
Towards the ‘Decathlon Challenge’ of Search Heuristics

Edmund K. Burke, Tim Curtois, Graham Kendall, Matthew Hyde,
Gabriela Ochoa, Jose A. Vazquez-Rodriguez and Sanja Petrovic

Automated Scheduling, Optimisation and Planning (ASAP) Group
School of Computer Science
University of Nottingham, UK

{ekb,tec,gxk,mvh,gxo,jav,sxp}@cs.nott.ac.uk

ABSTRACT
We present an object oriented framework for designing and
evaluating heuristic search algorithms that achieve a high
level of generality and work well on a wide range of com-
binatorial optimization problems. Our framework, named
HyFlex, differs from most software tools for meta-heuristics
and evolutionary computation in that it provides the algo-
rithm components that are problem-specific instead of those
which are problem-independent. In this way, we simultane-
ously liberate algorithm designers from needing to know the
details of the problem domains; and prevent them from in-
corporating additional problem specific information in their
algorithms. The efforts need instead to be focused on de-
signing high-level strategies to intelligently combine the pro-
vided problem specific algorithmic components. We plan
to propose a challenge, based on our framework, where the
winners will be those algorithms with a better overall perfor-
mance across all of the different domains. Using an Olympic
metaphor, we are not solely focussed on the 100 meters race,
but instead on the decathlon of modern search methodolo-
gies. Categories

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Design.

Keywords
Combinatorial optimization, hyper-heuristics, meta-heuristics,
parameter tuning, software frameworks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$5.00.

1. INTRODUCTION
Meta-heuristics or general purpose heuristics have domi-

nated the combinatorial optimization arena for the last two
decades. Researchers in this area, however, are often con-
strained on the number of applications on which they can
test their general purpose methods. One of the reasons is
that a large proportion of the required effort must be in-
vested in the construction of the problem-specific heuristics
and data structures. Recent developments in search method-
ologies towards more generally applicable techniques has
been termed hyper-heuristics [5]. The majority of current
hyper-heuristic approaches attempt to intelligently combine
or select between previously proposed simpler heuristics,
where it is not clear which one will be most effective for the
problem instance at hand. The hyper-heuristic framework
is provided with a repository of problem specific heuristics
(often referred to as ‘low-level’ heuristics). Several hyper-
heuristics have been proposed, which use meta-heuristics
or machine learning techniques as the high-level strategy
and combine the strengths of the low-level heuristics imple-
mented. However, results are only ever reported on a few
problem domains. Again, this is due the time and effort
it takes to implement each problem domain and its associ-
ated low-level heuristics. Many of the low-level heuristics
are complex and sophisticated, and it requires a reasonable
level of familiarity and experience if one is to implement a
different/new problem domain.

To overcome such limitations and to support research into
generally applicable search algorithms, we developed HyFlex,
a modular and flexible Java class library for designing and
testing search methodologies. The framework was designed
having in mind hyper-heuristics, but can be used also for
testing other search methodologies such as meta-heuristics.
Our framework differs from other meta-heuristics software
tools in that it provides the algorithm components that are
problem-specific (as opposed to those which are problem-
independent). for The idea is to provide problem domain
modules that encapsulate the solution representation, fitness
evaluation, and a repository of associated low-level heuris-
tics for a number of hard combinatorial optimization prob-
lems. Importantly, only the high-level strategy needs to be
implemented by the user, as HyFlex provides an easy to use
interface with which the problem domains can be accessed.
Each HyFlex domain module includes a library of problem
instances. It also provides the means to manipulate a pop-
ulation of solutions, so a high-level strategy is not limited
to using just one incumbent solution. Our aim is to make
it easy for researchers to test the generality and effective-

ness of their search algorithms, by taking away the difficult
task of implementing many problem domains. Valuable re-
search effort can thus be devoted to developing the high-
level strategies that manage the (provided) problem specific
heuristics.

The idea for a search heuristics challenge or competition
was inspired by the the metaphor of a “many-walls” game as
opposed to the more traditional“up-the-wall”game in search
methodologies [6]. In the up-the-wall game, the idea is to de-
velop and apply newly proposed search methodologies to ex-
isting benchmark problems, and compare with other “play-
ers”. The goal is to “get further up the wall” than the other
players. On the other hand, the goal of the many-walls game
will be to operate on as many different walls as possible,
while still getting acceptably high up each wall. In other
words, the goal is to rise the level of generality of search
methodologies

Our framework is also inspired by the hyper-heuristic ap-
proach discussed in [5, 9], which operates at a high level of
abstraction and often has no knowledge of the domain. It
only has access to a set of perturbative low-level heuristics
(neighborhood structures) that it can call upon, and has no
details as to the functioning of those low-level heuristics.
The motivation behind this approach is that once a hyper-
heuristic algorithm has been developed, it can be applied to
a new problem by replacing the set of low level heuristics
and the evaluation function. The idea of having a software
interface for hyper-heuristics was suggested in [18]. Another
relevant antecedent to our framework is PISA [2], a text-
based software interface for multi-objective evolutionary al-
gorithms. PISA proposes to divide the implementation of
an evolutionary algorithm into an application-specific part
and an algorithm-specific part. The latter contains the se-
lection procedure, whilst the former encapsulates the solu-
tion representation, the generation of new solutions, and the
calculation of the fitness values. The two parts are imple-
mented as distinct programs that communicate via a text-
based interface, which provides maximum independence of
programming languages and computing platforms.

Our proposal extends the perturbative hyper-heuristic frame-
work [5, 9] in two important ways. First, a memory or list
of solutions is maintained in the domain layer, instead of
a single incumbent solution (this follows a suggestion pre-
sented in [23]). This extension enriches the possibilities for
the hyper-heuristic designer allowing, for example, the im-
plementation of population based approaches. Second, a
large set of low-level heuristics of different types is pro-
vided, consisting of four types: mutational, ruin-recreate,
hill-climbers and crossover. Also, HyFlex differs from PISA
[2] in that its interface is not text-based but instead given
by an abstract Java class. Our proposal is not tied to evo-
lutionary algorithms, but allows the implementation of any
single-point meta-heuristics and hyper-heuristics. Moreover,
whilst PISA provides mainly classic benchmarks and ab-
stract domains, it is our intention to provide a rich and
varied collection of real-world hard combinatorial problems.

The following section describes the components of the pro-
posed domain modules and overviews the four application
domains we have implemented so far.

2. THE PROBLEM DOMAIN MODULES
Each HyFlex problem domain module consists of:

1. A routine to initialise solutions in the population.

2. A set of heuristics to modify solutions classified into
five groups:

mutational : makes a (typically random) modifica-
tion to the current solution.

ruin-recreate : destroy part of the solution and re-
build it using a constructive procedure (typically
a greedy procedure).

local search : searches in the neighbourhood of the
current solution for an improved solution.

crossover : takes two initial solutions, combines them
and returns a new solution.

others : heuristics that do not fit into any of the
above categories.

3. A set of interesting instances that can be easily loaded
using the method loadInstance(a), where a is the
index of the instance to be loaded.

4. A population of one or more solutions that has to be
administered.

5. Two parameters α and β, 0 ≤ α, β ≤ 1, which are
the “intensity of mutation” and “depth of search”, re-
spectively, that may control the behaviour of some low
level heuristics.

Note that items 1, 2 and 3 are problem dependent. Cur-
rently 4 domain modules are implemented. Namely, the per-
mutation flowshop problem, 1D bin packing, boolean satis-
fiability and personnel scheduling. Below we overview the
main design choices for each domain. Technical reports are
available describing the details of each module [10, 15, 14,
22].

2.1 The Permutation Flow Shop Problem
The permutation flow shop problem requires finding the

order in which n jobs are to be processed in m consecutive
machines. The jobs are processed in the order machine 1,
machine 2, . . . , machine m. Machines can only process one
job at a time and jobs can be processed by only one machine
at a time. No job can jump over any other job, meaning
that the order in which jobs are processed in machine 1 is
maintained throughout the system. Moreover, no machine
is allowed to remain idle when a job is ready for processing.
All jobs and machines are available at time 0. Each job i
requires a processing time on machine j denoted by pij .

Initialization : Solutions are initialized using the well es-
tablished NEH procedure [17]. This heuristic has been
used as an important component of many effective
meta-heuristics for the permutation flow shop prob-
lem. It has been used as both the initialization pro-
cedure of solutions, to be later improved, and also as
the improving mechanism within the main iteration of
more elaborate algorithms.

Low-level heuristics : A total of 14 low level heuristics
were implemented. Specifically, 5 mutational, 4 local
search (inspired by those proposed in [19]), 3 crossover
heuristics (classical recombination operators for per-
mutation representation) and 2 ruin and recreate heuris-
tics (which incorporate the successful NEH procedure
in the construction process). For more details see [22].

Instance number Size

0-9 20× 5
10-19 20× 10
20-29 20× 20
30-39 50× 5
40-49 50× 10
50-59 50× 20
60-69 100× 5
70-79 100× 10
80-89 100× 20
90-99 200× 10

100-109 200× 20
110-119 500× 20

Table 1: Permutation flowshop module instances.

Set Piece size Bin Number
name distribution capacity of pieces Ref

bp1 Uniform [20,100] 150 1000 [11]
bp2 Triples [25,50] 100 501 [11]
bp3 Uniform [150,200] 1000 100 [20]

Table 2: One dimensional bin-packing instance sets.
Each set contains 20 instances.

Instance data : A total of 120 instances from the widely
known Taillard set [21], are provided. The instance
sizes are are given in Table 1, in the format n×m. The
job processing times, on all instances, are uniformly
distributed random integers in the range [1, 99].

2.2 One dimensional bin packing
The one-dimensional bin-packing problem involves a set

of integer-size pieces L, which must be packed into bins of
a certain capacity C, using the minimum number of bins
possible. In other words, the set of integers must be divided
into the smallest number of subsets so that the sum of the
sizes of the pieces in a subset does not exceed C.

Initialization : Solutions are initialized by first random-
izing the order of the pieces, and then applying the
widely known ‘first-fit’ heuristic [16]. This is a con-
structive heuristic, which packs the pieces one at a
time, each into the first bin that they will fit into.

Low-level heuristics : 2 mutational, 2 ruin and recreate,
repacked with best-fit, and 3 local search heuristics.
These heuristics are inspired by those proposed in [1].
For more details see [15]

Instance data : The problem instances are summarized in
table 2. There are 60 instances in total, 20 in each of
three classes.

2.3 Boolean satisfiability
The boolean satisfiability or SAT problem involves deter-

mining if there is an assignment of the boolean variables of
a formula, which results in the whole formula evaluating to
true. If there is such an assignment then the formula is said
to be satisfiable, and if not then it is unsatisfiable. The pro-
cess of finding an assignment that satisfies the formula is the
search problem considered in this domain module.

Instance set name Variables Clauses

uf200-860 200 860
uf225-960 225 960
uf250-1065 250 1065

Table 3: Boolean satisfiability module instances.

Initialization : Solutions are initialized by simply ran-
domly assigning a true or false value to each variable.
The problem instances included are examples of the so
called 3SAT problem, where each clause contains three
variables.

Low-level heuristics : 2 mutational, 4 local search, and
2 heuristics that combine mutation and local search.
These heuristics are described in [12], and comprise
state of the art local search heuristics for this problem.
For more details see [14]

Instance data : The problem instances are taken from the
“Uniform Random-3-SAT” category on the ‘SATLIB’
website [13]. There are 60 instances in total, 20 from
each of three classes. The instances are summarized in
table 3.

2.4 Personnel scheduling
The personnel scheduling problem involves deciding at

which times and on which days (i.e. which shifts) each em-
ployee should work over a specific planning period. How-
ever, the personnel scheduling problem is actually a title
for a group of very similar problems. There is no general
personnel scheduling problem. Instead there is a group of
problems with a common structure but which differ in their
constraints and objectives. This creates an additional chal-
lenge in implementing a problem domain module for person-
nel scheduling. To overcome this we have designed a data
file format for which each instance can select a combina-
tion of a objectives and constraints from a wide choice. We
then implemented a software framework containing all the
functions for these constraints and objectives.

Initialization : Initial solutions are created with a hill
climbing heuristic which uses a neighbourhood oper-
ator that adds new shifts to the roster.

Low-level heuristics : 3 mutational (including vertical,
horizontal and new swaps, see [10]), 5 local search, 3
ruin and recreate, and 3 crossover heuristics. These
heuristics are taken from previously proposed success-
ful meta-heuristic approaches to nurse rostering prob-
lems [3, 4, 7, 8]

Instance data : The instances have been collected from
a number of sources. Some of the instances are from
industrial collaborators. These include: ORTEC an
international consultancy and software company who
specialise in workforce planning solutions and SIN-
TEF, the largest independent research organisation in
Scandinavia. Other instances have been provided by
other researchers or taken from various publications.
The collection is a very diverse data set drawn from
eleven different countries. The majority of the in-
stances are real world scenarios. An overview of the

instances can be found in [10], they vary in the length
of the planning horizon, the number of employees and
the number of shift types. Each instance also varies in
the number and priority of objectives present1.

3. DISCUSSION AND FUTURE WORK
We are proposing a novel framework for supporting re-

search into modern search methodologies. The HyFlex frame-
work provides the algorithmic components that are prob-
lem specific, thus liberating the users (algorithm designers)
from needing to know the problem domain’s specific details.
At the same time, we prevent the users from incorporating
additional problem domain knowledge. The design efforts
will instead be focused on designing high-level strategies to
intelligently combine the the low-level heuristics provided.
Four domain modules have been implemented: the permu-
tation flowshop problem, 1D bin-packing, Boolean satisfi-
ability and personnel scheduling. Preliminary tests on the
reusability of the modules have successfully been conducted.
Moreover, several meta-heuristics and hyper-heuristics have
been implemented and initial testing has been carried out.
This is work in progress, we are not yet announcing the chal-
lenge. Our current efforts are directed to extend the number
of problem domains. Specifically, we plan to include mod-
ules on educational timetabling, and vehicle routing. Our
goal is to promote research into generally applicable search
methodologies and eventually conduct the Decathlon chal-
lenge of search heuristics. In order to decide the winner of
our competition, we plan to follow a similar point system
than the one currently used in the Olympic event. Further
work is needed to adequately adapt this system.

4. REFERENCES
[1] R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and

B. McCollum. A simulated annealing hyper-heuristic
methodology for flexible decision support. Technical report,
School of Computer Science, University of Nottingham,
2007.

[2] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler.
PISA—A Platform and Programming Language
Independent Interface for Search Algorithms. In C. M.
Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele,
editors, Conference on Evolutionary Multi-Criterion
Optimization (EMO 2003), volume 2632 of LNCS, pages
494–508, Berlin, 2003. Springer.

[3] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A
scatter search for the nurse rostering problem. Technical
report, School of Computer Science, University of
Nottingham, 2007.

[4] E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A
time predefined variable depth search for nurse rostering.
Technical report, School of Computer Science, University of
Nottingham, 2007.

[5] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and
S. Schulenburg. Hyper-heuristics: An emerging direction in
modern search technology. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics,
pages 457–474. Kluwer, 2003.

[6] E. K. Burke, G. Kendall, and R. Qu. Hyper-heuristics and
theier emploument on search problems. The 25th Workshop
of the UK Planning AND Scheduling, PlanSIG 2006,
December 2006. Keynote talk.

[7] E.K. Burke, P. Cowling, P. De Causmaecker, , and
G. Vanden Berghe. A memetic approach to the nurse

1The instances can be downloaded from:
http:///www.cs.nott.ac.uk/~tec/NRP/

rostering problem. Applied Intelligence, 15(3):199–214,
2001.

[8] E.K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A
hybrid heuristic ordering and variable neighbourhood
search for the nurse rostering problem. European Journal of
Operational Research, 188(2):330–341, 2008.

[9] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic
approach for scheduling a sales summit. In Selected Papers
of the Third International Conference on the Practice And
Theory of Automated Timetabling, PATAT 2000, LNCS,
pages 176–190, Konstanz, Germany, 2000. Springer.

[10] T. Curtois. A hyflex module for the personnel scheduling
problem. Technical report, School of Computer Science,
University of Nottingham, 2009.

[11] E Falkenauer. A hybrid grouping genetic algorithm for bin
packing. Journal of Heuristics, 2:5–30, 1996.

[12] A. S. Fukunaga. Automated discovery of local search
heuristics for satisfiability testing. Evolutionary
Computation (MIT Press), 16(1):31–1, 2008.

[13] H. H. Hoos and T. Stützle. Satlib: An online resource for
research on sat. In I. P. Gent, H. V. Maaren, and T. Walsh,
editors, SAT 2000, pages 283–292. IOS Press, 2000.
SATLIB is available online at www.satlib.org.

[14] M. Hyde. A hyflex module for the boolean satisfiability
problem. Technical report, School of Computer Science,
University of Nottingham, 2009.

[15] M. Hyde. A hyflex module for the one dimensional
bin-packing problem. Technical report, School of Computer
Science, University of Nottingham, 2009.

[16] D. Johnson, A. Demers, J. Ullman, M. Garey, and
R. Graham. Worst-case performance bounds for simple
one-dimensional packaging algorithms. SIAM Journal on
Computing, 3(4):299–325, December 1974.

[17] M. Nawaz, E. Enscore Jr., and I. Ham. A heuristic
algorithm for the m-machine, n-job flow-shop sequencing
problem. OMEGA-International Journal of Management
Science, 11(1):91–95, 1983.

[18] A. J. Parkes. A proposal for a hyper-heuristics software
interface. Oral presentation, May 2007. Automated
Scheduling, Optimisation and Planning Research Group.
Internal Seminar.

[19] R. Ruiz and T. G. Stützle. An iterated greedy heuristic for
the sequence dependent setup times flowshop problem with
makespan and weighted tardiness objectives. Journal of
Operational Research, 187(10):1143–1159, 2007.

[20] P. Schwerin and G. Wäscher. The bin-packing problem: A
problem generator and some numerical experiments with
ffd packing and mtp. International Transactions in
Operational Research, 4(5):377–389, 1997.

[21] E. Taillard. Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64(2):278–285,
1993.

[22] J. A. Vazquez-Rodriguez. A hyflex module for the
permutation flow shop problem. Technical report, School of
Computer Science, University of Nottingham, 2009.

[23] J. Woodward, A. Parkes, and G. Ochoa. A mathematical
framework for hyper-heuristics. Oral presentation, 2008
September. Workshop on Hyper-heuristics - Automating
the Heuristic Design Process, in conjunction with the 10th
International Conference on Parallel Problem Solving From
Nature (PPSN X), Dortmund, Germany.

