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ABSTRACT
Hyper-heuristics are identified as the methodologies that search the space generated by a finite set of low
level heuristics for solving difficult problems. One of the iterative hyper-heuristic frameworks requires a
single candidate solution and multiple perturbative low level heuristics. An initially generated complete
solution goes through two successive processes; heuristic selection and move acceptance until a set of
termination criteria is satisfied. A goal of the hyper-heuristic research is to create automated techniques
that are applicable to wide range of problems with different characteristics. Some previous studies show
that different combinations of heuristic selection and move acceptance as hyper-heuristic components
might yield different performances. This study investigates whether learning heuristic selection can
improve the performance of a great deluge based hyper-heuristic using an examination timetabling
problem as a case study.

Keywords: hyper-heuristics, reinforcement learning, great deluge, meta-heuristics,
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INTRODUCTION
Meta-heuristics have been widely and successfully applied to many different problems.
However, significant development effort is often needed to produce fine tuned techniques for the
particular problem or even instance at hand. A more recent research trend in search and
optimisation, hyper-heuristics (Burke et al., 2003a; Ross, 2005; Chakhlevitch et al., 2008; Ozcan
et al., 2008; Burke et al. 2009a, 2009b), aims at producing more general problem solving
techniques, which can potentially be applied to different problems or instances with little
development effort. A hyper-heuristic approach is able to intelligently choose an appropriate
low-level heuristic, from a given repository of heuristics, to be applied at any given time. Thus,
in hyper-heuristics, we are interested in adaptively finding solution methods, rather than directly
producing a solution for the particular problem at hand.

Several hyper-heuristics approaches have been proposed in the literature, which can be
categorised into approaches based on perturbative low-level heuristics, and those based on



constructive low-level heuristics. The latter type of hyper-heuristics builds a solution
incrementally, starting with a blank solution, and using constructive heuristics to gradually build
a complete solution. They have been successfully applied to several combinatorial optimisation
problems such as: bin-packing (Ross et al., 2003), timetabling (Terashima-Marin et al., 1999;
Asmuni et al., 2005; Burke et al., 2007, Qu et al., 2008a), production scheduling (Vazquez-
Rodriguez et al., 2007), and cutting stock (Terashima-Marin et al., 2005). On the other hand,
approaches based on perturbative heuristics, find a reasonable initial solution by some
straightforward means (either randomly or using a simple constructive heuristic) and then use
heuristics, such as shift and swap to perturb solution components with the aim of finding
improved solutions. In other words, they start from a complete solution and then search or select
among a set of neighbourhoods for better solutions. Perturbative (improvement) hyper-heuristics
have been applied to real world problems, such as, personnel scheduling (Cowling et al., 2001;
Burke et al., 2003b), timetabling (Burke et al., 2003b), and vehicle routing problems (Pisinger et
al., 2007). In a perturbative hyper-heuristic framework, search is mostly performed using a
single candidate solution. Such hyper-heuristics, iteratively, attempt to improve a given solution
throughout two consecutive phases: heuristic selection and move acceptance as illustrated in
Figure 1. A candidate solution (St) at a given time (t) is modified into a new solution (or
solutions) using a selected heuristic (or heuristics). Then, a move acceptance method is
employed to decide whether to accept or reject a resultant solution. This process is repeated until
a predefined stopping condition is met. Only problem independent information flow is allowed
between the problem domain and hyper-heuristic layers. A perturbative hyper-heuristic can be
denoted as heuristic selection − move acceptance based on its components.

Figure 1. A hyper-heuristic framework based on a single point search

St

Hyper-heuristic

Problem Domain

H1 HnHi

St+1

S0

Problem independent information gathering,
performance statistics for heuristics, etc.

Select l
heuristic(s)

Apply

Heuristic Selection Move Acceptance

St , W

Representation, evaluation
function, initial solution (S0),
etc.

St+1 = v, vW

St+1 = St

L W

St+1

accept

reject
OR

Low level heuristics

Domain Barrier

W ={k,HkL: Hk(St)}

stop

return
best



Great deluge is a well-known threshold acceptance criterion (Dueck, 1993). Kendall et al. (2004)
employed random choice of low level heuristics (simple random) and great deluge for the first
time as hyper-heuristic components for solving the channel assignment problem. Bilgin et al.
(2006) experimented with thirty five different hyper-heuristics for solving an examination
timetabling. The simple random−great deluge hyper-heuristic ranked the second, yet delivered a
similar performance to the best approach; namely, choice function – simulated annealing hyper-
heuristic. Obviously, simple random receives no feedback at all during the search to improve
upon the heuristic selection process. Hence, in this study, great-deluge is preferred as the move
acceptance component within a perturbative hyper-heuristic framework to investigate the effect
of learning heuristic selection on the performance of a perturbative hyper-heuristic for solving
the same examination timetabling problem as formulated in Bilgin et al. (2006). The learning
mechanisms, inspired by the work in Nareyek (2003), are based on weight adaptation.

BACKGROUND
Hyper-heuristics and Learning
Although hyper-heuristic as a term has been introduced recently (Cowling et al., 2001a), the
origins of the idea dates back to early 1960s (Fisher et al., 1961). A hyper-heuristic operates at a
high level managing or generating low level heuristics which operate on the problem domain.
Meta-heuristics have been commonly used as hyper-heuristics. A hyper-heuristic can conduct a
single point or multi-point search. Population based meta-heuristics which perform multi-point
search, such as learning classifier systems (Ross et al., 2002; Marín-Blázquez et al., 2005;
Tereshima-Marin et al., 2007), evolutionary algorithms (Cowling et al., 2002c; Cowling et al.,
2002d; Han et al., 2003a; Han et al., 2003b; Ross et al., 2003, Pillay et al., 2007), genetic
programming (Burke et al., 2006; Keller et al., 2007a, Keller et al., 2007b; Burke et al., 2009a),
ant colony optimisation (Burke et al., 2005b; Cuesta-Canada et al., 2005; Chen et al., 2007) have
been applied to a variety of combinatorial optimisation problems as hyper-heuristics. Distributed
computing methods can also be used to perform multi-point search (Rattadilok et al., 2004;
Rattadilok et al., 2005; Ouelhadj et al., 2008). Ozcan et al. (2008) presented different hyper-
heuristic frameworks showing that a matching performance to memetic algorithms can be
achieved. In this study, perturbative hyper-heuristics using the framework as in Figure 1 based a
single point search are in focus. The primary components of such hyper-heuristics are heuristic
selection and move acceptance.

A major feature of a hyper-heuristic is its applicability to different problem instances having
different characteristics as well as different problem domains. In this quest, machine learning
techniques are vital for hyper-heuristics to make the right choices during the heuristic selection
process. Existing learning hyper-heuristics incorporate reinforcement learning (Kaelbling et al.,
1996; Sutton et al., 1998). A reinforcement learning system interacts with the environment and
changes its state via a selected action in such a way to increase some notion of long term reward.
Hence, a learning hyper-heuristic maintains a utility value obtained through predetermined
reward and punishment schemes for each low level heuristic. A heuristic is selected based on the
utility values of low level heuristics in hand at each step. Remembering and forgetting are the
core ingredients of learning. Remembering can be achieved through the rewarding and
punishment schemes. Forgetting can be achieved through the use of lower and upper bounds on
the utility values. Some reinforcement learning methods use weighted average of learnt utility
values. A dynamic weighting scheme can be employed favouring the outcome of the most recent



actions or choices. Reward and punishment schemes are allowed to use different adaptation rates
in case of an improving and worsening move, respectively. For example, utility value of a
selected heuristic can be increased at a constant rate linearly whenever there is an improvement
after it is employed, otherwise the utility value can be decreased at a different rate, or even the
utility value can be kept constant. Initialisation of the utility values, lower and upper bounds for
them along with a memory adjustment scheme (weighting) are the rest of the constituents for a
reinforcement learning based hyper-heuristic.

Some previously studied heuristic selection methods are summarised in Table 1. Simple random,
random gradient, random permutation gradient, greedy and choice function heuristic selection
methods are presented in Cowling et al. (2001a). All these approaches can be considered
learning heuristic selection methods, except simple random. In (Cowling et al., 2001b), a
parameter-free choice function was presented. As a problem domain, sales summit scheduling
was used in both studies. Later, the choice function based hyper-heuristics were applied to nurse
rostering (Cowling et al., 2002a) and project presentation scheduling (Cowling et al., 2002b).
Cowling & Chakhlevitch (2003) investigated peckish heuristic selection strategies that
eliminated the selection and application of all low level heuristics as in greedy heuristic
selection.

Nareyek (2003) investigated reinforcement learning using different reward/penalty schemes and
heuristic selection strategies on orc quest problem and logistics domain. Additive/subtractive
adaptation rates combined with heuristic selection using the maximal utility generated better
results as opposed to a fair random choice (softmax, roulette wheel). All heuristics were assigned
to a utility value of 0, initially and raw utility values were maintained. Upper and lower bounds
were defined for the utility values. In (Burke et al., 2003b), reinforcement learning was
combined with tabu search in a hyper-heuristic and applied to timetabling problems. The aim of
this modification was to prevent the selection of some heuristics for a while by inserting them
into a variable-length tabu list. A non-tabu heuristic with the highest utility value was chosen at
each step.

Table 1. Description of a set of heuristic selection methods used within perturbative hyper-
heuristics.

Name Description

Simple Random Choose a low level heuristic randomly
Random Descent Choose a low level heuristic randomly and employ the same heuristic

as long as the candidate solution in hand is improved

Random Permutation
Descent

Generate a random permutation of low level heuristics and form a
cyclic list. Starting from the first heuristic, employ it repeatedly until a
worsening move is hit, then go to the next heuristic in the list.

Greedy Apply all low level heuristics to the same candidate solution
separately and choose the heuristic that generates the best change in
the objective value

Peckish Apply a subset of all low level heuristics to the same and choose the
heuristic that generates the best change in the objective value



Choice Function Dynamically score each heuristic weighing their individual
performance, combined performance with previously invoked
heuristic and the time passed since the last call to the heuristic at a
given step then a heuristic is chosen based on these scores.

Reinforcement Learning Each heuristic carries a utility value and heuristic selection is
performed based on these values. This value gets updated at each step
based on the success of the chosen heuristic. An improving move is
rewarded, while a worsening move is punished using a preselected
adaptation rate.

Tabu Search This method employs the same strategy as Reinforcement Learning
and uses a tabu list to keep track of the heuristics causing worsening
moves. A heuristic is selected which is not in the tabu list.

Some studies concentrate on move acceptance in hyper-heuristics rather than the heuristic
selection methods, as accepting a move turns out to be an extremely important decision. In
Cowling et al. (2001), heuristic selection methods are combined with either all moves accepted
or only improving moves accepted strategy. On the other hand, Ayob & Kendall (2003) proposed
three different Monte Carlo move acceptance strategies based on the objective value change due
to the move, time (units), number of consecutive non-improving moves. Simple random was
used as a heuristic selection within the hyper-heuristic for solving the component placement
problem. The best move acceptance turned out to be exponential Monte Carlo with counter. One
of the well known move acceptance is simulated annealing (SA) (Kirkpatrick, 1983). The
improving moves or the moves that generate an equal quality solution are accepted, while a
worsening move is not rejected immediately. Acceptance of a given candidate solution is based
on a probabilistic framework that depends on the objective value change and a temperature that
decreases in time (cooling). The difference between exponential Monte Carlo with counter and
the simulated annealing is that the latter one uses this cooling schedule while the former does
not. Bai & Kendall (2003) investigated the performance of simple random – simulated annealing
hyper-heuristic on a shelf space allocation problem. Anagnostopoulos et al. (2006) applied a
similar hyper-heuristic to a set of travelling tournament problem instances embedding a reheating
scheme into the simulated annealing move acceptance. In (Bai et al., 2007), a reinforcement
learning scheme is combined with simulated annealing with reheating as a hyper-heuristic and
applied to three different problem domains: nurse rostering, course timetabling and 1D bin
packing.

In (Dueck, 1993), two move acceptance strategies, namely great deluge (GD) and record-to-
record travel that accept worsening moves based on a dynamic threshold value were presented.
Kendall & Mohamad (2004) utilised a simple random – great deluge hyper-heuristic to solve a
mobile telecommunication network problem. Great deluge uses a threshold (t) that decreases in
time linearly to determine an acceptance range for the solution qualities as presented in Equation
(1), where maxIter is the maximum number of steps (or total time), t is the number of steps
passed, R is an expected range for the maximum fitness change between the initial fitness and
fopt which is the final objective value (e.g., lower bound).
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In case of an improving move, it is accepted, while a worsening move is accepted as well only if
the objective value of the resultant candidate solution at step t is less than the computed
threshold. Kendall & Mohamad (2004) used a step based threshold formula with a maximum
number of iterations as a termination criterion aiming a quadratic running time complexity for
the overall algorithm.

Bilgin et al. (2007) employed different heuristic selection and move acceptance mechanisms and
used their combinations as hyper-heuristics. The results showed that simple random – great
deluge hyper-heuristic was the second best after choice function – simulated annealing
considering the average performance of all hyper-heuristics over a set of examination timetabling
problems. Consequently, a hyper-heuristic without learning delivered a comparable performance
to another one with a learning mechanism. Therefore, in this study, reinforcement learning is
preferred to be combined with great deluge to observe the effect of learning heuristic selection
on the overall performance of the hyper-heuristic for solving the same problem. All the runs
during the experiments in (Bilgin et al., 2007) were restricted to 600 seconds; hence, the
threshold is computed based on the CPU time within the great deluge move acceptance strategy.
If a heuristic takes less time, then the threshold value will be lower as compared to the one that
takes longer time. This hyper-heuristic differs from the one that Kendall & Hussin (2005) have
investigated, as their hyper-heuristic embeds a tabu list approach to keep the chosen heuristic
from getting selected again for a number of steps (tabu duration) into reinforcement learning as a
heuristic selection. Moreover, the low level heuristics contained a mixture of thirteen different
constructive and perturbative low level heuristics.

Ozcan et al. (2009) combined different heuristic selection methods with late acceptance strategy,
a new method that is initially presented as a local search for solving examination timetabling
problem. Late acceptance requires a single parameter and it is a memory based approach. A trial
solution is compared with a previously visited solution at a fixed distance apart from the current
step in contrast to the conventional approaches that usually compare the trial solution with a
current one. The trial solution is accepted, if there is an improvement over this previously visited
solution. The results showed that reinforcement learning, reinforcement learning with tabu list or
choice function heuristic selection methods did not improve the performance of the hyper-
heuristic if late acceptance is used. Choosing a heuristic randomly at each step performed the
best. More on hyper-heuristics can be found in Cowling et al. (2002b), Burke et al. (2003a), Ross
(2005), Ozcan et al. (2008), Burke et al. (2009), Chakhlevitch & Cowling (2008).

Examination Timetabling Problem
Examination timetabling is a hard to solve real world problem addressed mainly by educational
institutions, such as universities. The goal is finding the best assignment of available timeslots
and possibly other resources, such as rooms for each examination subject to some constraints.
There are two types of constraints: hard and soft constraints. Hard constraints must not be
violated to achieve a feasible solution. For example, a student cannot take any pair of his/her
examinations at the same time; hence, his/her examinations must not clash. On the other hand,
soft constraints reflect preferences and such violations are allowed. For example, a number of



timeslots might be preferred in between the examinations of a student scheduled to the same day;
still, a student having a consecutive examination might be acceptable. The main goal is to
minimise the number of soft constraint violations while maintaining a feasible solution (or
solutions). Researchers have been studying various aspects of examination timetabling problems
since the early 1960s (Cole, 1964; Broder, 1964). Examination timetabling problems are NP-
complete (Even, 1976). Since the search space of candidate solutions grow exponentially with
respect to the number examinations to be scheduled, many different non-traditional approaches
(e.g., meta-heuristics) have been investigated for solving a variety of examination timetabling
problems. Table 2 and 3 provide some illustrative examples of these approaches.

Table 2. Different approaches to examination timetabling

Approach Reference(s)
Decomposition and/or construction heuristics Carter et al., (1996); Burke & Newall (1999);

Qu & Burke, (2007, 2008a); Pillay et al. (2008)
Simulated annealing Thompson & Dowsland (1996, 1998);

Merlot et al. (2002); Burke et al., (2004)
Genetic algorithms and constraint satisfaction Marin (1998)
Grouping genetic algorithm Erben (2001)
Iterative greedy algorithm Caramia et al. (2001)
Tabu search Di Gaspero & Schaerf (2001); Burke et al. (2005a)

Multiobjective evolutionary algorithm Paquete & Fonseca (2001); Cheong et al. (2007)
Greedy randomised adaptive search procedure Casey & Thompson (2003)
Adaptive heuristic ordering strategies Burke & Newall, (2004)
Very large neighbourhood search Abdullah et al. (2004, 2007)
Fuzzy reasoning Petrovic et al. (2005); Asmuni et al. (2005, 2007)
Variable neighbourhood search Qu & Burke (2005)
Ant colony optimisation Dowsland & Thompson (2005); Eley (2006)

Hybrid heuristics Azimi (2005) ; Ersoy et al. (2007)
Neural network Corr et al. (2006)
Case based reasoning based investigations Petrovic et al. (2003); Yang & Petrovic (2005);

Petrovic et al. (2007)
Alternating stochastic-deterministic local search Caramia & Dell'Olmo (2007)
Hyper-heuristics Kendall & Hussin (2005); Burke et al. (2007);

Pillay & Banzhaf (2007); Qu et al. (2008a)

Most of the examination timetabling problems are studied from a practical point of view, as they
arise due to the practical needs within institutions. Since different institutions have different
requirements, there is a variety of examination timetabling problems in literature (Table 3; see
Qu et al., 2009). Carter et al., (1996) introduced one of the widely used examination timetabling
data sets made up of 13 real world problems, called as the Toronto benchmarks. 3 of them were
obtained from Canadian high schools while the rest were from different universities around the
world. It is of interest to know the best approach in the research community. Schaerf & Di
Gaspero (2006) pointed out the importance of reproducibility and comparability of the results.



Toronto benchmarks enable researchers to compare their studies to the others. Yet, most of the
comparisons are based on the best results achieved.

Competitions, such as, ITC2007 (http://www.cs.qub.ac.uk/itc2007/), are very functional in
determining the state of the art for different problems including examination timetabling, as the
approaches use the same platform to compete. Top five approaches are described as follows,
respectively. The winner of the competition for the examination timetabling track was a three-
stage approach developed by Müller (2008). Initially, a complete feasible solution is constructed,
and then this solution is improved using a hill climbing approach. Finally, great deluge with a re-
rising level scheme is employed. The second best approach designed by Gogos (2008) was also
based on three-stages. After a high quality feasible solution is constructed, simulated annealing
followed by mathematical programming is employed for improving the solution quality. Atsuta
et al. (2007) used a general purpose constraint satisfaction problem solver which combined
iterated local search and tabu search. De Smet (2008) embedded local search techniques into an
open-source business rule management system, referred to as drools solver. Pillay (2007)
employed an approach based on cell biology which mimicked cell behaviour. Under such an
analogy, a variety of heuristics, such as swapping, violation directed rescheduling is employed to
improve a constructed solution. A commercial point of view on the real world issues in course
and examination timetabling was put forward by McCollum (2006). McCollum et al. (2009)
attempted to unify examination timetabling problems under a different model considering these
issues and other real world requirements. An excellent survey on examination timetabling is
provided by Qu et al. (2009). Please refer to this survey for details on approaches, classifications,
data sets and more.

Table 3. Some examination timetabling problems from different universities and the initial
approaches proposed to solve them

Institution Reference Approach
University of Nottingham Burke et al. (1995) Memetic algorithm
Middle East Technical University Ergul (1996) Genetic algorithm
École de Technologie Supérieure Wong et al. (2002) Genetic algorithm
University of Melbourne Merlot et al. (2002) A multi-phase hybrid algorithm
University of Technology MARA Kendall & Hussin (2005) Hyper-heuristic
Yeditepe University Ozcan et al. (2005) Memetic algorithm

Ozcan et al. (2005) introduced the examination timetabling problem at Yeditepe University. In
this initial study, different memetic algorithms that hybridises genetic algorithms and local
search were described. A type of violation directed hill climbing was also investigated as a part
of the memetic algorithm which turned out to be the best choice. This hill climbing approach was
designed based on (Alkan & Ozcan, 2003; Corne et al., 1994; Ross et al., 1994). Later, Bilgin et
al. (2007) modified the previous data set with new properties and generated a variant of Toronto
benchmarks that fits into the problem formulation. In this work, the examination timetabling
problem in (Bilgin et al. 2007) is used as a case study to investigate learning in a great deluge
based hyper-heuristic.



SOLVING AN EXAMINATION TIMETABLING PROBLEM USING HYPER-
HEURISTICS

Examination Timetabling Problem at Yeditepe University
The examination timetabling problem at Yeditepe University requires a search for finding the
best timeslots for a given set of examinations under four hard constraints and a soft constraint.
The hard constraints are as follows:
 Scheduled examination restriction: Each examination must be assigned to a timeslot only for

once.
 Unscheduled examination restriction: All the examinations must be scheduled.
 Examination clash restriction (C1): A student cannot enter into more than one examination at

a given time.
 Seating capacity restriction (C2): The number of students seated for all exams at a timeslot

cannot be more than a given capacity.
The soft constraint is as follows:
 Examination spread preference (C3): A student should have at least a single timeslot in

between his/her examinations in the same day.

Let E represent the set of examinations E={e1,…, ej,…,en} and S denotes the ordered list of
timeslots to be assigned to the examinations S={t1,…, tk,…,tp}. An array A={a1,…, aj,…,an} is
used as a direct representation of a candidate solution, where each entry aj=tk , tk S, indicating
that ej is assigned to a timeslot tk in S. Hence, the scheduled and unscheduled examination
restrictions are resolved by using this direct and complete representation that encodes a timeslot
for each given examination. The quality of a given timetable (TT) with respect to a set of
students and the courses that they enrolled (SR) is determined by calculating the weighted
average of constraint violations.









i
ii wSRTTCviolations

TTquality
),,(1

1
)( (1)

where i={1,2,3} and violations measures the violations due to a constraint Ci in TT considering
SR. The quality of the best solution for any given problem is -1, as there will be no constraint
violations.

The Reinforcement Learning – Great Deluge Hyper-heuristic
Reinforcement Learning (RL) is a general term for a set of widely used approaches that provide a
way to learn how to behave when an action comes or “how to map situations to actions" (Sutton
& Barto, 1998) through trail-and-error interactions (Kaelbling et al., 1996). A perturbative
hyper-heuristic combining reinforcement learning heuristic selection and great deluge move
acceptance is implemented as shown in Figure 2. As suggested in Nareyek (2003), additive
adaptation rate that increments the utility value of the low level heuristic is used in case of an
improvement as a reward at step 14. This value is tested against three different negative



adaptation rates, namely subtractive, divisional and root, denoted as RL1, RL2 and RL3,
respectively for the punishment of a heuristic causing a worsening move at step 17:

1:1  ii uuRL (2)

2/:2 ii uuRL  (3)

ii uuRL :3 (4)

RL–GD ALGORITHM
Input – n: number of heuristics, u: array holding utility value for each heuristic, totalTime
1. // initialisation
2. Generate a random complete solution Scurrent ;
3. Initialise utility values;
4. fcurrent = f0 = quality( Scurrent );
5. startTime = t = time(); level = fcurrent

6. // main loop executes until total running time allowed is exceeded
7. while ( t < totalTime ) {
8. // heuristic selection
9. i = selectHeuristic( u ); // select a heuristic using the utility values
10. Stemp = applyHeuristic( i );
11. ftemp = quality( Stemp );
12. t = time() – startTime;
13. // move acceptance
14. if (ftemp < fcurrent ) then {
15. ui = reward( ui ); // improving move
16. Scurrent = Stemp;
17. } else {
18. ui = punish( ui ); // worsening move
19. if ( ftemp < qualityLB + (f0 – qualityLB)(1 – t/totalTime) ) then
20. Scurrent = Stemp; // accept the move else reject the move
21. }
22. }

Figure 2. Pseudocode of the Reinforcement Learning – Great Deluge hyper-heuristic

Memory length is implemented not only in terms of adaptation rates, but also using a lower and
an upper bound on the utility values. We experimented with four different ranges in
[0,number_of_heuristics×(5i)], i={1,2,3,4}. It is assumed that these bounds are checked during
the steps 14 and 17. Optimistic initial utility values are utilised and all utilities are set to
0.75×upper bound at step 3 to support exploration. As the environment might change
dynamically, bounds on the utility values are essential in order to encourage exploration in
further steps. Reinforcement learning is based on the idea that heuristics getting large rewards
should be more likely to be selected again, while heuristics getting small rewards should be less
likely to be selected again. The reinforcement scheme used returns the same reward for all



heuristic choices. Hence, using maximal utility value to select a heuristic is a reasonable choice.
Moreover, selecting the heuristic with this strategy that will be denoted as max is reported in
(Nareyek, 2003) to be the best choice for step 9. If there are multiple low level heuristics under
consideration, since their utility values are the same, then a random choice is made. Another
approach to decide whether a given total reward is small or large can be achieved by comparing
that value to a relative reference reward, such as the average of all utility values. Additional to
the maximal utility, another heuristic selection scheme that chooses a low level heuristic
randomly from the ones that are over (and equal to) the average, denoted as overAvr is
implemented. The lower bound (qualityLB) is set to -1 at step 19 considering the evaluation
function (Equation 1) during the experiments.

In this study, we employed four low level heuristics (Bilgin et al., 2007). Three of them H1, H2

and H3 are associated to three constraints C1, C2 and C3, respectively. They probe constraint
based neighbourhoods using a tournament aiming to resolve violations of a corresponding
constraint only. Each low level heuristic operates as follows:

1. H1 ( H(x)): This heuristic chooses a number of examinations randomly that violate x=C1

and this number is referred to as toursize1. Then, the examination causing the largest
number of violations is selected. This examination is reassigned to a timeslot from a
randomly selected timeslots (toursize2) which generates the least number of x=C1

violations.
2. H2: Using tournament strategy, a number of timeslots (toursize3) with capacity

constraint violations is selected. Examinations in the timeslot that has the largest number
of violations are marked for further processing. Examination with the largest number of
enrolled students is rescheduled. Then this examination is reassigned to a timeslot from a
randomly selected timeslots (toursize4) which generates the least amount of C2

violations.
3. H3: This heuristic employs the same strategy as described in H(x) with x=C3.
4. H4: This heuristic makes a pass over all the examinations and reschedules the

examination under consideration with a probability of 1/number_of_examinations.

EXPERIMENTS
The experiments are performed on Pentium IV 3 GHz LINUX (Fedora Core 8) PCs with 2 Gb
memory. Each hyper-heuristic is tested on each instance for 50 trials and each trial is terminated
after 600 CPU seconds.

Experimental Data
Reinforcement Learning – Great Deluge hyper-heuristics are tested on Toronto benchmarks and
Yeditepe University. The number of exams determines the size of search space to be explored,
but the difficulty of a given problem might change with respect to some other characteristics,
such as the number of students or conflict density (ratio of the number of examination pairs that
should not clash to the total number of examination pairs) that might implicitly or explicitly
restrict the search space containing feasible solutions. Such properties for each experimental data
are provided in Table 4.



Table 4. Properties of the modified Toronto and Yeditepe benchmark problem instances

Data Set Instance Exams Students Enrolment Conflict Density Days Capacity
car91 I 682 16925 56877 0.13 17 1550
car92 I 543 18419 55522 0.14 12 2000
ear83 I 190 1125 8109 0.27 8 350
hecs92 I 81 2823 10632 0.42 6 650
kfu93 461 5349 25118 0.06 7 1955
lse91 381 2726 10918 0.06 6 635
pur93 I 2419 30029 120681 0.03 10 5000
rye92 486 11483 45051 0.07 8 2055
sta83 I 139 611 5751 0.14 4 3024
tre92 261 4360 14901 0.18 10 655
uta92 I 622 21266 58979 0.13 12 2800
ute92 184 2749 11793 0.08 3 1240

T
or

on
to

yor83 I 181 941 6034 0.29 7 300
yue20011 140 559 3488 0.14 6 450
yue20012 158 591 3706 0.14 6 450
yue20013 30 234 447 0.19 2 150
yue20021 168 826 5757 0.16 7 550
yue20022 187 896 5860 0.16 7 550
yue20023 40 420 790 0.19 2 150
yue20031 177 1125 6716 0.15 6 550

Y
ed

ite
pe

yue20032 210 1185 6837 0.14 6 550

Results
Initial experiments are performed for parameter tuning. Unless mentioned otherwise, utility
value upper bound is fixed as 40 and max is used as the utility based heuristic selection strategy
within the reinforcement learning hyper-heuristics. A sample run is performed for sta83 I using a
reinforcement learning – great deluge hyper-heuristic. Figure 3 illustrates the change in utility
values for each low level heuristic and improvement based on different negative adaptation rates
for this run. If a low level heuristic worsens the solution after a number of successive improving
moves, the best heuristic still gets a chance to operate on the candidate solution. The frequency
of that chance is determined by the negative adaptation rate. For example, H3 gets selected more
frequently when the adaptation rate is subtractive(/divisional) rate as compared to
divisional(/root) rate before the optimistic utility values of all heuristics reduces toward the lower
bound (see Figure 3). The more severe (high) this rate is, the more exploration of different
heuristics is favoured. All the low level heuristics get invoked within tens of steps while using
divisional and root adaptation rates (Figure 3. (b) and (c)), whereas only two heuristics get
invoked while using subtractive adaptation rate (Figure 3. (a)). The results show that all low
level heuristics are valuable in improving a candidate solution. It seems that the quality of a



solution is improved slowly whenever a slow negative adaptation rate is used. Naturally, there is
still the chance of getting stuck at a local optimum in the long run.

-20

-10

0

10

20

30

40

50

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151

(a)

-20

-10

0

10

20

30

40

50

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151

H1

H2

H3

H4

best f itness

(b)

-20

-10

0

10

20

30

40

50

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151

(c)

iteration

utility value

iteration

iteration

quality (x10-4)

utility value

utility value

quality (x10-4)

quality (x10-4)



Figure 3. Plot of utility value for each low level heuristic and quality versus iteration on sta83 I
using reinforcement learning – great deluge hyper-heuristic based on (a) subtractive, (b)
divisional and (c) root negative adaptation rates with max, utility upper bound=40, respectively.
In order to observe the effect of memory length via different combinations of negative adaptation
{subtractive, divisional, root} and upper bound for the utility values {20, 40, 60, 80}, a set of
experiments have been performed on the Toronto problem instances. As a total twelve different
choices are executed for each data and each choice is ranked from 1 (best) to 12 (worst) using the
results from the runs. The average rank of a choice over all data and the related standard
deviation are provided in Figure 4. Determining the best adaptation rate which is also vital to
adjust the memory length seems to be a key issue in fully utilising a reinforcement learning
scheme within a hyper-heuristic. Different adaptation rates might yield different performances.
The results show that the RL1 heuristic selection method with a utility upper bound of 40 delivers
the best average performance when combined with the great deluge method as a hyper-heuristic.
Yet, this performance variation is not statistically better than the rest.
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Figure 4. Average rank of each adaptation rate and utility upper bound pair over all Toronto
benchmark.

Using the best configuration from the previous set of experiments, another one is performed over
Toronto problem instances to compare the average performances of utility based heuristic
selection schemes; max and overMax. Figure 5 summarises the experimental results. Maximal
utility selection performs slightly better than overMax with an average rank of 1.42 for the
problem instances {car91 I, car92 I, kfu93, lse91, pur93 I, rye92, ute92}. There is a tie for sta83
I. Still, the performance difference between max and overMax is not statistically significant. As,
in general, overMax shows success in solving problem instances with relatively high conflict
densities, there might be still potential for a future use of this approach.

RL1 RL2 RL3 RL1 RL2 RL3 RL1 RL2 RL3 RL1 RL2 RL3 adaptation rate

20 40 60 80 utility upper bound

avr. rank



Figure 5. Comparison of utility value based heuristic selection schemes over Toronto benchmark
based on their average ranks.

Reinforcement learning heuristic selection method, that is referred to as RL1 utilises additive
reward, subtractive punishment schemes with a utility upper bound of 40 and max. RL1 is
combined with great deluge and tested against simple random – great deluge hyper-heuristic
during the final set of experiments. The results are provided in Table 5. Percentage improvement
in the table uses the approach whichever generates a better result (average best of fifty trials) as
the baseline for comparison. The simple random – great deluge hyper-heuristic generates better
average performance for eight problem instances. It is especially successful in solving Yeditepe
problems instances which are relatively smaller with low conflict densities as compared to
Toronto instances. Yet, RL1 improves the performance of simple random hyper-heuristic with the
great deluge move acceptance on eleven problem instances (out of twenty one problem
instances), and for two problem instances there is a tie.

Table 5. Comparison of reinforcement learning and simple random heuristic selection within a
hyper-heuristic using great deluge acceptance move method. “≥” and “” indicate “is better than”
and “delivers a similar performance”, respectively. Percentage improvement uses the average
best quality obtained in fifty runs for the better approach as the baseline.

Instance Exams Conflict Density Comparison %-improv.

car91 I 682 0.13 RL1–GD ≥ SR–GD 1.70

car92 I 543 0.14 RL1–GD ≥ SR–GD 1.68

ear83 I 190 0.27 RL1–GD ≥ SR–GD 2.02

hecs92 I 81 0.42 SR–GD ≥ RL1–GD 11.85

kfu93 461 0.06 RL1–GD ≥ SR–GD 2.09

lse91 381 0.06 RL1–GD ≥ SR–GD 2.47

pur93 I 2419 0.03 SR–GD ≥ RL1–GD 0.32

rye92 486 0.07 RL1–GD ≥ SR–GD 3.43

sta83 I 139 0.14 RL1–GD ≥ SR–GD 0.06

max overAvr

avr. rank



tre92 261 0.18 SR–GD ≥ RL1–GD 5.05

uta92 I 622 0.13 SR–GD ≥ RL1–GD 0.23

ute92 184 0.08 RL1–GD ≥ SR–GD 0.28

yor83 I 181 0.29 RL1–GD ≥ SR–GD 1.13

yue20011 140 0.14 RL1–GD  SR–GD 0.00

yue20012 158 0.14 RL1–GD ≥ SR–GD 0.53

yue20013 30 0.19 RL1–GD  SR–GD 0.00

yue20021 168 0.16 SR–GD ≥ RL1–GD 1.49

yue20022 187 0.16 SR–GD ≥ RL1–GD 0.83

yue20023 40 0.19 SR–GD ≥ RL1–GD 0.71

yue20031 177 0.15 RL1–GD ≥ SR–GD 5.26

yue20032 210 0.14 SR–GD ≥ RL1–GD 0.88

Finally, RL1 – great deluge hyper-heuristic is compared to two previous studies. Bilgin et al.
(2007) showed that the choice function – simulated annealing hyper-heuristic out of thirty five
approaches performs the best for examination timetabling. In a recent study, Ozcan et al. (2009)
introduced a new move acceptance strategy that can be used in hyper-heuristics. The experiments
resulted with the success of a simple random – late acceptance hyper-heuristic, performing even
better than the choice function – simulated annealing. Both of these approaches are compared to
the RL1 – great deluge hyper-heuristic in Table 6.

Table 6. Comparison of RL1 – great deluge hyper-heuristic to the previous studies; (1) choice
function – simulated annealing hyper-heuristic (Bilgin et al., 2007), (2) simple random – late
acceptance hyper-heuristic (Ozcan et al., 2009). Each approach is ranked from 1 (best) to 3
(worst) for each Toronto problem instance.

Instance RL1–GD (1) CF–SA (2) SR–LAS
car91 I 2 3 1
car92 I 1 3 2
ear83 I 1 2 3
hecs92 I 1 3 2
kfu93 1 3 2
lse91 2 3 1
pur93 I 2 3 1
rye92 2 3 1
sta83 I 1 3 2
tre92 1 3 2
uta92 I 2 3 1
ute92 3 1 2
yor83 I 2 3 1

avr. 1.62 2.77 1.62



A hyper-heuristic learns how to make good moves through both the heuristic selection and move
acceptance. If a move is rejected, in a way the selected heuristic is annulled. Hence, if a hyper-
heuristic uses a simple random heuristic selection, it does not imply that there is no learning
within that hyper-heuristic. Late acceptance strategy uses a fixed length memory to hold the
quality of some previously visited solutions. Simple random heuristic selection diversifies the
search, while the late acceptance strategy intensifies the search process by approving the better
moves based on its memory. This course of action can be considered as learning. Reinforcement
learning not only improves on simple random heuristic selection when combined with great
deluge but also generates better results as compared to another learning hyper-heuristic; choice
function – simulated annealing. Moreover, its performance is comparable to that of the simple
random – late acceptance hyper-heuristic as well.

CONCLUSION
Hyper-heuristics offer a variety of general search methodologies for solving combinatorial
optimisation problems. They can handle problems not only with different characteristics from a
given problem domain, but also from different problem domains. A hyper-heuristic itself is a
heuristic that drives the search process at a high level by controlling a set of low level heuristics.
These low level heuristics can be perturbative or constructive. In this study, hyper-heuristics that
control perturbative low level heuristics are explored. An examination timetabling problem
encountered at Yeditepe University every semester is used as a case study to investigate
reinforcement learning as a heuristic selection with different components combined with great
deluge move acceptance within a single point search framework.

A learning hyper-heuristic can follow the best moves within a given period of time based on its
memory. Still, there is no guarantee that the decisions made during the search process will lead it
towards the global optimum. Bai et al. (2007) observed that the memory length is vital in
learning and the use of a learning mechanism with short term memory combined with a
simulated annealing move acceptance generated the best result in their experiments over a set of
course timetabling problems. They used weighted adaptation and tested various learning rates
that adjust the influence of rewards compiled at different stages of search. In this study, other
factors of memory length that affect the learning process, such as adaptation rate, lower and
upper bounds on the utility values are identified and tested using relatively short memory
lengths. Furthermore, two different heuristic selection strategies based on the utility values are
assessed. The reinforcement learning – great deluge hyper-heuristic with the components {lower
bound=0, upper bound=40, heuristic selection strategy=max, positive adaptation rate =additive,
negative adaptation rate=subtractive} improves the performance of simple random – great
deluge hyper-heuristic for solving an examination timetabling problem. Still, the main issue
remains regarding the memory length. It is not trivial to define a fixed short term memory or
even a dynamic strategy that modifies the memory length during the search process for a given
problem instance.
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