_ipixi—sx max pi) (3.3)

Hence, the fitness function uses a graded penaltyteaxip; ). The number of times this term
is subtracted from the fitness of a infeasible solution issétpithe number of overfilled knapsacks
that solution produces.

Wing-Box Problem

The Wing-Box problem was formulated as part of the GenetigoAthms in Manufacturing
Engineering (GAME) project at COGS, University of SusseXAn industrial partner, British
Aerospace, provided data from a real Airbus wing-box. A camrproblem faced in the de-
sign of aircraft structures is to define structures of mimmweight that can withstand a given
load. Figure 3.3 sketches the elements of a wing relevammisgptoblem. The wing is supported
at regular intervals by slid ribs, which run parallel to the@ft's fuselage. On the upper part
of the wing, thin metal panels cover the gap separating edjats. The objective is to find the
number of panels and the thickness of each of these pandksmimimising the mass of the wing
and ensuring that none of the panels buckle under maximumatpeal stresses. More details,
and the equations for calculating the fitness function, @fobnd in Mcllhagga et al. (1996).

Fuselage

Top panel
Ribs

Cavity Rib pitch

Figure 3.3:Relevant elements of a wing for the Wing-Box problem. Winmelnsions are fixed. The
variable elements are the number of ribs and the thicknespgfanels.

A full description of a potential solution to the Wing-Boxglolem requires the definition of the
number of paneldl and the thickness of each panel. A constraint of the probdetimat adjacent
panels should not differ in thickness by more than 0.25 mne Simplest way to accomplish this
is to encode the differences in thickness between adjaegr@prather than the absolute thickness
of the panels. This design decision, and the Delta encodisgribed bellow, were proposed by
Mcllhagga et al. (1996) in the original definition of the plein. Figure 3.4 illustrates the problem
representation. Delta dtth Panel denotes the amount by which the thickness oitthpanel is
bigger or smaller than thig — 1)th panel.

Shttp://www.cogs.susx.ac.uk/projects/game/
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Thickness of Delta of Delta of o Delta of
1st Panel 2nd Panel 3rd Panel Nth Panel

Figure 3.4:Delta encoding. Genetic representation of the wing pamrseEor the first panel, the absolute
thickness is encoded, whereas for the other panels thedtiffes in thickness between adjacent panels
(Deltas) are encoded.

According to the problem specifications, the thickness effitst panel can vary between 8
and 15 mm by steps of 18 mm. This requires % 10° = 7,000 values which can be represented
with a minimum of 13 bits. But 13 bits can encode 8,192 possiallues, so some thickness
are represented by more than one binary sequence. Thiduets an amount of redundancy in
the genotype to phenotype mapping. For all subsegNent panels, the difference in thickness
relative to the previous panel is encoded. According to rfearturing tolerance considerations,
only five values are allowed for these differences in thicdetg —0.25, —0.125,0.0,0.125,0.25}
(measured in mm). Three bits are needed to encode these lines weith the following mapping:

Bit String  Delta (in mm)

000 0.25
001 0.125
010 0.0
011 -0.125
100 -0.25
101 0.25
110 0.125
111 0.0

Table 3.4: Redundant mapping of differences in thickness among catiseganels in the Wing-Box
problem.

Notice that this mapping is redundant since two differeiptets represent values 0.25, 0.125,
and 0.0. An alternative non-redundant mapping is also megpbere with the purpose of compar-
ing results with both type of encodings. The number of pdesliiferences in fitness is increased
from five to eight. The values -0.25 and 0.25 are maintainetth@$ower and upper bounds, so
the same space of solutions is explored, but the positifehttie range is split equally between
three values while the negative is split between four (T8u58.

For both encodings, the total number of bits needed to reptes individualis 13 3x N —1,
that is, 13 for the first panel, and 3 for each of the other N+iefsa

3.3 Summary

This chapter introduced the notion of fithess landscapeghalias originally proposed in the
context of organic evolution, but later gained relevandedth molecular evolution and evolution-
ary computation. Hence, evolution (natural or artificilhde seen as an adaptive-walk over a



Clliaptlel 5. rFiticss LallUstadpes allu 1est FTODIClD

Bit String  Delta (in mm)

000 0.25
001 0.166
010 0.0833
011 0.0
100 -0.0625
101 -0.125
110 -0.1875
111 -0.25

Table 3.5:Non-Redundant mapping of differences in thickness amongemutive panels in the Wing-Box
problem.

fitness landscape. Landscapes may differ in their struchenece, Section 3.1.3 discussed some
landscape features that are known to have an influence oaterary search. Among such fea-
turesruggednessandneutrality were distinguished. Thereafter, some techniques for aimagy
the structure of fitness landscapes were briefly discussadi¢g 3.1.4).

The second part of the chapter (Section 3.2) discussedghpreblems used throughout this
dissertation. Two types of test problems were selected,; digroup of abstract fitness landscapes:
Royal Staircase function§JK landscapes, andK landscapes with neutrality (Section 3.2.1).
These families of tunable landscapes allows the exploraifa wide range of landscape struc-
tures with several degrees of ruggedness and neutralitpn8ein order to explore the practical
relevance of the ideas in this thesis, two real-world appilics were selected (Section 3.2.2),
namely, a combinatorial optimisation problem — the Mukiplnapsack problem, and an engi-
neering application — the design of an optimal aircraft WBax. It is worth noticing, however,
that other real-world problems might have very differerdreitteristics from these two problems
selected here.



Chapter 4

Error Thresholds in Genetic Algorithms:
Simple Landscapes

This chapter explores the notions of quasispecies and #gmesholds from molecular evolution
(Section 4.1.1). The Quasispecies model is based on diffatequations and describes the dy-
namics of replicating nucleic acid molecules under the erfiee of mutation and selection (Eigen,
1971; Eigen & Schuster, 1979). As noted in the introducttbeerror thresholdof replication

is an important notion in this model. The error threshold iwitical mutation rate (error rate)
beyond which structures obtained by an evolutionary pmees destroyed more frequently than
selection can reproduce them. With mutation rates abosgectitical value, an optimal sequence
would not be stable in the population.

The quasispecies model, as stated originally, considefedte asexual populations. More
recently, Boerlijst et al. (1996) extended the quasispganiedel by including recombination. Sec-
tion 4.1.3 describes this work in detail. However, resuttned using infinite population models,
cannot be expected to automatically apply to the more teatiase of finite populations. Thus,
Section 4.2 reproduces the experiments by Boerlijst etl@9§) but using a GA — and hence
finite populations — instead of the quasispecies model aanberlying model of evolution. An
additional group of experiments (not presented in Boéwijsal. (1996)) are reported in Section
4.3.4. These experiments incorporate mate selection gndigint an advantage of the GA-based
simulation model over the analytical model, where elimimgthe random-mating assumption
would be very difficult (if possible at all).

To summarise, studies on error thresholds from the liteeatumolecular evolution, are based
on the quasispecies analytical model. Hence, the main parpithe experiments in this chapter
is to explore whether a phenomenon similar to that of erroedholds is observed on evolving
populations of bit strings using a GA (instead of the quasiggs model) as the underlying model
of evolution. This exploration starts by considering twmgle abstract landscapes. It is argued
in this thesis that the notion of error thresholds is of digance for GAs because it determines a
critical upper bound for the balance between explorati@hexploitation in genetic search.
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4.1 Framework

4.1.1 Quasispecies and Error Thresholds

The quasispeciemodel was introduced by Eigen (1971), Eigen and Schustéi9(lié the con-
text of their work on the origin of life. This analytical mdddased on a set of differential
equations, describes the cluster of closely related mi@etspecies’ produced by errors in the
self-replication of macromolecules (nucleic acids).

Given an infinite population on a sequence space (describ&@hapter 3), and a specified
mutation rate governing errors in asexual replication,@aredetermine the stationary distribution
of sequences reached after any transients from some drdjgtabution have died away (Eigen
et al., 1988). Unless the mutation rate is too large or diffees in fithesses too small, the popula-
tion will typically cluster around the fittest sequencefs)ming a concentrated cloud; the average
Hamming distance between two members of such a distribdtemn at random will be relatively
small. This clustered distribution is calledjaasispecies

An important concept in quasispecies theory is the notioarair thresholdof replication.

If replication were error free (i.e. mutation free), no nmitawould arise and evolution would
stop. On the other hand, evolution would also be imposstlitesi error rate of replication were
too high (only few mutations may produce an improvement,nbost will lead to deterioration).

The notion of error threshold allows us to quantify the réaglminimal replication accuracy (i.e.
maximal mutation rate) that still maintains adaptation\{fdk & Schuster, 1992).

Let us consider an extreme fitness landscape of sequendé lenghich contains a single
peak of fitnes® > 1, all other sequences having a fitness of 1. With an infinipufagion, there
is a phase transition at a particular error rptéhe error threshold). This critical error rate was
analytically determined by Eigen and Schuster (1979) aigldefined as the rate above which
the proportion of the infinite population on the peak dropstiance levels. Following Eigen and
Schuster, letj = 1 — p be the per-locus replication accuracy. Then, at the phassition, the
probability of accurate replication of the “master seq@run the peak needs to be balanced by
its superior replication rate, so as to equate with the cafibn of all the other sequences (back-
mutations from these to the master sequence are ignored3, Th

11Lp
oq-=0 {(1— p) p] =1 (4.1)
and if p is very small, we can approximate the contents of the squakets bye™!, which leads
to

p=——" (4.2)

For mutation rates lower than this critical value (the ethweshold) the proportion of master
sequences in the population will build up, giving the quastses centred on the peak.

4.1.2 Error Thresholds in Finite Asexual Populations

The quasispecies model, as stated originally, considefedte asexual populations. Later on,
Nowak and Schuster (1989) extended the calculations of fifee threshold on a single peak
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landscape tdinite populations. Finite populations lose grip on the solitguke of superior fithess
easily because of the added hazard of natural fluctuatidhisinase. In Ochoa and Harvey (1998),
we derived a reformulation of the Nowak and Schuster aradéxpression. This reformulation,
reproduced below, explicitly approximates the extent efréduction in the error threshold as we
move from infinite to finite populations.

Nowak and Schuster (1989) extended the calculations of giresholds froninfinite to
finite asexually replicating populations. Their main result isganted as follows:

The error threshold can be expanded in a power series of¢iproeal square
root of the population size, and this increases witk/ Nl in sufficiently large
populations.

More precisely, the reciprocal square root factor appbethedifferencebetween the crit
ical replication accuracyper-locus in an infinite populatiosmin( ), and the equivalerty
in a population siz&l. The reference is to the second term in the following exmansin
the assumption that the third and subsequent terms are/egfansignificant and can be
ignored (Nowak & Schuster, 1989).

201 L2A0-1)  (o- 1)%/2 +.. ) (4.3)

In many practical circumstances the selection stregthay lie between 1 and 5; this
implies, for values oN > 100 and ofL > 10, thatgy should differ fromg. by only of
the order of 4% or less. However, error thresholds are usustkoned in terms of critica
error ratesp = 1 — q per-locus; and it turns out that the proportional changesritical
values ofp are much more significant in finite populations than the proopioal changes i
g. Nowak and Schuster (1989) introduced equation 4.3. Hezalaxive a reformulation ¢
this equation, which makes explicit the reduction in théi@l mutation rate as we move
from an infinite to a finite population of sid¢. In other words, instead of calculating the
critical replication accuracy(qy), we calculate the criticarror rate (py):

S—S

Po— PN _ 2V0—1(1- o)

Pes Lv/Npe.
ignoring further terms in the expansion. Using Equationtd.8ubstitute fomp.,, we have
the proportional reduction in the error threshold:

(4.4)

Po—pPn _ 2/0-1 (ml 1) (4.5)

Peo VN (o) L
For large values ok the second term in the bracket is relatively insignificard aan be
eliminated producing:
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Po—Pn  2V0-1 (4.6)
Peo In(o)vN
Alternatively, equation (4.5), can be presented as:
In(c) 2vo-1 2n(o)yo-1
PN = - + (4.7)
L LvN L2y/N

Thus, the error threshold for finite populations decreaststive size of the population, given
that the second term is subtracting and is the greatest skties (except the first term).

4.1.3 Viral Quasispecies and Recombination

Most mathematical models describing quasispecies focugoimt mutations as the principal
source of variation. However, Boerlijst et al. (1996) prepd a mathematical model of qua-
sispecies which incorporates both mutation and recomibimatin particular, they study virus

populations, which can be modelled as quasispecies. \drageinfectious agents found in all
life forms (plants, animals, fungi and bacteria). A virustjzde consist of a core of nucleic acid,
which may be DNA or RNA, surrounded by a protein coat. Cent@inses named “retro-viruses”

(e.g. HIV) can recombine their genetic material. They cang copies of their genome in every
virus particle, thus, recombination may occur when twoidcststrains of the same virus simul-
taneously infect a single cell. The model of Boerlijst et apecifically deals with retrovirus

recombination. They first considered viral quasispecigbauit recombination. In their model,

distinct viral strains were represented by bit strings nfaL. A set of differential equations (see
box below) described the change in uninfected cgliafected cells; and free viruses;.

dx

& = )\—5X—XZIBiVi (4.1)
dy,

—d)t/ = X;Qijﬁivi_aiyi (4.2)
avi Ly

at Kiyi — Ui Vi (4.3)

In this modelA is the influx rate of uninfected cells), & andu; are the death rates ¢
respectively, uninfected cells, infected cells, and frzas; 3; is the infection ratek; the
production rate of new free virus; ai@; is the probability of strairj mutating to strain.
The mutation matrix is given by:

-

Qj = pM(1—pt (4.4)

Herepis the mutation rate per bit,is the bit string length, anl;; is the Hamming distange

between stringsandj. Error free replication is given b@;; = (1— p)*.
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The next paragraph describes the results obtained withmbigel without recombination.
Following the notation of Boerlijst et alp stands for the mutation rate per bit, wherpasdicates
the critical mutation rate (or error threshold).

Without mutation p = 0), the strain (or sequence) with the largesgiroductive ratio(or fit-
ness)R; will out-compete all other sequences. However, with mata{p > 0) there is a critical
error rate,p;, beyond which the sequence with the highess no longer preferentially selected.
A single peak fitness landscape is considered where a segjfieri@as the highest fitne%, and
all other sequences have the same, but lower, fitReHsp < pc, the quasispecies will be centred
around the fittest sequende, which will be the most abundant. However,pf> pc, the fittest
sequencel-, will not be preferentially selected and each virus segeeritt have essentially the
same relative abundance. This phenomenon is known as tirdtereshold (Section 4.1.1).

A Basic Principle of Recombination

Before including recombination in the model, Boerlijst etdiscussed a relation which holds for
any type of recombination, and turns out to be an important efdrfee understanding the effect
of recombination on error thresholds.

Consider two sequenceand j with a genetic distance; (for a bit string modet);;
is the Hamming distance). Assume that these sequences bigeoio produce an
offspringk. If recombination is the only source of variation, we have

dik‘|‘djk = dij-
The genetic difference between the parents equals the stine gienetic difference
between offspring and each of the parents. This relatiomprtant for our under-

standing of recombination. It shows that in sequence spmembination is always
inwards pointing [(Boerlijst et al., 1996), p. 1578].

To illustrate this principle, consider the following exalep

i 1001011101j: 0000000000q;; = 6
k: 0001001101, is one possible product of uniform recomimndietweeri andj.
dk =2,djk = 4,di +djx = 4 + 2 =6 =d

Bit string recombination model

Boerlijst et al. (1996) extended the mathematical modehiojuiding recombination. They intro-
duced variables for double infected cells and for viruseslpced by these cells. Double infected
cellsy;; are those infected by two strainand j. vij represents the free virus produced by these
double infected cells, of which 25% will be homozygous typ25% will be homozygous typg

and 50% will be heterozygous (i.e. will have onend onej strain). Due to this characteristic of
the model, the recombination ratdhas a maximum at = 0.5, because only heterozygous virus
particles can (effectively) recombine. To model recombara‘uniform crossover’ (Syswerda,
1989) was used. The new set of equations is shown in the bofotlwavs.
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dx

5 = A —dx—xV (4.5)
% = XM —ay, —syV (4.6)
% = SYVj—ayyi (4.7)
% — kyi—uv (4.8)
% = k¥ — Ui (4.9)

Heres is the rate of double-infectio®, = 3; Bjvi + ¥;; Bijvij is the sum of all infectious
virusanaVi = 3 ; Qij Bjvj + ¥ j Qij Y1 Mjki BuiVii is the sum of infectious virus of typeafter
mutation and recombination, witl  being the probability of straik andl recombining
to strainj. All other variables and parameters are as described irtiegsd4.1)—(4.3).

The authors studied the steady state structure of the piguiesing the new model including
recombination. The following simulation parameters wesedi string length of 15 and recom-
bination rate ofr = 0.5. Two abstract fithess landscapes, (a) Single peak and g®aRl, were
considered.

(a) Single peak landscapé-irst, the case where only one sequeRckas an increased fitness,
was studied. This single bit string has fitnégs= 5, whereas all other sequences have
fithnessR; = 3.5. The steady state distribution of sequences for this Eapks shows that,
for an error rate ofp = 0.007, the population with recombination (compared agaimst t
population without recombination) is more compact in tharé are less distant sequences;
but there is also less of sequerfee This effect of recombination can be understood as
follows. Most of the population is of sequenkEe If sequencd- recombines with e.g. a
sequence in Hamming distance class 8, then the offsprisgaiigwhere betweelk and
Hg (according to the basic principle of recombination disedsabove). However, for a
slightly increased error rate @f = 0.008, recombination drives the population beyond the
error threshold, resulting in an almost uniform distribatiof sequences. This behaviour
is qualitatively similar to that obtained empirically ugia GA for finite populations (Sec-
tion 4.2), thus Figure 4.1 illustrates similar distributgy although for different mutation
values. Thus, where recombination acts as a convergingumpexhenF is involved, it
acts as a diverging operator in other cases. If, for instam@esequence ikl, recombine,
the product lies anywhere betweEnandHg. Recombination introduces instability to the
population composition; it shifts the error threshold, &utow mutation rates, it can make
the population more compact.

(b) Plateau landscapen the single peak landscape, recombination is disadvantagfor the
virus, because it decreases the abundané€earid introduces instability to the population
(shifts the error threshold towards lower mutation rategcdnbination, however, can be
advantageous in the case of correlated landscape. Coassiteiation, where the fithess of
sequences close by the fittest striags increased t&®y, = 4.8, andRy, = 4.6 . WhereH;
is the set of all sequences with a Hamming distance of 1 frafittest string~, andH>
the set of all sequences with a Hamming distance of 2 frorin this case, the steady state
distribution of sequences shows that, before the errositiule atp = 0.011, the population
with recombination is again more compact, and it has moresahiass’ in the middle of the
fithess plateau. However, if the error rate is increasedcattain point (aroung = 0.015),
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and fairly suddenly, recombination can no longer keep thgufagion in the middle of the
fitness plateau (Figure 4.2 mirrors these results, althdaghlifferent mutation values).
Notice that, in this scenario, recombination increaseathendance of the fittest sequence
F (Figure 4.2 (a)). Thus, recombination may be advantagentietvirus but only for small
mutation rates (below the error threshold).

Boerlijst et al. main conclusions may be summarised asvisio

¢ For small mutation rates (i.e. below the error threshokf)pmbination can focus the qua-
sispecies around a fitness optimum.

¢ Recombination shifts the error threshold to lower mutatmtes, and makes the transition
sharper.

¢ Recombination is advantageous (in the sense that it ineseasth the proportion of the
fittest string in the population, and the average fitness @igpopulation) if fithess is more
correlated (as in the plateau landscape) and if the mutedteris sufficiently small.

Finally, the authors report (although not showing the rfs3dhat they have extensively tested
the bit string model for other fitness distributions suchsamdoth’ fithess peaks, multiple peaks
and random distributions; looked into alternatives to amf crossover, such as one-point and
multi-point crossover; and that in all these cases, the roairclusion holds — recombination
shifts the error threshold towards lower mutation ratesraakes the transition sharper.

4.2 Experiments

The previous section described results obtained with thé/aoal quasispecies model, including
both mutation and recombination for infinite populationscontrast, the experiments described
in this section use a GA and hence finite populations, as tterlying model of evolution. These
experiments reproduce the study described above, now isciario of discrete finite popula-
tions.

All the experiments used a generational GA with fithess pridmaal selection. The genetic
operations were uniform crossover and the standard bittraatarhe GA was run in two modes
Asexual using mutation only; an&exual using both mutation and recombination. The land-
scapes explored were those described in the previous s€tti® single peak and plateau land-
scapes). For the purposes of the simulation, the fittestgstf, was always the string of all Os
(000000000000000) with no loss of generality. Any othershiing is referred to as a ‘mutant’,
and belongs to one of the Hamming distance clasisesherei is the Hamming distanééo F. In
the simulations, the initial population was generatedceaéhtly for each landscape. For the single
peak landscape, around 50% of the population was set on #diegral the rest was randomly
generated. For the plateau landscape, 25% was set on the2péalon theH; compartment, 25%
on theH, compartment, and the rest was randomly generated. Two gii@ukizes were tested
(100 and 1000), with the aim of studying the effect of pogolasize on the magnitude of error
thresholds. The per bit mutation rgpewas varied fromp = 0.005 top = 0.04, with a step size
of 0.005. The number of generations per GA run was 500. This vahsempirically selected;

1Given that theF is the string of all Os, the Hamming distance from a givemgttbF is the number of ones in that
bit string.
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the distribution of sequences was fairly stable by this poirall cases. Each experiment was
run 50 times and the results were averaged. Table 4.1 suserdlie GA parameters used in the
simulations.

Chromosome length 15
Population size 100, 1000
Recombination rate | 0.0 (Asexual), 0.5 (Sexual)
Mutation rate (per bit) 0.005 to 0.04, Step = 0.005
Generations 500
Trials per GA run 50

Table 4.1.GA parameters used in the simulations.

4.3 Results

The empirical results using the GA model (for finite popwas) mirrored qualitatively those
produced by Boerlijst et al. for infinite populations (delsed in Section 4.1.3). However, error
thresholds for finite populations were, in all scenariosidpthan for the infinite case. The fol-
lowing subsections discuss the results obtained with thesi@Alation model on both the single
peak and plateau landscapes.

4.3.1 Single Peak Landscape

Figure 4.1 show the distribution of sequences, above arahdtle error threshold of the sexual
population, on the single peak landscape for a populatizengfi1000. These plots, using logarith-
mic scale for the vertical axis, are almost mirror imagesose shown in (Boerlijst et al. (1996),
p. 1579) for infinite populations. Figure 4.1(a) shows tterthution of sequences for an error rate
of p = 0.01, with and without recombination. As for the infinite pogtibn (Section 4.1.3), the
sexual population is, in some sense, more compact (lesssdjyehere are fewer distant mutants,
but there is also fewer of sequeriee On the other hand, Figure 4.1(b) shows that for a slightly
increased error ratg(= 0.015) recombination drives the population beyond the eheshold,
resulting in an almost uniform distribution of sequencedthdugh the majority of the sexual
population lies in théH7; and Hg compartments, it is because these contain the most segjence
each distinct single sequence has approximately the saopenpion in the population. In other
words, although the distribution of sequences for the dgxojpulation has a curved shape, it is
really representing a uniform distribution of sequencele &xplanation suggested by Boerlijst
and co-workers for this effect of recombination has alrdaelyn discussed in Section 4.1.3.

4.3.2 Plateau Landscape

Figure 4.2(a) shows the distribution of sequences in thie@lalandscape for an error rgie=
0.02, using a linear scale. Notice that, for both sexual anxiedeeproduction, the majority of the
population now lies in thél, compartment. Recombination between tpsequences generates
offspring anywhere betwedn andH4. Recombination thus shifts part of the population back to
the middle of the fitness plateau. However, for a slightly@ased error ratgy = 0.025 (Figure
4.2(b)), recombination drives the population beyond therahreshold.
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Figure 4.1: Effect of recombination on the error threshold (single pkaidscape). Population size =
1000, recombination rate = 0.5. A logarithmic scale is usadilie vertical axis. (a) Below the error
threshold p = 0.01) the sexual population is more compact. (b) For a slighttyeased per bit mutation

ratep = 0.015, recombination can push the population over the errestold.H; denotes the sum of all

mutants with a Hamming distancéo F (the fittest string).

4.3.3 Population Size and the Magnitude of the Error Threshil

In contrast to infinite populations, when studying erroetirolds for finite populations, it is im-
portant to explore the effect of the population size on thgmitade of error thresholds. Thus,
experiments in this section explore error thresholds fgruybation sizes of 100 and 1000. Fig-
ures 4.3 and 4.4 show error thresholds on both the singlegreéblateau landscapes for the two
population sizes studied (100 and 1000), respectively.

For infinite populations on a single peak landscape, the itlefinof the error threshold is
straight forward (there is a clear phase transition). H@rewis is not the case for finite popula-
tions where the transition is less sharp. Moreover, if fisnesmore correlated, as in the plateau
landscape, the transition is even less noticeable. Nealegh, an error threshold can be identified
visually for finite populations, with some degree of uncerttg as the mutation rate just before
the error classes become equally distributed (i.e. ths lb@eome parallel) (Figures 4.3 and 4.4).
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Figure 4.2:Effect of recombination on the error threshold (plateaw$mape). Population size = 1000,
recombination rate = 0.5. Alinear scale is used for the wakrtixis. (a) Below the error thresholol£ 0.02)

the sexual population is again more compact, and it has nidtseroass in the middle of the fitness plateau.
(b) For a slightly increased mutation rgte= 0.025, recombination can no longer keep the population in
the middle of the fitness plateau.

Single Peak Plateau
100 1000 o0 100 | 1000 | o
Asexual | 0.015 (0.0153) 0.020 (0.0211) (0.0238)|| 0.030| 0.035| 0.05
Sexual | 0.010 0.010 0.0075 || 0.020| 0.020| 0.011

Table 4.2: Error thresholds for finite populations (sizes 100 and 1@0®@) infinite populations on both
the single peak and plateau landscapes. Values were adbfadme three sources: (1) empirically using the
GA model (shown in normal font), (2) using analytical Eqoas (shown in brackets), and (3) using the
guasispecies analytical model (shown in bold font).

Table 4.2 reports error threshold values for finite popafei(sizes 100 and 1000) and infinite
populations on both the single peak and plateau landscafssges in the table were obtained
from three different sources:



Cliaptel 4. O 11resliolds I selrietc AIgoritniltls. SliTipatidsCapes 40

(a) Asexual. Single Peak (b) Sexual. Single Peak
1.0 1.04
0.9 0.9
0.8 0.8
0.7
0.6
05
0.4
0.3
02{—

01

00 4= 7 = : 0
0.00 0010 0015 0020 0025 0030 0035 0040 0005

0.015 0.020 0.025 0.030 0.035 0.040

(c) Asexual. Plateau (d) Sexual. Plateau

05 05
H2

_HL

H1 ~
0.3 N 03

L

00 = : = - - - 00 F——— - 2 =
0005 0010 0015 0020 0025 0030 0035 0040 0005 0010 0015 0020 0025 0030 0035 0040

Figure 4.3:Distribution of sequences for a population of size 100. Fthlasexual and sexual populations
in the two abstract landscapes studied. The per bit mutagitenvaries from 0.005 to 0.04 with a step of
0.005. An error threshold can be identified visually as théation rate just before the error classes become
equally distributed (the lines become parallel). Vertiagls shows population fractions, horizontal axis
shows per bit mutation rates. The fittest strih@nd error classed; andH; are indicated in the plots.

1. For finite populations, error thresholds were empincaditimated to the nearest step size of
0.005. These values were identified visually from Figur8said 4.4 as described above.

2. For an infinite asexual population on the single peak leayoks, the error threshold was
calculated analytically using Equation 4.2. Similarlyr &sexual populations of size 100
and 1000 on the single peak landscape, error thresholdscalerdated using Equation 4.7.
These values are shown in brackets.

3. For infinite sexual populations on both landscapes stiydigd infinite asexual populations
on the plateau landscape, error threshold values were takarBoerlijst et al. (1996). The
authors obtained these values by running their analyticasigpecies model (described in
Section 4.1.3). These values are shown in bold font.

Notice that empirical error thresholds for finite asexugbylations (sizes 100 and 1000) on
the single peak landscape, have a very good agreement withetiical values for this landscape
calculated using Equation 4.7 (shown in brackets), whididlates the empirical approach.

The major trends in Figures 4.3 and 4.4; and Table 4.2, canhenarised as follows:

¢ Error thresholds for sexual populations are, in all scasatower than for asexual popula-
tions.
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Figure 4.4:Distribution of sequences for a population of size 1000. ath asexual and sexual popula-
tions in the two abstract landscapes studied. The per batoutrate varies from 0.005 to 0.04 with a step
of 0.005. Vertical axis shows population fractions, honitad axis shows per bit mutation rates.

¢ For asexual populations, the larger the population thedrigte error threshold.

¢ Error thresholds, in all scenarios, are higher on the monelzded fitness landscape studied
(the plateau landscape).

¢ Thetransition in the distribution of sequences around e éhresholdis sharper for sexual
populations as compared to asexual populations.

4.3.4 Mate Selection and the Magnitude of the Error Threshal

In nature, mating is rarely random. Instead, organismsiafedect their mates following certain
criteria. When choice of mates is based on phenotype, miticajledassortativgHart & Clark,
1997). In positive assortative mating (often called simgdgortative mating), individuals tend
to choose mates that are phenotypically like themselvesnetrative assortative mating (also
calleddissortativemating), individuals tend to choose mates that that are gtiypically unlike
themselves. Of course, even with random mating, some mp#tirg are phenotypically similar
or dissimilar, so assortative mating refers only to thoseasions in which mating partners are
phenotypically more similar or dissimilar than would be egfed by chance in random mating
populations.

The experiments presented in this section, incorporate seléection into the GA simulation
model. Specifically, they include assortative and dissiwganating. These experiments highlight
an advantage of the GA model over analytical models, whémg@redting the random-mating as-
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sumption is normally very difficult. In GAs the phenotype of @rganism is summarised by its
fitness value. However, the fitness landscapes exploredsicitiapter are far too simple, having
very few different fitness values (two for the single pealdissape, and four for the plateau land-
scape). Preliminary experiments using assortative magsgd on similarity in fitness showed no
noticeable differences. However, a second implementdtésed on Hamming distance between
parents, produced notable differences in the error thtdshagnitudes among sexual populations
with random, assortative and dissortative mating. The @xm@at parameter settings were similar
to those described in Section 4.2, with the difference tmapeer bit mutation rate covered a wider
range (from 0.005 to 0.05 with a step of 0.005). For assedatiating two extra low mutation
values (0.0 and 0.001) were also tested. Mate selectionwaleiented as follows. Survival
was still based on fitness, but when choosing a partner forengndividual, two potential mates
were selected, and from this pair the closest, accordingeaate selection criterion, was taken.
Figures 4.5 and 4.6 show the steady state distribution afesezps for a population of size 100
using 4 different reproductive strategies: (a) asexudlséxual with random mating, (c) sexual
with assortative mating and (d) sexual with dissortativeimgga on the single peak and plateau
landscapes respectively.

(a) Asexual. Single Peak (b) Sexual Random. Single Peak

10 10
0.9 0.9
0.8 0.8

0.7 07

0.6 0.6
05 05
0.4 0.4
03 03
0.2 024

0.1 01

00 F——xr— = 0.0 ===
0005 0010 0015 0020 0025 0030 0035 0040 0045 0050 0005 0010 0015 0020 0025 0030 0035 0040 0045 0050
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Figure 4.5:Distribution of sequences on the single peak landscape diffetent reproductive strategies:
(a) Asexual, (b) Sexual with random mating, (c) Sexual wiscatative mating, and (d) Sexual with dissor-
tative mating. The recombination rate used was r = 0.5. Theation rate per bit varies from 0.005 to 0.05
with a step of 0.005. For dissortative mating two extra lowtation values (0.0 and 0.001) were tested.
Vertical axis shows population fractions, horizontal sstisws mutation rates (per bit).
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Figure 4.6:Distribution of sequences on the plateau landscape forfdreift reproductive strategies: (a)
Asexual, (b) Sexual with random mating, (c) Sexual with @sgive mating, and (d) Sexual with dissortative
mating. The recombination rate used was r = 0.5. The per biation rate varies from 0.005 to 0.05 with
a step of 0.005. For dissortative mating two extra low matatialues (0.0 and 0.001) were tested. Vertical
axis shows population fractions, horizontal axis showsatiom rates (per bit).

Single Peak] Plateau
Asexual 0.015 0.030
Sexual Random 0.010 0.020
Sexual Assortative| 0.030 0.045
Sexual Dissortative 0.0 0.0

Table 4.3:Error thresholds for a population of size 100 on both thelsipgak and plateau landscapes, for
4 different reproductive strategies.

Table 4.3 summarises the error thresholds values as idgehtiually from Figures 4.5 and
4.6, for the 4 reproductive strategies studied. Resultgesigthat assortative mating, on both
fithess landscapes, increases considerably the errohtidesn sexual populations as compared
to random mating. Error thresholds with assortative maitingexual populations are even larger
than for asexual populations. Moreover, assortative rgatgems to be advantageous for the virus
population, because it increases the abundande (dee Figures 4.5 and 4.6), and makes the
population more stable as the error threshold moves to higitees.

A possible explanation for this effect of assortative mgimas follows. Recombination acts
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as a converging operator whénis involved, it acts as a diverging operator in other casdse T
converging effect of recombination is increased when ngaisrassortative, because parents tend
to be close to each other in Hamming distance, so, heninvolved, offspring will be eitheF

or close toF. This, therefore, increases further the abundanéearid causes an effect such that,
in more recombination evenEswill be involved (even for high mutation rates). Thus, thell
effect of assortative mating is to make the population moregact and to increase the abundance
of F, even for mutation rates higher than the error thresholda gzxual population with random
mating.

In contrast, populations with dissortative mating dontsta clear error threshold transition.
Even for very low mutation rates, all sequences are equadtyilbuted at the steady-state equilib-
rium of the population. Dissortative mating seems to beddigatageous for the virus population,
because it decreases the abundande®fen for very low mutation rates; it also introduces insta-
bility to the population. A possible explanation for thigeet is as follows. Dissortative mating
has a diverging effect, because parents tend to be furtheey tam each other. Even whénis
involved in a recombination event, the most suited paream@ording to the dissortative criterion,
will be the farthest away in Hamming distance. If, for insteya sequence ig is selected as the
second parent, the offspring will lie anywhere betw€eandHs. Thus, the overall effect of dis-
sortative mating is to decrease the abundandée afd to drive easily (even for very low mutation
rates) the recombinant population beyond the error thtdsho

4.4 Discussion

For finite populations, and in both abstract fithess landssafudied, the stable distribution of se-
guences was qualitatively similar to that for infinite pagtidns. However, error thresholds were
smaller in most scenarios for finite populations as comptrédinite populations. Moreover, for
asexually replicating populations, the smaller the pojportathe lower the error threshold. Nev-
ertheless, the several implications of recombination dblby Boerlijst and co-workers for viral
guasispecies, hold for GAs and finite populations. Thesdigaifons can be summarised as fol-
lows. First, for small mutation rates (i.e. below the ertmeshold), recombination can focus the
population around a fithess optimum. In this sense, recoatibim acts as an error repair mech-
anism, but it also means that the population is less flexiblenvironmental changes. Second,
recombination shifts the error threshold to lower mutatiat@s. Near the error threshold, with-
out recombination, the fittest sequence only makes up a gmalentage of the total population
(Eigen et al., 1988). Under such conditions, recombinadicts as a diverging operator, driving
the population beyond the error threshold. Recombinatorbe advantageous for the population
if fitness is correlated and if the mutation rate is suffidgamall.

The relevance of these results to the theory of GAs is twofBldst, in the study of optimal
mutation rates, given the relationship between error ttolels and optimal mutation rates postu-
lated in this thesis. Second, in understanding both theabtecombination, and the interaction
between recombination and mutation in the behaviour of GAs.

Notice that the study of error thresholds presented in thégter considered only non-elitist
GAs. Elitism will have a critical effect on the error thresthphenomenon. The next chapter will
study the effect of elitism on error thresholds for complkexdscapes.
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Although this chapter studied simple fitness landscapessitigle peak landscape is an ex-
treme case in the continuum of less rugged (or more corbléd@dscapes. The plateau land-
scape is a less extreme case, which also showed distinctibalgbelow and above a critical
mutation rate. The relationship between error threshoidsaptimal mutation rates, postulated in
this thesis, will be empirically assessed in Chapter 6.if thlationship turns out to exist, higher
values for mutation rates should generally be used in GApfactical applications. Moreover,
the following general suggestions, could be made:

¢ Given that error thresholds are inversely proportionalénayype length; ‘optimal’ per bit
mutation rates should also hold this relationship to ggp@tgngth. This finding has been
independently reported several times in the evolutionanyfutation literature (see Chapter
2).

¢ Given that error thresholds were shown to be lower for sigialtd populations, the per bit
mutation rate should be lower the smaller the populatioa. siz

¢ Given that recombination shifts the error threshold to lomatation rates, the mutation rate
per bit should be smaller when recombination is used.

¢ Given that recombination was shown to increase the populaverage fitness in more
correlated landscapes, the more correlated a fitness kapelss; the more the advantage of
using recombination.

These suggestion will be tested in Chapter 6 using morestdiitness functions. However,
the simple abstract landscapes used in this chapter, wefel @s a starting point for exploring
evolutionary dynamics, and testing hypotheses regartiiegdies of genetic operators in GAs.

Finally, a computational ‘micro-analytical’ (or ‘agenabed’) simulation model — in this case
the GA — can offer some advantages over an analytical modelfdutionary biology studies. In
particular, there is the possibility of modifying the gesleaissumption of random mating, allow-
ing instead more biologically inspired patterns of sex@éstion. Experiments including mate
selection (reported in Section 4.3.4) showed that assatatating can considerably increase the
critical error rate.

4.5 Summary

This chapter introduced the notions of quasispecies andtmesholds from molecular evolution.
It also discussed two major extensions of the original cgpeesiies model within the molecular
evolution literature, namely, the analysis of finite aséxumgoulations on a single peak landscape
(Nowak & Schuster, 1989) (discussed in Section 4.1.2); bedsiral quasispecies model includ-
ing both mutation and recombination (Boerlijst et al., 1p@fiscussed in Section 4.1.3). This
latest work explored the effect of recombination on errgesholds for infinite populations on
two simple fitness landscapes. The experiments descrilfgeation 4.2, reproduced these results
but using a GA (and thus finite populations) instead of thal\uasispecies model (for infinite
populations) as the underlying model of evolution. For @imibpulations and in both abstract fit-
ness landscapes studied, the stable distribution of seqaemas qualitatively similar to that for
infinite populations. Thus, error thresholds were showrxistén finite populations of bit strings
evolving using a GA. Moreover, the main conclusions of Biggrhnd co-workers, summarised in
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Section 4.1.3, hold in this case. However, error threshekt® smaller, in most scenarios, for fi-
nite populations. Also, for asexually replicating popidas, the smaller the population, the lower
the error threshold. On the single peak landscape, the malpiesults for asexually replicat-
ing populations were accurately predicted by the analWression presented in Section 4.1.2.
Additional experiments including mate selection were gnésd in Section 4.3.4. It was found
that assortative mating, i.e. preference for similar oig/as, increased the magnitude of error
thresholds as compared to both asexual replication andakesplication with random mating.
Assortative mating seems to be advantageous for the poguks it increases the abundance of
the fittest string.

This chapter studied very simple fithess landscapes. Howthase landscapes were useful
as a starting point to demonstrate the existence of erresiimids in GAs. The next chapter will
study the existence of error thresholds in GAs running oremsomplex and correlated landscapes.
It will also explore the effect of both changing various exanary parameters and modifying the
structure of the fithess landscape, on the magnitude of gmresholds.

It is argued in this thesis that the notion of error thresharelevant to GAs applied to
complex problems: first, in the study of optimal mutatioresatas error thresholds measure an
optimal balance between exploration and exploitation ol@ionary algorithms; second, because
knowledge about error thresholds suggests how differesiugenary parameters interact with
one another in evolutionary dynamics. This knowledge mase mactical implications in sug-
gesting heuristics for effective setting of GA parametdisese issues will be explored further in
Chapter 6.



Chapter 5

Error Thresholds in Genetic Algorithms:
Complex Landscapes

In the previous chapter the existence of error thresholdsdeanonstrated on two simple land-
scapes (isolated peak, and plateau) using a standard GAsialso shown that recombination, in
those landscapes, shifts error thresholds toward loweesalThis chapter extends those findings
by studying more complex landscapes, including real-wdddhains. The division between sim-
ple and complex is somewhat arbitrary. The isolated peadtsieape is an extreme uncorrelated
landscape, the plateau is less extreme but still highly wetaded. This chapter, on the other hand,
explores correlated landscapes.

The chapter is organised in four main sections. The metheitbsgSection 5.1) describes the
consensus sequengkts. These plots, borrowed and adapted from theoretiolidpy, constitute
an empirical approach for locating error thresholds on gerlendscapes. Section 5.2 uses con-
sensus sequence plots, on two fixed abstract problems, korexpe effect of changing various
evolutionary parameters on the magnitude of error threlshdlhereafter, Section 5.3 uses a fixed
GA (fixed evolutionary parameters) and explores the efféanadifying the landscape structure
on the magnitude and characteristics of error thresholdss @xploration uses the families of
tunable abstract landscapes described in Chapter 3 (B&c#h The closing empirical section of
the Chapter (Section 5.4), explores whether error threlsholy be identified on real-world ap-
plications. It uses the two real-world domains discussedhapter 3 (Section 3.3), and explores
error thresholds with and without recombination.

5.1 Method

5.1.1 Consensus Sequence Plots

The work of Bonhoeffer and Stadler (1993) studied the evmhudf quasispecies on two correlated
fithess landscapes, the Sherrington Kirkpatrick spin glasithe Graph Bipartitioning landscape.
The authors described an empirical approach for locatirgstiolds on complex landscapes. In
this section, this approach is borrowed and adapted. lhstethe quasispecies model, a GA is
used as the underlying model of evolution. The resultinghe@tcan be applied for identifying
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error thresholds in GAs running on general complex landssaphe approach is to calculate and
plot the consensus sequence at equilibrium for a range dtiontrates. The consensus sequence
in a population is defined as the sequence of predominant@gniits) in each position; it is
plotted as follows: if the majority of individuals has a ‘If ®’ in a positioni the field is plotted
white or black, respectively. The field is plotted grey if thesition is undecided. Figure 5.1,
shows an hypothetical population and calculates its cawusssequence. The plot shown in Figure
5.1 will correspond to a single line in a full consensus segaglot where the per bit mutation
rate is varied (see Figure 5.4 for an example of a full plothe @quilibrium stateis reached
when the proportion of different sequences in the populasostationary. This happens when
evolution is simulated for a large enough number of genamati In practice, it is considered
that the equilibrium is reached when several parametetsegpopulation (e.g. the maximal and
average fitness) reach equilibrium. According to Bonhoeifel Stadler (1993) the error threshold
may be approached frobelowor above with both methods producing similar results.

Population: Consensus Sequence: 2101210110,
1 0010110111 Where @ 2: No. 1s = No. Os
2: 1101001100
. = 1: No. 1s > No. Os
3: 1000110110 = 0 NO 1s < No. 0
4: 0101001110 - 9. s = No. s
5: 1101010010
6: 0001111101

Plot:
7: 0111110010 © e e
8 1111000010
9: 0001101011
10:1110010101

No.of 1s: 5647564674

Figure 5.1:Calculating and plotting the consensus sequence of a pigula

Approaching the error threshold from below

To approach the error threshold from below, the simulatiartswith a homogeneous population
at the global optimum. This approach requires knowing thiéngg string beforehand. Then,
the population is allowed to reach equilibrium at a constaatation rate of 0.0. Afterwards,
the mutation rate is increased by a fixed, small step and thgetation is continued with the
current population. This process is repeated until a preel@éfinaximum for the mutation rate is
reached. Figure 5.2 outlines this algorithm. Notice thatglot summarises a single run, there is
no averaging of multiple runs.

Approaching the error threshold from above

To approach the error threshold from above, the simulat@ansswith a random population. Then
the population is allowed to reach equilibrium at a congtaetiefined maximum for the mutation
ratet. Afterwards, the mutation rate is decreased by a fixed sregland the computation con-
tinues with the current population. This process is repkat#il the mutation rate is 0.0. Figure
5.3 outlines this algorithm. Notice that, in this case, itdd necessary to know the optimal string.
Hence, in principle, this approach can be used for locatiregeirror threshold on any complex
landscape. Again the plot summarises a single run, ther@aseraging of multiple runs.

1This value has to be high enough to be above the error thiéhathe landscape under study.
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Procedure Consensus_Plot_Below {
p = 0.0; /* Initial mutation rate of 0.0 */
Initialise the population (at optimum);
Run_GA; /* large number of generations */
Calculate and plot the consensus sequence;
/* Stop when a predefined (high) mutation rate is reached */
Until (p = p_max) {
p = p * p_step;
Run_GA; /* large number of generations */

Calculate and plot the consensus sequence;

Figure 5.2:Algorithm for producing a consensus sequence plot (froravegl

Procedure Consensus_Plot_Above {
P = p_max; /* Initial (high) mutation rate */
Initialise the population (randomly);
Run_GA; /* large number of generations */
Calculate and plot the consensus sequence;
Until (p = 0.0) {
P = p - p_step;
Run_GA; /* large number of generations */

Calculate and plot the consensus sequence;

Figure 5.3:Algorithm for producing a consensus sequence plot (fronvabho

For both approaches, the consensus sequence in the popusatalculated and plotted at the
end of each simulation cycle for each mutation step. The ¢nreshold is characterised by the
loss of the consensus sequence, i.e. the genetic informattithe population. Beyond the error
threshold the consensus sequence is no longer constamiifdee Figure 5.4).

5.2 Error Thresholds and Evolutionary Parameters

This section uses consensus sequence plots to explordégbeafimodifying the values of various
evolutionary parameters on the magnitude of error threlshoUnless otherwise stated, experi-
ments use a generational GA with fitness proportional seleca population of 100 members,
and no recombination, i.e., asexual reproduction. Taldlesimmarises these default settings.
Two instances of landscapes were selected as default tddeprs: a Royal Staircase function
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with number of blockN = 3, and block siz& = 10; and a\K landscap&with string lengthN =

24, and degree of epistatic interactiorr 10. Table 5.2 summarises the default test problems used
in most experiments. Further details on the experimentsdapdrtures from the default setting
are given in the respective subsections.

Population replacement Generational
Selection Scheme Proportional
Population size 100
Recombination rate 0.0 (Asexual)
Generations (per mutation rate) 10,000

Table 5.1:GA default parameters used in the experiments.

Landscape Setting String length
NK N=24,K=10 24
Royal Staircase N = 3,K =10 30

Table 5.2:Default test problems used in the experiments.

5.2.1 Preliminary Study

Before exploring the effect of the various evolutionarygraeters on the magnitude of error
thresholds, three preliminary studies were carried out.

Error thresholds from below and above

The first preliminary study was designed to confirm the agseby Bonhoeffer and Stadler (1993)
that error thresholds do not depend on whether they are agped from below or from above.
Figure 5.4 shows the consensus sequence plots on the twdtdett problems (see Table 5.2).
In both cases, the error threshold was approached from tsidvabove (see Section 5.1.1). The
Royal Staircase function has a single optimum (the striralaines). On the other hand, thNe
landscape has multiple optima, and they are not known. $ah&NK landscape the procedure
was to first approach the error threshold from above stafitorg a random population, then store
the consensus sequence thus obtained. Afterwards, thietesshold was approached from below
starting from a population where all individuals were cepad the stored consensus sequence.
In all plots, the vertical axis shows the explored range otation values. Mutation rates are
expressed as mutations per bit/p). Mutation step-sizes were 0.005 for the Royal Staircase an
0.001 for theNK landscape.

On both test problems, the plots illustrate the existenca stable consensus sequence for
mutation rates below the error threshold. The consensusseg is the string of all 1's for the
Royal Staircase, and one particular local optima foNlkeLandscape. Results confirm that error
thresholds do not depend on whether they are approachedtow or from above. On thdK

2TheNK model implementation used throughout this thesis is dueitchdl Potter, who provides freeware routines
in C for generating randomK landscapes (http://www.cs.gmu.edu/ mpotter/nk-gendjat
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m
Royal Staircase, Bel ow b Royal Staircase, Above

Figure 5.4:Consensus sequence plots on a Royal Staircase funblier3| K = 10) and aNK landscape

(N = 24,K = 10). The error threshold is approached from below and ab®¥e horizontal axis shows
the consensus bit for each positigrihe vertical axis shows per bit mutation rate¥'lp). Mutation step-
sizes were MO5 (Royal Staircase), and 0.004K). The error threshold is characterised by the loss of
the consensus sequence (the string of all 1's for the Royaic8@se; and one local optima for theK
Landscape). For the Royal Staircase, the intermediatethnesholds for each step or fitness level can also
be observed.

landscape the transition occurs close to 0.02 mutationBipdfor the Royal Staircase the critical
per bit mutation rate is close to 0.05; in this case, diffesror thresholds for each fitness level
or step can also be observed.

Error thresholds and the initial population

The next set of experiments explores whether error thrdstagproached from above (i.e. from
a random population) are independent of the initial popahatFor this purpose, consensus se-
guence plots are produced for four initial populations(f@ndom seeds) on a fix&K landscape
instance (Figure 5.5). Results suggest that the errortiblé$s independent of the initial popula-
tion. Although the consensus sequence achieved in eachscdi$ierent, the transition occurs at
approximately 0.02 mutations per bit in all cases (with @ipancy ot~ 0.002)

m
NK, Initial Pop. 2 ) NK, Initial Pop. 3 NK, Initial Pop. 4
5|

Figure 5.5:Consensus sequence plots on a fikédlandscapeN = 24,K = 10) for four initial population
(different random seeds). The horizontal axis shows thesewsus bit for each positidn the vertical
axis shows the mutation rate per hit/b). The error threshold was approached from above, that s fro
a random population. Error thresholds are characterisethdyoss of a consensus sequence, which is
different in each case.

Error thresholds and landscape instance

The last set of preliminary runs explores whether the eliceshold is similar for different in-
stances of alNK landscape with fixedN andK. For each run, a new landscape was generated
(using a different random seed for producing the landscal®) initial population was the same
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in all runs. Error thresholds were approached from aboveule(Figure 5.6) suggest that error
thresholds are similar on the foiK landscape instances. The transition occurs at approXynate
0.02 mutations per bit in all plots.

NK, Landscape 2 NK, Landscape 4

Figure 5.6:Consensus sequence plots on fbi landscape instances (different random seeds), all with
N =24 andK = 10. The initial population was the same in all runs. The eattixis shows per bit mutation
rates (/b).

5.2.2 Genotype Length

After the preliminary experiments presented above, anthibabstract landscapes and default GA
explored, we know that: (i) error thresholds approachethfb@low and above produce similar
results, (ii) the error threshold magnitude is independgtite particular initial population. Hence,
from now on, experiments will be run approaching the erroeghold from above, that is from a
random population. Also, a fixed random seed will be usedéoegating the initial population in
all cases. Note as before that approaching error thresfroltisabove is a more general method,
given that it does not require knowing the optimal stringabehand.

The analytical expression of the error threshold on a sipgék landscape:

(5.1)

suggests that it decreases in proportion to the stringteagt The following experiments explore
whether this is also the case on correlated landscapesreFign compares error thresholds on
Royal Staircase functions of increasing length. The nunabdriocksN = 3 is kept constant,
while the block size is increased from 10 to 12 and 14. Resultthe Royal Staircase function
suggest that error thresholds (for all fitness levels orsjtdpcrease as a function of the genotype
length. In other words, the longer the genotype the loweether threshold. This effect is more
noticeable for the first and second step transitions.

Figure 5.8 compares consensus sequence plotdkdandscapes of increasing genotype
length. The parametét = 10 (degree of epistatic interactions) is kept constantleathie string
length is varied from 24 to 20 and 28. Results on i€ landscape confirm that even small
increases in genotype length, decrease the magnitude efrtwethreshold. The effect is more
noticeable when increasing the genotype length from 20 tthad from 24 to 28. It should be
noticed that the error threshold, if expressed as mutafienstring, slightly decreases with each
increase in string length, being 0.6 for L = 20, 0.5 for L = 2dd ®.4 for L = 28. These differences
may be due to differences in the overall landscape ruggedhesther words, althoudK is the
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Royal Staircase, L = 42

Figure 5.7:Error thresholds and genotype length. Consensus sequisris@p Royal Staircase functions
with N = 3 andK = 10, 12, and 14 (i.e. string lengths of 30, 36 and 42). Thdoadraxis shows per bit
mutation ratesr(/b).

same for all landscapes, the string lendth yaries, which in turns modifies the overBIK land-
scape structure. This is just a suggested explanatiore theslts deserve further investigation.

m
B NK, L = 20

By

Figure 5.8:Error threshold and genotype length. Consensus sequentsspNK landscapes witK = 10
andN = L = 20, 24, and 28. The vertical axis shows per bit mutatiorsrétgb).

From now on, given that error thresholds were shown to depertie length of genotypes,
mutation rates will be expressed as mutations per genotypk \herelL is the string length)
instead of as mutations per bit. Expressing mutation rageggpnotype will be more informa-
tive when looking for general principles about parametégrictions, since heuristic such as a
mutation rate of 1L can be identified.

5.2.3 Selection Pressure

The analytical expression of the error threshold on a sipgéd landscape (Equation 5.1), suggests
that it increases in direct proportion to the strength oéstbn. The following set of experiments
explores whether this is also the case on correlated lapdsc@hese experiments use tournament
selection because this selection scheme allows explicitrabover the selection pressure. A
common tournament size is 2, but selection pressure iresesteadily for growing tournament
sizes. Figure 5.9 shows the effect of increasing tournasieas on the error threshold on both
the Royal Staircase anfdK landscapes. For both landscapes, the plot using fitnesspimal
selection is also included for the sake of comparison.
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Royal Staircase, Tourn. Size = 2 T Royal Staircase, Tourn. Size = 4
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Figure 5.9:Error thresholds and selection pressure. Consensus segjpleis on the selected test problems
for tournament sizes of 2, 4, and 6. The plots using propoaliselection are also included for the sake of
comparison. The vertical axis shows mutation rates pertgpedm/L).
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Results on both landscapes show that the strength of smidutis a pronounced effect on
the error threshold. For increasing tournament sizesdasing selection pressures) there is a
noticeable increase in the magnitude of the error thresl@fdthe Royal Staircase, the effect is
more noticeable for the first and second step transitiontclthat on theNK landscape (Figure
5.9, bottom), the error threshold for proportional sefattis much lower than for tournament
selection.

5.2.4 Population Size

This section explores the effect of modifying the populase on the magnitude of error thresh-
olds. The work by Nowak and Schuster (1989), discussed ipt€hd, extended the calculations
of the error threshold on a single peak landscape from ieftaitfinite populations. Chapter 4

(Section 4.1.2) also shows a reformulation of Nowak and Sihis analytical expression, which

explicitly approximates the extent of the reduction in threethreshold as we move from infinite

to finite populations. The expression is an infinite seriewlinch successive terms get smaller;
here, only the first few are showpy is the critical rate for a population of siké):

In(c) 2y/0-1 2n(o)\/o-1
W AN EN

Thus, according to the expression, the error threshol@éasgs with the size of the population

(5.2)

Pm =

given that the second term (the 2nd. greatest of the sesiasibitracting and the population size
appears in the denominator.

Preliminary Study
As a preliminary study, we compared theoretical error tmokts on a single peak landscape (cal-
culated using Equation 5.2), with empirical error threslsastimated using consensus sequence
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plots, on the same landscape for various population sizgsard-5.10 shows results of this com-
parison. The empirical error thresholds were estimatedgusbnsensus sequence plots starting
from below on a single run. The GA was allowed to run 10,00CG=g&tions for each mutation rate
(that is, each line of the plot). An acceptable agreementdien theory and practice was found. It
can be noticed, however, that the difference increasesthgthize of the population. This may be
due to difficulties in reaching the steady-state distrimutf the population for higher population
sizes. In other words, reaching the steady-state for lamgelptions may require an impractically
large number of generations. Differences may also be duistinct models of evolution. That is,
Equation 5.2 was derived using the quasispecies modeleat@ampirical error thresholds were
estimated using a GA as the underlying model of evolution.

Error Thresholds on Single Peak Landsape

I
L
I I )

o ©
A

IS
I

~+Empirical
-=-Theoretical

Mutations per Genotype
o o o o

N
.

o

10 25 50 75 100 200
Population Size

Figure 5.10:Comparing empirical vs. theoretical error thresholds omgls peak landscape for various
population sizes.

Main Study

The preliminary study discussed above suggests that thetbreshold increases with increasing
population size on a single peak landscape. The next stefdweuthen, to explore whether the
same effect is observed on correlated landscapes. Figlkesbows the consensus sequence plots
for population sizes of 10, 20, 50, and 100; on the two detasttproblems.

Results on the Royal Staircase function show that errosskinies (for all fitness levels or
steps) increase with increasing population size. The Eiffemore marked on small populations
(sizes 10 and 20), and on error thresholds for the first arahskstep. Results on tiNK landscape
confirm the increase on error thresholds with increasingifation size. Again differences are
more noticeable for small populations, and tend to stabflis larger populations (sizes 50 and
100).

5.2.5 Elitism

The following group of experiments explores the effect afunling elitism. Figure 5.12 compares
consensus sequence plots with and without elitism on betRdyal Staircase ardK landscapes.
Two ranges of mutation rates were considered for the eli@isgtion in both cases. Results on the
Royal Staircase (Figure 5.12, top) suggest that elitismahpsonounced effect. When elitism
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T Royal Staircase, Pop. Size = 10 T Royal Staircase, Pop. Size = 20 T Royal Staircase, Pop. Size = 50

Royal Staircase, Pop. Size = 100

Figure 5.11 Error thresholds and population size. Consensus sequéstssp the selected test problems
for population sizes of 10, 20, 50, and 100. The vertical akimvs mutation rates per genotypg/[).

is used, there is no error threshold transition in the odlgrange of per string mutation rates
explored [0.0, 5.0]. If the maximum mutation rate is incezhfrom 5.0 to 20.0 (right plot), a kind
of transition is observed around 10.0 mutations per gemoftie pattern of bits becomes more
randomised). However, there are no clear transitions fodiffierent fitness levels or steps.

m m m
T No Elitism Mt. Range [0.0,5.0] T Elitism Mt. Range [0.0,5.0] T Elitism Mt. Range [0.0,20.0]
5 - 20 - - -
-- = a0
-
4
- 15 .-:-l'
-
- -l i I
3 - - ™
-
- m
- = el -l
2 - - - s
- - - - 'L-- -
- -
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5 10 15 20 25 30 5 10 15 20 25 30
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No Elitism Mit. Range [0.0,1.2] Elitism Mt. Range (0.0, 1.2]

- r 12
1
0.8
0.6
0.4
0.2
0
0 5 10 15 20

Figure 5.12Error thresholds and elitism. Consensus sequence plotedwb selected test problems with
and without elitism. In both landscapes, the right plot exg$ a wider range of mutations. The vertical
axis shows mutation rates per genotypgl().

Results on thé&lK landscape (Figure 5.12 bottom) confirm the pronounced tedfieelitism.
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In the first range of mutations explored [0.0,1.2] there igmor threshold transition with elitism.
When the maximum mutation is increased to 12.0 (right plbigye is still no clear transition
although noise is observed for rates higher than 2.0 muisper genotype.

5.2.6 Steady State Population Replacement

This set of experiments compares error thresholds usingrgéonal and steady-state population
replacement. In both cases tournament selection (witm#wnent size of 2) was used. Three
types of steady-state GAs were implemented (see Chapter 2):

1. Using tournament selection for parents, and randomtsahefor individuals that are to be
replaced

2. Using random selection for parents, and inverse tournaseection for individuals that
are to be replaced

3. Using tournament selection for parents, and inversentonent selection for individuals
that are to be replaced

Figure 5.13 shows the consensus sequence plots for gemadateplacement and the three
types of steady-state replacement discussed above, owdhgefault test problems. Results on
both test problems suggest that error thresholds depentthpaype of steady-state GA used. For
type 1, the error threshold is similar to that of generatioeplacement, although slightly lower.
On the other hand, for the other two types of replacementwinclude inverse tournament selec-
tion for individuals that are to be replaced, the error thodd is noticeably higher (being highest
for type 3). This last result is to be expected given thattieshod imposes the highest selection
pressure of the three, since there is selection on paredtidividuals that are to be replaced
(recall from Section 5.2.3 that error thresholds are higbiehigher selection pressures). Follow-
ing this line of reasoning, results suggest that inversenemment selection on individuals that are
to be replaced, imposes a higher selection pressure thamatoent selection on parents. This
suggestion is supported by results in evolutionary strase@@ack, 1996), which points out that
extinctiveselection (i.e. a selection scheme that definitely exclsdese individuals from being
selected) imposes a much higher selection pressure as pedrjpgreservativeselection (i.e. a
selection scheme that always assign selection probakiljieater than zero to all individuals).
The presence of implicit elitism on steady-state replacgrogtypes 2 and 3, may also accounts
for the observed differences on the error thresholds.

5.2.7 Recombination

The work of Boerlijst et al. (1996), and results from Chapteisuggest that recombination shifts
the error threshold toward lower values on the single pedkpdateau landscapes. The following
set of experiments explores whether this is also the casemwelated landscapes. Two types of
recombination were considered: 2-point and uniform, bath & rate of 1.0. Figure 5.14 shows
the effect of recombination on the Royal Staircase (top)MKdandscape (bottom) using 2-point
and uniform crossover. For both landscapes the consengusrsze plot without recombination

(i.e. crossover rate = 0.0) is included for the sake of compar
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Figure 5.13:Error thresholds and population replacement. Consensu®see plots on the selected test
problems for generational and steady-state populatidacement. Three types of steady-state replacement
were tested: (1) applying tournament selection on paremdsalecting individuals that are to be replaced
at random, (2) selecting parents at random and applyingsev@urnament selection on individuals that
are to be replaced, (3) applying tournament selection dmjpartents and individuals that are to be replaced.
The vertical axis shows mutation rates per genotypé.{.

No reconmbi nation RS, 2-Point Reconbi nation RS, Uni form Reconbi nation

0 5 10 15 20 25 30
m
L Uni form Reconbi nation, rate = 1.0

Figure 5.14 Error thresholds and recombination. Consensus sequeoiseopl the selected test problems
with and without recombination. Both two-pointand unifor@eombination (with a rate of 1.0) were tested.
The vertical axis shows mutation rates per genotypé.{.
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On the Royal Staircase function (Figure 5.14, top) erroggholds for all the steps are lower
when recombination is used. The plots with no recombinasiod 2-point recombination are
qualitatively similar, whereas the plot using uniform redmnation is different in that the tran-
sitions for the three steps are closer to one another. ONEKéandscape withK = 10 (Figure
5.14, bottom), there is no noticeable difference in the ritage of the error threshold with and
without recombination. Results from Chapter 4 suggestttimieffect of recombination on the
error threshold is related to the ruggedness of the landsddpnce, an extra set of experiments
explores the effect of recombination oN& landscape with increased ruggednés¢s-(24 andK
=12). On this newNK landscape (Figure 5.15) the error threshold is lower wheambination
is used. Results are similar for 2-point and uniform recaraton.

K = 12, No Reconbi nation

K = 12, 2-Point Reconbi nation K = 12, Uniform Reconbi nation

0 5 10 15 20

Figure 5.15:Error thresholds and recombination. Consensus sequente g aNK landscape with
increased ruggedneds € 12). Both two-point and uniform recombination (with a rafel.0) are tested.
The vertical axis shows mutation rates per genotypé.{.

5.2.8 Assortative Mating

Section 4.3.4 from Chapter 4, explored the effect of asseetanating on the magnitude of error
thresholds on the single peak and plateau landscapes. fowad that positive assortative mat-
ing, that is when individuals tend to choose mates that anéagito themselves, has the effect of
increasing the magnitude of the error threshold. The p@pdshis section is, then, to explore
whether a similar effect is observed on more complex laquExaAssortative mating was imple-
mented as in Chapter 4, that is, survival is still based oeg$#nbut when choosing a partner for
a given individual, two potential mates are selected. Froisgair, the closest (in Hamming dis-
tance) to the first parent, is taken. The recombination apeused was two-point recombination
with a rate of 1.0.

Figure 5.16 shows the consensus sequence plots withoumhbégation, recombination with
random mating, and recombination with assortative matinghe two default test problems. Re-
sults on both problems confirm that error thresholds aredrigihen mating is assortative, as
compared to both random mating and no recombination. Naotigethe increase on the error
threshold is similar for both landscapes. Although the eapigmutations explored for each land-
scape is different, the increase on the error threshold rmatgwith assortative mating is, in both
landscapes, of approximately 0.5 mutations per genotygempared to no recombination, and
about 1.0 mutation per genotype as compared to random mating
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RS, No reconbination RS, Random mating RS, Assortative mating

0 5 10 15 20 25 30
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C NK, K = 12 , No reonbination
"

Figure 5.16:Error thresholds and assortative mating. Consensus segpéts on the selected test prob-
lems: without recombination, recombination with randonting and recombination with assortative mat-
ing. Two-point recombination with a rate of 1.0 was used. Vasical axis shows mutation rates per

genotypeifn/L).

5.2.9 Discussion

This section explored the effect of changing the values dbua evolutionary parameters on the
magnitude of error thresholds. A few instances of Royalr&aie andNK landscapes were used
as test problems. The effect of these various evolutionargrpeters are summarised below:

¢ Genotype length: Results suggest that error thresholds decrease as a fupétioe geno-
type length. In other words, the longer the genotype the laleerror threshold.

¢ Selection Pressure:Results suggest that the strength of selection has a proadwifect
on the error threshold. For increasing selection presshegs is a noticeable increase in the
magnitude of error thresholds. Depending on the fitnesstifiimcthe use of proportional
selection may produce much smaller error thresholds as amdo tournament selection.

¢ Population Size: Results show that error thresholds increase with incrggsapulation
size. This effect is more marked on small populations (sen#tlan 50). Differences on the
error thresholds stabilise for larger populations; erhoesholds for population sizes of 50,
100 and larger are quite similar.

¢ Elitism: Results suggest that elitism has a pronounced effect. Witesmeis used, there
is no observable error threshold transition. Even if theyeaof mutations explored is in-
creased, there is no clear transition although some nodesirved.

e Steady State Population ReplacementResults suggest that error thresholds depend upon
the type of steady-state GA used. When using tournamerdtggidor parents and random
selection for individuals that are to be replaced, the effnogshold is similar to that of
generational replacement. On the other hand, when theysgtatk GA includes inverse
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tournament selection for individuals that are to be remgageéhich is known to impose a
higher selection pressure), the error threshold is ndiigdaigher. These results suggest
that the magnitude of the error thresholds depend more osdleetion pressure than on
the type of replacement. That is, inverse tournament setecn individuals that are to
be replaced, imposes a higher selection pressure, whialrineplains the higher error
threshold. Also the implicit elitism on some types of steatite GA accounts for the
differences observed on the error threshold magnitudes.

¢ Recombination: For discontinuous functions (Royal Staircase), and vegged land-
scapesN K landscapes witK > 10) error thresholds are slightly lower when recombination
is used, of the order of 0.2 mutations per genotype. Simésults were obtained for uni-
form and two-point recombination. However, this effect@éombination was not observed
on less rugged landscapes and real-world domains (se®&&6ti3 and 5.4).

¢ Assortative Mating: Results confirm the findings of Chapter 4, that error thredhare
higher when mating is assortative, as compared to both randating and no recombi-
nation. The increase in the error threshold magnitude vafodative mating was of ap-
proximately 0.5 mutations per genotype as compared to rantemation, and about 1.0
mutation per genotype as compared to random mating.

5.3 Error Thresholds and Fitness Landscape Structure

This section explores the effect of modifying the landscstpecture on the magnitude and char-
acteristics of error thresholds. Hence, we depart from teglflandscapes used as test problems
in the previous section. Instead, various values for tharpaterdN andK are explored in both
the Royal Staircase andK landscapes. Also, a set of experiments using\iKé family of tun-
able landscapes (described in Chapter 3, Section 3.2)egepted. All the experiments used a
generational GA with tournament selection (tournamerd siz2), and a population of size 100.
The recombination operator used was two-point recomlmnatiith a rate of 1.0 (i.e. a sexual
GA). A wide range of mutation rates were explored, mutatiaies are expressed as mutations
per genotype. Table 5.3 summarises the GA parameter setigeyl on this set of experiments.
Error thresholds were approached from above, that is,irsgditom a random population and a
high mutation rate.

Population replacement Generational

Selection scheme Tournament Selection (Tournament Size = 2)
Population size 100

Recombination rate 1.0 (Sexual)

Recombination operator Two-point

Generations (per mutation rate)10,000

Table 5.3:GA parameter settings used in the experiments.

5.3.1 Royal Staircase Functions

Royal Staircase functions are always unimodal, but we carease the function ruggedness by
decreasing the number of blockis Modifying the number of blocks also alters the overall ghap
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of the landscape. The set of experiments in this subsect@ntains a fixed string length of 32,
and simultaneously vari¢é andK. Table 5.4 summarises the Royal Staircase functions exgblor

N K
16 2
8 4
4 8
2 16

Table 5.4:Royal Staircase functions explored.

Figure 5.17 shows the consensus sequence plots on the RaiyabSe functions summarised
in Table 5.4. In all functions, the consensus sequence isitlgée optimum in the landscape (the
string of all 1s). In addition, error thresholds for eachdga level or step can be clearly observed.
Notice the decreasing number of levels (steps) in the pbth@parameted decreases. For the
final step, the error threshold is at approximately 1.5 nioatper genotype for the functions with
N =16, 8, and 4, whereas fo = 2, the error threshold is at about 1 mutation per genotypes T
last observation suggests that error thresholds are loweery rugged landscapes.

Figure 5.17:Error thresholds on Royal Staircase functions of fixed leregid increasing ruggedness. The
vertical axis shows mutation rates per genotypgl().

5.3.2 NK Landscapes

IncreasingK in the NK model increases the landscape ruggedness and number lobjicaa.
Experiments in this subsection usK landscapes with a fixed of 16, and eight values df =
{0, 2, 4,6, 8, 10, 12, 15 This produces a range of landscapes from a single-peakkshanoth
‘Fujiyama’ landscape (K = 0) to a completely uncorrelatedscape = 15). Figure 5.18 shows
the consensus sequence plots on these landscapes ofiimgreggedness.

The landscapes with low values Bf (K = 0, 2 and 4 in Figure 5.18) show no clear error
threshold transition. In fact, the plots show a wide erransition band, and it is in this sense
that the error threshold could not be located. On the othed hthe landscapes with medium
and high values oK (K = 6 and greater, in Figure 5.18) show a clear error threslib&ie is a
distinguishable transition between an “ordered” (setectiominated) regime, and a “disordered”
(mutation-dominated) one. The transition is less clearsraip on the landscapes with medium
ruggednessK = 6 and 8). The higher the value &f the sharper the transition and the more
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NK N =16, K = 4

0 2z 4 6 @8 10 12 14 ' 0 2 4 6 8 10 1z 14 ' 6 2 4 6 8 10 1z 14 ' 0 2 4 6 8 10 12 14 '

Figure 5.18:Consensus sequence plotshK landscapes of increasing ruggednéss: 16, andK = {0,
2,4,6, 8,10, 12, 1k The vertical axis shows mutation rates per genotypé.{.

“disordered” the pattern of bits beyond the error threshhldtice also, that the magnitude of the
error threshold decreases with increadihgror K = 6 the transition occurs at about 2 mutations
per genotype, foK = 8 and 10 at about 1.5 mutations per genotype, whereak forl2 and

15 at about 1.0 mutations per genotype. These results aed#ting because they suggest that
consensus sequence plots, and the magnitude of error tfuleshay something about the degree
of ruggedness of a landscape.

5.3.3 NKF Landscapes

TheNKF model, a generalisation of Kauffmam landscape (Section 3.2.1), represents a family
of landscapes with a tunable degree of neutrality. The petenfa controls the degree of neutrality,
which is greatest wheh takes the smallest possible value of 2. Experiments in titisaction
usedNKF landscapes with fixeN andK (N = 24,K = 10), and four values df = {1000, 100, 10,
2}. This produces a range of landscapes of increasing neutf@ljure 5.19 shows the consensus
sequence plots for these landscapes. Results suggestriratheesholds remain constant for
landscapes of increasing neutrality. It should be notibedever, that changing at constankK
may alter the overall landscape ruggedness. In all the,lfwgransition occurs at approximately
1.5 mutations per genotype.

5.3.4 Discussion

This section explored the effect of modifying the landscstpacture on the magnitude and char-
acteristics of error thresholds. For these experimentsp@&ameters remained fixed, while land-
scape parameters were varied. The existence of error thidssivas shown to depend upon the
ruggedness of the fitness landscapes. For smooth landstheesis no clear error threshold
transition. For rugged landscapes, on the other hand, therelear transition between an “or-
dered” (selection-dominated) regime and a “disordereditétion-dominated) one. It was found
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Figure 5.19:Error threshold oiNKF landscapes of increasing neutrality. Consensus sequéotseop
NKF landscapes of fixetll andK, and varying= = {1000, 100, 10, 2 The vertical axis shows mutation

rates per genotyper(/L).

that the magnitude of error thresholds decreases withasarg landscape ruggedness. In the
range of rugged landscapes studied, the error thresholtbwated between 1.0 — 2.0 mutations
per genotype, being lower for the more rugged landscapesseTtesults are interesting because
they suggest that consensus sequence plots, and the nakgoiiterror thresholds, say something
about the landscape degree of ruggedness. Features sinehpegence of steps in Royal Stair-
case functions were clearly revealed by the consensus segpdots. Finally, error thresholds
were shown to remain unchangedKF landscapes of increasing degree of neutrality.

5.4 Error Thresholds in Real-World Domains

The closing empirical section of this chapter explores Wweeerror thresholds can be observed
in real-world applications. Two applications were seldctthe Wing-Box design optimisation
problem, and the Multiple Knapsack problem. For a detailestcdption of these problems, the
reader is referred to Chapter 3, Section 3.2.2.

All the experiments used a generational GA with tournameleicsion (tournament size of 2),
and a population of size 100. The GA was run in two modes: {jgmutation only Asexua),
and (ii) using both mutation and recombinati@ekual. The recombination operator used was
two-point recombination with a rate of 1.0. The mutatiorenatnge explored was from 0.0 to 5.0
mutations per genotype with a step of 0.1. Each simulatictedasted 15,000 generations. Error
thresholds were approached from above, that is, startorg &t random population and a high
mutation rate.

5.4.1 Wing-Box Problem

Two groups of Wing-Box experiments were run. First, usirggrddundant encoding described in
Chapter 3 (see Table 3.4). Second, using the non-redundgoting also described in Chapter 3
(see Table 3.5). For all the experiments the number of pavesdsset to 50. Recall from Chapter 3
that the encoding of the Wing-box problem requires 13 bitsfaling the absolute thickness of the
first panel, and 3 bits for encoding the relative incremezavdment in thickness of the remaining
panels. So, the number of bits needed for encoding an individ 13 for the first panel, and 3 for
each of the others 49 panels, that isf13x 49 = 160.

Figure 5.20 shows results on the Wing-Box problem for aslesmid sexual GAs, using both
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Figure 5.20:Error thresholds on two encodings of the Wing-Box problemioth asexual and sexual
GAs. The vertical axis shows mutation rates per genotypé.).

the redundant and non-redundant encodings. The plots steexistence of a stable consensus
sequence for mutation rates below the error threshold. Titoe #reshold is visualised as the
transition from a stable consensus sequence to a randorersagjof bits. Notice that, for the
redundant mapping (left plots), the error threshold tri@msis not clear. For most of the bits the
transition occurs somewhere between 1.0 and 2.0 mutat@rgemotype, but from approximately
bit 75 to bit 125 the error threshold looks higher. On the pttend, the non-redundant encoding
(right plots) shows a clearer transition, which for most leé bits occurs around 1.5 mutations
per genotype. An exception is the portion of bits from 11 to\WBich are randomised even for
low mutation rates. These bits correspond to the less signifdigits of the thickness of the first
panel, and the relative thickness of the second panel. Ghermharacteristics of the problem,
these bits are neutral in that changes to them are not reflectde overall fithess of the wing-
structure. Also, on the non-redundant mapping, therell@gtgion from bit 75 to bit 125 where
the consensus sequence seems more stable for higher mugaés.

Notice that the consensus sequence plots are giving us sdammation about the solutions
found. For the redundant coding, ‘100’ encodes the relaliidkness increment of -0.25, whereas
the non-redundant code represents this value with ‘11 ¥ {ables 3.4 and 3.5 from Chapter 3).
In all plots, and below the error threshold, this value (5).2 fixed from bit 75 onwards, that is
from panel 21 onwards.

Finally, for both encodings, there are no clear differeraatsveen the asexual and sexual GA

regarding the magnitude of error thresholds.

5.4.2 Multiple Knapsack Problem

Four multiple-knapsack instances, taken from the litemtwere selected as test problems. Prob-
lem sizes ranged from 50 to 105 objects and from 2 to 30 kn&psd@ble 5.5 summarises the
problem instances tested. These (and several other) pislaee available online from the OR-
library by Beasley (1990).

Figure 5.21 shows the consensus sequence plots on the fapskck instances selected,
asexual (top) and sexual (bottom). Results on the four ies® confirm the existence of error
thresholds on this real-world application. The error thdd is again visualised as the transition
from a stable consensus sequence to a more randomised se@iiéits. The transition in all the
instances occurs at approximately 1.0 — 1.2 mutations peotgpe. Notice that in all instances
there are some regions of the genotype where the consemglense is more stable for mutation
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Instance Objects Sacks

Weish 12 50 5
Sento 1 60 30
Weing 7 105 2
Weish 30 90 5

Table 5.5:Multiple Knapsack problem instances tested.

rates beyond the error threshold. There are no clear diftesebetween the GA with and without
recombination regarding the magnitude of error threshaldsvever, the transitionslooks sharper,
and thus the consensus sequences less stable, for the Gautvigltombination (asexual). This
may be due to the use of two-point recombination. It is knolat two-point recombination is a

less disruptive operator than mutation alone or unifornomaaination.

m m m
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Figure 5.21:Error thresholds on four instances of the Multiple Knapspadblem. Results for asexual
(top) and sexual (bottom) GAs are presented. The verti¢alsibows mutation rates per genotyp#L).

5.4.3 Discussion

This closing empirical section explored error thresholdseal-world domains. Results show
that error thresholds can also be found on these two compbihworld applications. It should
be noticed, however, that other real-world applicationghhhave very different characteristics.
No major differences were noticed in the magnitude of etnoggholds on GAs with and without
recombination. In all scenarios, for the particular GA stdd: tournament selection (tournament
size of 2), population size of 100, and generational rephece, the error threshold was located at
approximately 1.0 — 1.5 mutations per genotype.
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5.5 Conclusions

This chapter verifies the occurrence of error thresholdgatveng populations of bit strings using
a GA (with and without recombination). Error thresholds &vebserved on several landscapes,
including real-world domains. In this way, the notion ofarthreshold, (already introduced for
very simple landscapes in Chapter 4) is brought to evolatipnomputation.

This chapter also introduced thensensus sequence plofsese plots, borrowed and adapted
from theoretical biology (Bonhoeffer & Stadler, 1993), aev to the evolutionary computation
community. They represent a novel way to visualise the giracof fitness landscapes, since
features such as the presence of steps or discontinuitidsecaoticed. Moreover, the degree of
ruggedness in a landscape was revealed by these plots.rGassequence plots may also serve
as a tool to differentiate critical (and less critical) ar@athe genotype, which may have practi-
cal implications when tackling real-world problems. Fiistmay be possible to infer important
knowledge about an applied problem. Second, it may be pedsitefine the genotype representa-
tions and optimal schedules for mutation rates. This mayossgiple on some classes of problems,
as for instance the Wing-Box and Knapsack problems, wheréyming the consensus sequence
plot took few hours (on a standard Sun SPARC Station). Howveeasensus sequence plots are
computationally expensive and may be infeasible for otihesgnt-day challenging problems.

The next chapter will explore the hypothesised relatiombletween error thresholds and op-
timal mutation rates. It will also explore the effect of mfyilig both the values of evolutionary
parameters and the fitness landscape structure, on the todgoif optimal mutation rates. The
major lesson learned from this chapter is that error threlstaepend mainly on the selection pres-
sure and the genotype length, regardless of the landscajee study, as long as the landscape is
rugged. This knowledge may suggest useful heuristics ftingenear-optimal mutation rates. In
particular, the suggestion of setting a mutation rate/af (one mutation per genotype), discussed
in Chapter 2, is supported by the experiments in this chaptiéonly on rugged landscapes, popu-
lation sizes greater than 50, and selection schemes ingasialection pressure similar to that of
tournament selection with a tournament size of 2. The Heuristic is most probably applicable
on landscapes with little or no redundancy. As suggesteddydy and Thompson (1996), in
the presence of redundancy or ‘junk’ this heuristic sho@@djusted so as to give an expected 1
mutation pemnon-redundanpart of the genotype. These ideas will be further exploratdémext
chapter.



Chapter 6

Optimal Mutation Rates in Genetic Algorithms

The previous chapter demonstrated the occurrence of émestiolds in GAs running on a wide
range of fitness landscape topologies, including realdvddmains. It also explored the effects
of modifying both the settings of evolutionary parametensd the structure of landscapes, on
the magnitude of error thresholds. This chapter continugsavsimilar study but explores opti-
mal mutation rates instead of error thresholds, and pnefiaitly uses real-world domains as test
problems. It also studies the relationship between ermstiolds and optimal mutation rates by
comparing these two measures over various problems.

The chapter is organised as follows. The method sectionsiss the working definition of an
‘optimal’ mutation rate, and describes the empirical apploused here for estimating it. Section
6.2 studies the relationship between error thresholds atichal mutation rates, by comparing
these two measures on both abstract problems and real-domdins. Thereafter, Section 6.3
uses two instances of a real-world problem (the MultiplepS@k) to explore the effect of varying
the most relevant evolutionary parameters on the magndatiogtimal mutation rates. The closing
empirical section of the chapter (Section 6.4) uses a fixed(f&&d evolutionary parameters)
and various parameter settings of the tunable abstract¢apeés described in Chapter 3 (Section
3.2.1), to explore the effect of modifying the landscapacttire on the magnitude and range of
optimal mutation rates.

6.1 Method

For estimating optimal mutation rates in GAs we need to definat an optimal or near-optimal
mutation rate is. The working definition used here is: anrogtimutation rate is that producing
optimal performance. But then, we need a good way of meag@# performance. Recall from
Chapter 2 (Section 2.2.8), that given the randomised natu@As, conclusions can never be
drawn from a single run. Instead, the common practice is hsicer statistics from a sufficiently
large number of independent runs. So, the standard penfmenmaeasures for GAs are the average
and best fitness values attained after a prefixed terminatitarion, averaged over several runs.
Within a given run, the best fithess could be either the ctitvest in the population, or the best
fitness attained so far. These measures are considere@ #ifted termination criterion, or over
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fixed intervals throughout the GA run. For the experimentthia chapter, we will consider the
best fitness attained so far after a fixed termination cateri This criterion will be carefully
selected in each case to be long enough to stabilise thermksizarage fitness of the population.
The average of several runs will be considered (typicallydt the standard deviation will be
shown in most cases.

6.2 Optimal Mutation Rates and Error Thresholds

This section explores the relationship between error Hfulels and optimal mutation rates. The
approach followed is to independently assess these twouresaand compare them. Error thresh-
olds were estimated already on several landscapes in Clggtethese values will be used when-
ever possible. Unless otherwise stated, the experimenesfonating optimal mutation rates use
a generational GA with tournament selection (tournameset sf 2), and a population of size 100.
The GAis run in two modes, using mutation only (Asexual), aashg both mutation and recom-
bination (Sexual). The recombination operator used isfwiot recombination with a rate of 1.0.
A wide range of mutation rates are explored, they are expdegs mutations per genotype.

6.2.1 Preliminary Study: Termination Criteria (Generatio ns vs. Evaluations)

As mentioned in the method section, the approach followee fug measuring GA performance
is to calculate the average best-so-far fitness attained affixed termination criteria (a fixed
number of generations or function evaluations). The teatim criterion is carefully selected
to allow the population to equilibrate its average and bé&sesis. This section explores whether
the choice of (i) a fixed number of generations, or (ii) a fixegnber of evaluations, makes a
difference when estimating optimal mutation rates. Wharsgering the number of evaluations,
a simple optimisation can be performed (at least for detastic fitness functions), such that only
newly created individuals need to be evaluated. In othedsjaf an individual passed without
modifications to the following generation, there is no needetevaluate it. Instead, its fitness
value is maintained. From now on, when referring to numbevafuations, it is considered that
evaluations are counted in this manner, that is, only cemnsid newly created individuals.

Experiments in this section explore optimal mutation rates. Royal Staircase function with
N =3 andK = 10. Two termination criteria were tested: (i) a fixed numbfegenerations (1,000)
and (ii) a fixed number of function evaluations (100,000 Fer $exual GA, and 40,000 the asexual
GA). Figure 6.1 shows results using tournament selectimurifament size = 2), whereas Figure
6.2 shows results using proportional selection. In the égueach point is the average of 50 runs,
error bars showt the standard deviation. The Royal Staircase is a maxiroisgtioblem, so
optimal mutation rates are those producing the highesagedbest-so-far fitness.

With tournament selection with and without recombinatiéig@re 6.1), optimal mutation
rates were similar for both termination criteria. On theesthand, with proportional selection
(Figure 6.2), optimal mutation rates were similar for batghmination criteria for the GA with
recombination (sexual). However, with no recombinatiod eansidering evaluations, the results
were different than those considering generations. Spabifj optimal mutation rates tended to
be lower and close to zero when considering evaluationsi(€i§.2, bottom right plot). These
anomalous results deserve further investigation.
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Figure 6.1:Optimal mutation rates (per genotype) on a Royal Staircasetion (N = 3, K = 10) using
tournament selection (T. size = 2) and considering two teation criteria. Left: a fixed number of gener-
ations (1,000). Right: a fixed number of function evaluasi¢h00,000 for the sexual GA, and 40,000 for
the asexual GA). The curves show the average best-so-fassitattained after the termination criterion is
reached for various mutation rates.

Notice that, for both selection schemes, while the same reumbgenerations were needed
for the sexual and asexual GA to equilibrate the averageduefdr fithess (1,000 generations),
many more functions evaluations were needed for the sexAal1G0,000) as compared to the
asexual (40,000) to reach this stage. This last observatigether with the anomalous results
with proportional selection and no recombination reporiedve, suggest that, at least for this
kind of very neutral landscape, a mutation-only algorithithva low mutation rate may produce
better performance than a standard GA. This deserves furestigation but goes beyond the
scope of this dissertation.

Discussion

When estimating optimal mutation rates with tournamergc@n, it was found that the choice
of termination criteria, (i) a fixed number of generationgipra fixed number of function evalu-

ations, does not noticeably affect the results. Some armusaesults were, however, found with
proportional selection and no recombination when considegunction evaluations. This may
lead to potentially interesting research. Following th&utts from this preliminary study, it was
decided to use tournament selection and a fixed number offemes as the termination criterion
for all the remaining experiments in this chapter.

6.2.2 Royal Staircase Function

Table 6.1 compares error thresholds, as estimated in GhBpend optimal mutation rates as
estimated above on the Royal Staircase function With 3 andK = 10 (Figures 6.1 and 6.2).



Cliaptel 0. Upditial viulalorll Rates It Serietc AIgoOnuimis/

Proportional, Sexual, Generations (1,000) Proportional, Sexual, Evaluations (100,000)

w
® ©

Best so far
P
9

Best so far

) 0.1 02 03 0.4 05 06 08 0.9 1 ) 0.1 02 03 0.4 05 06 07 08 0.9 1
Mutation rate (per genotype) Mutation rate (per genotype)

Proportional, Asexual, Generations (1,000) Proportional, Asexual, Evaluations (40,000

Best so far
Best so far

B 15 2 02 04 06 0.8 12 14 16 18 2
Mutation rate (per genotype) Mutation rate (per genotype)

Figure 6.2:Optimal mutation rates (per genotype) on a Royal Staircasetion (N = 3, K = 10) using
proportional selection and considering two terminatiotedia. Left: a fixed number of generations (1,000).
Right: a fixed number of function evaluations (100,000 fa $kexual GA, and 40,000 for the asexual GA).
The curves show the average best-so-far fitness attairexdfadttermination criterion is reached for various
mutation rates.

Results for both tournament selection (tournament sizean@)proportional selection are shown.
All these measures are empirical approximations, and greesged as mutations per genotype.
Optimal mutation rates were found to be a less precise measucompared to error thresholds,
so a range of optimal mutation values instead of a singleavialpresented.

Tournament Selection Proportional Selection
Opt. Mut. Rates Error Threshold| Opt. Mut. Rates| Error Threshold
Sexual GA 06-1.2 0.9 0.1-0.6. 0.6
Asexual GA 08-1.6 1.0 06-1.8 11

Table 6.1: Comparing optimal mutation rates (per genotype) and eh@sholds on a Royal Staircase
function withN = 3, andK = 10, for both tournament and proportional selection.

Notice that (Table 6.1) error thresholds are located withérrange of optimal mutation rates
in all cases. Moreover, recombination has a similar effecboth error thresholds and optimal
mutation rates, namely, to shift them to lower values as @etgpto no recombination. This effect
is more noticeable for proportional selection.

6.2.3 Multiple Knapsack Problem

Two Multiple Knapsack instances, taken from the literatare used as test problems, Table 6.2
summarises them. These (and several other) problems alaxéanline from the OR-library by
Beasley (1990). The instances selected are among the baggemore complex available in the
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library.

Instance Objects Sacks
Sento 1 60 30
Weish 30 90 5

Table 6.2: Multiple Knapsack problem instances tested, with the natnegre referred to on the OR-
library.

On the two selected instances (Figure 6.3), the curves shevaverage best-so-far fithess
attained after 3,000 generations for various mutatiorsrdtethe figures, each pointis the average
of 50 runs, error bars showw the standard deviation. In all cases, an optimal mutatitnaarange
of optimal mutation rates could be identified. This is a masgation problem, so optimal mutation
rates are those producing the highest average best-soresdi In all cases, error thresholds
(indicated in the plots) are located within or close to thegeof optimal mutation rates.

Knapsack, Sento 1, L = 60, Sexual Knapsack, Sento 1, L = 60, Asexual

77001
7750 9 ET=12

7600
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7100

1 I 1
15 2 25 3 35 o 05 15 2 2.
Mutation rate (per genotype) Mutation rate (per genotype)

10° Knapsack, Weish 30, L = 90, Sexual «10" Knapsack, Weish 30, L = 90, Asexual

ET=13

1175 4 1165

Best so far
Best so far
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&
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L L L
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wl

15 2 15 2
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Figure 6.3:Optimal mutation rates on two instances of the Multiple Ksegk problem. The curves show
the average best-so-far fitness attained after 3,000 geesdor various mutation rates. Results with
(right) and without (left) recombination are shown.

Figure 6.4 compares the algorithm performance with andawitihecombination on the two
selected instances for various mutation rates. Error bara@ shown for the sake of clarity. Re-
sults suggests that using recombination improves the gedyast-so-far fithess. On the instance
named Sento 1, the improvement is observed over all the iontattes explored. On Weish 30,
performance was similar for the lowest mutation rates, aftel for the sexual GA for muta-
tion rates higher than.@/L. Moreover, the highest average best-so-far fitness wasedtasing
recombination and a mutation rate o5AL.
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Knapsack, Sento 1, L = 60, Comparison x10* Knapsack, Weish 30, L = 90, Comparison

—e—  Sexual

7750 - >=--  Asexual | |

7700

7650
117

7600

2
&

7550

Best so far
Best so far

7500

7450

7400

7350 %

i 1
1 15 2 25 3 o 05 1 15 2
Mutation rate (per genotype) Mutation rate (per genotype)

Figure 6.4:Comparing performance with (sexual) and without recontimngasexual) on two instances
of the Multiple Knapsack problem. Average best-so-far mattained after 3,000 generations for various
mutation rates.

6.2.4 Wing-Box Problem

This subsection explores two encodings of the Wing-Box f@mob a non-redundant and a re-
dundant encoding (see Chapter 3, Section 3.2.2). Recatl @bapter 3 that the encoding of the
Wing-Box problem requires 13 bits for coding the absolutekihess of the first panel, and 3 bits
for encoding the relative increment/decrement in thickresthe remaining 49 panels. So, the
number of bits needed for encoding an individual is 13 forfitst panel, and 3 for each of the
others 49 panels, that is 333 x 49 = 160. Figure 6.5 shows results on the Wing-Box problem
with and without recombination, using both the redundamnt aon-redundant encodings. The
curves show the average best-so-far fitness attained afi@d §enerations for various mutation
rates. Each pointin the curves is the average of 50 rung; lears showt the standard devia-
tion. Since this is a minimisation problem, optimal mutatiates are those producing the minimal
average fitness. Error thresholds are indicated in the ,plotsce that they are located near the
estimated optimal mutation rates in all cases. Note algoogpamal mutation rates are higher on
the redundant coding (bottom plots), being arour@yf 2.

Figure 6.6 compares the algorithm performance with andowmithecombination on the two
encodings of the Wing-Box problem for various mutation satérror bars are not shown for the
sake of clarity. On the non-redundant encoding, averagedeetar fithess was similar for low
mutation rates< 1.0/L), but better for the sexual GA for higher mutation sat®n the redundant
encoding, the sexual GA produced better performance tleagéxual GA over all the mutation
rates explored.

6.2.5 Discussion

Results on the Royal Staircase functions suggested thatihao single optimum mutation rate,
but instead a range of values producing near-optimal padoce. On the other hand, the real-
world domains showed a more definite optimal mutation ratetdeast a smaller range of near-
optimal mutation values. This feature of Royal Staircasefions may be due their characteristic
high degree of neutrality. It was found that, on the Royalr8&se function, error thresholds
are located within the range of optimal mutation rates. Iswaso found that recombination
shifts optimal mutation rates to lower values, which misrdre effect of recombination on error
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Figure 6.5: Optimal mutation rates on two encodings of the Wing-Box peob The curves show the
average best-so-far fitness attained after 3,000 genesdioo various mutation rates. Since this is a min-
imisation problem, optimal mutation rates are those proguthe minimal average fithess. Results with
(sexual, left) and without (asexual, right) recombinatioa shown.

“10° Wing-Box, No Redundant Coding, L = 160, Comparison “10° Wing-Box, Redundant Coding, L = 160, Comparison

—e—  Sexual —e—  Sexual

- ~--  Asexual - ~--  Asexual

13a2f 4 2
.

1.315;

1338}

Best so far

1336}

Best so far

1.305|
1334

1332

1328 L L L L L 1295
o 05

1 15 2 15 2 25
Mutation rate (per genotype) Mutation rate (per genotype)

Figure 6.6:Comparing performance with and without recombination oa éncodings of the Wing-Box
problem. Average best so far fithess attained after 3,008rg&ans for various mutation rates.

thresholds on this landscape.

On the real-world problems, optimal mutation rates with arithout recombination are in
the same range. If the optimal mutation rate is selectedG#avith recombination generally
produces highest average best-so-far fithess. In mostrsognir the particular GA selected:
tournament selection (tournament size of 2), populatioesf 100, and generational replacement;
optimal mutation rates were around 1.0 — 1.5 mutations peotype, which corresponds to the
magnitude of error thresholds in these domains as estinrat€tapter 5. An exception to this
behaviour was observed for a redundant genetic encodingevthe optimal mutation rate was
slightly higher: around 2.0 mutations per genotype.
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The empirical evidence in this section suggests a corogidietween error thresholds and
optimal mutation rates. Moreover, this relationship edrover from a simple toy-problem such
as the Royal Staircase function to complex real-world @apilbns.

6.3 Optimal Mutation Rates and Evolutionary Parameters

This section explores the effect of modifying the most ratgvevolutionary parameters on the
magnitude of optimal mutation rates. Unless otherwisesdta¢xperiments use a generational
GA with tournament selection (tournament size = 2), a pdpuieof 100 members, and both
mutation and recombination (two-point with a rate of 1.@), a sexual GA. Table 6.3 summarises
these default settings. This chapter emphasises the usaleiorld domains as test problems,
thus the two Multiple Knapsack problem instances summaiis&able 6.2 (Section 6.2.3) were
used. Further details on the experiments and departurestfie default settings are given in
the respective subsections. The approach for estimatimgalpmutation rates is to calculate the
average (of 50 runs) best-so-far fitness attained afte03y@@erations for several mutation rates.

Population replacemenk Generational
Selection scheme Tournament (T. Size = 2
Population size 100
Recombination rate 1.0 (Sexual)
Recombination operatdr Two-point
Termination criterion 3,000 Generations
Number of runs 50

Table 6.3:GA default parameters used in the experiments.

6.3.1 Genotype Length

Experiments in this subsection attempt to explore the effemodifying the genotype length on
the magnitude of optimal mutation rates. The selected Kaxapproblem instances, Sentol and
Weish 30, have string lengths of 60 and 90 respectively. rgigu7 shows the average best-so-far
fitness attained after 3,000 generations on these instdoicgarious mutation rates, expressed
as mutations per bit. Although these are different problantsdefinitive conclusions cannot be
drawn, results suggest that the optimal mutation rate i®td®.015 mutations per bit) for the
longer genotype.

6.3.2 Selection Pressure

This subsection explores the effect of increasing the elepressure on the magnitude of op-
timal mutation rates. The experiments use tournamenttsahelsecause this scheme allows the
selection pressure to be explicitly controlled. A commamrt@ment size is 2, but selection pres-
sure increases steadily for growing tournament sizes. dwmament sizes, 2 and 4, were tested.
Additionally, in one of the instances: Weish 30, resultsiggiroportional selection are also pre-
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Knapsack, Sento 1, L = 60, Sexual 10° Knapsack, Weish 30, L = 90, Sexual
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Figure 6.7:Comparing (per bit) optimal mutation rates on Multiple Keapk instances of different string
lengths (L = 60, 90). The curves show the average best-sitriass attained after 3,000 generations for
various mutation rates.

sented for the sake of comparisorFigure 6.8 compares optimal mutation rates (per genotype)
on the two selected problem instances. The strength oftgeidtad a pronounced effect on the
magnitude of optimal mutation rates: for a tournament sfZ& the optimal mutation rate was 1

— 1.5 mutations per genotype, whereas for a tournament siétavas 2.5 — 3.0 mutations per
genotype. Moreover, the curve using proportional selaatio Weish 30 (Figure 6.8, right), strik-
ingly shows the difference in magnitude of optimal mutatiates for a weak selection pressure.
In this case, the optimal mutation rate was as low as 0.05tinotaper genotype.

Knapsack, Sento 1, L = 60, Sexual “10° Knapsack, Weish 30, L = 60, Sexual
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Figure 6.8: Comparing optimal mutation rates (per genotype) for défférselection pressures on two
instances of the Multiple Knapsack problem. Tournamerdcsiein with two tournament sizes (2 and 4)
was tested. Additionally, proportional selection wasddsbn Weish 30. The curves show the average
best-so-far fithess attained after 3,000 generations fimwamutation rates.

6.3.3 Population Size

This subsection explores the effect of modifying the popaiesize on the magnitude of optimal
mutation rates. Four populationsizes: 10, 25, 50, and 16fk ¥ested. The number of generations
used as a stop criterion varied according to the populaiti@since the smaller the population, the
more generations were needed for equilibrating the befarditness. So the termination criteria

10n the other instance (Sento 1) it was not possible to useopiopal selection since the fitness function often
produced negative values.
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used were 30,000, 12,000, 6,000, and 3,000 generationgpardgtion sizes 10, 25, 50, and 100
respectively. Figure 6.9 shows results on the two seleatellgm instances. Optimal mutation
rates tended to be smaller, the smaller the population 8irefendency was clearer on Weish
30 (right plot), where optimal mutation rates wer& /L for a population size of 10,.Q/L for a
population size of 20,.0/L - 1.5/L for a population size of 50, and3/L for a population of size
100. Notice that for population sizes of 50 and 100, diffeemnin performance for the various
mutation rates tend to stabilise.

Knapsack, Sento 1, Population Size, Sexual 10° Knapsack, Weish 30, Population Size, Sexual
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Figure 6.9:Comparing optimal mutation rates for various populati@esi(see legends) on two instances
of the Multiple Knapsack problem. The curves show the awetagst-so-far fitness attained after a fixed
number of generations for various mutation rates. Thesel fixenber of generations varied according
the population size (30,000, 12,000, 6,000 and 3,000 ggoesafor population sizes 10, 25, 50, and 100
respectively).

6.3.4 Elitism

Results on the abstract landscapes explored in Chaptectd$&.2.5) suggest that elitism has a
pronounced effect. When elitism was used, there was no gmreshold transition. The following
group of experiments explores the effect of including giition the magnitude of optimal mutation
rates. Before presenting results on the Knapsack instatteegollowing subsection explores
optimal mutation rates with elitism on the same Royal Seaecinstance and GA settings for
which error thresholds with elitism were investigated ira@ter 5.

Royal Staircase Function

Royal Staircase functions are unimodal and have few fitn@s®s. The single optimum is known
beforehand (the string of all 1s). So, a natural performaneasure would be to calculate the
number of evaluations before reaching the optimum strimgHe first time. This measure was
used by van Nimwegen and Crutchfield (1998) in their studypiineal evolutionary search on
Royal Staircase functions. Hence, the performance measead here on these functions is the
number of evaluations before finding the peak, averaged I@mruns. The landscape instance
explored is a Royal Staircase function with number of blagks 3, and block siz&k = 10. A
generational GA with proportional selection is used. Thpysation size is 100. That is, the same
settings used on the experiments in Chapter 5 (Section Big@jre 6.10 shows results with and
without recombination. Notice that the range of optimal atioin rates is wider for the runs with
elitism, also the number of evaluations for finding the peakkeases more steadily. On the other
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hand, the runs without elitism show a sudden increase inuh&er of evaluations to reach the
peak for mutation rates greater than 0.6 (Sexual) and 1.8x{#&). The difference between the
non-elitist and elitist runs was more marked for the Sexua(Egure 6.10, left). Error thresholds
without elitism are indicated in the plots. Notice that eftfresholds without elitism are located
within the range of optimal mutation rates of both the eliiisd non-elitist runs.

RS, Optimal mutation rates and elitism (Sexual) RS, Optimal mutation rates and elitism (Asexual)
T T T T T T T

T T T T T
—e— No elitism —e— No elitism
— Elitism —— Elitism
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Figure 6.10:0Optimal mutation rates and elitism. Number of evaluatiandihding the peak on the Royal
Staircase function with and without elitism. Left with reebination (Sexual), right without recombination
(Asexual). Error thresholds for the non-elitist stratsgaee indicated in the plots.

Multiple Knapsack Instances

Figure 6.11 compares results with and without elitism ontihe selected Knapsack instances.
Results suggest that optimal mutation rates are the sarheanit without elitism. Moreover, the
average best-so-far fithess curves are rather similar indases. These results differ from those
on the Royal Staircase function, which suggest that thetediieelitism is problem dependent.

Knapsack, Sento 1, L = 60, Sexual “10° Knapsack, Weish 30, L = 90, Sexual
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Figure 6.11:Comparing optimal mutation rates for non-elitist and sti@As on two instances of the Mul-
tiple Knapsack problem. The curves show the average befsirditness attained after 3,000 generations
for various mutation rates.

6.3.5 Steady State Population Replacement
The experiments in this subsection explore the effect afgisieady-state population replacement
instead of generational replacement. Three types of ststady GA were explored:

1. Using tournament selection for parents, and randomtsahefor individuals that are to be
replaced
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2. Using random selection for parents, and inverse tournaseection for individuals that
are to be replaced

3. Using tournament selection for parents, and inversentonent selection for individuals
that are to be replaced

Figure 6.12 compares results on the Knapsack instances thsrthree steady-state GAs de-
scribed above. Since steady-state GAs only replace fewithdils (typically one or two) each
generation, the number of generations used as the terminaiierion needs to be much longer.
Specifically, 100,000 generations were long enough to #xaik the average best-so-far fithess
on the Knapsack instances. Results on the two instancesalitatjvely very similar. The steady-
state replacement of type 1, namely, using tournamenttg@aidfor parents, produced lower op-
timal mutation values. On the other hand, the steady-stalacement using inverse tournament
selection for individuals that are to be replaced (types®3nproduced higher optimal mutation
rates, and a wider range of near-optimal mutation value® r&hge and magnitude of optimal
mutation rates was larger for the steady-state GA of type 3.

The explanation suggested here for this last observatesfisliows. The third type of steady-
state replacement imposed the highest selection predsaesthere was selection on both parents
and individuals that are to be replaced. Results with vangelection pressures (Figure 6.8)
suggest that optimal mutation rates are higher for highlecgen pressures. Thus, steady-state
replacement of type 3 imposed the highest selection presand hence produced the highest
optimal mutation rates. Regarding the wider ranges of nurtasites observed on the steady-state
GAs of types 2 and 3, these results are probably due to thpliditnelitism. This is supported by
results with elitism on the Royal Staircase function (Set6.3.4, Figure 6.10).

Knapsack, Sento 1, L = 60, Steady-state GAS “10° Knapsack, Weish 30, L = 90, Steady-state GAs
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Figure 6.12:0Optimal mutation rates and steady-state population repiaat. Average best-so-far fitness
on two instances of the Multiple Knapsack problem. Threesypf steady-state replacement were tested:
(1) applying tournament selection on parents and selestttigiduals that are to be replaced at random, (2)
selecting parents at random and applying inverse tourngsegection on individuals that are to be replaced,
(3) applying tournament selection on both parents and iddals that are to be replaced.

6.3.6 Discussion

This section explored the effect of modifying the valuesaious evolutionary parameters on the
magnitude of optimal mutation rates. Two instances of thétiple Knapsack problem were used
as test problems. The effects of these various parametesuarmarised below:
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¢ Genotype length: Optimal per bit mutation rates seem to depend on the strimgie they
were lower in magnitude the longer the genotype. We considgrexpressing mutation
rates as mutations per genotype instead of as mutationgpiembore useful when devising
heuristics for optimal setting of the mutation rate.

¢ Selection pressureThe strength of selection had a pronounced effect on optim&htion

rates. The stronger the selection pressure, the higher digaiinde of optimal mutation
rates. The use of proportional selection (where there isomiral over the selection pres-
sure) may produce much smaller optimal mutation rates apared to tournament selec-
tion. An interesting observation is that for tournamenesgbn with tournament size of 2
(and a population of size 100), optimal mutation rates aeclibetween 1 and 1.5 muta-
tions per genotype, whereas for tournament size of 4 thegased to 2.5 — 3.0 mutations
per genotype (Figure 6.8). This result suggests that sefegtessure is the most important
component in determining the magnitude of optimal mutataias.

¢ Population size: The effect of population size on the magnitude of optimalatioh was
not found to be marked. However, the evidence suggests ftima mutation rates are
smaller, the smaller the population size. These differencehe magnitude of optimal
mutation rates tend to stabilise for population sizes ofradlarger.

¢ Elitism: Results from Chapter 5 suggest that elitism has a pronowsféect since, when
elitism was used, there was no observable error threstaidition. This observation looks
problematic from the point of view of the hypothesised iielaghip between error thresholds
and optimal mutation rates. Results on both the Royal Stséréunction and Knapsack in-
stances suggest that the relationship between error tidssfas estimated without elitism)
and optimal mutation rates with elitism, is still presemtcs the error threshold is located
within the range of optimal mutation rates of both the diitisd non-elitist runs. However,
with elitism, the range of optimal mutation rates on the R&taircase function was shown
to be much wider.

¢ Steady State Population ReplacementThree types of steady-state population replace-
ment were tested. The magnitude and range of optimal muatedies varied according to
the type of steady-state GA, being larger for those type®simy a higher selection pres-
sure. Also, the steady-state GAs with an implicit elitisnowkd a wider range of optimal
mutation rates. However, a mutation rate of 1 — 1.5 mutati@mgenotype produced near-
optimal results in all cases.

6.4 Optimal Mutation Rates and Fitness Landscape Structure

This section explores the effect of modifying the landscstpecture on the magnitude and extent
of the range of optimal mutation rates. Various paramei@dss of the Royal Staircase function
are explored. Moreover, results on a groupgNK andNKF landscapes are presented. All the
experiments use a generational GA with tournament seleftitmrnament size of 2), and a pop-
ulation of size 100. Both mutation and recombination arel{Sexual GA). The recombination
operator is two-point recombination with a rate of 1.0, iBa& similar setting to that summarised
in table 6.3. A wide range of mutation rates were exploreéy thre expressed as mutations per
genotype.

6.4.1 Royal Staircase Functions

Three Royal Staircase functions of fixed string length 32 different values oN andK (see
Table 6.4), were explored. This produces a range of funstadrfixed length and increasing
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ruggedness. Figure 6.13 shows the average best-so-fasfigtmined after a fixed number of
generations on each function. The number of generatiors ase¢he termination criteria was
longer the more rugged the function, as more generations mezded to equilibrate the best-so-
far fitness of the population. This number is indicated orng#ot title. Notice that (Figure 6.13),
when the landscape is smoother (i.e. greater number of Ntapsg smaller step siz€), the range
of optimal mutation rates is wider. For the more rugged laages N = 2, K = 16; right plot)
only one mutation value (8/L) produced optimal performance. There is, however, an aperl
of optimal mutation rates over these landscapes of ingrgasiggedness, with a mutation rate of
0.8/L producing optimal performance in all of them.

N

16 2
4 8
2 16

Table 6.4:Royal Staircase functions explored.

RS, N =16, K = 2, Sexual, 100 Generations RS, N =4, K =8, Sexual, 500 Generations RS, N =2, K = 16, Sexual, 6,000 Generations
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Figure 6.13:Optimal mutation rates on Royal Staircase functions of fleedth and increasing ruggedness
(decreasing number of steps). The curves show the averatsdéar fitness attained after a fixed number
of generations (shown in the plot titles) for various mutatiates.

6.4.2 NK Landscapes

This set of experiments explores optimal mutation rated&nlandscapes of fixed lengtiN(=

16), and four values df = {0, 4, 8, 12. This produces a range of landscapes from a single-peaked
and smooth ‘Fujiyama’ landscapK € 0), to a very rugged landscapé € 12). For estimating
optimal mutation rates on these landscapes, a differembapp was followed. This approach is
described below.

Method

Results with theNK landscape were found to strongly depend on the terminatiterion. Also,
differences in performance for various mutation rates vgemall and tended to converge for large
run times. Thisis probably due to the random nature andssitai regularity of these landscapes.
So, for comparing results the best approach found was to stgwits over the whole run time of
a GA (at fixed intervals), instead of only after a fixed ternio criterion. All experiments were
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averaged over 50 runs. Finally, following the methodolag#tiggestions by Spears (1998) (also
used by Smith and Fogarty (1996)) each run uses a differedstape (generated with a different
seed). For equivalence, the same 50 seeds and landscaessedrfor each algorithm variant

under comparison.

Results

Figure 6.14 shows the average best-so-far fitness attatrfeed intervals of the whole run, on
the four NK landscapes. ThalK landscape wittK = 0 is an unrealistic smooth ‘Fujiyama’
landscape; it is, however, shown here for comparison pespda this landscape a high mutation
rate (> 4.0/L) produced poor performance, while the lower mutation reiggored € 3.0/L) all
produced similar good results. However, after a certainbemof generations all performance
curves tend to converge. On the landscapes with ‘mediungedgessi = 4 and 8), results
depend on the stage of the search. However, a rate aroun@2)0nutations per genotype can be
identified as producing the best performance. On thesedapds the error threshold magnitude,
as estimated in Chapter 5, was 1.5 — 2.0 mutations per gemoiipus, optimal mutation rates
were slightly higher than the estimated error thresholdhase landscapes. On the very rugged
landscapeK = 12) a mutation rate of.Q/L produced the best performance over the whole run.
This value is again slightly higher than the estimated etinoeshold on this landscape (around
1.0/L). These results differ from those on the other prolslerplored. This difference is probably
due to the random nature, high multi-modality, and staidtiegularity ofNK landscapes. Also,
for extremely rugged landscapds £ N), a very high mutation rate (close to random search)
would probably produce optimal results.
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NK, N =16, K = 0, Sexual : : : PRI it et e St

—R=—————%

0775}

o665 ¢

Best so far
°

Best so far

° 0.5 0765\ l’

0.655

10 15 20 25 30 35 a0 as 50 50 100 150 200 250 300
Generations Generat tions.

NK, N = 16, K = 8, Sexual NK, N = 16, K = 12, Sexual

Best so far
Best so far

o
E}

50 100 150 200 250 300 50 100 150 200 250 300 350 400 450 500 550 600

Figure 6.14:Optimal mutation rates oNK landscapes of fixed lengthl(= 16) and increasing ruggedness
(K =0, 4, 8, and 12). The curves show the average best-so-fasditattained at fixed intervals over the
whole run. The legends indicate the mutation rates exp]@qatessed as mutations per genotype.
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6.4.3 NKF Landscapes

This subsection explores the effect of landscape neyt@lithe magnitude of optimal mutation
rates. The empirical approach described abovlfotandscapes, was used for estimating optimal
mutation rates. Figure 6.15 compares results dilaf landscape (Chapter 3, Section 3.2.1) with
the maximum possible degree of neutraligy£ 2), against those on a stand&# landscape of

the same ruggedness and dimension. Results suggest thmalopiutation rates depend on the
stage of the search, but are higher on the landscape withatiguas compared to the landscape
with no neutrality. Specifically, the optimal mutation ratas 50/L for the neutraNKF landscape

as compared to.8/L for the standardNK landscape. These results are consistent with the effect
of redundancy in the encoding of the Wing-Box problem (Set6€.2.4).
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Figure 6.15:0ptimal mutation rates on two landscapes of fixed lentth (16) and ruggednes (= 4)

and increasing neutrality. THé¢KF landscape (right plot) has the maximum amount of neutrplilssible
with this model, whereas theK landscape (left plot) has no neutrality at all. The legemiBciate the
mutation rates explored, expressed as mutations per genoty

6.4.4 Discussion

This section explored the effect of modifying the landscstpecture on the magnitude and range
of optimal mutation rates. For the experiments in this sectGA parameters remained fixed,
while landscape parameters were varied. On the Royal 8s&rfunction, results suggest that
the smoother the landscape, the larger the range of optimtdtion rates and the higher the
upper limit. Moreover, GA performance on smooth functior@swess sensitive to the particular
mutation rate used, in other words, on very rugged landscse@lecting the mutation parameter
is more critical from the point of view of the algorithm pemfeance. A similar tendency was
observed oMK landscapes: smooth landscapes had a wider range of néaabpiutation rates.
Finally, the degree of neutrality or redundancy on the lange was found to have an effect on the
magnitude of optimal mutation rates, which were higher Higier the degree of neutrality.

6.5 Conclusions

This chapter explored optimal mutation rates over a widgeasf both landscape topologies and
GA parameter settings. Also, the relationship betweern ¢éhresholds and optimal mutation rates
was assessed by comparing these two measures on both alastdscapes and real-world do-
mains. It was found that error thresholds and optimal momatates are generally correlated.
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Moreover, this relationship carried over from simple tapigems to real-world applications.
Also, effects of changing evolutionary parameters on thgnitade of error thresholds, as seen in
Chapter 5, occurred in the same proportion on optimal manatites found in this chapter, which
further confirms the relationship between these two measure

Optimal mutation rates with and without elitism were foudbe similar, although elitism
seems to produce a wider range of optimal mutation valueso Aptimal mutation rates were
independent of the use or not of recombination in most cables.effect of the size of the pop-
ulation was small, optimal mutation rates are similar fordex@te and large populations (more
than 50 members). The factors that really determine the matmof optimal mutation rates are
the strength of selection and the genotype length. We re@rdrexpressing mutation rates as
mutations per genotype instead of as mutations per bit. Athivselection scheme, the recom-
mendation is to use rank-based selection methods sincellogythe user explicit control of the
selection pressure. Moreover, for an otherwise standardiGiAg tournament selection with tour-
nament size of two, a mutation rate of 1 — 1.5 mutations peotype produced good performance
in most problem instances studied here. In the presenceudfatiey or redundant encodings a
slightly higher mutation rate will be optimal. However, eit is difficult to estimate the degree
of redundancy beforehand, using a mutation rate of 1 — 1.%tmouts per genotype will be safe
and still produce good results. Surprisingly, the ruggsedrd the landscape was not critical in
determining the magnitude of a near-optimal mutation rexedpt perhaps for extremely rugged
landscapes). So, the suggestion above holds over landso&pecreasing ruggedness. On a
smooth landscape, a wider range of mutation values will pcedhear-optimal results, this range,
however, encompasses the values mentioned above. On #gréhatid, performance on moderate
to rugged landscapes, is more sensitive to an approprigiegsef the mutation parameter.



Chapter 7

Conclusions

The objective of this investigation was to bring the notidrecor thresholds from the field of
molecular evolution to the field of genetic algorithms, anéstablish the relevance of this notion
in the context of GAs. More precisely, the aims of this workevihe following:

¢ To establish whether the phenomenon of an error threshaltdeabserved in populations
of bit strings evolving under a GA

¢ To relate error thresholds to the more familiar notion ofiopd mutation rates in GAs

¢ To propose general principles for setting near-optimalwgianary parameters in GAs in
the light of this new knowledge

To achieve these objectives, empirical methods for esigatrror thresholds on landscapes
ranging from simple to complex, including real-world domsiwere proposed. These approaches
were inspired by research from the field of molecular evolutiThereafter, optimal mutation rates
were estimated on the same landscapes, and these two nsaasueeompared against each other
to assess their relationship. The effects of modifying libéhvalues of evolutionary parameters
and the structure of fithess landscapes on the magnitudemftéresholds were also studied.
A similar study was carried out for optimal mutation ratesnay, some general principles of
interaction between mutation rates and other evolutiopargmeters were suggested.

7.1 Summary

Chapter 2 introduced the field of evolutionary computatioa described in detail the most widely

known of its approaches: genetic algorithms (GAs). Theedifit components and variants of
GAs were described, revealing the GA as a family of algorghather than a single algorithm.

To complicate matters further, there is little (if any) thetical guidance, and few rules of thumb
about how to proceed when applying a GA to a given problem.sTthe chapter also discussed
the many decisions involved when designing a GA. Among secisibns, parameter setting was
discussed in more detail, and a classification of approaithparameter setting was proposed.
Also, a detailed review of approaches so far for effectitgrggof the mutation rate was presented.
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Chapter 3 introduced the notion of fitness landscapes, whashoriginally proposed in the
context of organic evolution, but later gained relevandedth molecular evolution and evolution-
ary computation. Landscapes may differ in their structesce, some landscape features that are
known to have an influence on evolutionary search were dsgclAmong such featuresgged-
nessandneutrality were distinguished. Thereafter, some techniques for aimayhe structure of
fithess landscapes were briefly discussed. The second the ofapter presented the test prob-
lems used throughout the dissertation. Two types of tedilenos were selected; first, a group of
abstract fitness landscapes (Royal Staircase functddiidandscapes, andK landscapes with
neutrality); and second, two real-world applications (enbnatorial optimisation problem: the
Multiple Knapsack problem, and an engineering applicatithre design of an optimal aircraft
Wing-Box). The families of abstract tunable landscapesnadd the exploration of a wide range
of landscape topologies with several degrees of rugge@mekseutrality, whereas the real-world
problems allowed us to explore the practical relevance®fdbas in this thesis.

Chapter 4 started the exploration of error thresholds in Ggisg simple abstract landscapes.
It also introduced the notions of quasispecies and errestiolds from molecular evolution, and
discussed the major extensions of the original quasispectalel. Thereafter, it reproduced the
results by Boerlijst et al. (1996), but using a GA (and thuddipopulations) instead of the qua-
sispecies model (for infinite populations) as the undegyitodel of evolution. Results for finite
populations showed that the stable distribution of seqeemas qualitatively similar to that for
infinite populations. Thus, error thresholds were showrxistén finite populations of bit strings
evolving under a GA. Moreover, the main conclusions of Bggrand co-workers hold in this
case; in particular, the main conclusion that recombimasibifts the error threshold to lower
mutation rates. An additional group of experiments, noluded in Boerlijst et al. (1996) were
presented. These experiments explored the effect of iimgudate selection. It was found that as-
sortative mating (i.e. preference for similar organismsjéased the magnitude of error thresholds
as compared to no recombination and recombination witharmnaating.

Chapter 5 introduced the so-called consensus sequence plbiese plots, borrowed and
adapted from theoretical biology, represent an empiripgk@ach for locating error thresholds
on general landscapes. They also serve as a tool for visuplisme features of the landscape
structure such as ruggedness and presence of discor@mditie empirical sections of the chapter
used consensus sequence plots for exploring the effectryihgeseveral evolutionary parameters
on the magnitude of error thresholds on both abstract |apescand real-world problems. It was
found that the magnitude of error thresholds depends maimlhe strength of selection and the
reciprocal of the genotype length. Error thresholds alsoeiase with increasing population size,
although these differences in magnitude stabilise for fijmn sizes of 50 or larger. Elitism has
a pronounced effect, when elitism was used, no error thtéghensition was observed. Error
thresholds depended on the type of steady-state replatersea, this difference, however, was
attributed to both the differences in the strength of seaecind the implicit elitism of some types
of steady-state replacement. For discontinuous and veggedilandscapes, error thresholds were
found to be lower when recombination was used. However gifést of recombination was not
observed on less rugged landscapes and real-world domalitls.regard to assortative mating,
error thresholds were higher for this mating scheme as coedpa both random mating and no
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recombination. Regarding the structure of fitness landsssapwas found that the existence of
error thresholds depends upon the ruggedness of the lgpeldear smooth landscapes, there was
no clear error threshold. For rugged landscapes, on the b#mel, there was a clear transition
between an ‘ordered’ (selection-dominated) regime andsafdered’ (mutation-dominated) one.
Finally, empirical evidence suggests that error threshalslo occur in real-world domains.

Chapter 6 explored optimal mutation rates. It discussedr&ing definition of an ‘optimal’
mutation rate, and described an approach for estimatinghaptmutation rates on the various
problems explored. Thereafter, a first group of experimassessed the relationship between er-
ror thresholds (as estimated in Chapter 5) and optimal noutaates (as estimated in Chapter 6)
by comparing these two measures on both abstract landsaageeal-world domains. The em-
pirical evidence gathered suggests a strong correlatioveles these two measures. However, the
optimal mutation rate is often not a well defined value (tglkarrange), whereas the error threshold
is a more definite measure. A second group of experiment®egthe effect of modifying the
most relevant evolutionary parameters on the magnitudetinal mutation rates. It was found
the most important factors were the strength of selecti@htha reciprocal of genotype length.
Optimal mutation rates were similar with and without recamaltion on the real-world domains.
However, on the abstract problems, they tend to be lower wéesmbination was used. These
results are consistent with the effect of recombination marehresholds reported in Chapter 5.
The effect of the size of the population was also small, oatimutation rates were similar for
population sizes of 50 and larger. The range of near-optimaation rates seems to be wider for
elitist GAs. The last group of experiments explored theatftd modifying the landscape struc-
ture. The ruggedness of landscapes was not critical eéliegugh smooth landscapes showed a
wider range of mutation values producing near-optimalgrerince. Finally, on most problems
explored, and for a controlled selection pressure (touemrselection, with tournament size of
2), optimal mutation rates were consistently around 1 — lufations per genotype. On redun-
dant encodings, a slightly higher mutation rate would bénogit However, since the degree of
redundancy is not easy to estimate beforehand, a mutatierofd/L — 1.5/L will be safe and
still produce good results.

7.2 Contributions

¢ A classification of approaches to GA parameter setting wapgeed. This classification
modifies and extends a previous taxonomy by Eiben et al. (1999

¢ The notion of error threshold was brought from the field of @solar evolution to the field
of genetic algorithms. The existence of the phenomenon efram threshold in populations
of bit strings evolving under a GA was demonstrated over a&wahge of landscapes and
problems, including real-world domains.

¢ Consensus sequence plots were also borrowed and adapteth&oretical biology. They
serve as an empirical approach for locating error threshofdgeneral landscapes. More-
over, they represent a new visualisation tool that revealersl features of the landscape
structure such as ruggedness and presence of discormuiti

¢ It was found that, when comparing the performance of sev@falariants, the outcome
may depend on the choice of the performance measure. Ircyarti the choice of the
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termination criterion, as a fixed number of generations axedfnumber of evaluations (of
newly created individuals), may modify the results.

Most importantly, the hypothesised relationship betwéwnrtotion of error threshold and
the more familiar notion of an optimal mutation rate in GAssveenpirically corroborated.

Moreover, this relationship was shown to carry over fromp@arabstract landscapes to
real-world domains.

The effect of modifying the most relevant evolutionary paegers on the magnitude of both
error thresholds and optimal mutation rates was investjat his study revealed several
principles concerning the interaction between each ofetipesameters with the mutation
rate, together with the sensitivity of these interactions.

The heuristic of setting a mutation rate of one mutation marogype (XL) has been pro-
posed before within the evolutionary computation communitowever, results in this
dissertation set bounds to the validity of this heuristicmétation rate of IL would be
sub-optimal in the following cases:

a weak selection pressure,

an excessively high selection pressure,

a small population size{ 20), and

in the presence of highly neutral (redundant) genotypes.

From the evidence gathered in this dissertation, we sudigasmutation rates should be
expressed as mutations per genotype instead of as mutpgobd.

Limitations

The number of landscapes and problems explored was neiteBsdared. The use of real-
world domains as test problems supports the practicalaet=yof the findings in this disser-
tation. However, it is worth observing that other real-wigosroblems might have different
characteristics from those explored in this dissertation.

The genetic representation explored was limited to fixedsle binary strings.

Among the different approaches to evolutionary computatilis dissertation was limited
to genetic algorithms.

The mutation rate was considered in its standard form, fhatd a fixed value throughout
the whole GA run.

Suggestions for Further Study

Since this dissertation focused on fixed-length binarygsj a natural extension would be to ex-
plore variable-length, n-ary discrete representatiorse dxtension of the notion of error thresh-
olds to real number encodings, and non-linear (e.g. hieieat) chromosomes would be a more
difficult enterprise. In a similar vein, it would be interesf to explore the existence of error
thresholds with other evolutionary algorithms such asw@umh strategies, evolutionary program-
ming, and genetic programming. We can expect the phenomenuersist, as it comes from the
guasispecies model, which is a formal model of evolutiortams differential equations, different
in nature from a computational model such as the GA.
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It has been suggested that a mutation parameter that varessahe GA run would be op-
timal. However, devising optimal schemes for varying theatian rate is a difficult task. The
notion of error threshold might be relevant to this entesgRas it possesses an upper limit to the
mutation parameter beyond which evolutionary search wdetgenerate into random search. In a
similar vein, consensus sequence plots may suggest optiotation rate schedules. Consensus
sequence plots show differences in the error threshold iatgacross the genotype, which are
more clearly observed on Royal Staircase functions (Ch&pteigures 5.7, 5.17). This supports
the idea that a time-varying scheme for the mutation rateldvioe optimal. This idea was origi-
nally proposed by Fogarty (1989), who found that varyingrthgation rate over time and across
the bit representation of individuals (or both), signifitgimproved the performance of the GA.
Later on, similar findings were reported by Back (1992) arithMnbein (1992). A clear impli-
cation of the findings in this dissertation is that, not ordy aiseful estimates of optimal mutation
rates be inferred from error thresholds, but also that aesyastic method of setting a non-fixed
schedule of such rates can be devised for families of realevepplication problems. This, then,
deserves further investigation.

Finally, the anomalous results found when estimating ogltimutation rates on GAs without
recombination, and the distinction between a terminati@aron considering either generations
or evaluations of newly created individuals (Chapter 6ti8ad.2.1), suggest a potentially inter-
esting line of research. Specifically, that, at least fodsapes with high levels of neutrality, a
mutation-only algorithm with a low mutation rate may produetter performance than a standard
GA, when performance is in terms of new evaluations.

7.5 Final Words

The field of genetic algorithms is characterised, in my apinby a big gap between the theory
and the practice. There are very few theoretical result, most of them are not relevant for the
practitioner. This thesis is an attempt at bridging this d&pbringing the notion of error threshold
into the field, new light was shed on the sensitivity of the atioh rate parameter. Also, some
principles concerning the interactions between the nuitaitite and other evolutionary parameters
were illuminated. This new understanding is not only relfeom the theoretical point of view,
but was used here to reveal potential useful heuristicsaraimgy parameter interactions and near-
optimal parameter setting.
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