
Dispatching Rules for Production Scheduling:
a Hyper-heuristic Landscape Analysis

Gabriela Ochoa, José Antonio Vázquez-Rodrı́guez, Sanja Petrovic and Edmund Burke

Abstract— Hyper-heuristics or “heuristics to chose heuristics”
are an emergent search methodology that seeks to automate the
process of selecting or combining simpler heuristics in order to
solve hard computational search problems. The distinguishing
feature of hyper-heuristics, as compared to other heuristic
search algorithms, is that they operate on a search space of
heuristics rather than directly on the search space of solutions
to the underlying problem. Therefore, a detailed understanding
of the properties of these heuristic search spaces is of utmost
importance for understanding the behaviour and improving
the design of hyper-heuristic methods. Heuristics search spaces
can be studied using the metaphor of fitness landscapes.
This paper formalises the notion of hyper-heuristic landscapes
and performs a landscape analysis of the heuristic search
space induced by a dispatching-rule-based hyper-heuristic for
production scheduling. The studied hyper-heuristic spaces are
found to be “easy” to search. They also exhibit some special
features such as positional bias and neutrality. It is argued that
search methods that exploit these features may enhance the
performance of hyper-heuristics.

I. INTRODUCTION

Despite the success of evolutionary algorithms and other
heuristic search methods in solving real-world computational
search problems, there are still some difficulties for easily
applying them to newly encountered problems, or even
new instances of known problems. These difficulties arise
mainly from the significant range of parameter or algorithm
choices involved when using this type of approaches, and
the lack of guidance as to how to proceed for selecting
them. Another drawback of these techniques is that state-of-
the-art approaches for real-world problems tend to represent
bespoke problem-specific methods which are expensive to
develop and maintain. Hyper-heuristics or “heuristics to
chose heuristics”[3] are an emergent search methodology
that seeks to automate the process of selecting or combining
simpler heuristics in order to solve hard computational search
problems. The main motivation behind hyper-heuristics is to
raise the level of generality in which search methodologies
can operate. A hyper-heuristic approach consists of a high-
level general strategy that coordinates the efforts of a set
of low-level (usually problem specific) heuristics to solve
the underlying problem. The distinguishing feature of hyper-
heuristics, as compared to other heuristic search algorithms,
is that they operate on a search space of heuristics rather than
directly on the search space of solutions to the underlying

G. Ochoa, J.A. Vázquez-Rodrı́guez, S. Petrovic, and E. Burke are with
the Automated Scheduling, optimisAtion and Planning Research Group,
School of Computer Science and Information Technology, University of
Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK,
(email: gxo, jav, sxp, ekb @cs.nott.ac.uk).

problem. In consequence, a detailed understanding of the
properties of these heuristics search spaces is of utmost im-
portance for understanding the behaviour and improving the
design of hyper-heuristic methods. Heuristic search spaces
can be studied using the metaphor of fitness landscapes, in
which the search space is regarded as a spatial structure
where each point (solution) has a height (objective function
value) forming a landscape surface. Both local and global
features of search landscapes can be estimated by statistical
methods (see [18] for an introduction to landscape analysis).

In the domain of Job-Shop Scheduling, Fisher and Thomp-
son [9], [10] hypothesised that combining scheduling rules
(also known as priority or dispatching rules) would be supe-
rior than any of the rules taken separately. This pioneering
work, well ahead its time, proposed a method of combining
scheduling rules using “probabilistic learning”. Notice that in
the early 60s, meta-heuristic and local search techniques were
still not mature. However, the proposed learning approach
resembles a stochastic local search algorithm (indeed a
estimation of distribution algorithm) operating in the space
of scheduling rule sequences. The main conclusions from
this study are the following: “(1) an unbiased random com-
bination of scheduling rules is better than any of them taken
separately; (2) learning is possible” [10]. The ideas by Fisher
and Thompson [9], [10] were independently rediscovered and
enhanced, several times, 30 years later [7], [8], [20], [21],
when modern meta-heuristics were already widely known
and used. Therefore, the authors had the appropriate con-
ceptual and algorithmic tools (also the computer power) to
propose and conduct search within a heuristic search space.
More recent studies using dispatching rules as low-level
heuristics in hyper-heuristic approaches are those described
in [22], [23].

This paper conducts a landscape analysis of the heuristic
search space induced by the dispatching-rule-based hyper-
heuristic for production scheduling presented in [22], [23].
The underlying problem studied is the hybrid flowshop
scheduling problem. Dispatching rules are among the most
frequently applied heuristic in production scheduling, due
to their ease of implementation and low time complexity.
Whenever a machine is available, a dispatching rule inspects
the waiting jobs and selects the job with the highest priority
to be processed next. Dispatching rules differ from each other
in the way they calculate priorities. A candidate solution in
the studied heuristic space is, therefore, given by a sequence
(list) of dispatching rules. Each rule in this list is successively
used to select one operation (or group of operations) to be
assigned next to its required machine.

The paper is structured as follows. Section II describes the
underlying problem domain and the hyper-heuristic approach
under study. Thereafter, section III describes the notion of
fitness landscapes and the metrics employed in our analysis;
it also presents a formal definition of hyper-heuristics land-
scapes. Section IV describes our methodology, whilst section
V reports our results regarding performance and landscape
analysis. Finally, section VI, summarises and discusses our
main findings.

II. A HYPER-HEURISTIC APPROACH TO THE HYBRID
FLOW SHOP PROBLEM

The hybrid flow shop scheduling problem (HFS) consists
of assigning n jobs into m processing stages; all jobs are
processed in the same order: stage 1, stage 2, . . . , until stage
m. At least one of the stages has two or more identical
machines working in parallel. No job can be processed on
more than one machine at a time, and no machine can process
more than one job at a time. Several objective functions have
been proposed for the HFS. Let cj and dj be the completion
time of job j, i.e. the time when it exists the shop, and its
due date, respectively. We considered two objective functions
for measuring the quality of the schedules: (1) the makespan
denoted Cmax and defined as Cmax = maxj(cj) and (2) the
total weighted tardiness, denoted sumWT and defined as
sumWT =

∑n
j=1 wj ·max{0, cj−dj}, where wj is a weight

associated with job j. The interested reader is referred to
[24] for a more detailed description of HFS formulation and
objective functions, and a review of approaches developed
for the problem.

The HFS is very common in real world manufacturing.
It is encountered in the electronics industry, ceramic tiles
manufacturing, cardboard box manufacturing and many other
industries. HFS scheduling is an NP-Hard problem, even
when there are just two processing stages with one of them
having a single machine, and one having parallel machines
[12]. The relevance and complexity of the HFS problem have
motivated the investigation of a variety of methods including:
exact methods [5], [25], heuristics [19], [6], meta-heuristics
[11], [1], and more recently hyper-heuristics [22], [23]

Since there are n jobs to be processed in m stages, the
number of decisions to be made is N = n ×m. Therefore,
decisions 1 to n correspond to the scheduling of operations
in the first stage of the shop, from n to 2n to jobs in the
second stage of the shop and so on. Let us consider the task
of deciding the order in which n jobs have to be scheduled
on a machine for a given stage. Fulfilling this task requires
deciding which job is to be processed 1st, which job is to
be processed 2nd and so on. Let d1 be the first of these
decisions, d2 the 2nd, and so on. The task requires, then,
n − 1 decisions (no decision is required when there is one
job left). Let D be the set of all decisions defining a problem
and N = |D|.

Definition 1: D = {d1, . . . , dN} is the set of decisions
defining a problem, where di is the ith decision to be made.

Let us give an illustrative example: suppose 7 jobs are to
be scheduled, i.e. n = 7, and for simplicity let us assume a

single stage (m = 1). Thus, D = {d1, . . . , d6}. Let us denote
by pj the processing time of job j. The processing times of
the jobs are p = {10, 20, 30, 40, 50, 60, 70}. Let H be the
repository of low level heuristics, i.e. the set of heuristics
which are available to make the decisions in D. Suppose H
contains two elements; h1: assign next the not-yet scheduled
job with the shortest processing time; and h2: assign next
the not-yet scheduled job with the longest processing time.
A feasible solution to the given 7 jobs scheduling problem
can be obtained as follows.

Step 1: assign a low level heuristic from H to each of the
decisions in D. Let ai ∈ H be the heuristic assigned to di.
Step 2: call successively a1, a2, . . . , a6 to select the 1st,
2nd, . . . , 6th job to be processed.
Step 3: assign last the remaining operation and calculate the
starting and completion times of jobs.

In this way a search mechanism, such as a genetic algorithm
(GA), may be used to find a sequence of heuristics in
the form A = [a1, a2, . . . , a6] which is translated into a
solution as explained above. Suppose that the following
assignment of heuristics is generated by the GA, A′ =
[h1, h1, h1, h2, h2, h2]. Using the described procedure, this
translates into the sequence of jobs 1, 2, 3, 7, 6, 5, 4. A sched-
ule is obtained by calculating the starting and completion
time of each job. The task of the GA algorithm or any other
heuristic search mechanism, then, would be to decide which
element of H to assign to each ai. In consequence, the size
of the heuristic search space (for each stage) is in this case
26, as there are two possible heuristics for each of the 6
assignments.

As discussed in [23] the scheduling decisions can be
grouped into decision blocks. In the above example, an
assignment of heuristics with the form Â = [â1, â2, â3] may
also represent a feasible solution if it is translated into a
schedule as follows.

Step 1: assign â1 to d1 and d2; assign â2 to d3 and d4; assign
â3 to d5 and d6.
Steps 2 and 3: as above.

In this way, Â′ = [h1, h2, h1] translates into 1, 2, 7, 6, 3, 4, 5.
In this second type of assignment (Â) the decisions were
grouped in 3 blocks, having two operations each (the last
block has 3 operations).

Notice that in this case, the size of the search space
decreases to 23 as we have now only 3 assignments to make.
More generally, the size of the heuristic space will be |H||Â|,
where H denotes the repository of heuristics, and Â, the
sequence of assignments.

III. FITNESS LANDSCAPES

The notion of fitness landscapes [18] was introduced to
describe the dynamics of adaptation in nature [26]. Since
then, it has become a powerful metaphor in evolutionary
theory. The fitness landscape metaphor can be used for search

in general. Given a search problem, the set of possible
solutions can be coded using strings of fixed length from
some finite alphabet. This encoding generates a representa-
tion space, which is a high dimensional space of all possible
strings of a given length. There is also a neighborhood
relation that defines which points in the representation space
are connected. This relation depends on the specific search
operator or combination of operators, used to search the
space. Finally, there is a fitness function that assigns a fitness
value to each possible string or point in the space.

More formally [15], a fitness landscape (S, f, d) of a
problem instance of a given combinatorial optimization prob-
lem consists of a set of candidate solutions S, a fitness (or
objective) function f : S 7→ R, which assigns a real-valued
fitness to each solution in S, and a distance metric d that
defines the spatial structure of the landscape. This distance
is related to the neighborhood relation described above.

A. Fitness distance correlation analysis

The most commonly used measure to estimate the global
structure of fitness landscapes is the fitness distance cor-
relation (FDC) coefficient, proposed by Jones and Forrest
[13]. It is used as a measure for problem difficulty in genetic
algorithms. Given a set of points x1, x2,xm and if fitness
values, the FDC coefficient % is defined as:

%(f, dopt) =
Cov(f, dopt)
σ(f)σ(dopt)

(1)

where Cov(., .) denotes the covariance of two random vari-
ables and σ(.) the standard deviation. The FDC determines
how closely related are the fitness of a set of points and
their distances to the nearest optimum in the search space
(denoted by dopt). If fitness increases when the distance to
the optimum becomes smaller, then the search is expected
to be easy, since the optimum can gradually be approached
via fitter individuals. A value of % = −1.0 (% = 1.0) for
maximisation (minimisation) problems indicates a perfect
correlation between fitness and distance to the optimum, and
thus predicts an easy search. On the other hand, a value
of % = 1.0 (% = −1.0), means that with increasing fitness
the distance to the optimum increases too, which indicates a
deceptive and difficult problem. As suggested in [13], a value
of fdc ≤ −0.5 (fdc ≥ 0.5) for maximisation (minimisation)
problems indicates an easy problem.

Often, a fitness distance plot is made to gain insight into
the structure of the landscape, in addition to (or instead of)
calculating the correlation coefficient [15]. This is done by
plotting the fitness of points in the search space against their
distance to an optimum or best-known solution. This type
of analysis, often called fitness distance analysis, can be
used to investigate not only the correlation between arbitrary
points in the search space, but also the distribution of local
optima within the search space. An interesting property
of fitness landscapes, which has been observed in many
different studies [2], [14], [15], [17], is that on average,
local optima are very much closer to the optimum than

are randomly chosen points, and closer to each other than
random points would be. In other words, the local optima are
not randomly distributed, rather they tend to be clustered in a
“central massif” (or “big valley” if we are minimising). This
global structure has been observed in the abstract NK family
of landscapes [14], and in many combinatorial optimisation
problems, such as the traveling salesman problem [2], graph
bipartitioning [15], and flowshop scheduling [17].

B. Hyper-heuristic Landscapes

Our hyper-heuristic approach (described in section II),
deals with two search spaces: (1) the search space of
heuristics (HS), and (2) the search space of solutions to
the problem at hand (PS). However, we have a single
landscape, as the objective function value of a point in the
heuristic search space, can only be known after calculating
the objective value of the corresponding search point in the
solution space. Figure 1 illustrates the two search spaces
discussed and the two mappings involved, namely, g from
a heuristic list to its corresponding problem solution, and
f from the solution to the objective value. More formally,
the objective function of a sequence of heuristics Â in
the heuristic space HS is given by the composition of g
and f , namely, f(g(Â)) : HS 7→ R. The hyper-heuristic
landscape is, therefore, defined as the triplet (HS, f(g), V),
where the first two components are defined as above, and
V represents the neighbourhood produced by the minimal
possible move operator on the heuristic search space (referred
to as 1 − move). That is, the operator that substitutes one
heuristic in the sequence by another (randomly selected)
heuristic from the repository of low-level heuristics.

IV. EXPERIMENTAL SETTINGS

Two groups of experiments were conducted, the first group
compares the performance attained by different problem rep-
resentations (search spaces), defined by grouping decisions
in different block sizes. A direct encoding of the problem
based on permutations (i.e. a permutation search space), is a
also explored.

Four instances of the hybrid flowhsop problem were
randomly generated with different numbers of jobs, n ∈
{50, 100}, and stages, m ∈ {5, 20}. The processing times
were generated randomly using a discrete uniform distribu-
tion in the [10,100] interval. Note that the processing time of
jobs in different stages may differ. The number of machines
per stage were either 4 or 5, both with equal probability.

For each problem instance, several ways of grouping
decisions were studied. The representation that considers
each decision individually, was always considered. In this
representation there are n blocks of size 1 per stage; since
there are m stages, there is a total of n × m decision
blocks. Let us consider for example the case of 50 jobs,
the distribution of decision blocks in stages is as follows:

b1, . . . , b50︸ ︷︷ ︸
stage 1

, b51, . . . , b100︸ ︷︷ ︸
stage 2

, . . . , b50(m−1)+1, . . . , b50m︸ ︷︷ ︸
stage m

.

h1 h2 h3 … hn

Objective Function
(makespan,

completion times,
max tardiness, etc)

Heuristic space:
sequence of dispatching
rules

Problem space: flow shop
schedules

Real numbers: objective
function value of the
schedule

g f

Fig. 1. Hyper-heuristic mapping process from a sequence of heuristics to its fitness value. Two mappings are involved: g : HS 7→ PS, and f : PS 7→ R.

For n = 50, decisions were also grouped into 10 and
30 decision blocks per stage. When 10 blocks per stage are
considered, each block contains 5 decisions, and when 30
blocks are considered, the first 20 blocks contain 2 decisions
each whilst the last 10 one decision each. Similarly, for n =
100, blocks of size 25, 50, and 100 were used.

A repository of 13 dispatching-rules were considered
as low-level heuristics to be potentially assigned to each
decision. These heuristics works as follows: whenever a
machine is idle, select the job not yet scheduled and ready
for processing (released from the previous stage) that best
satisfies a certain criterion and assign it to the idle machine.
The following rules were considered: minimum release time,
shortest processing time, longest processing time, less work
remaining, more work remaining, earliest due date, latest
due date, weighed shortest processing time, weighted longest
processing time, lowest weighted work remaining, highest
weighted work remaining, lowest weighted due date and
highest weighted due date.

A standard GA with elitism was employed as the high-
level strategy searching on the different heuristic spaces, and
the permutation space. The crossover operator implemented
selects two chromosomes as parents, and sets any gene ci
of the new chromosome with a probability α from the fittest
parent and 1-α from the other. The mutation operator selects
(n × m) × β random genes and substitutes them with a
different randomly selected dispatching rule. Parameter β
(0 < β < 1) controls the strength of mutation. The GA
control parameters that produced the best results after an sta-
tistical tuning process [23] were used, namely: a population
size of 100, and binary tournament selection with elitism.
The algorithm selects the genetic operators independently to
produce offspring; crossover with a probability of 0.9, and
mutation with 0.1. The α and β parameters described above
are set to 0.5 and 0.05, respectively. The stopping condition
was set to 10 000 solution evaluations, and for each instance
and representation 30 GA runs were conducted.

V. RESULTS

Table I, summarises the average performance obtained af-
ter 30 GA runs for each representation and objective function
on the four instances studied. The best obtained results for
each instance and objective function are highlighted in bold
font. Notice that the hyper-heuristic representation clearly
outperformed the permutation representation in all cases,
and the advantage of the heuristic representation is more
noticeable for the sumWT objective function. Note also that
grouping several decisions into blocks, that is, having shorter
hyper-heuristic representations, seems to be favourable when
considering a fixed computational effort. This was already
observed in [23], where it was also found that considering
too many or too few decision blocks per stage yielded
comparably poor results. A large number of decision blocks
per stage implies a larger search space, whereas very few
decision blocks have very limited expression power, this may
explain the observed behaviour.

A. Landscape analysis

It is clear from the results discussed above that the hyper-
heuristic search spaces offer an advantage when solving HFS
problems. With the aim of gaining a better understanding of
the structure of such search spaces, this section reports our
statistical landscape analysis.

1) Heuristic space vs. permutation space: distribution of
objective values: First, we compared the distribution of
objective values, for both Cmax and sumWT , of a set of
10 000 randomly generated solutions on both the permutation
and hyper-heuristic search spaces. The permutation space
was sampled by generating random permutations which were
decoded as schedules by assigning jobs in their order of
appearance into the first machine to become available. The
schedules were generated in such a way that there are no
idle time windows on any machine that are large enough to
process a job without delaying the completion time of any
other job. Therefore, only active schedules were generated,

TABLE I
MEAN AND STANDARD DEVIATION OF 30 GA RUNS WITH BOTH

OBJECTIVE FUNCTIONS (Cmax AND sumWT), ON THE FOUR

STUDIED INSTANCES. THE DIFFERENT HEURISTIC

REPRESENTATIONS (NUMBER OF DECISION BLOCKS), AND THE

PERMUTATION REPRESENTATION, ARE REPORTED

.
n m representation Cmax stDev sumWT stDev

50 5 10 941.30 3.74 41341.80 562.78
30 940.60 3.10 41391.20 745.09
50 941.00 3.86 41858.90 392.51
permutation 1042.90 11.60 56107.20 2010.44

20 10 1755.30 14.45 28481.20 1272.17
30 1754.00 8.87 28338.40 728.53
50 1756.50 13.90 28565.50 1174.17
permutation 2100.80 7.98 65127.70 2305.55

100 5 25 1533.10 3.03 250794.30 3424.25
50 1523.80 2.86 252856.80 4217.34
100 1526.10 4.33 256871.20 4814.65
permutation 1610.20 7.05 303553.80 9260.10

20 25 2497.20 6.84 195557.50 4076.09
50 2504.70 11.43 200104.20 3686.10
100 2508.60 11.70 208216.30 6002.94
permutation 3072.20 20.98 379926.20 7898.86

which are on average better than most random schedules
[16]. The heuristic space was sampled by producing random
sequences of dispatching rules, considering the maximum
number of decision blocks (i.e. one heuristic per decision).
Figures 2 and 3 show the empirical distributions obtained
for the two objective functions (Cmax and sumWT), re-
spectively, on the four studied instances. Notice that for both
objective functions the solutions represented as sequences of
dispatching rules are significantly better than those repre-
sented as permutations. This is specially noticeable for the
larger instances (i.e. with m = 20).

 0

 20

 40

 60

 80

 100

 120

 140

9.98 10.7 12.8 14.4

50 x 5

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

 140

18.7 19.5 22.5 24.9

50 x 20

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

 140

 160

16.2 16.8 18.9 21.3

100 x 5

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

26.8 28.1 32.6 36.9

100 x 20

hyperheuristic
permutation

Fig. 2. Distribution of Cmax values of random solutions of the hyper-
heuristic and permutation spaces

 0

 20

 40

 60

 80

 100

 120

5.72 7.53 10.9 14.5

50 x 5

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

4.93 7.13 12.1 15.7

50 x 20

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

36.4 39.8 47.2 54.7

100 x 5

hyperheuristic
permutation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

31.9 35.8 54.6 63.7

100 x 20

hyperheuristic
permutation

Fig. 3. Distribution of sumWT values of random solutions of the hyper-
heuristic and permutation spaces

2) Neighborhood of the best obtained heuristic sequences:
In order to gain information about the ruggedness of the
landscapes, Figures 4 and 5 illustrate the mean Cmax and
sumWT values, respectively, (with 95% confidence interval)
of all the 1-move neighbours of the best-known solution
for each objective function. The horizontal axis denotes the
position in the sequence, considering the elements from left
to right, whilst the vertical axis the objective function value.
A point in the plots with abscissa i represents the mean
objective value of all the direct neighbours of the best-
known sequence, which differ from it in position i. Since
there are 13 low-level heuristic in the heuristic space, each
point in the plot represents, therefore, the average cost of 12
other sequences (each having a different heuristic in position
i). These plots illustrate two interesting features of these
heuristic landscapes. First, the landscapes are rugged, in that
small differences in the heuristic list (1-moves) may produce
a large difference in the solution objective value. Second,
there is a strong positional bias in the heuristic search spaces,
where changes on the list left-most positions have a much
higher impact on the objective function as compared to the
right-most positions. This relationship between the position
in the list and the deterioration in cost is steady for the
sumWT objective function (Figure 5), whereas for the Cmax

function the relationship (Figure 4) is less structured but still
has a decreasing trend. Another interesting observation is that
some positions, especially with respect to the Cmax objective
function (Figure 4), are neutral in that their modification do
not produce changes in the cost value. These neutral positions
tend to be located towards the right end of the sequences
(Figure 5).

 920

 940

 960

 980

 1000

 1020

 1040

 1060

 1 2 3 4 5 6 7 8 9 10

50x5, rep. size 10

 1700

 1750

 1800

 1850

 1900

 1950

 1 2 3 4 5 6 7 8 9 10

50x20, rep. size 10

 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610

 0 5 10 15 20 25

100x5, rep. size 25

 2450

 2500

 2550

 2600

 2650

 2700

 0 5 10 15 20 25

100x20, rep. size 25

 920

 930

 940

 950

 960

 970

 980

 0 5 10 15 20 25 30

50x5, rep. size 30

 1720

 1740

 1760

 1780

 1800

 1820

 1840

 1860

 1880

 0 5 10 15 20 25 30

50x20, rep. size 30

 1510

 1520

 1530

 1540

 1550

 1560

 1570

 1580

 0 5 10 15 20 25 30 35 40 45 50

100x5, rep. size 50

 2460

 2480

 2500

 2520

 2540

 2560

 2580

 2600

 2620

 0 5 10 15 20 25 30 35 40 45 50

100x20, rep. size 50

 925

 930

 935

 940

 945

 950

 955

 960

 0 5 10 15 20 25 30 35 40 45 50

50x5, rep. size 50

 1720

 1740

 1760

 1780

 1800

 1820

 1840

 1860

 0 5 10 15 20 25 30 35 40 45 50

50x20, rep. size 50

 1510

 1520

 1530

 1540

 1550

 1560

 1570

 1580

 0 10 20 30 40 50 60 70 80 90 100

100x5, rep. size 100

 2460
 2480
 2500
 2520
 2540
 2560
 2580
 2600
 2620
 2640

 0 10 20 30 40 50 60 70 80 90 100

100x20, rep. size 100

Fig. 4. Mean and 95% confidence interval of the variation in the Cmax

value of the all the 1-move neighbours of the best-known sequence. A
point in the plots with abscissa i represents the mean cost of all the direct
neighbours of the best-known sequence, which differ from it in position i.

 40000

 45000

 50000

 55000

 60000

 65000

 1 2 3 4 5 6 7 8 9 10

50x5, rep. size 10

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 1 2 3 4 5 6 7 8 9 10

50x20, rep. size 10

 250000
 255000
 260000
 265000
 270000
 275000
 280000
 285000
 290000
 295000

 0 5 10 15 20 25

100x5, rep. size 25

 190000

 200000

 210000

 220000

 230000

 240000

 250000

 260000

 0 5 10 15 20 25

100x20, rep. size 25

 40000

 41000

 42000

 43000

 44000

 45000

 46000

 47000

 48000

 0 5 10 15 20 25 30

50x5, rep. size 30

 26000
 28000
 30000
 32000
 34000
 36000
 38000
 40000
 42000
 44000

 0 5 10 15 20 25 30

50x20, rep. size 30

 245000

 250000

 255000

 260000

 265000

 270000

 275000

 280000

 0 5 10 15 20 25 30 35 40 45 50

100x5, rep. size 50

 190000
 195000
 200000
 205000
 210000
 215000
 220000
 225000
 230000
 235000
 240000

 0 5 10 15 20 25 30 35 40 45 50

100x20, rep. size 50

 40000

 41000

 42000

 43000

 44000

 45000

 46000

 47000

 48000

 0 5 10 15 20 25 30 35 40 45 50

50x5, rep. size 50

 26000
 28000
 30000
 32000
 34000
 36000
 38000
 40000
 42000
 44000

 0 5 10 15 20 25 30 35 40 45 50

50x20, rep. size 50

 250000

 255000

 260000

 265000

 270000

 275000

 280000

 0 10 20 30 40 50 60 70 80 90 100

100x5, rep. size 100

 195000
 200000
 205000
 210000
 215000
 220000
 225000
 230000
 235000
 240000
 245000
 250000

 0 10 20 30 40 50 60 70 80 90 100

100x20, rep. size 100

Fig. 5. Mean and 95% confidence interval of the variation in the sumWT
value of the all the 1-move neighbours of the best-known sequence. A
point in the plots with abscissa i represents the mean cost of all the direct
neighbours of the best-known sequence, which differ from it in position i.

B. Fitness-distance correlation analysis

The fitness-distance analysis requires knowledge of the
optimal solution. However, given that the optimal solution is
not generally known, many studies in the literature use the
best-known solution instead. For the analysis, we considered

both a set of random sequences and a set of empirically
generated local optima. The set of random sequences where
generated as follows. For a given instance, let x∗ be the best-
known solution in the heuristic search space, referred to as
the optimum and obtained after the experiments reported in
Table I. In order to have a wide distribution of distances
to the optimum, a fixed number of solutions (10 in our
experiments) were randomly generated at each distance i, for
i = 1, . . . , n×m, away from x∗. Thus, 10×(n×m) random
sequences were produced for each instance, representation
and objective function. The local optima were produced using
a next-improvement local-search algorithm, based on the 1-
move neighbourhood, and starting from the set of random
solutions described above. As the distance metric between
the heuristic sequences, we used the Hamming distance, that
is, the number of positions in which two sequences differ.
Notice that our low-level heuristics set contains 13 elements
{h1, h2, h3, . . . , h13}, but there is no order relationship be-
tween them. That is, h1 is not farther away from h13 than it
is from h2; the indexing convention for heuristics is arbitrary.
Therefore, Hamming distance is a good metric for gauging
the distance between two sequences of heuristics.

TABLE II
FITNESS DISTANCE CORRELATION COEFFICIENT WITH RANDOM

SAMPLING (fdc) AND LOCAL SEARCH SAMPLING (fdcls).
REPRESENTATION ARE SHOWN.

Cmax sumWT
n m representation fdc fdcls fdc fdcls

50 5 10 0.580 0.637 0.618 0.741
30 0.691 0.585 0.650 0.841
50 0.760 0.615 0.669 0.841
permutation 0.483 0.133 0.863 0.775

20 10 0.634 0.774 0.802 0.894
30 0.672 0.699 0.595 0.793
50 0.680 0.758 0.704 0.862
permutation 0.180 0.047 0.745 0.674

100 5 25 0.744 0.580 0.533 0.877
50 0.750 0.577 0.545 0.927
100 0.909 0.685 0.605 0.922
permutation 0.195 0.085 0.898 0.788

20 25 0.670 0.647 0.648 0.870
50 0.780 0.811 0.790 0.878
100 0.787 0.834 0.900 0.939
permutation 0.483 0.291 0.823 0.664

Table II, illustrates the fitness distance correlation coeffi-
cients for both the random sample (fdc) and the local optima
(fdcls) sample of solutions, with respect to the two objec-
tive functions. We may observe that all the hyper-heuristic
representations show a high positive correlation between the
cost and distance to the optimum for both random sequences
and local optima (in the range of 0.580 to 0.927), which
predicts an easy search. The correlation coefficients of the
permutation representation are, on the other hand, much
lower, when considering the Cmax objective function, as
compared to the sumWT function.

With respect to the the hyper-heuristic spaces high fdcls
values implies that the lower the cost the closer the local
optima are to the global optimum (or best-known solution).
It also suggests a big valley structure of the underlying

landscape (as discussed in Section III-A). In addition to
the fdcls coefficients, fitness-distance scatter plots (shown
in Figures 6, and 7) provide useful information about the
landscapes for both the Cmax, and sumWT cost functions,
respectively. Notice that for the hyper-heuristic representa-
tion, the plots for all instances and representation lengths
have a similar general outlook: the costs of local optima and
distances to the optimum show a clear positive correlation.
The scatter plots for the permutation presentation (right-
most column of Figures 6, and 7) show a different overall
picture. For the Cmax objective function (Figure 6) there is
no observable correlation between the cost of local optima
and their distances to the optimum, while for the sumWT
function (Figure 7), a positive correlation seems to hold,
but only for the best local optima; that is, those with a
lower objective function values. There are, in this case,
a large number of low-quality local optima that show no
clear fitness-distance correlation and are, therefore, randomly
located in the search space. Finally, notice that for some
instances (i.e. that with n = 100,m = 5) , the scatter plots
suggest that there are several (different) local optima having
the same or very similar fitness as the best-known solution,
so there seems to be a set of optimal solutions (instead of
a single optimum) located in a plateau, which suggest the
presence of neutrality in these landscapes.

C
m

ax

distance to optimum

50x5, rep. size 10

C
m

ax

distance to optimum

50x20, rep. size 10

C
m

ax

distance to optimum

100x5, rep. size 25

C
m

ax

distance to optimum

100x20, rep. size 25

C
m

ax

distance to optimum

50x5, rep. size 30

C
m

ax

distance to optimum

50x20, rep. size 30

C
m

ax

distance to optimum

100x5, rep. size 50

C
m

ax

distance to optimum

100x20, rep. size 50

C
m

ax

distance to optimum

50x5, rep. size 50

C
m

ax

distance to optimum

50x20, rep. size 50

C
m

ax

distance to optimum

100x5, rep. size 100

C
m

ax

distance to optimum

100x20, rep. size 100

C
m

ax

distance to optimum

50x5, perm. rep.

C
m

ax

distance to optimum

50x20, perm. rep.

C
m

ax

distance to optimum

100x5, perm. rep.

C
m

ax

distance to optimum

100x20, perm. rep.

Fig. 6. Fitness-distance correlation scatter-plots of local optima (Cmax

objective function) of the landscapes studied.

VI. SUMMARY AND CONCLUSIONS

Hyper-heuristics approaches differ from other heuristic
search techniques in that they operate on a search space
of heuristics, rather than directly on a search space of
solutions to the underlying problem. Our motivation was,
therefore, to study the structure of an example of such

su
m

W
T

distance to optimum

50x5, rep. size 10

su
m

W
T

distance to optimum

50x20, rep. size 10

su
m

W
T

distance to optimum

100x5, rep. size 25

su
m

W
T

distance to optimum

100x20, rep. size 25

su
m

W
T

distance to optimum

50x5, rep. size 30

su
m

W
T

distance to optimum

50x20, rep. size 30

su
m

W
T

distance to optimum

100x5, rep. size 50

su
m

W
T

distance to optimum

100x20, rep. size 50

su
m

W
T

distance to optimum

50x5, rep. size 50

su
m

W
T

distance to optimum

50x20, rep. size 50

su
m

W
T

distance to optimum

100x5, rep. size 100

su
m

W
T

distance to optimum

100x20, rep. size 100

su
m

W
T

distance to optimum

50x5, perm. rep.

su
m

W
T

distance to optimum

50x20, perm. rep.

su
m

W
T

distance to optimum

100x5, perm. rep.

su
m

W
T

distance to optimum

100x20, perm. rep.

Fig. 7. Fitness-distance correlation scatter-plots of local optima (sumWT
objective function) of the landscapes studied.

heuristic search spaces. We formalised the notion of hyper-
heuristic landscapes and performed a landscape analysis of
the heuristic search space induced by a dispatching-rule-
based hyper-heuristic for the hybrid flowshop scheduling
problem. This hyper-heuristic operates upon a set of dis-
patching rules widely used in production scheduling. Specif-
ically, we conducted a fitness-distance correlation analysis
of the landscapes of four instances of the hybrid flowshop
problem, and employed additional visualisation techniques.
We considered two different objective functions, and several
hyper-heuristic representation sizes. A permutation based
direct representation was also studied for the sake of com-
parisons. Our study confirmed the suitability of heuristic
search spaces, and therefore the relevance of hyper-heuristic
approaches. The prominent features of the studied landscapes
can be summarised as follows:
• Big valley structure: the cost of local optima and their

distances to the global optimum (best-known solution)
are correlated, which suggests that these landscapes has
a globally convex or big valley global structure.

• Large number of local optima: the landscapes contain
large number of distinct local optima, many of them of
low quality.

• Existence of plateaus (neutrality): many local optima
are located at the same level (height) in the search space,
that is, they have the same cost value.

• Positional bias: left-most positions in the heuristic list
have a much greater impact on the produced solution
cost. This implies that the decisions at the early stages
of the scheduling process are more important.

We suggest that search algorithms that explicitly exploit
the features described above, will enhance the search on this

type of heuristic search space. These performance predictions
should be tested in future work. Moreover, similar and more
advanced landscape analysis techniques should be conducted
on both larger set of instances and types of production
scheduling problems.

REFERENCES

[1] A. Allahverdi and F. S. Al-Anzi. Scheduling multi-stage parallel-
processor services to minimize average response time. Journal of the
Operational Research Society, 57:101–110, 2006.

[2] K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start
technique for combinatorial global optimizations. Operations Research
Letters, 16:101–113, 1994.

[3] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schu-
lenburg. Hyper-heuristics: An emerging direction in modern search
technology. In F. Glover and G. Kochenberger, editors, Handbook of
Metaheuristics, pages 457–474. Kluwer, 2003.

[4] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu.
A graph-based hyper-heuristic for educational timetabling problems.
European Journal of Operational Research, 176:177–192, 2007.

[5] J. Carlier and E. Neron. An exact method for solving the multi-
processor flow-shop. RAIRO Research Opérationale, 34:1–25, 2000.

[6] J. Cheng, Y.i Karuno, and H. Kise. A shifting bottleneck approach
for a parallel-machine flow shop scheduling problem. Journal of the
Operations Research Society of Japan, 44:140–156, 2001.

[7] U. Dorndorf and E. Pesch. Evolution based learning in a job
shop scheduling environment. Computers and Operations Research,
22(1):25–40, 1995.

[8] H.L Fang, P. Ross, and D. Corne. A promising genetic algorithm
approach to job shop scheduling, rescheduling, and open-shop schedul-
ing problems. In S. Forrest, editor, Fifth International Conference
on Genetic Algorithms, pages 375–382, San Mateo, 1993. Morgan
Kaufmann.

[9] H. Fisher and G. L. Thompson. Probabilistic learning combinations
of local job-shop scheduling rules. In Factory Scheduling Conference,
Carnegie Institue of Technology, May 10-12 1961.

[10] H. Fisher and G. L. Thompson. Probabilistic learning combinations of
local job-shop scheduling rules. In J. F. Muth and G. L. Thompson,
editors, Industrial Scheduling, pages 225–251, New Jersey, 1963.
Prentice-Hall, Inc.

[11] R. R. Garcı́a and C. Maroto. A genetic algorithm for hybrid flow
shops with sequence dependent setup times and machine elegibility.
European Journal of Operational Research, 169:781–800, 2006.

[12] J. N. D. Gupta. Two-stage hybrid flow shop scheduling problem.
Operational Research Society, 39:359–364, 1988.

[13] T. Jones. Crossover, macromutation, and population-based search.
In L. J. Eshelman, editor, Proceedings of the Sixth International
Conference on Genetic Algorithms, pages 73–80, San Francisco, CA,
1995. Morgan Kaufmann.

[14] S. A. Kauffman. The Origins of Order: Self-Organization and
Selection in Evolution. Oxford University Press, 1993.

[15] P. Merz and B.Freisleben. Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitiioning. Evolutionary Computation,
8(1):61–91, 2000.

[16] M. Pinedo. Scheduling Theory, Algorithms and Systems. Prentice Hall,
2002.

[17] C. R. Reeves. Landscapes, operators and heuristic search. Annals of
Operations Research, 86:473–490, 1999.

[18] C. R. Reeves. Fitness landscapes, chapter 19. In E. K. Burke
and G. Kendall, editors, Search Methodologies: Introductory Tutorials
in Optimization and Decision Support Techniques, pages 587–610.
Springer, 2005.

[19] D. L. Santos, J. L. Hunssucker, and D. E. Deal. FLOWMULT: Per-
mutation sequences for flow shops with multiple processors. Journal
of Information and Optimization Sciences, 16:351–366, 1995.

[20] R. H. Storer, S. D. Wu, and R. Vaccari. New search spaces for sequenc-
ing problems with application to job shop scheduling. Management
Science, 38(10):1495–1509, 1992.

[21] R. H. Storer, S. D. Wu, and R. Vaccari. Problem and heuristic space
search strategies for job shop scheduling. ORSA Journal of Computing,
7(4):453–467, 1995.

[22] J. A. Vazquez-Rodriguez, S. Petrovic, and A. Salhi. A combined meta-
heuristic with hyper-heuristic approach to the scheduling of the hybrid
flow shop with sequence dependent setup times and uniform machines.
In Proceedings of the 3rd Multidisciplinary International Scheduling
Conference: Theory and Applications (MISTA 2007), 2007.

[23] J. A. Vázquez-Rodrı́guez, S. Petrovic, and A. Salhi. An investigation
of hyper-heuristic search spaces. In Dipti Srinivasan and Lipo Wang,
editors, 2007 IEEE Congress on Evolutionary Computation, pages
3776–3783, Singapore, 25-28 September 2007. IEEE Computational
Intelligence Society, IEEE Press.

[24] J. A. V. Rodrı́guez. Meta-hyper-heuristics for hybrid flow shops. Ph.D.
thesis, University of Essex, 2007.

[25] A. Vignier, D. Dardilhac, D. Dezalay, and S. Proust. A branch and
bound approach to minimize the total completion time in a k-stage
hybrid flowshop. In Proceedings of the 1996 Conference on Emerging
Technologies and Factory Automation, pages 215–220. IEEE press,
1996.

[26] S. Wright. The roles of mutation, inbreeding, crossbreeding and
selection in evolution. In D. F. Jones, editor, Proceedings of the Sixth
International Congress on Genetics, volume 1, pages 356–366, 1932.

