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Abstract. The automated design of systems which self-assemble is a
fundamental cornerstone of nanotechnology. In this paper we review some
work in which we have applied Evolutionary Algorithms (EAs) for the
automated design of systems self-assembly. We will focus in three im-
portant minimalist self-assembly problems and we discuss the difficulties
encountered while applying EAs to these test cases. We also suggest
some promising lines of work that could possibly help overcome current
limitations in the evolutionary design of self-assembling systems.

1 Introduction

Self-assembly is a process that creates complex hierarchical structures through
the statistical exploration of alternative configurations. These processes occur
without external intervention. The specific system that is self-assembled (from a
given set of components) is determined by the way the statistical exploration of
conformations is performed. In turn, the exploration mechanisms are constrained
by the individual components that undergo self-assembly and the conditions
imposed upon them by their local environment. In general, components are au-
tonomous, have no pre-programmed master assembly plan, and can only interact
with their local environment and other components. Self-Assembly is a powerful
autopoietic mechanism whose power, as a reusable engineering concept, lays in
the fact that it is a distributed, not-necessarily synchronous, control mechanism
for the bottom-up manufacture of complex systems. This control mechanism is
distributed across a myriad of elemental components, none of which has either
the storage or the computation capabilities to know and follow a master plan
for the assembly of the intended system. Instead each component has a very
limited behavioral repertoire which tells it what to do under a reduced set of
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well defined conditions. Self-Assembly processes are ubiquitous in nature. Under-
standing how nature produces self-assembled systems will represent an enormous
leap forward in our technological capabilities. Although major advances in the
design of systems that exhibit self-assembly properties have been reported in the
literature (e.g. [17,16]), much less has been said about the automated design of
self-assembly. In [8] the author tackles the problem of automated design of self-
assembly for a very specific class of problems which are amenable to analytical
solution. However, it is unrealistic to expect that each and every self-assembly
system will have properties that make it agreeable to a hand-made design. In-
stead, as in many other industrial settings, we will need to resort to computer
aided automated design of components, interaction matrices and assembly skele-
tons.

The complexity of self-assemble squares under a generalized model of tile as-
sembly[13] was investigated in [1]. Several interesting results on the intractability
of certain self-assembly processes were described. Although these papers point
to promises and limitations of specific self-assembly processes it is important
to remark that NP-hardness results have not, in the past, deterred the advance
of other branches of science and engineering. On the contrary, NP-hard prob-
lems are regularly tackled (and solved to industrial standard satisfaction) with
an arsenal of modern algorithmic techniques ranging from integer and linear
programming, lagrangian relaxations to sophisticated metaheuristics like tabu
search[6], simulated annealing[7] and memetic evolutionary algorithms[15].

A principled methodological approach for automated self-assembly design
would be to systematically investigate automated design methods on (tunable)
conceptual, highly idealized problems as it has been done in other domains like
protein folding[4], traveling salesman problem[12], etc. To this end, in [9] we
introduced a family of tunnable problems for self assembly. In this paper we
complement that paper by reviewing some work in which we have applied Evo-
lutionary Algorithms (EAs) for the automated design of systems self-assembly.
We focus in three important minimalist self-assembly problems and we discuss
the difficulties encountered while applying EAs into these problems. In this paper
we also suggest some promising lines of work that could possibly help overcome
current technological limitations.

2 Protein Structure Prediction and Wang Tiles as
Paradigmatic Self-Assembly Design Problems

In this section we introduce two problems which are paradigmatic self-assembly
design problems, namely, the design of folding rules in protein structure predic-
tion and the design of Wang tile families for the self-assembly of two-dimensional
shapes.

2.1 Protein Structure Prediction

Proteins are hetero-polymers composed of amino acids. Under physiological con-
ditions proteins fold into a three dimensional native state where they adopt their
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Fig. 1. HP protein embedded in the square lattice (a) and triangular lattice(b). Black
boxes represent hydrophobic residues, while white boxes represent hydrophilic ones.

biological function. The protein structure prediction problem is concerned with
the determination of the native state from the identity of the amino acids that
constitutes a given protein. That is, protein folding might be regarded as the
self-assembly problem par excellence. The particular simplified model we are
concerned with in this paper is the Hydrophobic-Polar model introduced by K.
Dill[4]. The HP model (and its variants) abstracts the hydrophobic interaction
process in protein folding by reducing the 20 naturally occurring amino acids
into a binary alphabet, thus a protein becomes an hetero-polymer of non-polar
or hydrophobic (H) and polar (P) or hydrophilic amino acids. An n amino acids
protein is represented by sequence s € {H, P}t with |s| = n. The sequence s is
to be mapped to a lattice, where each residue in s occupies a different lattice
cell and the mapping is required to be self-avoiding. Although simple to state,
this problem remains NP-Hard[3].

The energy potential in the HP model reflects the fact that hydrophobic
amino acids have a propensity to form a hydrophobic core. To capture this
feature of protein structures, the HP model adds a value € for every pair of
hydrophobes that form a topological contact; a topological contact is formed by
a pair of amino acids that are adjacent on the lattice but not consecutive in s.
After normalization, the interaction energy between two non-polar amino acids
is €y, = —1 while all other interactions (i.e. HP and PP) are 0. In this model
optimally self-assembled native structures minimize an energy function that is a
simple count of the number of HH contacts in the self-assembled conformation.
Figure 1(a) and (b) shows sequences embedded in the square and the triangular
lattices, with hydrophobic-hydrophobic contacts (HH contacts) highlighted with
dotted lines. The conformation in Figures 1(a) and 1(b) show the embedding of
the same protein instance into two different lattices, which result in energies of
-4 and -6 respectively.

Automated Design of Protein Self-Assembly In this paper we will address
the problem of automatically designing, by means of an evolutionary algorithm,
the rules that are necesary to drive the dynamical process of folding towards
the native state of specific proteins. We will employ two different computational
abstractions to represent these folding rules. The first abstraction we use is that
of a one dimensional uniform, contiguous neighborhood, cellular automata to
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Fig. 2. (a) Schematic representation of a four edged tile. Each edge is distinguished by
the labels North, West, South, East. (b) An example of a five tiles self-assembly

simulate the folding process. In this case, the evolutionary algorithm is required
to design the rules that define the cellular automaton, with the intention that
by executing those rules the protein sequence embedded in the automaton will
self-assemble into its native state. In the second computational abstraction we
represent the folding rules by an L-system grammar rather than by the rules
of a cellular automaton. In this case the parallel interpretation of the L-system
grammar drives the self-assembly of the protein structure into its target confor-
mation.

2.2 Wang Tiles Self-Assembly

Computation and self-assembly are connected by the theory of tiling, of which
Wang Tiles[14] are a prime example. A Wang tile system is defined by a family
of two dimensional square tiles embedded in the plane. Each side of a tile might
have a specific glue type attached to it. When tiles move around in the plane,
and two of them colide, they will either stay attached or they will separate
and continue their brownian motion as independent entities. Whether they self-
assemble or stay separated depends on the strength and compatibility of the
glue types in their coliding sides. This process is initialized with a specific kinetic
energy associated to the tile set (i.e. temperature). When tiles attach to each
other they form complex shapes and the specific shapes which emerge are said
to be self-assembled. This process can be mathematically described:

Let X' be the set of symbols used to label the edges associated to each tile.
This set of symbols encodes the “glue” types associated to each edge and includes
the special case A representing and edge with no glue. The set of tiles is T =
{t|t = (0, %1, 22,23)} such that for any k¥ < 3 Ja,a € X,p >=0 and z; = a?.
If p = 0 then a° is taken to be equivalent to ), i.e., the no glue state for a given
edge of the tile. A label a? on an edge x, encodes an “a” glue type with strength
p.

We can associate zg, x1,z2 and z3 with the north, west, south and east edges
respectively as shown in figure 2(a). Let also 7 be the “temperature” parameter
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as in [1]. After coliding, two tiles ¢;,t; will self-assemble by their edges e;, e; if
the glue types and strengths in those edges are equivalent and the glue strength
larger than the temperature.

Given tiles ¢, tg, t1, t2, t3 they will self-assemble with ¢ in the center (as shown
in Fig 2(b)) if the glue strength of each attaching edges is bigger than 0 and the
sum of all glue strengths bigger than 7. More precisely, ¢t and ¢; for 0 < i < 3
will self-assemble if the following conditions hold:

t = (xo, 21,22, 23) and t; = (xi,, Tiy, Tiy, iy, 0 <= @ <= 3 with xo, = o, 21, =
T1, T, = T2, %3, = 3 and |zo| + |z1| + |22| + |23| >=7T

Please note that the conditions on z;, above can be succintedly written as zp, =
zr with g = (k + 2)%3 where % stands for the module operation. The reader
must note that the labeling of edges as “north,west,south,east” is only a useful
convention to simplify the exposition.

Automated Design of Wang Tile Families The third and last automated
design problem we will address is that of the automated design of T (i.e. a
families of Wang tiles), which can self-assemble into a specific two dimensional
shape, which in this paper is a square.

3 Evolutionary Algorithms for the Automated Design of
Protein Self-Assembly by Cellular Automata (CA)

Cellular automata have been used as models of physical and biological phe-
nomena such as fluid flow, galaxy formation, earthquakes, biological pattern
formation, etc. and as models of computation (see for example [18]). Briefly a
CA consists of two components. The first one is a lattice of N identical cells,
each of which have a state. Each cell is updated based on its current state and
the state of its neighbors in the lattice. The neighborhood considered depends
on the particular CA. The second component is the transition rules that give
the updated state for each cell as a function of the neighborhood.

We used a CA to model the rules and dynamics which would drive a self-
assembly process towards the native state of a given protein sequence. We had
previously addressed this problem using a circular one-dimensional CA with
only four states (1, 2, 3, 4), each one corresponding with the absolute moves
Up, Down, Left or Right (relative to the position of the previous amino acid in
the sequence) [10]. An example is shown in Figure 3 (a). Allowed rule radii were
1, 2 and 3. The evaluation of an individual involved: running the CA with the
individual’s value (set of rules), getting the final configuration of the automaton
(the folded structure), applying this fold to the protein to obtain the energy
value.

We also performed experiments with an extended set of rules which took
into consideration the specific amino acids the rule was being applied to. This is
shown in Fig 3 (b). To evolve the rule set that defined the CA we used a Genetic
Algorithm. Implementation and parameter details are described in [10].



6 Krasnogor et al.

Arnde Arue
(rule's detector) %i’! (rule's detector)
(rule' s effector) (rule's effector)
Application of the rule above: Application of the rule above:

(UILILILILIEUNUILILILIL]  t=k PP PPREDTBE] =k
v

Y
UILILILILILIETUILILILIL]  t=k+1  PBBEPOERPEPE]  t=k+1
(a) (b)

Fig. 3. (a) First approach to CA rule scheme. (b) Second approachto CA rule scheme.

We have conducted extensive experiments but due to space limitations we
only show the results for 3 instances in Table 1. We recorded the number of
times (out of 10) that the optimum, optimum-1 and optimum-2 conformations
were found.

Sequence Length Optimum Opt Opt + 1 Opt + 2
PHPPHHPPHPPHPPHHPPHP 20 -8 5 5
HHPPHPPHPPHPPHPPHPPHPPHH 24 -9 1 2 5
PPHPPHHPPPPHHPPPPHHPPPPHH 25 -8 1

Table 1. Number of runs in which the GA achieved the stated energy value. The
'Optimum’ column displays the native energy value, while ’Opt’, 'Opt + 1’ and ’Opt
+2’ display the number of runs in which either the optimum energy was achieved or
conformations with energies with a gap of one or two above that value was found.

The results may be analized from two points of view. One is oriented to
answer the question: is it possible to find a set of rules to reach the native state
from this particular unfolded state?. The answer is yes on two of the three cases,
although it is clear that more experimentation should be done.

The other point of view focus on the quality of the search process, and here
the results seems to deteriorate with the size of the instance. For the smaller
one, 50% of the runs, lead to set of rules that allowed to achieve the optimal
configuration. This percentage goes down to 10% in the second instance and in
the third one, just one run allowed to obtain a configuration with energy 6.

One may conclude that: a) in principle, it is indeed possible to find set of
rules for a cellular automaton which instigates the self-assembly of the native
structure; and b) the search procedure should be enhanced.
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4 Evolutionary Algorithms for the Automated Design of
Protein Self-Assembly by L-Systems

In [5] we introduced an L-systems’ based evolutionary algorithm as the inference
procedure for folded structures under the HP model in 2D lattices. The evolu-
tionary algorithm attempts to find a set of rewriting rules (an L-system) that
captures a target folded structure (which represents the native state for a given
protein) on the selected lattice model.

The simplest class of L-systems, the DOL-systems, is deterministic and con-
text free. We use DOL-systems to drive the self-assembly of the protein sequence.

Given a target structure (input), let say the one shown in Fig. 1(a), the evo-
lutionary algorithm will evolve and L-system L (output) that, once evaluated,
would produce a string (in internal coordinates) which matches the target struc-
ture (in the example, the end-product of the EA would be and L-system whose
termination word is LRRLRRFLRR).

A Genetic algorithm was used to evolve the L-systems which would drive
the self-assembly procees. Full details of the algorithm and experiments can be
found in [5]. Table 2 shows some of the results we obtained evolving L-systems
for the self-assembly of protein structures.

Instance Length|Success/Num. Runs

HHHPPHPHPHPPHPHPHPPH 18 3
RRFRFRLFRRFLRLRFRR

HHPPHPPHPPHPPHPPHPPHPPHH 929 1
RLLFLFFRRFLLFRRLRFFRRF 50
PPHPPHHPPPPHHPPPPHHPPPPHH| 93 1

FFRRFFFLLFFFFRRFFFFLLFF

Table 2. Partial Results of the Automated Evolutionary Design of L-Systems for
Protein Folding. The first column format é denotes the protein sequence I with target
self-assembled structure S, the second column shows the length of the protein sequence
and the third column -following the same format as the first- shows the total number

of runs of the EA and the number of successful runs.

Similarly to the evolutionary design of CA rules for self-assembling, the au-
tomated design of L-systems met with partial success. On the one hand it is
possible to show that the algorithm is capable of finding L-system which will
induce the correct self-assembly behaviour. On the other hand however, the pro-
cess is painfully slow and requires very many executions of the algorithm to
obtain a successful L-system.
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5 Evolutionary Algorithms for the Automated Design of
Wang Tiles Self-Assembly

We have applied a Genetic Algorithm to the automated design of the tile sets
T which can self-assemble into a 2D square of 10x10 tiles. The GA used various
parameters for crossover, mutation, population sizes, etc., which will be reported
elsewhere. In order to evaluate an individual (i.e. assess its fitness) we placed
it in a Wang tile self-assembly simulator. As the individual specifies various tile
families, several instances of each family were placed in the simulator. Each tile
was initialy placed on a randomly selected empty lattice position. Then, tiles
move randomly for the duration of the simulation. Once the simulation finished
the fitness function tried to identify (within the lattice) the shape with the
most similarity to the target structure. This was done by a Hamming distance
function defined as H(L, S) = a;, where L was the simulation’s final 2D lattice
configuration and a; is the maximum amount of tiles appearing within a square
region S. The region was slided accross the lattice in order to find the better
match ensuring that the fitness of an individual is equivalent to the minimal
Hamming distance. Figure 4(a) shows a scanning example.
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Fig. 4. (a) Scanning a lattice for a 3 x 3 square. (b) Self-Assembled rows and columns.

With the aim of determining which is the best set of parameters for both the
GA and the Wang tile simulator we run an extensive set of experiments. After
carefully selecting the best parameters the evolutionay algorithm was unable
to evolve suitable tile sets that could self-assemble into the target structure.
However, some intermediate structures were discovered by the algorithm. In this
case, horizontal and vertical tiled strips (shown in Fig. 4(b)) were found.
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6 Discussion and Conclusions

In previous sections we briefly sketched the application of evolutionary algo-
rithms, more specifically genetic algorithms, to the automated design of compo-
nents which could self-assemble into specific systems. Two of the showcases dealt
with the design of rules, either for a cellular automaton or of an L-system, which
could drive the process of protein folding (albeit in a very idealized model). In
the third case we applied the GA to the design of tile sets and their glue types in
order that they could self-assemble a target 2-dimensional shape. Although the
application domain, the type of components and dynamic laws governing their
use were different some common lessons could be drawn.

Firstly, in the three showcases large populations with short runs or small
populations with long runs were required. That is, in the three cases studied
the evolutionary design was computationally expensive. This requires a carefull
consideration of the various parameters which define the GA behaviour as well
as those parameters which are specific to the simulators. It may be possible that
a co-evolutionary approach would be benefitial by simultaneously exploring the
design space of system self-assembly and the parameter space of the GA.

Secondly, although in all three cases it was possible to achieve a moderate de-
gree, yet not substantial, of success evolving the desired self-assembling system,
the remarkable common fact is that intermediate self-assembled products -which
are essential for the formation of the target system- were always discovered. That
is, in L-systems and Cellular Automata we were able to find rules which allowed
for the self-assembly of so called protein’s “secondary structures”. At the same
time, the evolutionary design of Wang tiles was able to discover the equivalent of
secondary structures in the form of self-assembled columns and rows. This com-
mon behaviour across three different domains and with differently customized
evolutionary algorithms suggests an evolutionary divide-and-conquer method-
ology. That is, rather than trying to evolve from scratch the final design for a
self-assembling system, we could instead evolve designs for generalized secondary
structures and used those designs to bootstrap the final design. As an example
consider the evolutionary design of Wang tiles to self-assembling a square. In-
stead of starting from completely random tile families we could seed the GA with
those families known to form columns and rows as these features will certainly
appear in any self-assembled square. Alternatively, in the case of L-systems we
could evolve problem specific knowledge (e.g. specific rules for alpha-helices, beta
sheets, etc) as to accelerate the design process of self-assembling rules for the
whole protein structure.

A third lessons, which we will also be tested in future experiments, is what we
named “intelligent freezing”. During the evolutionary design of self-assembling
systems it was possible to observe that certain critical generalized secondary
structures (CGSS) were formed. Some of the runs that discovered CGSS man-
aged to maintain them long enough as to profit from their discovery. On the other
hand, some runs tampered with the CGSS destroying their essential features. In-
telligent freezing would implement a mechanism to detect CGSS (eg. by tracking
evolutionary activity waves[2]) an will protect these CGSS from being disrupted
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by genetic or other mechanisms (i.e. they will be frozen). Another interesting
avenue of research would be to use what has been termed the “Parisian Genetic
Programming” approach [11] as it has been very successful in a not unrelated
inverse design problem.

In conclusion, although the automated design of self-assembling systems is at
its infancy it is possible to achieve a modest degree of success with current evo-
lutionary metaheuristics. On the other hand, as the size and complexity of the
target self-assembling system increases, its likely that more robust and efficient
EA will be needed. We have described three showcases of the application of ge-
netic algorithms for systems self-assembly and we have suggested some promising
avenues for further research.
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